251
|
Forero DA, Benítez B, Arboleda G, Yunis JJ, Pardo R, Arboleda H. Analysis of functional polymorphisms in three synaptic plasticity-related genes (BDNF, COMT AND UCHL1) in Alzheimer's disease in Colombia. Neurosci Res 2006; 55:334-41. [PMID: 16698101 DOI: 10.1016/j.neures.2006.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 12/14/2022]
Abstract
In recent years, it has been proposed that synaptic dysfunction may be an important etiological factor for Alzheimer's disease (AD). This hypothesis has important implications for the analysis of AD genetic risk in case-control studies. In the present work, we analyzed common functional polymorphisms in three synaptic plasticity-related genes (brain-derived neurotrophic factor, BDNF Val66Met; catechol-O-methyl transferase, COMT Val158; ubiquitin carboxyl-terminal hydroxylase, UCHL1 S18Y) in a sample of 102 AD cases and 168 age and sex matched controls living in Bogotá, Colombia. There was not association between UCHL1 polymorphism and AD in our sample. We have found an initial association with BDNF polymorphism in familial cases and with COMT polymorphism in male and sporadic patients. These initial associations were lost after Bonferroni correction for multiple testing. Unadjusted results may be compatible with the expected functional effect of variations in these genes on pathological memory and cognitive dysfunction, as has been implicated in animal and cell models and also from neuropsychological analysis of normal subjects carriers of the AD associated genotypes. An exploration of functional variants in these and in other synaptic plasticity-related genes (a synaptogenomics approach) in independent larger samples will be important to discover new genes associated with AD.
Collapse
Affiliation(s)
- Diego A Forero
- Grupo de Neurociencias, Facultad de Medicina e Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
252
|
Ahn TB, Jeon BS. Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 2006; 1087:159-67. [PMID: 16626658 DOI: 10.1016/j.brainres.2006.02.097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
Proteasomal dysfunction plays an important role in the pathogenesis of Parkinson disease (PD). Although clinical and experimental evidence continues to accumulate indicating heat shock protein 70 (HSP70) is significant in the pathogenesis of PD, few studies have been made to investigate the role of HSP70 under the condition of proteasome dysfunction. In in vivo study, we infused lactacystin into the unilateral substantia nigra (SN) of Sprague-Dawley rats with or without preceding whole body hyperthermia (WBH). Immunohistochemical studies showed the death of dopaminergic neurons and activated microglia in the SN. Lactacystin with prior WBH increased the expression of HSP70 more than did lactacystin alone and decreased lactacystin-induced dopaminergic neuronal death in the SN. In PC12 cells, heat shock pretreatment decreased lactacystin-induced cell death. Although additional treatment of nocodazole, ammonium chloride, and 3-methyladenine augmented cell death by lactacystin, heat shock pretreated to these drugs offsets their additional toxicity. These results indicate that heat shock proteins, especially HSP70, could play an important role under the condition of proteasome dysfunction in part by fostering aggresome formation and lysosome-mediated autophagy.
Collapse
Affiliation(s)
- Tae-Beom Ahn
- Department of Neurology, Kyung Hee University College of Medicine, South Korea
| | | |
Collapse
|
253
|
Vogt IR, Lees AJ, Evert BO, Klockgether T, Bonin M, Wüllner U. Transcriptional changes in multiple system atrophy and Parkinson's disease putamen. Exp Neurol 2006; 199:465-78. [PMID: 16626704 DOI: 10.1016/j.expneurol.2006.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/21/2005] [Accepted: 01/11/2006] [Indexed: 11/27/2022]
Abstract
Multiple system atrophy (MSA) and sporadic, non-mendelian Parkinson's disease (PD) are progressive neurodegenerative disorders with overlapping clinical symptoms and pathology. The etiology of both disorders is unknown, and complex combinations of multiple susceptibility genes and environmental factors are thought to be involved. Both disorders are characterized by ubiquitous alpha-synuclein aggregates in distinct regions and cell types of the central nervous system. In PD, alpha-synuclein-positive aggregates appear to be largely neuronal while in MSA oligodendroglial inclusions prevail. In PD patients, the alpha-synuclein pathology is thought to evolve in a rather regular pattern, starting in the brainstem and olfactory bulb and extending gradually onto the substantia nigra and ultimately the cerebral cortex while the cerebellum is largely spared. MSA pathology has not been graded in a similar way yet; neuropathological analyses revealed neurodegeneration and gliosis primarily in the brainstem, midbrain and basal ganglia and the cerebellum, while the cortex is largely spared. To identify disease-specific transcriptional patterns in MSA, we chose CNS regions differentially affected in MSA and PD for comparative gene expression profiling: putamen, cerebellum and occipital cortex. Four genes were regulated in both MSA and PD putamen and twelve in MSA and PD cerebellum. Regulated transcripts were validated using real-time quantitative RT-PCR, and immunohistochemistry was performed for the most significantly downregulated transcripts in MSA and PD putamen, GPR86 and RGS14, associated with G protein signaling and transcriptional regulation.
Collapse
Affiliation(s)
- Ina R Vogt
- Department of Neurology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
254
|
Zeng BY, Iravani MM, Lin ST, Irifune M, Kuoppamäki M, Al-Barghouthy G, Smith L, Jackson MJ, Rose S, Medhurst AD, Jenner P. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome. Eur J Neurosci 2006; 23:1766-74. [PMID: 16623833 DOI: 10.1111/j.1460-9568.2006.04718.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dysfunction of the ubiquitin-proteasome system occurs in the substantia nigra (SN) in Parkinson's disease (PD). However, it is unknown whether this is a primary cause or a secondary consequence of other components of the pathogenic process. We have investigated in nonhuman primates whether initiating cell death through mitochondrial complex I inhibition using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) altered proteasomal activity or the proteasomal components in the SN. Chymotrypsin-like, trypsin-like and peptidylglutamyl-peptide hydrolase (PGPH) activating of 20S proteasome were decreased in SN homogenates of MPTP-treated marmosets compared to naïve animals. Western blotting revealed a marked decrease in the expression of 20S-alpha subunits, but no change in 20S-beta subunits in the SN of MPTP-treated marmoset compared to naïve animals. There was a marked decrease in the expression of the proteasome activator 700 (PA700) and proteasome activator 28 (PA28) regulatory complexes. The 20S-alpha4 subunit immunoreactivity was decreased in the nucleus of colocalized tyrosine hydroxylase (TH)-positive cells of MPTP-treated animals compared to naïve animals but no difference in the intensity of 20S-beta1i subunit staining. Immunoreactivity for PA700-Rpt5 and PA28-alpha subunits within surviving TH-positive cells of MPTP-treated marmoset was reduced compared to naïve controls. Overall, the changes in proteasomal function and structure occurring follow MPTP-induced destruction of the SN in common marmosets were very similar to those found in PD. This suggests that altered proteasomal function in PD could be a consequence of other pathogenic processes occurring in SN as opposed to initiating cell death as previously suggested.
Collapse
Affiliation(s)
- B-Y Zeng
- Neurodegenerative Disease Research Group, GKT School of Biomedical and Health Sciences, King's College, London, SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
255
|
McNaught KSP, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging 2006; 27:530-45. [PMID: 16207501 DOI: 10.1016/j.neurobiolaging.2005.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/25/2005] [Accepted: 08/20/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive, age-related, neurodegenerative disorder. The cause and mechanism of neuronal death have been elusive. However, recent genetic, postmortem and experimental evidence show that protein accumulation and aggregation are prominent occurrences in both sporadic and familial PD. The relevance of these events to other cellular and biochemical changes, and to the neurodegenerative process, is being unraveled. It is increasingly evident that one or a combination of defects, including mutations, oxidative stress, mitochondrial impairment and dysfunction of the ubiquitin-proteasome system, lead to an excess production and aggregation of abnormal proteins in PD. In this respect, altered protein handling appears to be a central factor in the pathogenic process occurring in the various hereditary and sporadic forms of PD. This suggests that manipulation of proteolytic systems is a rational approach in the development of neuroprotective therapies that could modify the pathological course of PD.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
256
|
Napolitano M, Picconi B, Centonze D, Bernardi G, Calabresi P, Gulino A. L-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neurosci Lett 2006; 398:211-4. [PMID: 16529858 DOI: 10.1016/j.neulet.2005.12.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 12/16/2005] [Accepted: 12/29/2005] [Indexed: 10/24/2022]
Abstract
The dopamine (DA) precursor L-DOPA remains the most common treatment for Parkinson's disease (PD). However, long-term treatment with L-DOPA induces dyskinesia and motor disabilities in PD patients, indicating that this pharmacological agent is unable to fully compensate for the effects of DA denervation when used chronically. In this study, we examined the effect 6-hydroxydopamine (6-OHDA)-induced DA denervation of the striatum followed by either acute or chronic treatment with L-DOPA on gene expression of critical regulators of glutamate synaptic transmission. We found that administration of L-DOPA in rats with unilateral DA denervation resulted in a progressive increase of contraversive circling behavior and modulated the expression of Src, Lyn and PKC kinases. In particular, acute (3 days) and chronic (21 days) L-DOPA treatment were differentially able to rescue the effects of DA lesion, since only the acute treatment with L-DOPA corrected the decrease in Src, Lyn and PKC kinase expression induced by 6-OHDA lesion. Also, the reduced phosphorylation level of NR1 receptor subunit induced by 6-OHDA was only partially reversed by chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Dipartimento di Medicina Sperimentale e Patologia, Università La Sapienza, viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
257
|
Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ, Palaniappan C, Federoff HJ. Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease. Neurobiol Dis 2006; 21:305-13. [PMID: 16143538 DOI: 10.1016/j.nbd.2005.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/11/2005] [Accepted: 07/18/2005] [Indexed: 02/02/2023] Open
Abstract
Large-scale genomics approaches are now widely utilized to study a myriad of human diseases. These powerful techniques, when combined with data analysis tools, detect changes in transcript abundance in diseased tissue relative to control. We hypothesize that specific differential gene expression underlies important pathogenic processes in Parkinson's disease, which is characterized by the gradual loss of dopaminergic neurons in the substantia nigra and consequent loss of dopamine in the striatum. We have therefore examined gene expression levels in the human parkinsonian nigrostriatal pathway, and compared them with those of neurologically normal controls. Using unsupervised clustering methods, we demonstrate that relatively few genes' expression levels can effectively distinguish between disease and control brains. Further, we identify several interesting patterns of gene expression that illuminate pathogenic cascades in Parkinson's disease. In particular is the robust loss of synaptic gene expression in diseased substantia nigra and striatum.
Collapse
Affiliation(s)
- Renee M Miller
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, University of Rochester, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
258
|
Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MBH. Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 2006; 50:229-34. [PMID: 16470637 DOI: 10.1002/mnfr.200500156] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodegeneration in Parkinson's, Alzheimer's, or other neurodegenerative diseases appears to be multifactorial, where a complex set of toxic reactions, including oxidative stress (OS), inflammation, reduced expression of trophic factors, and accumulation of protein aggregates, lead to the demise of neurons. One of the prominent pathological features is the abnormal accumulation of iron on top of the dying neurons and in the surrounding microglia. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. The observations that iron induces aggregation of inert alpha-synuclein and beta-amyloid peptides to toxic aggregates have reinforced the critical role of iron in OS-induced pathogenesis of neurodegeneration, supporting the notion that a combination of iron chelation and antioxidant therapy may be one significant approach for neuroprotection. Tea flavonoids (catechins) have been reported to possess divalent metal chelating, antioxidant, and anti-inflammatory activities, to penetrate the brain barrier and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. This review aims to shed light on the multipharmacological neuroprotective activities of green tea catechins with special emphasis on their brain-permeable, nontoxic, transitional metal (iron and copper)-chelatable/radical scavenger properties.
Collapse
|
259
|
Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RKB, Graeber MB. Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 2006; 7:1-11. [PMID: 16344956 DOI: 10.1007/s10048-005-0020-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/19/2005] [Indexed: 11/28/2022]
Abstract
We have used brain tissue from clinically well-documented and neuropathologically confirmed cases of sporadic Parkinson's disease to establish the transcriptomic expression profile of the medial and lateral substantia nigra. In addition, the superior frontal cortex was analyzed in a subset of the same cases. DNA oligonucleotide microarrays were employed, which provide whole human genome coverage. A total of 570 genes were found to be differentially regulated at a high level of significance. A large number of differentially regulated expressed sequence tags were also identified. Levels of mRNA sequences encoded by genes of key interest were validated by means of quantitative real-time polymerase chain reaction (PCR). Comparing three different normalization procedures, results based on the recently published GeneChip Robust Multi Array algorithm were found to be the most accurate predictor of real-time PCR results. Several new candidate genes which map to PARK loci are reported. In addition, the DNAJ family of chaperones is discussed in the context of Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- L B Moran
- University Department of Neuropathology, Division of Neuroscience and Mental Health, Imperial College London and Hammersmith Hospitals Trust, Charing Cross campus, Fulham Palace Road, London, W6 8RF, UK
| | | | | | | | | | | |
Collapse
|
260
|
Miller RM, Federoff HJ. Altered gene expression profiles reveal similarities and differences between Parkinson disease and model systems. Neuroscientist 2006; 11:539-49. [PMID: 16282595 DOI: 10.1177/1073858405278330] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parkinson disease (PD) targets dopaminergic neurons in the substantia nigra, resulting in motor disturbances such as resting tremor, bradykinesia, and rigidity. Pathogenic processes likely occur over several decades, in that an overwhelming percentage of neurons are already dead at the time of clinical diagnosis. For this reason, the usage of animal model systems to discover the early steps in the pathologic cascade is required. These include exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which selectively kills dopamine neurons in the substantia nigra, and genetic models incorporating mutations in the alpha-synuclein gene that cause disease in human patients. Through the evaluation of these models at multiple time points, it is possible to discover novel gene expression changes that may underlie disease pathogenesis. Specifically, the authors hypothesize that animal models of PD and human PD brains share a gene expression profile that signifies certain aspects of pathogenesis and/or recovery-resistance. To test this and similar hypotheses, the authors and others have utilized new microarray technology that enables the sampling of thousands of genes' expression level in one assay. Because the technology is fairly new and results can vary depending on methods used, results must be evaluated with care. Multiple array and data-mining options can be used to make the most accurate inferences as to differentially expressed genes in each set of samples. The authors developed a fusion classifier approach whereby individual data-mining algorithms generate lists of significant genes. The lists are subsequently queried, and only genes unanimously called significant are retained for further validation. Although the authors' approach identified hundreds of differentially expressed genes in each of three PD systems, only a few were common between the human and animal substantia nigra. These were related to dopamine phenotype, synaptic function, and the mitochondrial metabolism, implicating the presynaptic terminal as a primary site of injury. The time course of the authors' experiments indicates that if the synaptic changes could be prevented, this may alleviate some cell death, in that these changes precede neuronal loss.
Collapse
Affiliation(s)
- Renee M Miller
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, Department of Neurology and University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | |
Collapse
|
261
|
Papapetropoulos S, FFrench-Mullen J, McCorquodale D, Qin Y, Pablo J, Mash DC. Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson's disease. Gene Expr 2006; 13:205-15. [PMID: 17193926 PMCID: PMC6032441 DOI: 10.3727/000000006783991827] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combining large-scale gene expression approaches and bioinformatics may provide insights into the molecular variability of biological processes underlying neurodegeneration. To identify novel candidate genes and mechanisms, we conducted a multiregional gene expression analysis in postmortem brain. Gene arrays were performed utilizing Affymetrix HG U133 Plus 2.0 gene chips. Brain specimens from 21 different brain regions were taken from Parkinson's disease (PD) (n = 22) and normal aged (n = 23) brain donors. The rationale for conducting a multiregional survey of gene expression changes was based on the assumption that if a gene is changed in more than one brain region, it may be a higher probability candidate gene compared to genes that are changed in a single region. Although no gene was significantly changed in all of the 21 brain regions surveyed, we identified 11 candidate genes whose pattern of expression was regulated in at least 18 out of 21 regions. The expression of a gene encoding the mitochondria ribosomal protein S6 (MRPS6) had the highest combined mean fold change and topped the list of regulated genes. The analysis revealed other genes related to apoptosis, cell signaling, and cell cycle that may be of importance to disease pathophysiology. High throughput gene expression is an emerging technology for molecular target discovery in neurological and psychiatric disorders. The top gene reported here is the nuclear encoded MRPS6, a building block of the human mitoribosome of the oxidative phosphorylation system (OXPHOS). Impairments in mitochondrial OXPHOS have been linked to the pathogenesis of PD.
Collapse
Affiliation(s)
| | | | - Donald McCorquodale
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yujing Qin
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - John Pablo
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Deborah C. Mash
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
262
|
Gal S, Fridkin M, Amit T, Zheng H, Youdim MBH. M30, a novel multifunctional neuroprotective drug with potent iron chelating and brain selective monoamine oxidase-ab inhibitory activity for Parkinson's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:447-56. [PMID: 17017567 DOI: 10.1007/978-3-211-45295-0_68] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Iron and monoamine oxidase activity are increased in brain of Parkinson's disease (PD). They are associated with autoxidation and oxidative deamination of dopamine by MAO resulting in the generation of reactive oxygen species and the onset of oxidative stress to induce neurodegeneration. Iron chelators (desferal, Vk-28 and clioquinol) but not copper chelators have been shown to be neuroprotective in the 6-hydroxydoapmine and MPTP models of Parkinson's disease (PD), as are monoamine oxidase B inhibitors such as selegiline and rasagiline. These findings prompted the development of multifunctional anti PD drugs possessing iron chelating phamacophore of VK-28 and the propargylamine MAO inhibitory activity of rasagiline. M30 is a potent iron chelator, radical scavenger and brain selective irreversible MAO-A and B inhibitor, with little inhibition of peripheral MAO. It has neuroprotective activity in in vitro and in vivo models of PD and unlike selective MAO-B inhibitors it increases brain dopamine, serotonin and noradrenaline. These findings indicate beside its anti PD action, it may also possess antidepressant activity, similar to selective MAO-A and nonselective MAO inhibitors. These properties make it an ideal anti PD drug for which it is being developed.
Collapse
Affiliation(s)
- S Gal
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | |
Collapse
|
263
|
Abstract
Increasing genetic, pathological, and experimental evidence suggest that neurodegeneration in both familial and sporadic forms of Parkinson's disease (PD) may be related to a defect in the capacity of the ubiquitin-proteasome system (UPS) to clear unwanted proteins, resulting in protein accumulation, aggregation, and cytotoxicity. This concept is supported by in vitro and in vivo laboratory experiments which show that inhibition of UPS function can cause neurodegeneration coupled with the formation of Lewy body-like inclusions. This hypothesis could account for the presence of protein aggregates and Lewy bodies in PD, the other biochemical features seen in the disorder, and the age-related vulnerability of the substantia nigra pars compacta. It also suggests novel targets for putative neuroprotective therapies for PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York10029, USA.
| | | |
Collapse
|
264
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
265
|
Youdim MBH, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson's disease and depressive illness. Br J Pharmacol 2006; 147 Suppl 1:S287-96. [PMID: 16402116 PMCID: PMC1760741 DOI: 10.1038/sj.bjp.0706464] [Citation(s) in RCA: 461] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A few years after the foundation of the British Pharmacological Society, monoamine oxidase (MAO) was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamine neurotransmitters, noradrenaline, adrenaline and dopamine (and, later, 5-hydroxytryptamine, as well). Within the next decade, the therapeutic value of inhibitors of MAO in the treatment of depressive illness was established. Although this first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two isoforms, MAO-A and -B, and isoform-selective inhibitors. Selective inhibitors of MAO-B have found a therapeutic role in the treatment of Parkinson's disease and further developments have provided reversible inhibitors of MAO-A, which offer antidepressant activity without the serious side effects of the earlier inhibitors. Clinical observation and subsequent pharmacological analysis have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress in the brain may be critical for the initiation and progress of neurodegeneration and selective inhibition of brain MAO could contribute importantly to lowering such stress. There are complex interactions between free iron levels in brain and MAO, which may have practical outcomes for depressive disorders. These aspects of MAO and its inhibition and some indication of how this important area of pharmacology and therapeutics might develop in the future are summarized in this review.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Department of Pharmacology and Technion-Bruce Rappaport Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research and Teaching, Haifa, Israel.
| | | |
Collapse
|
266
|
Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. PROGRESS IN BRAIN RESEARCH 2006; 158:197-222. [PMID: 17027698 DOI: 10.1016/s0079-6123(06)58010-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of gene array techniques to quantify expression levels of dozens to thousands of genes simultaneously within selected tissue samples from control and diseased brain has enabled researchers to generate expression profiles of vulnerable neuronal populations in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, and Creutzfeld-Jakob disease. Intriguingly, gene expression analysis reveals that vulnerable brain regions in many of these diseases share putative pathogenetic alterations in common classes of genes, including decrements in synaptic transcript levels and increments in immune response transcripts. Thus, gene expression profiles of diseased neuronal populations may reveal mechanistic clues to the molecular pathogenesis underlying various neurological diseases and aid in identifying potential therapeutic targets. This chapter will review how regional and single cell gene array technologies have advanced our understanding of the genetics of human neurological disease.
Collapse
|
267
|
Thomas DM, Francescutti-Verbeem DM, Kuhn DM. Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J 2005; 20:515-7. [PMID: 16384912 DOI: 10.1096/fj.05-4873fje] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.
Collapse
Affiliation(s)
- David M Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
268
|
Gal S, Zheng H, Fridkin M, Youdim MBH. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 2005; 95:79-88. [PMID: 16181414 DOI: 10.1111/j.1471-4159.2005.03341.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.
Collapse
Affiliation(s)
- Shunit Gal
- Eve Topf and US National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Rappaport Family Faculty of Medicine and Department of Pharmacology, Haifa, Israel
| | | | | | | |
Collapse
|
269
|
Galvin JE, Ginsberg SD. Expression profiling in the aging brain: a perspective. Ageing Res Rev 2005; 4:529-47. [PMID: 16249125 DOI: 10.1016/j.arr.2005.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 06/17/2005] [Indexed: 12/25/2022]
Abstract
To evaluate molecular events associated with the aging process in animal models and human tissues, microarray analysis is performed at the regional and cellular levels to define transcriptional patterns or mosaics that may lead to better understanding of the mechanism(s) that drive senescence. In this review, we outline the experimental and analytical issues associated with high-throughput genomic analyses in aging brain and other tissues for a comprehensive evaluation of the current state of microarray analysis in aging paradigms. Ultimately, the goal of these studies is to apply functional genomics and proteomics approaches to aging research to develop new tools to assess age in cell- and tissue-specific manners in order to develop aging biomarkers for pharmacotherapeutic interventions and disease prevention.
Collapse
Affiliation(s)
- James E Galvin
- Department of Neurology, Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | |
Collapse
|
270
|
Lin W, Kang UJ. Neuroprotective therapy in Parkinson's disease: current status and new directions from experimental and genetic clues. J Clin Neurol 2005; 1:107-20. [PMID: 20396458 PMCID: PMC2854916 DOI: 10.3988/jcn.2005.1.2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite successful treatment of Parkinson's disease (PD) with a wide variety of symptomatic therapy, the disease continues to progress and drug-resistance symptoms become the predominant factors producing the disability of PD patients. Neuroprotective therapies have been tested, but clinically effective drugs have not been found yet. New insights gained from studies of genetic forms of PD point to the common pathogenic mechanisms that have been suspected in sporadic forms of the disease and may provide new approaches for the future neuroprotective therapies.
Collapse
Affiliation(s)
- William Lin
- Committees on Neurobiology and Molecular Medicine, Departments of Neurology and Neurobiology, Pharmacology, & Physiology, The University of Chicago, USA
| | | |
Collapse
|
271
|
Reznichenko L, Amit T, Youdim MBH, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 2005; 93:1157-67. [PMID: 15934936 DOI: 10.1111/j.1471-4159.2005.03085.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Our previous studies have shown that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) prevents neuronal cell death caused by several neurotoxins. The present study sought to determine the neuroprotective effect of EGCG when it is administered after the induction of cell damage ('neurorescue'). In an attempt to imitate a progressive mode of death, PC12 cells were initially subjected to serum-starvation conditions for a period of 1 or 3 days before administration of EGCG (0.1-10 microM) for up to 3 days. In spite of the high percentage of cell death, single or repetitive administration of EGCG (1 microM) significantly attenuated cell death. The neurorescue effect of EGCG was abolished by pre-treatment with the protein kinase C inhibitor GF109203X (2.5 microM), suggesting the involvement of the protein kinase C pathway in neurorescue by the drug. This is consistent with the rapid (15 min) translocation of the protein kinase C alpha isoform to the cell membrane in response to EGCG. The correlative neurite outgrowth activity of EGCG on PC12 cells may also contribute to its neurorescue effect. The present findings suggest that EGCG may have a positive impact on aging and neurodegenerative diseases to retard or perhaps even reverse the accelerated rate of neuronal degeneration.
Collapse
Affiliation(s)
- L Reznichenko
- Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Rappaport Family Faculty of Medicine, Haifa, Israel
| | | | | | | |
Collapse
|
272
|
Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Neurosignals 2005; 14:46-60. [PMID: 15956814 DOI: 10.1159/000085385] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
Many lines of evidence suggest that oxidative stress resulting in reactive oxygen species (ROS) generation and inflammation play a pivotal role in the age-associated cognitive decline and neuronal loss in neurodegenerative diseases including Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases. One cardinal chemical pathology observed in these disorders is the accumulation of iron at sites where the neurons die. The buildup of an iron gradient in conjunction with ROS (superoxide, hydroxyl radical and nitric oxide) are thought to constitute a major trigger in neuronal toxicity and demise in all these diseases. Thus, promising future treatment of neurodegenerative diseases and aging depends on availability of effective brain permeable, iron-chelatable/radical scavenger neuroprotective drugs that would prevent the progression of neurodegeneration. Tea flavonoids (catechins) have been reported to possess potent iron-chelating, radical-scavenging and anti-inflammatory activities and to protect neuronal death in a wide array of cellular and animal models of neurological diseases. Recent studies have indicated that in addition to the known antioxidant activity of catechins, other mechanisms such as modulation of signal transduction pathways, cell survival/death genes and mitochondrial function, contribute significantly to the induction of cell viability. This review will focus on the multifunctional properties of green tea and its major component (-)-epigallocatechin-3-gallate (EGCG) and their ability to induce neuroprotection and neurorescue in vitro and in vivo. In particular, their transitional metal (iron and copper) chelating property and inhibition of oxidative stress.
Collapse
Affiliation(s)
- Silvia A Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
273
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447482 DOI: 10.1002/cfg.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|