251
|
Setayesh-Mehr Z, Poorsargol M. Toxic proteins application in cancer therapy. Mol Biol Rep 2021; 48:3827-3840. [PMID: 33895972 DOI: 10.1007/s11033-021-06363-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Ribosome inactivating proteins (RIPs) as family of anti-cancer drugs recently received much attention due to their interesting anti-cancer mechanism. In spite of small drugs, RIPs use the large-size effect (LSE) to prevent the efflux process governed by drug resistance transporters (DRTs) which prevents inside of the cells against drug transfection. There are many clinical translation obstacles that severely restrict their applications especially their delivery approach to the tumor cells. As the main goal of this review, we will focus on trichosanthin (TCS) and gelonin (Gel) and other types, especially scorpion venom-derived RIPs to clarify that they are struggling with what types of bio-barriers and these challenges could be solved in cancer therapy science. Then, we will try to highlight recent state-of-the-arts in delivery of RIPs for cancer therapy.
Collapse
Affiliation(s)
- Zahra Setayesh-Mehr
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran.
| | - Mahdiye Poorsargol
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, Iran
| |
Collapse
|
252
|
Ortíz R, Quiñonero F, García-Pinel B, Fuel M, Mesas C, Cabeza L, Melguizo C, Prados J. Nanomedicine to Overcome Multidrug Resistance Mechanisms in Colon and Pancreatic Cancer: Recent Progress. Cancers (Basel) 2021; 13:2058. [PMID: 33923200 PMCID: PMC8123136 DOI: 10.3390/cancers13092058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The development of drug resistance is one of the main causes of cancer treatment failure. This phenomenon occurs very frequently in different types of cancer, including colon and pancreatic cancers. However, the underlying molecular mechanisms are not fully understood. In recent years, nanomedicine has improved the delivery and efficacy of drugs, and has decreased their side effects. In addition, it has allowed to design drugs capable of avoiding certain resistance mechanisms of tumors. In this article, we review the main resistance mechanisms in colon and pancreatic cancers, along with the most relevant strategies offered by nanodrugs to overcome this obstacle. These strategies include the inhibition of efflux pumps, the use of specific targets, the development of nanomedicines affecting the environment of cancer-specific tissues, the modulation of DNA repair mechanisms or RNA (miRNA), and specific approaches to damage cancer stem cells, among others. This review aims to illustrate how advanced nanoformulations, including polymeric conjugates, micelles, dendrimers, liposomes, metallic and carbon-based nanoparticles, are allowing to overcome one of the main limitations in the treatment of colon and pancreatic cancers. The future development of nanomedicine opens new horizons for cancer treatment.
Collapse
Affiliation(s)
- Raúl Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Beatriz García-Pinel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Marco Fuel
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; (R.O.); (F.Q.); (B.G.-P.); (M.F.); (C.M.); (L.C.); (J.P.)
- Department of Anatomy and Embriology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto Biosanitario de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
253
|
Liu J, Li G. Identification and validation of a risk signature based on extracellular matrix-related genes in gliomas. Medicine (Baltimore) 2021; 100:e25603. [PMID: 33879726 PMCID: PMC8078288 DOI: 10.1097/md.0000000000025603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Gliomas have the highest incidence among primary brain tumors, and the extracellular matrix (ECM) plays a vital role in tumor progression. We constructed a risk signature using ECM-related genes to predict the prognosis of patients with gliomas.mRNA and clinical data from glioma patients were downloaded from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed ECM-related genes were screened, and a risk signature was built using least absolute shrinkage and selection operator (LASSO) Cox regression. Cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to assess immune infiltration in different risk groups. Gene set enrichment analysis (GSEA) was performed to explore the molecular mechanisms of the genes employed in the risk score.Differentially expressed ECM-related genes were identified, and their associated regulatory mechanisms were predicted via analysis of protein-protein interaction (PPI), transcription factor (TF) regulatory and TF coexpression networks. The established risk signature considered 17 ECM-related genes. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the CGGA database to validate the signature. CIBERSORT indicated that the levels of naive B cells, activated memory CD4 T cells, regulatory T cells, gamma delta T cells, activated NK cells, monocytes, activated dendritic cells and activated mast cells were higher in the high-risk group. The levels of plasma cells, CD8 T cells, naive CD4 T cells, resting memory CD4 T cells, M0 macrophages, M1 macrophages, resting mast cells, and neutrophils were lower in the high-risk group. Ultimately, GSEA showed that the terms intestinal immune network for IgA production, primary immunodeficiency, and ECM receptor interaction were the top 3 terms enriched in the high-risk group. The terms Wnt signaling pathway, ErbB signaling pathway, mTOR signaling pathway, and calcium signaling pathway were enriched in the low-risk group.We built a risk signature to predict glioma prognosis using ECM-related genes. By evaluating immune infiltration and biofunctions, we gained a further understanding of this risk signature. This risk signature could be an effective tool for predicting glioma prognosis.This study did not require ethical approval. We will disseminate our findings by publishing results in a peer-reviewed journal.
Collapse
|
254
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
255
|
Deng Y, Li H, Tang Y. The Effect of Suppression Taurine on Relocation and Epithelial-Mesenchymal Transition in Mankind Lung Cancer Cells. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6656080. [PMID: 33936579 PMCID: PMC8060109 DOI: 10.1155/2021/6656080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Aim Taurine is believed to have antioxidant properties and has been implicated in the treatment of neurodegenerative disease, atherosclerosis, coronary heart disease, and prostate cancer. This research focused on taurine inhibition effects of expression related to migration and epithelial-mesenchymal transition- (EMT-) A549 study on related genes of human being non-small-cell lung cancer. Methods MTT assays assessed cell viability and a RadiusTM assay showed that taurine also inhibited the lung cancer cell migration. Using RT-PCR and Western blot, the migration and EMT markers were identified and evaluated. Results We found that taurine significantly decreased the expression of migration markers matrix metallopeptidase 9 (MMP-9) and vascular endothelial growth factor (VEGF). In contrast, TIMP metallopeptidase inhibitor 1 (TIMP-1) and TIMP metallopeptidase inhibitor 2 (TIMP-2) expressions were increased with taurine treatment. In addition, we found an association between taurine treatment and the expression of EMT markers. The expression of epithelial marker E-cadherin and the mesenchymal marker N-cadherin TWIST-1 was decreased, but the expression of zinc finger protein SNAIL-1 and E-zinc finger homeobox 1 (ZEB-1) was increased. Conclusion Taken together, our study strongly suggests the therapeutic significance of taurine, which possesses antimigration activity and induces EMT markers expression in lung cancer cells.
Collapse
Affiliation(s)
- Yongyan Deng
- Changchun Sci-Tech University, Changchun 130-600, China
| | - Hongjin Li
- Changchun Sci-Tech University, Changchun 130-600, China
| | - Yujiao Tang
- Changchun Sci-Tech University, Changchun 130-600, China
- Jilin Sino-ROK Institute of Animal Science, Changchun 130-600, China
| |
Collapse
|
256
|
Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021; 10:cells10040862. [PMID: 33918883 PMCID: PMC8070386 DOI: 10.3390/cells10040862] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia and elevated extracellular acidification are prevalent features of solid tumors and they are often shown to facilitate cancer progression and drug resistance. In this review, we have compiled recent and most relevant research pertaining to the role of hypoxia and acidification in melanoma growth, invasiveness, and response to therapy. Melanoma represents a highly aggressive and heterogeneous type of skin cancer. Currently employed treatments, including BRAF V600E inhibitors and immune therapy, often are not effective due to a rapidly developing drug resistance. A variety of intracellular mechanisms impeding the treatment were discovered. However, the tumor microenvironment encompassing stromal and immune cells, extracellular matrix, and physicochemical conditions such as oxygen level or acidity, may also influence the therapy effectiveness. Hypoxia and acidification are able to reprogram the metabolism of melanoma cells, enhance their survival and invasiveness, as well as promote the immunosuppressive environment. For this reason, these physicochemical features of the melanoma niche and signaling pathways related to them emerge as potential therapeutic targets.
Collapse
|
257
|
Ciobanasu C. Peptides-based therapy and diagnosis. Strategies for non-invasive therapies in cancer. J Drug Target 2021; 29:1063-1079. [PMID: 33775187 DOI: 10.1080/1061186x.2021.1906885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, remarkable progress was registered in the field of cancer research. Though, cancer still represents a major cause of death and cancer metastasis a problem seeking for urgent solutions as it is the main reason for therapeutic failure. Unfortunately, the most common chemotherapeutic agents are non-selective and can damage healthy tissues and cause side effects that affect dramatically the quality of life of the patients. Targeted therapy with molecules that act specifically at the tumour sites interacting with overexpressed cancer receptors is a very promising strategy for achieving the specific delivery of anticancer drugs, radioisotopes or imaging agents. This review aims to give an overview on different strategies for targeting cancer cell receptors localised either at the extracellular matrix or at the cell membrane. Molecules like antibodies, aptamers and peptides targeting the cell surface are presented with advantages and disadvantages, with emphasis on peptides. The most representative peptides are described, including cell penetrating peptides, homing and anticancer peptides with particular consideration on recent discoveries.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Sciences Department, Institute for Interdisciplinary Research, Alexandru I. Cuza University, Iaşi, Romania
| |
Collapse
|
258
|
Yang L, Li T, Shi H, Zhou Z, Huang Z, Lei X. The cellular and molecular components involved in pre-metastatic niche formation in colorectal cancer liver metastasis. Expert Rev Gastroenterol Hepatol 2021; 15:389-399. [PMID: 33174441 DOI: 10.1080/17474124.2021.1848543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Liver metastasis is the main cause of death in colorectal cancer (CRC). Premetastatic niche (PMN), a favorable microenvironment for cancer cells colonization at the distant organ, plays a pivotal role in CRC liver metastasis (CRCLM). Our understanding of the mechanisms mediating the formation of liver PMN in CRC has been significantly advanced in recent years, there are still many challenges and questions that remain.Areas covered: This review covers cellular and molecular components, and the interaction of theprimary cancer with the resident microenvironment of the distant organ that leads to PMN formation in CRCLM based on the latest literature.Expert Opinion: Various cellular and molecular events are involved in the liver PMN formation in CRC such as bone marrow-derived cells (BMDCs), hepatic stellate cells, Kupffer cells, extracellular matrix, and CRC-derived factors. The formation of the liver PMN depends on a complex interaction of CRC with the liver microenvironment including BMDCs recruitment, vascularization, immunosuppression, inflammatory response, and extracellular matrix remodeling. This review firstly discusses on the cellular and molecular components contributing to the formation of the liver PMN in CRC, so as to provide new ideas for designing effective therapeutic strategies and prognostic markers for CRCLM.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, China
| | - Haoran Shi
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhen Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhixiang Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Gastrointestinal Surgical Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
259
|
Huang H, Hao Z, Long L, Yin Z, Wu C, Zhou X, Zhang B. Dermatopontin as a potential pathogenic factor in endometrial cancer. Oncol Lett 2021; 21:408. [PMID: 33841569 PMCID: PMC8020378 DOI: 10.3892/ol.2021.12669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to determine the differential expression profiles of proteins in endometrial carcinoma and to screen the proteins associated with the occurrence and development of endometrial cancer (EC). In total, 15 samples of human EC and paracancerous tissues were selected for proteomic analysis using a label-free quantification method based on liquid chromatography-tandem mass spectrometry. The differential proteins were analysed using bioinformatics and verified using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Finally, the expression of differential proteins in 75 endometrial carcinoma samples and 30 normal endometrial tissue samples were detected using immunohistochemical staining, and the associations between differential protein expression and clinicopathological features were analysed. In total, 579 up-regulated proteins and 346 down-regulated proteins were identified between the two groups and seven proteins with the most significant differences were selected; these proteins included interferon-induced protein with tetratricopeptide repeats 3, poly(ADP-ribose) polymerase family member 9, solute carrier family 34 member 2, cytochrome b5 reductase 1, protein tyrosine phosphatase non-receptor type 1, dermatopontin (DPT) and secretory leukocyte peptidase inhibitor. RT-qPCR and western blotting showed that DPT expression was down-regulated (P<0.001), which was consistent with the mass spectrometry results. The immunohistochemical staining results showed that the positive expression of DPT in EC and normal endometrial tissues was statistically significant (P<0.001). The positive expression of DPT was significantly decreased in poorly differentiated, late stage, lymph node metastasis and myometrial invasion depth ≥1/2 samples (P<0.05). DPT expression was significantly lower in EC, which might play role in the pathogenesis of EC.
Collapse
Affiliation(s)
- Haiyun Huang
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Lingyan Long
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zeyuan Yin
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Chenyu Wu
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Bei Zhang
- Department of Obstetrics and Gynaecology, Xuzhou Central Hospital, Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
260
|
Liu Y, Shi K, Chen Y, Wu X, Chen Z, Cao K, Tao Y, Chen X, Liao J, Zhou J. Exosomes and Their Role in Cancer Progression. Front Oncol 2021; 11:639159. [PMID: 33828985 PMCID: PMC8020998 DOI: 10.3389/fonc.2021.639159] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes from extracellular vesicles can activate or inhibit various signaling pathways by transporting proteins, lipids, nucleic acids and other substances to recipient cells. In addition, exosomes are considered to be involved in the development and progression of tumors from different tissue sources in numerous ways, including remodeling of the tumor microenvironment, promoting angiogenesis, metastasis, and invasion, and regulating the immune escape of tumor cells. However, the precise molecular mechanisms by which exosomes participate in these different processes remains unclear. In this review, we describe the research progress of tumor cell-derived exosomes in cancer progression. We also discuss the prospects of the application of exosomes combined with nanoengineered chemotherapeutic drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Shi
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xianrui Wu
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Chen
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology of Xiangya Hospital, Central South University, Changsha, China
| | - Junlin Liao
- Departments of Medical Cosmetology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jianda Zhou
- Departments of Plastic and Reconstructive Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
261
|
Zhang B, Xu C, Liu J, Yang J, Gao Q, Ye F. Nidogen-1 expression is associated with overall survival and temozolomide sensitivity in low-grade glioma patients. Aging (Albany NY) 2021; 13:9085-9107. [PMID: 33735110 PMCID: PMC8034893 DOI: 10.18632/aging.202789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 02/16/2021] [Indexed: 12/23/2022]
Abstract
We investigated the prognostic significance of nidogen-1 (NID1) in glioma. Oncomine, GEPIA, UALCAN, CCGA database analyses showed that NID1 transcript levels were significantly upregulated in multiple cancer types, including gliomas. Quantitative RT-PCR analyses confirmed that NID1 expression was significantly upregulated in glioma tissues compared to paired adjacent normal brain tissue samples (n=9). NID1 silencing enhanced in vitro apoptosis and the temozolomide sensitivity of U251 and U87-MG glioma cells. Protein-protein interaction network analysis using the STRING and GeneMANIA databases showed that NID1 interacts with several extracellular matrix proteins. TIMER database analysis showed that NID1 expression in low-grade gliomas was associated with tumor infiltration of B cells, CD4+ and CD8+ T cells, macrophages, neutrophils, and dendritic cells. Kaplan-Meier survival curve analysis showed that low-grade gliomas patients with high NID1 expression were associated with shorter overall survival. However, NID1 expression was not associated with overall survival in glioblastoma multiforme patients. These findings demonstrate that NID1 expression in glioma tissues is associated with overall survival of low-grade glioma patients and temozolomide sensitivity. NID1 is thus a potential prognostic biomarker and therapeutic target in low-grade glioma patients.
Collapse
Affiliation(s)
- Baiwei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Xu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Yang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinglei Gao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Ye
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
262
|
Zhang H, Shi Q, Yang Z, Wang K, Zhang Z, Huang Z, Cui X, Li F. An Extracellular Matrix-Based Signature Associated With Immune Microenvironment Predicts the Prognosis and Therapeutic Responses of Patients With Oesophageal Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:598427. [PMID: 33869274 PMCID: PMC8044946 DOI: 10.3389/fmolb.2021.598427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Evidence has suggested that the cancer-associated extracellular matrix (ECM) could be recognised as immune-related biomarkers that modulate tumour progression and expansion. However, the ECM-associated immune effect on esophageal squamous cell carcinoma (ESCC) prognosis and therapy has not been well characterised. In our study, we first constructed an ECM-related signature including four genes CST1, NELL2, ADAMTSL4, and ANGPTL7 by multivariate Cox regression analyses. This signature could serve as a marker to evaluate the prognosis of patients with ESCC and was successfully validated in testing and combined (training plus testing) cohorts. We also found that there were significant different therapeutic responses to chemotherapy and targeted drugs between the high-risk and low-risk groups of patients defined by the signature. Furthermore, the expression of four genes and immune function analysis suggested that this ECM-related signature gene might play important roles in the changes of the tumour microenvironment. In conclusion, our findings demonstrated that the ECM-related signature might serve as an independent prognostic factor and provide a potential biomarker for chemotherapy responses for patients with ESCC.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qi Shi
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhihao Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Kaige Wang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Huang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
263
|
The Role of Biomimetic Hypoxia on Cancer Cell Behaviour in 3D Models: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061334. [PMID: 33809554 PMCID: PMC7999912 DOI: 10.3390/cancers13061334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer remains one of the leading causes of death worldwide. The advancements in 3D tumour models provide in vitro test-beds to study cancer growth, metastasis and response to therapy. We conducted this systematic review on existing experimental studies in order to identify and summarize key biomimetic tumour microenvironmental features which affect aspects of cancer biology. The review noted the significance of in vitro hypoxia and 3D tumour models on epithelial to mesenchymal transition, drug resistance, invasion and migration of cancer cells. We highlight the importance of various experimental parameters used in these studies and their subsequent effects on cancer cell behaviour. Abstract The development of biomimetic, human tissue models is recognized as being an important step for transitioning in vitro research findings to the native in vivo response. Oftentimes, 2D models lack the necessary complexity to truly recapitulate cellular responses. The introduction of physiological features into 3D models informs us of how each component feature alters specific cellular response. We conducted a systematic review of research papers where the focus was the introduction of key biomimetic features into in vitro models of cancer, including 3D culture and hypoxia. We analysed outcomes from these and compiled our findings into distinct groupings to ascertain which biomimetic parameters correlated with specific responses. We found a number of biomimetic features which primed cancer cells to respond in a manner which matched in vivo response.
Collapse
|
264
|
Worrede A, Douglass SM, Weeraratna AT. The dark side of daylight: photoaging and the tumor microenvironment in melanoma progression. J Clin Invest 2021; 131:143763. [PMID: 33720046 DOI: 10.1172/jci143763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Continued thinning of the atmospheric ozone, which protects the earth from damaging ultraviolet radiation (UVR), will result in elevated levels of UVR reaching the earth's surface, leading to a drastic increase in the incidence of skin cancer. In addition to promoting carcinogenesis in skin cells, UVR is a potent extrinsic driver of age-related changes in the skin known as "photoaging." We are in the preliminary stages of understanding of the role of intrinsic aging in melanoma, and the tumor-permissive effects of photoaging on the skin microenvironment remain largely unexplored. In this Review, we provide an overview of the impact of UVR on the skin microenvironment, addressing changes that converge or diverge with those observed in intrinsic aging. Intrinsic and extrinsic aging promote phenotypic changes to skin cell populations that alter fundamental processes such as melanogenesis, extracellular matrix deposition, inflammation, and immune response. Given the relevance of these processes in cancer, we discuss how photoaging might render the skin microenvironment permissive to melanoma progression.
Collapse
Affiliation(s)
- Asurayya Worrede
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen M Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
265
|
Xie S, Wu Z, Qi Y, Wu B, Zhu X. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges. Biomed Pharmacother 2021; 138:111450. [PMID: 33690088 DOI: 10.1016/j.biopha.2021.111450] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the common malignant tumors that threaten human life with serious incidence and high mortality. According to the histopathological characteristics, lung cancer is mainly divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC accounts for about 80-85% of lung cancers. In fact, lung cancer metastasis is a major cause of treatment failure in clinical patients. The underlying reason is that the mechanisms of lung cancer metastasis are still not fully understood. The metastasis of lung cancer cells is controlled by many factors, including the interaction of various components in the lung cancer microenvironment, epithelial-mesenchymal transition (EMT) transformation, and metastasis of cancer cells through blood vessels and lymphatics. The molecular relationships are even more intricate. Further study on the mechanisms of lung cancer metastasis and in search of effective therapeutic targets can bring more reference directions for clinical drug research and development. This paper focuses on the factors affecting lung cancer metastasis and connects with related molecular mechanisms of the lung cancer metastasis and mechanisms of lung cancer to specific organs, which mainly reviews the latest research progress of NSCLC metastasis. Besides, in this paper, experimental models of lung cancer and metastasis, mechanisms in SCLC transfer and the challenges about clinical management of lung cancer are also discussed. The review is intended to provide reference value for the future research in this field and promising treatment clues for clinical patients.
Collapse
Affiliation(s)
- Shimin Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People's Hospital, Shenzhen, China
| | - Yi Qi
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Binhua Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
266
|
Liu X, Hao Y, Popovtzer R, Feng L, Liu Z. Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Adv Healthc Mater 2021; 10:e2001167. [PMID: 32985139 DOI: 10.1002/adhm.202001167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Enzymes play pivotal roles in regulating and maintaining the normal functions of all living systems, and some of them are extensively employed for diagnosis and treatment of diverse diseases. More recently, several kinds of enzymes with unique catalytic activities have been found to be promising options to directly suppress tumor growth and/or augment the therapeutic efficacy of other treatments by modulating the hostile tumor microenvironment (TME), which is reported to negatively impair the therapeutic efficacy of different cancer treatments. In this review, first a summary is presented on the chemical approaches utilized for the construction of distinct enzyme nanoreactors with well-retained catalytic performance and reduced immunogenicity. Then, the utilization of such enzyme nanoreactors in attenuating tumor hypoxia, modulating extracellular matrix, and amplifying tumor oxidative stress is discussed in depth. Afterward, some perspectives are presented on the future development of such enzyme nanoreactors in TME modulation and enhanced cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Liu
- Clinical Translational Center for Targeted Drug Department of Pharmacology School of Medicine Jinan University Guangzhou Guangdong Province 510632 China
| | - Yu Hao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials Bar‐Ilan University Ramat Gan 52900 Israel
| | - Liangzhu Feng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
267
|
Tieu T, Irani S, Bremert KL, Ryan NK, Wojnilowicz M, Helm M, Thissen H, Voelcker NH, Butler LM, Cifuentes‐Rius A. Patient-Derived Prostate Cancer Explants: A Clinically Relevant Model to Assess siRNA-Based Nanomedicines. Adv Healthc Mater 2021; 10:e2001594. [PMID: 33274851 DOI: 10.1002/adhm.202001594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/05/2020] [Indexed: 01/27/2023]
Abstract
Over the last thirty years, research in nanomedicine has widely been focused on applications in cancer therapeutics. However, despite the plethora of reported nanoscale drug delivery systems that can successfully eradicate solid tumor xenografts in vivo, many of these formulations have not yet achieved clinical translation. This issue particularly pertains to the delivery of small interfering RNA (siRNA), a highly attractive tool for selective gene targeting. One of the likely reasons behind the lack of translation is that current in vivo models fail to recapitulate critical elements of clinical solid tumors that may influence drug response, such as cellular heterogeneity in the tumor microenvironment. This study incorporates a more clinically relevant model for assessing siRNA delivery systems; ex vivo culture of prostate cancer harvested from patients who have undergone radical prostatectomy, denoted patient-derived explants (PDE). The model retains native human tissue architecture, microenvironment, and cell signaling pathways. Porous silicon nanoparticles (pSiNPs) behavior in this model is investigated and compared with commonly used 3D cancer cell spheroids for their efficacy in the delivery of siRNA directed against the androgen receptor (AR), a key driver of prostate cancer.
Collapse
Affiliation(s)
- Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Swati Irani
- South Australian Health & Medical Research Institute Adelaide SA 5001 Australia
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide SA 5005 Australia
| | - Kayla L. Bremert
- South Australian Health & Medical Research Institute Adelaide SA 5001 Australia
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide SA 5005 Australia
| | - Natalie K. Ryan
- South Australian Health & Medical Research Institute Adelaide SA 5001 Australia
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide SA 5005 Australia
| | | | - Madison Helm
- South Australian Health & Medical Research Institute Adelaide SA 5001 Australia
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide SA 5005 Australia
| | - Helmut Thissen
- CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Lisa M. Butler
- South Australian Health & Medical Research Institute Adelaide SA 5001 Australia
- Adelaide Medical School & Freemasons Foundation Centre for Men's Health University of Adelaide Adelaide SA 5005 Australia
| | - Anna Cifuentes‐Rius
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Campus, 381 Royal Parade Parkville Victoria 3052 Australia
| |
Collapse
|
268
|
Ding YL, Sun SF, Zhao GL. COL5A2 as a potential clinical biomarker for gastric cancer and renal metastasis. Medicine (Baltimore) 2021; 100:e24561. [PMID: 33607786 PMCID: PMC7899835 DOI: 10.1097/md.0000000000024561] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/11/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gastric cancer, characterized by insidious onset and multiple metastasis, is almost incurable and has poor prognosis, and also one of the leading causes of treatment failure and death in patients with gastric cancer (GC). However, the prognosis of collagen type V alpha2 chain (COL5A2) in GC and renal metastasis is unknown. METHODS Recruited 148 patients who underwent GC. The diagnosis of GC was confirmed by ultrasound imaging and pathological examination. Immunohistochemistry and RT-qPCR were performed to exam the expression level of COL5A2. The statistical methods included Pearson chi-square test, Spearman-rho correlation test, univariate and multivariate cox regression analysis. Finally, this research constructed receiver operating characteristic (ROC) curves and applied the area under the curve (AUC). RESULTS Based on Pearson's chi-square test, Spearman-rho test, and univariate/multivariate cox regression, pathologic grade (P < .001), renal metastasis (P < .001) and staging (P < .001) were significantly related to COL5A2. And COL5A2 expression (hazard ratio [HR]: 18.834, P < .001) is an independent risk factor of GC. The AUC was used as the degree of confidence in judging each factor: COL5A2 (AUC = 0.878, P < .001), COL1A1 (AUC = 0.636, P = .006), COL1A2 (AUC = 0.545, P = .368), and COL3A1 (AUC = 0.617, P = .019). Through the ROC result, COL5A2 had more advantage as a biomarker for GC than other collagens. CONCLUSIONS COL5A2 gene expression level might be a risk factor for GC. COL5A2 has a strong correlation with the prognosis of the disease.
Collapse
Affiliation(s)
| | - Shu-Fang Sun
- Anaesthesiology Department, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong Province, China
| | | |
Collapse
|
269
|
PLAU directs conversion of fibroblasts to inflammatory cancer-associated fibroblasts, promoting esophageal squamous cell carcinoma progression via uPAR/Akt/NF-κB/IL8 pathway. Cell Death Discov 2021; 7:32. [PMID: 33574243 PMCID: PMC7878926 DOI: 10.1038/s41420-021-00410-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 01/17/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an important role in the tumor microenvironment. The heterogeneity of CAFs affects the effect of CAFs on promoting or inhibiting tumors, which can be regulated by other cells in the tumor microenvironment through paracrine methods. The urokinase-type plasminogen activator (PLAU) system mediates cell proliferation, migration, adhesion, and other functions through the proteolytic system, intracellular signal transduction, and chemokine activation. PLAU promotes tumor progression in many tumors. We explored the function of PLAU in ESCC and the influence of PLAU secreted by tumor cells on the heterogeneity of CAFs. We found that PLAU is highly expressed in ESCC, which is related to poor prognosis and can be used as a prognostic marker for ESCC. Through loss-of function and gain-of function experiments, we found that PLAU promoted ESCC proliferation and clone formation via MAPK pathway, and promotes migration by upregulating Slug and MMP9, which can be reversed by the MEK 1/2 inhibitor U0126. At the same time, through sequencing, cytokine detection, and RT-qPCR verification, we found that tumor cells secreted PLAU promoted the conversion of fibroblasts to inflammatory CAFs, which upregulated expression and secretion of IL8 via the uPAR/Akt/NF-κB pathway. The IL8 secreted by CAFs in turn promotes the high expression of PLAU in tumor cells and further promoted the progression of ESCC. In summary, PLAU was not only a prognostic marker of ESCC, which promoted tumor cell proliferation and migration, but also promoted the formation of inflammatory CAFs by the PLAU secreted by tumor cells.
Collapse
|
270
|
Blanco‐Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003129. [PMID: 33643799 PMCID: PMC7887602 DOI: 10.1002/advs.202003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Indexed: 05/14/2023]
Abstract
The establishment of tumor microenvironment using biomimetic in vitro models that recapitulate key tumor hallmarks including the tumor supporting extracellular matrix (ECM) is in high demand for accelerating the discovery and preclinical validation of more effective anticancer therapeutics. To date, ECM-mimetic hydrogels have been widely explored for 3D in vitro disease modeling owing to their bioactive properties that can be further adapted to the biochemical and biophysical properties of native tumors. Gathering on this momentum, herein the current landscape of intrinsically bioactive protein and peptide hydrogels that have been employed for 3D tumor modeling are discussed. Initially, the importance of recreating such microenvironment and the main considerations for generating ECM-mimetic 3D hydrogel in vitro tumor models are showcased. A comprehensive discussion focusing protein, peptide, or hybrid ECM-mimetic platforms employed for modeling cancer cells/stroma cross-talk and for the preclinical evaluation of candidate anticancer therapies is also provided. Further development of tumor-tunable, proteinaceous or peptide 3D microtesting platforms with microenvironment-specific biophysical and biomolecular cues will contribute to better mimic the in vivo scenario, and improve the predictability of preclinical screening of generalized or personalized therapeutics.
Collapse
Affiliation(s)
- Barbara Blanco‐Fernandez
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
| | - Vítor M. Gaspar
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC)The Barcelona Institute of Science and TechnologyBaldiri Reixac 10–12Barcelona08028Spain
- Materials Science and Metallurgical EngineeringPolytechnical University of Catalonia (UPC)Eduard Maristany 16Barcelona08019Spain
- CIBER en BioingenieríaBiomateriales y NanomedicinaCIBER‐BBNMadrid28029Spain
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
271
|
Wei LM, Li XY, Wang ZM, Wang YK, Yao G, Fan JH, Wang XS. Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis. Gland Surg 2021; 10:799-806. [PMID: 33708561 DOI: 10.21037/gs-21-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Triple negative breast cancer (TNBC) is usually aggressive and accompanied by a poor prognosis. The molecular biological mechanism of TNBC pathogenesis is still unclear, and requires more detailed research. The aim of this study was to screen and verify potential biomarkers of TNBC, and provide new clues for the treatment and diagnosis of TNBC. Methods In this work, GSE76250 was downloaded from the Gene Expression Omnibus (GEO) database and included 165 TNBC samples and 33 paired normal breast tissues. The R software and its related software package were used for data processing and analysis. Compared with normal tissues, genes with a false discovery rate (FDR) <0.01 and log fold change (logFC) ≥1 or ≤-1 were identified as differentially expressed genes (DEGs) by limma package. Survival prognoses were analyzed by Kaplan-Meier plotter database. Results In total, 160 up-regulated and 180 down-regulated genes were identified. The biological mechanism of enrichment analysis presented that DEGs were significantly enriched in chromosome segregation, extracellular matrix, and extracellular matrix structural constituent, among others. A total of 8 hub genes (CCNB1, CDK1, TOP2A, MKI67, TTK, CCNA2, BUB1, and PLK1) were identified by the protein-protein interaction network (PPIN) and Cytoscape software. Survival prognosis of these hub genes showed that they were negatively correlated with overall survival. Conclusions The 8 hub genes and pathways that were identified might be involved in tumorigenesis and become new candidate biomarkers for TNBC treatment.
Collapse
Affiliation(s)
- Li-Min Wei
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin-Yang Li
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zi-Ming Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yu-Kun Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ge Yao
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jia-Hao Fan
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xin-Shuai Wang
- Department of Cancer Institute, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
272
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
273
|
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone-Tumor Niche. Cancers (Basel) 2021; 13:507. [PMID: 33572757 PMCID: PMC7865550 DOI: 10.3390/cancers13030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer commonly metastasizes to bone, resulting in osteolytic lesions and poor patient quality of life. The bone extracellular matrix (ECM) plays a critical role in cancer cell metastasis by means of the physical and biochemical cues it provides to support cellular crosstalk. Current two-dimensional in-vitro models lack the spatial and biochemical complexities of the native ECM and do not fully recapitulate crosstalk that occurs between the tumor and endogenous stromal cells. Engineered models such as bone-on-a-chip, extramedullary bone, and bioreactors are presently used to model cellular crosstalk and bone-tumor cell interactions, but fall short of providing a bone-biomimetic microenvironment. Three-dimensional bioprinting allows for the deposition of biocompatible materials and living cells in complex architectures, as well as provides a means to better replicate biological tissue niches in-vitro. In cancer research specifically, 3D constructs have been instrumental in seminal work modeling cancer cell dissemination to bone and bone-tumor cell crosstalk in the skeleton. Furthermore, the use of biocompatible materials, such as hydroxyapatite, allows for printing of bone-like microenvironments with the ability to be implanted and studied in in-vivo animal models. Moreover, the use of bioprinted models could drive the development of novel cancer therapies and drug delivery vehicles.
Collapse
Affiliation(s)
- Anne M. Hughes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Alexus D. Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Alison B. Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| | - Kristy M. Shine
- Health Design Lab, Jefferson Bioprinting Lab, Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karen M. Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.D.K.); (A.B.S.)
| |
Collapse
|
274
|
D’Agostino S, Tombolan L, Saggioro M, Frasson C, Rampazzo E, Pellegrini S, Favaretto F, Biz C, Ruggieri P, Gamba P, Bonvini P, Aveic S, Giovannoni R, Pozzobon M. Rhabdomyosarcoma Cells Produce Their Own Extracellular Matrix With Minimal Involvement of Cancer-Associated Fibroblasts: A Preliminary Study. Front Oncol 2021; 10:600980. [PMID: 33585217 PMCID: PMC7878542 DOI: 10.3389/fonc.2020.600980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The interplay between neoplastic cells and surrounding extracellular matrix (ECM) is one of the determinant elements for cancer growth. The remodeling of the ECM by cancer-associated fibroblasts (CAFs) shapes tumor microenvironment by depositing and digesting ECM proteins, hence promoting tumor growth and invasion. While for epithelial tumors CAFs are well characterized, little is known about the stroma composition of mesenchymal cancers, such as in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma during childhood and adolescence. The aim of this work is to identify the importance of CAFs in specifying RMS microenvironment and the role of these stromal cells in RMS growth. METHODS We assessed in two dimensional (2D) and three dimensional (3D) systems the attraction between RMS cells and fibroblasts using epithelial colon cancer cell line as control. CAFs were studied in a xenogeneic mouse model of both tumor types and characterized in terms of fibroblast activation protein (FAP), mouse PDGFR expression, metalloproteases activation, and ECM gene and protein expression profiling. RESULTS In 2D model, the rate of interaction between stromal and malignant cells was significantly lower in RMS with respect to colon cancer. Particularly, in 3D system, RMS spheroids tended to dismantle the compact aggregate when grown on the layer of stromal cells. In vivo, despite the well-formed tumor mass, murine CAFs were found in low percentage in RMS xenogeneic samples. CONCLUSIONS Our findings support the evidence that, differently from epithelial cancers, RMS cells are directly involved in their own ECM remodeling, and less dependent on CAFs support for cancer cell growth.
Collapse
Affiliation(s)
- Stefania D’Agostino
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Lucia Tombolan
- Department of Women and Children Health, University of Padova, Padova, Italy
- Pediatric Solid Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Mattia Saggioro
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Chiara Frasson
- Onco-Hematology Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children Health, University of Padova, Padova, Italy
- Brain Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Stefania Pellegrini
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Francesca Favaretto
- Department of Medicine, Internal Medicine 3, University of Padua, Padua, Italy
| | - Carlo Biz
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padova, Padova, Italy
| | - Piergiorgio Gamba
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Paolo Bonvini
- Pediatric Solid Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Dental Materials and Biomaterials Research, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | | | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| |
Collapse
|
275
|
Ren Y, Zhang Y, Liu J, Liu P, Yang J, Guo D, Tang A, Tao J. Matrix hardness regulates the cancer cell malignant progression through cytoskeletal network. Biochem Biophys Res Commun 2021; 541:95-101. [PMID: 33493685 DOI: 10.1016/j.bbrc.2021.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is a complex microenvironment that combines the biochemical and biophysical factors. When the cells are exposed to the microenvironment, the direct biophysical factor is the matrix hardness. As an auxiliary indicator of clinical disease diagnosis, it is still not clear how the matrix hardness induces cell malignant changes and the regulation mechanisms. In this study, we identified that hard matrix significantly promoted cancer cell migratory behaviors. Cell shape was closely associated with cancer cell malignancy, the high malignant cells were associated with high ratios of length/width and low circularity. F-actin networks were also linked with extracellular matrix, it was not regularly distributed when cells were in non-malignant tumor phases or under F-actin inhibition. F-actin might play the key role that transmitted the signal from extracellular matrix to the intracellular organelles. Further study confirmed that active YAP was translocated to nucleus on hard matrix. Cells on hard matrix with cytochalasin D reversed the cancer cell malignancy, meanwhile F-actin re-distributed to the membrane and YAP nucleus translocations were hindered. This work confirmed that F-actin and YAP were upstream-downstream cascade for the cellular and nucleus outside-in signal transductions. The above results demonstrated that hard matrix promoted breast cancer cell malignant behaviors through F-actin network and YAP activation. These results not only described the signal transductions from extracellular to intracellular that was initiated by the biophysical tumor microenvironment, but provided clinical intervention ideas for cancer treatments.
Collapse
Affiliation(s)
- Yonggang Ren
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, PR China; School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yi Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Jialing Liu
- Department of Medical Imageology, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Peiru Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Jing Yang
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Dongmei Guo
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Aifa Tang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, PR China.
| | - Jia Tao
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, PR China; Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China.
| |
Collapse
|
276
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
277
|
Sheehan K, Schalper KA. Tumor Microenvironment: Immune Effector and Suppressor Imbalance. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
278
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
279
|
Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Biomolecules 2020; 10:biom10121695. [PMID: 33353213 PMCID: PMC7767244 DOI: 10.3390/biom10121695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.
Collapse
|
280
|
Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020; 23:101851. [PMID: 33319176 PMCID: PMC7724203 DOI: 10.1016/j.isci.2020.101851] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors comprised a tightly surrounded tumor microenvironment, made up of non-cellular extracellular matrix (ECM) and stromal cells. Although treatment response is often attributed to tumor heterogeneity, progression and malignancy are profoundly influenced by tumor cell interactions with the surrounding ECM. Here, we used a tumor organoid model, consisting of hepatic stellate cells (HSCs) embedded in collagen type 1 (Col1) and colorectal cancer cell (HCT-116) spheroids, to determine the relationship between the ECM architecture, cancer cell malignancy, and chemoresistance. Exogenous transforming growth factor beta (TGF-β) used to activate the HSCs increased the remodeling and bundling of Col1 in the ECM around the cancer spheroid. A dense ECM architecture inhibited tumor cell growth, reversed their mesenchymal phenotype, preserved stem cell population, and reduced chemotherapy response. Overall, our results demonstrate that controlled biofabrication and manipulation of the ECM in tumor organoids results enables studying tumor cell-ECM interactions and better understand tumor cell response to chemotherapies.
Collapse
Affiliation(s)
- Anthony Dominijanni
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Mahesh Devarasetty
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
281
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
282
|
Jamieson TR, Poutou J, Ilkow CS. Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine Growth Factor Rev 2020; 56:102-114. [DOI: 10.1016/j.cytogfr.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
|
283
|
Wei D, Li C, Ye J, Xiang F, Liu J. Extracellular Collagen Mediates Osteosarcoma Progression Through an Integrin α2β1/JAK/STAT3 Signaling Pathway. Cancer Manag Res 2020; 12:12067-12075. [PMID: 33262655 PMCID: PMC7699996 DOI: 10.2147/cmar.s273466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma development is a complex set which is determined by various factors. Many patients suffered from sustained osteosarcoma growth and revealed poor response to clinical interventions. However, the underlying mechanisms of osteosarcoma development still remain unclear. Methods In our study, we isolated osteosarcoma tissues from clinical patients, which were divided into high degree group (stage G1~G2) and low degree group (stage G0). The expression of type I collagen, integrin and STAT3 in tumor tissues were analyzed by immunohistochemistry or immunofluorescence. The collagen-induced cells proliferation was detected by CCK8 and colony formation analysis. The activation of JAK/STAT3 signal was examined by Western blotting and immunofluorescence. The anticancer effects of integrin α2β1 peptide were analyzed by Sao-2-bearing mice model. Results Our results implicated that type I collagen could facilitate malignant osteosarcoma development in patients. In vitro, 2D collagen culture also efficiently mediated the stemness up-regulation of osteosarcoma cells, resulting in the strengthened capability of cells proliferation and tumorigenesis. In mechanism, we found that type I collagen could facilitate the activation of JAK/STAT3 signals through integrin α2β1, which elicited tumor-sustained growth and cancer relapse. In tumor-bearing mice model, integrin α2β1 signals inhibitor significantly suppressed the osteosarcoma cells proliferation and their tumorigenic ability, which improved the outcome of chemotherapy/radiotherapy. Conclusion Our study demonstrated that type I collagen could mediate osteosarcoma development through an integrin α2β1/JAK/STAT3 signaling pathway. Blockade of integrin α2β1 by α2β1 inhibitor efficiently improved outcome of chemotherapy/radiotherapy, which provided new insights for eradicating tumors in clinic.
Collapse
Affiliation(s)
- Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Cui Li
- Department of Nosocomial Infection Control, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junwu Ye
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Feifan Xiang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| | - Juncai Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
284
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
285
|
Micek HM, Visetsouk MR, Masters KS, Kreeger PK. Engineering the Extracellular Matrix to Model the Evolving Tumor Microenvironment. iScience 2020; 23:101742. [PMID: 33225247 PMCID: PMC7666341 DOI: 10.1016/j.isci.2020.101742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer risk and prognosis across multiple tumor types, and numerous studies have demonstrated that individual ECM components impact key hallmarks of tumor progression (e.g., proliferation, migration, angiogenesis). However, the ECM is a complex network of fibrillar proteins, glycoproteins, and proteoglycans that undergoes dramatic changes in composition and organization during tumor development. In this review, we will highlight how engineering approaches can be used to examine the impact of changes in tissue architecture, ECM composition (i.e., identity and levels of individual ECM components), and cellular- and tissue-level mechanics on tumor progression. In addition, we will discuss recently developed methods to model the ECM that have not yet been applied to the study of cancer.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mike R. Visetsouk
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
286
|
Hargrove D, Liang B, Kashfi-Sadabad R, Joshi GN, Gonzalez-Fajardo L, Glass S, Jay M, Salner A, Lu X. Tumor-mesoporous silica nanoparticle interactions following intraperitoneal delivery for targeting peritoneal metastasis. J Control Release 2020; 328:846-858. [PMID: 33166606 DOI: 10.1016/j.jconrel.2020.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
The use of intraperitoneal administration of nanoparticles has been reported to facilitate higher concentrations of nanoparticles in metastatic peritoneal tumors. While this strategy is appealing for limiting systemic exposure of nanocarrier delivered toxic cargoes and increasing nanoparticle concentrations in avascular peritoneal tumors, little is known about the mechanism of nanoparticle accumulation on tumor tissues and currently, no nanoparticle-based product has been approved for intraperitoneal delivery. Here, we investigated the nanoparticle-specific characteristics that led to increased peritoneal tumor accumulation using MCM-41 type mesoporous silica nanoparticles as our model system. We also investigated the components of the peritoneal tumor stroma that facilitated nanoparticle-tumor interaction. The tumor extracellular matrix is the main factor driving these interactions, specifically the interaction of nanoparticles with collagen. Upon disruption of the collagen matrix, nanoparticle accumulation was reduced by 50%. It is also notable that the incorporation of targeting ligands did not increase overall tumor accumulation in vivo while it significantly increased nanoparticle accumulation in vitro. The use of other particle chemistries did not grossly affect the tumor targetability, but additional concerns arose when those tested particles exhibited significant systemic exposure. Mesoporous silica nanoparticles are advantageous for intraperitoneal administration for the treatment of peritoneal metastasis due to their physical stability, tumor targetability, strong interaction with the collagen matrix, and extended peritoneal residence time. Maximizing nanoparticle interaction with the tumor extracellular matrix is critical for developing strategies to deliver emerging therapeutics for peritoneal cancer treatment using nanocarriers.
Collapse
Affiliation(s)
- Derek Hargrove
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, USA
| | - Brian Liang
- School of Medicine, University of Connecticut, Storrs, CT, USA
| | | | - Gaurav N Joshi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, USA
| | | | - Sterling Glass
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, USA
| | - Michael Jay
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Salner
- Helen and Harrry Gray Cancer Center, Hartford Hospital Department of Radiation Oncology, Hartford, CT, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, USA.
| |
Collapse
|
287
|
Koliaraki V, Henriques A, Prados A, Kollias G. Unfolding innate mechanisms in the cancer microenvironment: The emerging role of the mesenchyme. J Exp Med 2020; 217:133714. [PMID: 32044979 PMCID: PMC7144533 DOI: 10.1084/jem.20190457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Innate mechanisms in the tumor stroma play a crucial role both in the initial rejection of tumors and in cancer promotion. Here, we provide a concise overview of the innate system in cancer and recent advances in the field, including the activation and functions of innate immune cells and the emerging innate properties and modulatory roles of the fibroblastic mesenchyme. Novel insights into the diverse identities and functions of the innate immune and mesenchymal cells in the microenvironment of tumors should lead to improved anticancer therapies.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
288
|
Louault K, Li RR, DeClerck YA. Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers (Basel) 2020; 12:cancers12113108. [PMID: 33114328 PMCID: PMC7690906 DOI: 10.3390/cancers12113108] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) play an important contributory role in the microenvironment of tumors. They originate from different cells, have multiple pro-and anti-tumorigenic functions in tumors and their presence is variable among cancer types. Recently, there has been evidence that CAFs represent a highly heterogeneous group of cells that can now be characterized and identified at the single cell level. This review article summarizes our recent understanding of the highly heterogeneous nature of the origin, phenotype and function of CAFs and how such understanding will lead to a more precise approach to target or use CAFs and their precursor cells in the treatment of cancer. Abstract The tumor microenvironment (TME) plays a critical role in tumor progression. Among its multiple components are cancer-associated fibroblasts (CAFs) that are the main suppliers of extracellular matrix molecules and important contributors to inflammation. As a source of growth factors, cytokines, chemokines and other regulatory molecules, they participate in cancer progression, metastasis, angiogenesis, immune cell reprogramming and therapeutic resistance. Nevertheless, their role is not fully understood, and is sometimes controversial due to their heterogeneity. CAFs are heterogeneous in their origin, phenotype, function and presence within tumors. As a result, strategies to target CAFs in cancer therapy have been hampered by the difficulties in better defining the various populations of CAFs and by the lack of clear recognition of their specific function in cancer progression. This review discusses how a greater understanding of the heterogeneous nature of CAFs could lead to better approaches aimed at their use or at their targeting in the treatment of cancer.
Collapse
Affiliation(s)
- Kévin Louault
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: or (K.L); (Y.A.D.); Tel.: +1-323-361-5649 (Y.A.D.); Fax: +1-323-361-4902 (Y.A.D.)
| | - Rong-Rong Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
| | - Yves A. DeClerck
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Correspondence: or (K.L); (Y.A.D.); Tel.: +1-323-361-5649 (Y.A.D.); Fax: +1-323-361-4902 (Y.A.D.)
| |
Collapse
|
289
|
Voß H, Wurlitzer M, Smit DJ, Ewald F, Alawi M, Spohn M, Indenbirken D, Omidi M, David K, Juhl H, Simon R, Sauter G, Fischer L, Izbicki JR, Molloy MP, Nashan B, Schlüter H, Jücker M. Differential regulation of extracellular matrix proteins in three recurrent liver metastases of a single patient with colorectal cancer. Clin Exp Metastasis 2020; 37:649-656. [PMID: 33099724 PMCID: PMC7666585 DOI: 10.1007/s10585-020-10058-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) patients suffer from the second highest mortality among all cancer entities. In half of all CRC patients, colorectal cancer liver metastases (CRLM) can be observed. Metastatic colorectal cancer is associated with poor overall survival and limited treatment options. Even after successful surgical resection of the primary tumor, metachronous liver metastases occur in one out of eight cases. The only available curative intended treatment is hepatic resection, but metachronous CRLM frequently recur after approximately 1 year. In this study, we performed a proteome analysis of three recurrent liver metastases of a single CRC patient by mass spectrometry. Despite surgical resection of the primary CRC and adjuvant chemotherapy plus cetuximab treatment, the patient developed three metachronous CRLM which occurred consecutively after 9, 21 and 31 months. We identified a set of 1132 proteins expressed in the three metachronous CRLM, of which 481 were differentially regulated, including 81 proteins that were associated with the extracellular matrix (ECM). 56 ECM associated proteins were identified as upregulated in the third metastasis, 26 (46%) of which were previously described as negative prognostic markers in CRC, including tenascin C, nidogen 1, fibulin 1 and vitronectin. These data may reflect an ascending trend of malignancy from the first to the third metachronous colorectal cancer liver metastasis. Additionally, the results indicate different ECM phenotypes for recurrent metachronous metastasis, associated with different grades of malignancy and highlights the importance of individual analysis of molecular features in different, consecutive metastatic events in a single patient.
Collapse
Affiliation(s)
- Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Wurlitzer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Florian Ewald
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Clinic of Hepato-Pancreatico-Biliary Surgery and Transplantation, First Affiliated Hospital, University of Science and Technology of China, Hefei, People's Republic of China
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
290
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
291
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
292
|
Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020; 10:571516. [PMID: 33163402 PMCID: PMC7581781 DOI: 10.3389/fonc.2020.571516] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) consisting of distinct cell types including stromal cells and immune cells has recently emerged as a pivotal player in tumor development and progression. Mesenchymal stromal cells (MSCs) and tumor-associated macrophages (TAMs) are two representative cells in the TME with plastic properties. This review will focus on the evolution of phenotypes and functions of either MSCs or TAMs, which is “educated” by the TME, as well as interactions between MSCs and TAMs contributing to the distinct stages of tumor biology in gastric cancer. MSCs exert immunoregulatory effects on macrophages and polarize them toward M2-like TAMs, via cell–cell contact and paracrine or extracellular vesicle (EV) transfer mechanism. In turn, M2-TAMs modulate the transition of “naive” MSCs into tumor-derived MSCs, which possess a more potent pro-tumor role than the parent. Moreover, the cross talk between MSCs and TAMs could contribute to cancer biology by inducing the EMT process, metastasis, immune invasion, and immunotherapy resistance in cancer cells. However, molecular mechanisms underlying interactions between MSCs and TAMs in gastric cancer progression need to be thoroughly elucidated, which may provide attractive targets for making promising novel strategies for gastric cancer therapy.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
293
|
Sun X, Ni N, Ma Y, Wang Y, Leong DT. Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003000. [PMID: 32803846 DOI: 10.1002/smll.202003000] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Anti-hypoxia cancer nanomedicine (AHCN) holds exciting potential in improving oxygen-dependent therapeutic efficiencies of malignant tumors. However, most studies regarding AHCN focus on optimizing structure and function of nanomaterials with presupposed successful entry into tumor cells. From such a traditional perspective, the main barrier that AHCN needs to overcome is mainly the tumor cell membrane. However, such an oversimplified perspective would neglect that real tumors have many biological, physiological, physical, and chemical defenses preventing the current state-of-the-art AHCNs from even reaching the targeted tumor cells. Fortunately, in recent years, some studies are beginning to intentionally focus on overcoming physiological barriers to alleviate hypoxia. In this Review, the limitations behind the traditional AHCN delivery mindset are addressed and the key barriers that need to be surmounted before delivery to cancer cells and some good ways to improve cell membrane attachment, internalization, and intracellular retention are summarized. It is aimed to contribute to Review literature on this emerging topic through refreshing perspectives based on this work and what is also learnt from others. This Review would therefore assist AHCNs researchers to have a quick overview of the essential information and glean thought-provoking ideas to advance this sub-field in cancer nanomedicine.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yanling Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
294
|
Song YC, Lee SE, Jin Y, Park HW, Chun KH, Lee HW. Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Mol Cells 2020; 43:763-773. [PMID: 32759466 PMCID: PMC7528682 DOI: 10.14348/molcells.2020.0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.
Collapse
Affiliation(s)
- Yae Chan Song
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
- These authors contributed equally to this work
| | - Young Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 037, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
295
|
Freeman P, Mielgo A. Cancer-Associated Fibroblast Mediated Inhibition of CD8+ Cytotoxic T Cell Accumulation in Tumours: Mechanisms and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12092687. [PMID: 32967079 PMCID: PMC7564636 DOI: 10.3390/cancers12092687] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The ability of the immune system to kill tumour cells is a natural and extremely effective defence mechanism for fighting cancer. Cytotoxic-T-cells are a critical component of our immune system which function is to eliminate cancer cells. In some cancers, especially those with a rich tumour stroma, these cytotoxic-T-cells are unable to reach and kill the tumour cells. Cancer-associated fibroblasts are the most abundant cells in the tumour stroma and play a key role of the recruitment, infiltration and function of cytotoxic T-cells in the tumour, via several molecular mechanisms which we describe in this review. Abstract The tumour microenvironment (TME) is the complex environment in which various non-cancerous stromal cell populations co-exist, co-evolve and interact with tumour cells, having a profound impact on the progression of solid tumours. The TME is comprised of various extracellular matrix (ECM) proteins in addition to a variety of immune and stromal cells. These include tumour-associated macrophages, regulatory T cells (Tregs), myeloid-derived suppressor cells, as well as endothelial cells, pericytes and cancer-associated fibroblasts (CAFs). CAFs are the most abundant stromal cell population in many tumours and support cancer progression, metastasis and resistance to therapies through bidirectional signalling with both tumour cells and other cells within the TME. More recently, CAFs have been shown to also affect the anti-tumour immune response through direct and indirect interactions with immune cells. In this review, we specifically focus on the interactions between CAFs and cytotoxic CD8+ T cells, and on how these interactions affect T cell recruitment, infiltration and function in the tumour. We additionally provide insight into the therapeutic implications of targeting these interactions, particularly in the context of cancer immunotherapy.
Collapse
|
296
|
Park KC, Dharmasivam M, Richardson DR. The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators that Inhibit their Activity. Int J Mol Sci 2020; 21:E6805. [PMID: 32948029 PMCID: PMC7555822 DOI: 10.3390/ijms21186805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
The crucial role of extracellular proteases in cancer progression is well-known, especially in relation to the promotion of cell invasion through extracellular matrix remodeling. This also occurs by the ability of extracellular proteases to induce the shedding of transmembrane proteins at the plasma membrane surface or within extracellular vesicles. This process results in the regulation of key signaling pathways by the modulation of kinases, e.g., the epidermal growth factor receptor (EGFR). Considering their regulatory roles in cancer, therapeutics targeting various extracellular proteases have been discovered. These include the metal-binding agents di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), which increase c-MET degradation by multiple mechanisms. Both the direct and indirect inhibition of protease expression and activity can be achieved through metal ion depletion. Considering direct mechanisms, chelators can bind zinc(II) that plays a catalytic role in enzyme activity. In terms of indirect mechanisms, Dp44mT and DpC potently suppress the expression of the kallikrein-related peptidase-a prostate-specific antigen-in prostate cancer cells. The mechanism of this activity involves promotion of the degradation of the androgen receptor. Additional suppressive mechanisms of Dp44mT and DpC on matrix metalloproteases (MMPs) relate to their ability to up-regulate the metastasis suppressors N-myc downstream regulated gene-1 (NDRG1) and NDRG2, which down-regulate MMPs that are crucial for cancer cell invasion.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
| | - Mahendiran Dharmasivam
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building, University of Sydney, Sydney 2006, Australia; (K.C.P.); (M.D.)
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute of Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
297
|
Wang W, Ning JZ, Tang ZG, He Y, Yao LC, Ye L, Wu L. MicroRNA-23a acts as an oncogene in pancreatic carcinoma by targeting TFPI-2. Exp Ther Med 2020; 20:53. [PMID: 32952643 PMCID: PMC7485308 DOI: 10.3892/etm.2020.9181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Pancreatic carcinoma (PC) is a rapidly progressive, fatal malignant tumor with the poorest prognosis among all major carcinoma types. MicroRNAs (miRNAs/miRs) have been indicated to be key post-transcriptional regulatory factors, which are involved in cancer development. The present study was designed to investigate the effect of miR-23a on PC cell proliferation, metastasis and apoptosis. The expression of miR-23a was detected in a normal pancreatic ductal epithelial cell line and three PC cell lines, and miR-23a inhibitor or mimics were transfected into the Panc-1 and MiaPaCa2 PC cells. The association between miR-23a and tissue factor pathway inhibitor (TFPI)-2 was examined using a luciferase reporter assay. MTT and flow cytometry assays were used to assess cell viability and apoptosis, respectively. Furthermore, wound-healing, Transwell and Matrigel assays were used to evaluate cell migration and invasion abilities, and the protein expression level of TFPI-2 was determined using western blot analysis. The results of the present study revealed that miR-23a was upregulated in PC cells. Furthermore, TFPI-2 was identified as a downstream target of miR-23a, and TFPI-2 expression was found to be increased following miR-23a knockdown. In addition, functional assays revealed that downregulation of miR-23a decreased PC cell proliferation, migration and invasiveness and promoted cell apoptosis, while miR-23a overexpression exerted the opposite effects. Furthermore, TFPI-2 knockdown rescued the biological effects on PC cells, which were induced by miR-23a knockdown. The results of the present study indicated that miR-23a negatively modulated TFPI-2 expression in vitro and enhanced the malignant phenotypes of PC cells. Therefore, miR-23a may be a potential marker and/or target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Zhuo Ning
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying He
- School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Li-Chao Yao
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Ye
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
298
|
Yang B, Zhao Y, Wang L, Zhao Y, Wei L, Chen D, Chen Z. Identification of PLOD Family Genes as Novel Prognostic Biomarkers for Hepatocellular Carcinoma. Front Oncol 2020; 10:1695. [PMID: 33014843 PMCID: PMC7509443 DOI: 10.3389/fonc.2020.01695] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies with rising incidence and persistently high mortality. Previous researches have demonstrated that some PLOD family members are associated with tumor progression and metastasis in most human cancers. However, the prognostic and biological roles of PLODs in HCC remain largely unknown. Methods ONCOMINE, HPA, UALCAN, GEPIA, cBioPortal, GeneMANIA, NetworkAnalyst, Metascape, DAVID 6.8, and TIMER were used to determine the prognostic values and biological function of PLOD family members in HCC. Results The mRNA and protein expression patterns of PLOD family members were noticeably upregulated in HCC compared to normal tissue. The high expression levels of PLOD1 and PLOD2 genes were significantly correlated with higher tumor grades in HCC patients. In addition, the high expression levels of PLOD1–3 were remarkably associated with poor overall survival in HCC patients, while high PLOD1 and PLOD3 expression were markedly associated with worse disease-free survival. In the co-expression gene analysis, 20 genes were primarily associated with the differentially expressed PLOD family members in HCC cases. Through functional enrichment analysis, the biological functions of PLODs in HCC were mainly involved in collagen fibril organization, lysine degradation, collagen biosynthesis, and modifying enzymes. Furthermore, the expression levels of PLOD1–3 were positively correlated with the activities of tumor-infiltrating immune cells, including macrophages, neutrophils, CD4+ T cells, and dendritic cells. Besides, the expression levels of PLOD2 and PLOD3 were positively correlated with the infiltrating levels of B cells. Conclusion The findings of this study could provide novel insights into the identification of prognostic biomarkers for HCC patients.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yonghui Zhao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Public Health, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
299
|
Franchi M, Piperigkou Z, Karamanos KA, Franchi L, Masola V. Extracellular Matrix-Mediated Breast Cancer Cells Morphological Alterations, Invasiveness, and Microvesicles/Exosomes Release. Cells 2020; 9:E2031. [PMID: 32899718 PMCID: PMC7564980 DOI: 10.3390/cells9092031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a leading disease in women. Several studies are focused to evaluate the critical role of extracellular matrix (ECM) in various biochemical and molecular aspects but also in terms of its effect on cancer cell morphology and therefore on cancer cell invasion and metastatic potential. ECM fibrillar components, such as collagen and fibronectin, affect cell behavior and properties of mammary cancer cells. The aim of this study was to investigate using the scanning electron microscopy (SEM) how the highly invasive MDA-MB-231 breast cancer cells, interplaying with ECM substrates during cell migration/invasion, modify their morphological characteristics and cytoplasmic processes in relation to their invasive potential. In particular we reproduced and analyzed how natural structural barriers to cancer cell invasion, such as the basement membrane (Matrigel) and fibrillar components of dermis (fibronectin as well as the different concentrations/array of type I collagen), could induce morphological changes in 3D cultures. Interestingly, we demonstrate that, even with different effects, all collagen concentrations/arrays lead to morphological alterations of breast cancer cells. Intriguingly, the elongated mesenchymal shaped cells were more prominent in 3D cultures with a dense and thick substrate (thick Matrigel, high concentrated collagen network, and densely packed collagen fibers), even though cells with different shape produced and released microvesicles and exosomes as well. It is therefore evident that the peri-tumoral collagen network may act not only as a barrier but also as a dynamic scaffold which stimulates the morphological changes of cancer cells, and modulates tumor development and metastatic potential in breast cancer.
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Study, University of Bologna, 47921 Rimini, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | | | - Leonardo Franchi
- Department of Medicine, University of Bologna, 40100 Bologna, Italy;
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy;
- Renal Unit, Department of Medicine, University Hospital of Verona, 37100 Verona, Italy
| |
Collapse
|
300
|
Yamauchi M, Gibbons DL, Zong C, Fradette JJ, Bota-Rabassedas N, Kurie JM. Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biol 2020; 91-92:8-18. [PMID: 32442601 DOI: 10.1016/j.matbio.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level. Here, we will discuss how those efforts have impacted our understanding of the ways in which CAFs govern matrix remodeling and the influence of matrix remodeling on the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NS, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|