251
|
Maeda Y, Takahashi H, Nakai N, Yanagita T, Ando N, Okubo T, Saito K, Shiga K, Hirokawa T, Hara M, Ishiguro H, Matsuo Y, Takiguchi S. Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1 simultaneously via signal transducer and activator of transcription 3 signaling in colon cancer. Int J Oncol 2018; 52:1661-1673. [DOI: 10.3892/ijo.2018.4308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/30/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuzo Maeda
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Nozomu Nakai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Nanako Ando
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Tomotaka Okubo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Kenta Saito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Takahisa Hirokawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Masayasu Hara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Hideyuki Ishiguro
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8602, Japan
| |
Collapse
|
252
|
Nagesh PKB, Hatami E, Chowdhury P, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM. Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer. Cancers (Basel) 2018; 10:E68. [PMID: 29518944 PMCID: PMC5876643 DOI: 10.3390/cancers10030068] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is an intriguing target with significant clinical importance in chemotherapy. Interference with ER functions can lead to the accumulation of unfolded proteins, as detected by transmembrane sensors that instigate the unfolded protein response (UPR). Therefore, controlling induced UPR via ER stress with natural compounds could be a novel therapeutic strategy for the management of prostate cancer. Tannic acid (a naturally occurring polyphenol) was used to examine the ER stress mediated UPR pathway in prostate cancer cells. Tannic acid treatment inhibited the growth, clonogenic, invasive, and migratory potential of prostate cancer cells. Tannic acid demonstrated activation of ER stress response (Protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme 1 (IRE1)) and altered its regulatory proteins (ATF4, Bip, and PDI) expression. Tannic acid treatment affirmed upregulation of apoptosis-associated markers (Bak, Bim, cleaved caspase 3, and cleaved PARP), while downregulation of pro-survival proteins (Bcl-2 and Bcl-xL). Tannic acid exhibited elevated G₁ population, due to increase in p18INK4C and p21WAF1/CIP1 expression, while cyclin D1 expression was inhibited. Reduction of MMP2 and MMP9, and reinstated E-cadherin signifies the anti-metastatic potential of this compound. Altogether, these results demonstrate that tannic acid can promote apoptosis via the ER stress mediated UPR pathway, indicating a potential candidate for cancer treatment.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Elham Hatami
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Vivek K Kashyap
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Bilal B Hafeez
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
253
|
Zhang H, Zhang Q, Ruan L, Duan J, Wan M, Insana MF, Zhang H, Zhang Q, Ruan L, Duan J, Wan M, Insana MF. Modeling Ramp-hold Indentation Measurements based on Kelvin-Voigt Fractional Derivative Model. MEASUREMENT SCIENCE & TECHNOLOGY 2018; 29:035701. [PMID: 30250357 PMCID: PMC6150487 DOI: 10.1088/1361-6501/aa9daf] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt Fractional Derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an Atomic Force Microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R2 > 0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3 - 1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.
Collapse
Affiliation(s)
- HongMei Zhang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - QingZhe Zhang
- Key Laboratory for Highway Construction Technique and Equipment of Ministry of Education of China, Chang’an University, Xi’an, China,710064
| | - LiTao Ruan
- The Department of Ultrasound Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China, 710061
| | - JunBo Duan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - MingXi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - Michael F. Insana
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| | - HongMei Zhang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - QingZhe Zhang
- Key Laboratory for Highway Construction Technique and Equipment of Ministry of Education of China, Chang’an University, Xi’an, China,710064
| | - LiTao Ruan
- The Department of Ultrasound Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China, 710061
| | - JunBo Duan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - MingXi Wan
- Key Laboratory of Biomedical Information Engineering, Ministry of Education, School of Life Science and Technology, Xi’an JiaoTong University, Xianning West Road No.28, Xi’an, Shaanxi, 710049, P. R. China
| | - Michael F. Insana
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| |
Collapse
|
254
|
Moosavi MA, Haghi A, Rahmati M, Taniguchi H, Mocan A, Echeverría J, Gupta VK, Tzvetkov NT, Atanasov AG. Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Lett 2018; 424:46-69. [PMID: 29474859 DOI: 10.1016/j.canlet.2018.02.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
The dysregulation of autophagy is involved in the pathogenesis of a broad range of diseases, and accordingly universal research efforts have focused on exploring novel compounds with autophagy-modulating properties. While a number of synthetic autophagy modulators have been identified as promising cancer therapy candidates, autophagy-modulating phytochemicals have also attracted attention as potential treatments with minimal side effects. In this review, we firstly highlight the importance of autophagy and its relevance in the pathogenesis and treatment of cancer. Subsequently, we present the data on common phytochemicals and their mechanism of action as autophagy modulators. Finally, we discuss the challenges associated with harnessing the autophagic potential of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran.
| | - Atousa Haghi
- Young Researchers & Elite Club, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Gheorghe Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Javier Echeverría
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, Sofia 1618, Bulgaria
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
255
|
Zafari S, Sharifi M, Chashmi NA. A comparative study of biotechnological approaches for producing valuable flavonoids in Prosopis farcta. Cytotechnology 2018; 70:603-614. [PMID: 29460196 DOI: 10.1007/s10616-017-0143-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022] Open
Abstract
The callus and hairy root cultures of Prosopis farcta were established to develop effective strategies to enhance its valuable and medicinally important flavonoid compounds. For callus induction, the hypocotyl, cotyledon and shoot explants were subjected to different plant hormones, naphthalene acetic acid (NAA), benzylaminopurine (BAP), kinetin and dichlorophenoxyacetic acid (2,4-D). Greater callus induction was obtained from hypocotyl explants on MS medium containing 3.0 mg L-1 NAA + 2.0 mg L-1 BAP. With the addition of 0.5 mg L-1 asparagine to this medium, the maximum callus growth was achieved. Hairy root culture of P. farcta was performed using transformation of different explants with strains of Agrobacterium rhizogenes LBA9404, A4, AR15834. The AR15834 strain was more effective for hairy root induction where it caused hairy root formation on 59% of the infected cotyledon explants. We compared profiles of flavonoids isolated from seedling roots, hairy roots, and callus cultures of P. farcta. The colorimetric analysis showed that the content of total flavonoids of hairy roots was 1.54 and 2.52 times higher than in seedling roots and callus, respectively. The presence of flavonoids was verified by LC/MS in positive ion mode. The results showed that flavonoid composition was different in the roots and callus. Naringenin was the major constituent in callus, whereas resveratrol, quercetin and myricetin were the most abundant compounds found in hairy roots. The main objective of this research was to establish hairy roots in P. farcta to synthesize flavonoids at levels comparable to in vitro-grown roots. The present study also opens up a way to further improve the production of pharmaceutically valuable flavonoids and to produce desired metabolites using the hairy root culture system.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | | |
Collapse
|
256
|
Genetically Transformed Root-Based Culture Technology in Medicinal Plant Cosmos bipinnatus. Jundishapur J Nat Pharm Prod 2018. [DOI: 10.5812/jjnpp.67182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
257
|
Salmani JMM, Zhang XP, Jacob JA, Chen BA. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med 2018; 15:321-329. [PMID: 28558867 DOI: 10.1016/s1875-5364(17)30052-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Indexed: 01/31/2023]
Abstract
Cancer is a major health concern and leading burden on economy worldwide. An increasing effort is devoted to isolation and development of plant-derived dietary components as effective chemo-preventive products. Phytochemical compounds from natural resources such as fruits and vegetables are responsible for decreasing the risk of certain cancers among the consuming populations. Apigenin, a flavonoid phytochemical found in many kinds of fruits and vegetables, has been shown to exert significant biological effects, such as anti-oxidant, anti-inflammatory and most particularly anti-neoplastic properties. This review is intended to summarize the most recent advances in the anti-proliferative and chemo-preventive effects of apigenin in different cancer models. Analysis of the data from the studied cancer models has revealed that apigenin exerts its anti-proliferative effects through multiple and complex pathways. This guided us to discover some controversial results about the exact role of certain molecular pathways such as autophagy in the anticancer effects of apigenin. Further, there were cumulative positive evidences supporting the involvement of certain pathways such as apoptosis, ROS and DNA damage and repair. Apigenin possesses a high potential to be used as a chemosensitizing agent through the up-regulation of DR5 pathway. According to these preclinical findings we recommend that further robust unbiased studies should consider the possible interactions between different molecular pathways.
Collapse
Affiliation(s)
- Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Ping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
258
|
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 2018; 18:4810751. [DOI: 10.1093/femsyr/foy003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
|
259
|
Patil VM, Masand N. Anticancer Potential of Flavonoids: Chemistry, Biological Activities, and Future Perspectives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00012-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
260
|
Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett 2018; 413:11-22. [DOI: 10.1016/j.canlet.2017.10.041] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023]
|
261
|
Martić R, Krajišnik D, Milić J. Antioxidants of plant origin in cosmetic products: Physicochemical properties and photoprotective potential. ARHIV ZA FARMACIJU 2018. [DOI: 10.5937/arhfarm1801001m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
262
|
Rizwanullah M, Amin S, Mir SR, Fakhri KU, Rizvi MMA. Phytochemical based nanomedicines against cancer: current status and future prospects. J Drug Target 2017; 26:731-752. [DOI: 10.1080/1061186x.2017.1408115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Md. Rizwanullah
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Amin
- Formulation Research Laboratory, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Showkat Rasool Mir
- Phytopharmaceutical Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Khalid Umar Fakhri
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
263
|
Kang CH, Molagoda IMN, Choi YH, Park C, Moon DO, Kim GY. Apigenin promotes TRAIL-mediated apoptosis regardless of ROS generation. Food Chem Toxicol 2017; 111:623-630. [PMID: 29247770 DOI: 10.1016/j.fct.2017.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/25/2023]
Abstract
Apigenin is a bioactive flavone in several herbs including parsley, thyme, and peppermint. Apigenin possesses anti-cancer and anti-inflammatory properties; however, whether apigenin enhances TRAIL-mediated apoptosis in cancer cells is unknown. In the current study, we found that apigenin enhanced TRAIL-induced apoptosis by promoting caspase activation and death receptor 5 (DR5) expression and a chimeric antibody against DR5 completely blocked the apoptosis. Apigenin also upregulated reactive oxygen species (ROS) generation; however, intriguingly, ROS inhibitors, glutathione (GSH) or N-acetyl-l-cysteine (NAC), moderately increased apigenin/TRAIL-induced apoptosis. Additional results showed that an autophagy inducer, rapamycin, enhanced apigenin/TRAIL-mediated apoptosis by a slight increase of ROS generation. Accordingly, NAC and GSH rather decreased apigenin-induced autophagy formation, suggesting that apigenin-induced ROS generation increased autophagy formation. However, autophagy inhibitors, bafilomycin (BAF) and 3-methyladenine (3-MA), showed different result in apigenin/TRAIL-mediated apoptosis without ROS generation. 3-MA upregulated the apoptosis but remained ROS levels; however, no changes on apoptosis and ROS generation were observed by BAF treatment. Taken together, these findings reveal that apigenin enhances TRAIL-induced apoptosis by activating apoptotic caspases by upregulating DR5 expression regardless of ROS generation, which may be a promising strategy for an adjuvant of TRAIL.
Collapse
Affiliation(s)
- Chang-Hee Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Freshwater Bioresources Utilization Bureau, Bioresources Industrialization Research Division, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47340, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dong-Eui University, Busan 47340, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
264
|
Bai ZT, Bai B, Zhu J, Di CX, Li X, Zhou WC. Epigenetic actions of environmental factors and promising drugs for cancer therapy. Oncol Lett 2017; 15:2049-2056. [PMID: 29434904 DOI: 10.3892/ol.2017.7597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2017] [Indexed: 01/15/2023] Open
Abstract
Carcinogenesis is known to be primarily associated with gene mutations. Recently, increasing evidence has suggested that epigenetic events also serve crucial roles in tumor etiology. Environmental factors, including nutrition, toxicants and ethanol, are involved in carcinogenesis through inducing epigenetic modifications, such as DNA methylation, histone deacetylase and miRNA regulation. Studying epigenetic mechanisms has facilitated the development of early diagnostic strategies and potential therapeutic avenues. Modulation at the epigenetic level, including reversing epigenetic modifications using targeted drugs, has demonstrated promise in cancer therapy. Therefore, identifying novel epigenetic biomarkers and therapeutic targets has potential for the future of cancer therapy. The present review discusses the environmental factors involved in epigenetic modifications and potential drug candidates for cancer therapy.
Collapse
Affiliation(s)
- Zhong-Tian Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bing Bai
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jun Zhu
- Pathology Department of Donggang Branch Courts, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Cui-Xia Di
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xun Li
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Ce Zhou
- The Second Department of General Surgery, Key Laboratory of Biotherapy and Regenerative Medicine, First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Hepatopancreatobiliary Surgery Institute of Gansu, Medical College Cancer Center of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
265
|
Grigalius I, Petrikaite V. Relationship between Antioxidant and Anticancer Activity of Trihydroxyflavones. Molecules 2017; 22:molecules22122169. [PMID: 29215574 PMCID: PMC6149854 DOI: 10.3390/molecules22122169] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/03/2017] [Accepted: 12/06/2017] [Indexed: 11/16/2022] Open
Abstract
Plant polyphenols have been highlighted not only as chemopreventive, but also as potential anticancer substances. Flavones are a subclass of natural flavonoids reported to have an antioxidant and anticancer activity. The aim of our study was to evaluate antioxidant and anticancer activity of seventeen trihydroxyflavone derivatives, including apigenin (API) and baicalein (BCL). Also, we wanted to find out if there is a correlation between those two effects. Cell growth inhibition testing was carried out using MTT assay in three different human cancer cell lines: lung (A549), breast (MCF-7) and brain epithelial (U87). Antioxidant activity was determined by the DPPH radical scavenging method. Thirteen trihydroxyflavones possessed anticancer activity against at least one tested cancer cell line. They were more active against the MCF-7 cell line, and the lowest activity was determined against the U87 cell line. The majority of compounds inhibited cancer cell growth at EC50 values between 10-50 µM. The most active compound was 3',4',5-trihydroxyflavone 7, especially against A549 and MCF-7 cell lines. The correlation between anti-proliferative and antioxidant activity was only moderate, and it was determined for A549 and U87 cancer cell lines. The most important fragment for those two effects is the ortho-dihydroxy group in ring B. CONCLUSIONS Trihydroxyflavones demonstrated anticancer activity. Further and more detailed studies should to be carried out to estimate the structure-activity relationship of these compounds.
Collapse
Affiliation(s)
- Ignas Grigalius
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| | - Vilma Petrikaite
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania.
| |
Collapse
|
266
|
Zahirović A, Kahrović E, Cindrić M, Kraljević Pavelić S, Hukić M, Harej A, Turkušić E. Heteroleptic ruthenium bioflavonoid complexes: from synthesis to in vitro biological activity. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1409893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adnan Zahirović
- Faculty of Science, Department of Chemistry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Emira Kahrović
- Faculty of Science, Department of Chemistry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Marina Cindrić
- Faculty of Science, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Mirsada Hukić
- Institute for Biomedical Research and Diagnostics NALAZ, Sarajevo, Bosnia and Herzegovina
| | - Anja Harej
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Emir Turkušić
- Faculty of Science, Department of Chemistry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
267
|
Zhang J, Chao L, Liu X, Shi Y, Zhang C, Kong L, Li R. The potential application of strategic released apigenin from polymeric carrier in pulmonary fibrosis. Exp Lung Res 2017; 43:359-369. [DOI: 10.1080/01902148.2017.1380086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Junxia Zhang
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liqin Chao
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xianghua Liu
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yanmei Shi
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Caili Zhang
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Ruiqin Li
- Scientific Research Center, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
268
|
Demirel MA, Süntar İ. The Role of Secondary Metabolites on Gynecologic Cancer Therapy: Some Pathways and Mechanisms. Turk J Pharm Sci 2017; 14:324-334. [PMID: 32454632 DOI: 10.4274/tjps.49368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/19/2017] [Indexed: 12/27/2022]
Abstract
Gynecologic cancers are among the most common cancers in humans and animals. Treatment success depends on several factors including stage at diagnosis, tumor type, origin and metastasis. Currently, surgery, chemotherapy, and radiotherapy are preferred in the treatment of these cancers. However, many anticarcinogenic drugs can cause severe adverse effects and also the expected response to treatment may not be obtained. In recent studies, the importance of the relationship between cancer and inflammation has been emphasized. Therefore, several phytochemicals that exhibit beneficial bioactive effects towards inflammatory pathways were proven to have anticarcinogenic potential for gynecologic cancer therapy. This review summarizes the role of inflammatory pathways in gynecologic cancers and effective secondary metabolites for cancer therapy.
Collapse
Affiliation(s)
- Mürşide Ayşe Demirel
- Gazi University, Faculty of Pharmacy, Laboratory Animals Breeding and Experimental Research Center, Ankara, Turkey
| | - İpek Süntar
- Gazi University, Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| |
Collapse
|
269
|
Bouasla A, Bouasla I. Ethnobotanical survey of medicinal plants in northeastern of Algeria. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:68-81. [PMID: 29157830 DOI: 10.1016/j.phymed.2017.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In order to document medicinal uses of plants in the northeastern of Algeria, preserve traditional heritage and highlighted the risks of excessive human exploitation on flora and biodiversity of the region, an inventory of medicinal species existed in the traditional pharmacopoeia in Skikda region (north-east of Algeria) was made. The survey was carried out during the year (2015-2016), through face to face interviews, using pre-prepared questionnaire. The form contains: sociodemorgaphic profile of each respondent (sex, age, educational level and monthly income), local name of medicinal species used, uses, used parts and methods of preparations. RESULTS A total of 90 species belonging to 42 botanical families, were listed. The analysis of the obtained results showed that the frequency of use of medicinal plants is related to the age, sex, educational level and monthly income of our respondents. It was recorded that the majority of remedies are prepared in the form of a decoctate from the leaves of the different species, in order to treat a wide range of diseases especially those of the digestive tract. CONCLUSION Local population has a rich indigenous knowledge, but is always stays not adequately documented. It should be noted that some listed species are suffering from surexploitation which can subjects to the disappearance of the most vulnerable species. It will be urgent and essential to adopt a sustainable management strategy to avoid the degradation of biodiversity of the region.
Collapse
Affiliation(s)
- Asma Bouasla
- Faculty of Sciences, Mohamed Chérif Messaadia University, Souk Ahras, Algeria; Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| | - Ihcène Bouasla
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
270
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
271
|
Sohn EJ, Park HT. Natural agents mediated autophagic signal networks in cancer. Cancer Cell Int 2017; 17:110. [PMID: 29209152 PMCID: PMC5704453 DOI: 10.1186/s12935-017-0486-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggested that natural compounds are important in finding targets for cancer treatments. Autophagy (“self-eating”) plays important roles in multiple diseases and acts as a tumor suppressor in cancer. Here, we examined the molecular mechanism by which natural agents regulate autophagic signals. Understanding the relationship between natural agents and cellular autophagy may provide more information for cancer diagnosis and chemoprevention.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea.,Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 Republic of Korea
| |
Collapse
|
272
|
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2017; 36:3993-4009. [DOI: 10.1080/07391102.2017.1404935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| |
Collapse
|
273
|
Whitening Agents from Reseda luteola L. and Their Chemical Characterization Using Combination of CPC, UPLC-HRMS and NMR. COSMETICS 2017. [DOI: 10.3390/cosmetics4040051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
274
|
Wu Y, Li L, Zhou S, Shen Q, Lin H, Zhu Q, Sun J, Ge RS. Apigenin inhibits rat neurosteroidogenic 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase. Neurochem Int 2017; 110:84-90. [DOI: 10.1016/j.neuint.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
|
275
|
Medhat AM, Azab KS, Said MM, El Fatih NM, El Bakary NM. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumour Biol 2017; 39:1010428317728480. [PMID: 29022496 DOI: 10.1177/1010428317728480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.
Collapse
Affiliation(s)
- Amina M Medhat
- 1 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khaled Sh Azab
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Said
- 1 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Neama M El Fatih
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M El Bakary
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
276
|
Tan GF, Ma J, Zhang XY, Xu ZS, Xiong AS. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:31-38. [PMID: 28818381 DOI: 10.1016/j.plantsci.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 05/18/2023]
Abstract
Apigenin and anthocyanin biosyntheses share common precursors in plants. Flavone synthase (FNS) converts naringenin into apigenin in higher plants. Celery is an important edible and medical vegetable crop that contains apigenin in its tissues. However, the effect of high AgFNS gene expression on the apigenin and anthocyanins contents of purple celery remains to be elucidated. In this study, the AgFNS gene was cloned from purple celery ('Nanxuan liuhe purple celery') and overexpressed in this purple celery to determine its influence on anthocyanins and apigenin contents. Results showed that the AgFNS gene was 1068bp, which encodes 355 amino acid residues. Evolution analysis showed that the AgFNS protein belongs to the FSN I type. In AgFNS transgenic celery, the anthocyanins content in petioles was lower than that wild-type celery plants. Apigenin content increased in the petioles of AgFNS transgenic celery. The transcript levels of the AgPAL, AgC4H, AgCHS, and AgCHI genes were up-regulated, whereas those of the AgF3H, AgF3'H, AgDFR, AgANS, and Ag3GT genes were down-regulated in the petioles of AgFNS transgenic plants compared with wild-type celery plants. This work provides basic knowledge about the function of the AgFNS gene in the anthocyanin and apigenin biosyntheses of celery.
Collapse
Affiliation(s)
- Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xin-Yue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
277
|
Construction, in vitro release and rheological behavior of apigenin-encapsulated hexagonal liquid crystal. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
278
|
Hasanpourghadi M, Pandurangan AK, Mustafa MR. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res 2017; 128:376-388. [PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Abstract
Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
279
|
Mehmood K, Zhang H, Iqbal MK, Rehman MU, Shahzad M, Li K, Huang S, Nabi F, Zhang L, Li J. In VitroEffect of Apigenin and Danshen in Tibial Dyschondroplasia Through Inhibition of Heat-Shock Protein 90 and Vascular Endothelial Growth Factor Expressions in Avian Growth Plate Cells. Avian Dis 2017; 61:372-377. [DOI: 10.1637/11641-032817-regr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Khalid Mehmood
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Kashif Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Muhammad Shahzad
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur 63100, Pakistan
| | - Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shucheng Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fazul Nabi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Lihong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, People's Republic of China
| |
Collapse
|
280
|
Sifaoui I, López-Arencibia A, Martín-Navarro CM, Reyes-Batlle M, Wagner C, Chiboub O, Mejri M, Valladares B, Abderrabba M, Piñero JE, Lorenzo-Morales J. Programmed cell death in Acanthamoeba castellanii Neff induced by several molecules present in olive leaf extracts. PLoS One 2017; 12:e0183795. [PMID: 28859105 PMCID: PMC5578599 DOI: 10.1371/journal.pone.0183795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 08/12/2017] [Indexed: 01/22/2023] Open
Abstract
Therapy against Acanthamoeba infections such as Granulomatous Amoebic Encephalitis (GAE) and Acanthamoeba Keratitis (AK), remains as an issue to be solved due to the existence of a cyst stage which is highly resistant to most chemical and physical agents. Recently, the activity of Olive Leaf Extracts (OLE) was demonstrated against Acanthamoeba species. However, the molecules involved in this activity were not identified and/or evaluated. Therefore, the aim of this study was to evaluate the activity of the main molecules which are present in OLE and secondly to study their mechanism of action in Acanthamoeba. Among the tested molecules, the observed activities ranged from an IC50 of 6.59 in the case of apigenine to an IC50 > 100 μg/ml for other molecules. After that, elucidation of the mechanism of action of these molecules was evaluated by the detection of changes in the phosphatidylserine (PS) exposure, the permeability of the plasma membrane, the mitochondrial membrane potential and the ATP levels in the treated cells. Vanillic, syringic and ursolic acids induced the higher permeabilization of the plasma membrane. Nevertheless, the mitochondrial membrane was altered by all tested molecules which were also able to decrease the ATP levels to less than 50% in IC90 treated cells after 24 h. Therefore, all the molecules tested in this study could be considered as a future therapeutic alternative against Acanthamoeba spp. Further studies are needed in order to establish the true potential of these molecules against these emerging opportunistic pathogenic protozoa.
Collapse
Affiliation(s)
- Ines Sifaoui
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Atteneri López-Arencibia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Carmen Mª. Martín-Navarro
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - María Reyes-Batlle
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Carolina Wagner
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
- Cátedra de Parasitología, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Olfa Chiboub
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Mondher Mejri
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
| | - Basilio Valladares
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Manef Abderrabba
- Laboratoire Matériaux-Molécules et Applications, IPEST, Institut Préparatoire aux Etudes Scientifiques et Techniques, La Marsa, University of Carthage, Tunis, Tunisia
| | - José E. Piñero
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| | - Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health, University of La Laguna, Avda Francisco Sanchez s/n, Campus de Anchieta, la Laguna Tenerife, Canary Islands, Spain
| |
Collapse
|
281
|
Wang M, Firrman J, Zhang L, Arango-Argoty G, Tomasula P, Liu L, Xiao W, Yam K. Apigenin Impacts the Growth of the Gut Microbiota and Alters the Gene Expression of Enterococcus. Molecules 2017; 22:molecules22081292. [PMID: 28771188 PMCID: PMC6152273 DOI: 10.3390/molecules22081292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/30/2017] [Accepted: 08/01/2017] [Indexed: 01/09/2023] Open
Abstract
Apigenin is a major dietary flavonoid with many bioactivities, widely distributed in plants. Apigenin reaches the colon region intact and interacts there with the human gut microbiota, however there is little research on how apigenin affects the gut bacteria. This study investigated the effect of pure apigenin on human gut bacteria, at both the single strain and community levels. The effect of apigenin on the single gut bacteria strains Bacteroides galacturonicus, Bifidobacterium catenulatum, Lactobacillus rhamnosus GG, and Enterococcus caccae, was examined by measuring their anaerobic growth profiles. The effect of apigenin on a gut microbiota community was studied by culturing a fecal inoculum under in vitro conditions simulating the human ascending colon. 16S rRNA gene sequencing and GC-MS analysis quantified changes in the community structure. Single molecule RNA sequencing was used to reveal the response of Enterococcus caccae to apigenin. Enterococcus caccae was effectively inhibited by apigenin when cultured alone, however, the genus Enterococcus was enhanced when tested in a community setting. Single molecule RNA sequencing found that Enterococcus caccae responded to apigenin by up-regulating genes involved in DNA repair, stress response, cell wall synthesis, and protein folding. Taken together, these results demonstrate that apigenin affects both the growth and gene expression of Enterococcus caccae.
Collapse
Affiliation(s)
- Minqian Wang
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 114 MCB Hall, Blacksburg, VA 24060, USA.
| | - Gustavo Arango-Argoty
- Department of Computer Science, Virginia Tech, 114 MCB Hall, Blacksburg, VA 24060, USA.
| | - Peggy Tomasula
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Weidong Xiao
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA.
| | - Kit Yam
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
282
|
Rodriguez JP, Lee YK, Woo DG, Shim JS, Geraldino PJL, Jacinto SD, Lee S. Flavonoids from Cirsium japonicum var. maackii pappus as inhibitors of aldose reductase and their simultaneous determination. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0259-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
283
|
Subhasitanont P, Chokchaichamnankit D, Chiablaem K, Keeratichamroen S, Ngiwsara L, Paricharttanakul NM, Lirdprapamongkol K, Weeraphan C, Svasti J, Srisomsap C. Apigenin inhibits growth and induces apoptosis in human cholangiocarcinoma cells. Oncol Lett 2017; 14:4361-4371. [PMID: 28943950 DOI: 10.3892/ol.2017.6705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022] Open
Abstract
A promising nutraceutical, apigenin, was recently revealed to exhibit biological activity in inhibiting several types of cancer. The effects of apigenin on the growth inhibition and apoptosis of the cholangiocarcinoma HuCCA-1 cell line were investigated. Protein alterations subsequent to apigenin treatment were studied using a proteomic approach. The values of 20, 50 and 90% inhibition of cell growth (IC20, IC50 and IC90) were determined by MTT cell viability assay. Apoptotic cell death was detected using two different methods, a flow cytometric analysis (Muse Cell Analyzer) and DNA fragmentation assay. A number of conditions including attached and detached cells were selected to perform two-dimensional gel electrophoresis (2-DE) to study the alterations in the expression levels of treated and untreated proteins and identified by liquid chromatography (LC)/tandem mass spectrometry (MS/MS). The IC20, IC50 and IC90 values of apigenin after 48 h treatment in HuCCA-1 cells were 25, 75 and 200 µM, respectively, indicating the cytotoxicity of this compound. Apigenin induced cell death in HuCCA-1 cells via apoptosis as detected by flow cytometric analysis and exhibited, as confirmed with DNA fragmentation, characteristics of apoptotic cells. A total of 67 proteins with altered expression were identified from the 2-DE analysis and LC/MS/MS. The cleavage of proteins involved in cytoskeletal, cytokeratin 8, 18 and 19, and high expression of S100-A6 and S100-A11 suggested that apoptosis was induced by apigenin via the caspase-dependent pathway. Notably, two proteins, heterogeneous nuclear ribonucleoprotein H and A2/B1, disappeared completely subsequent to treatment, suggesting the role of apigenin in inducing cell death. The present study indicated that apigenin demonstrates an induction of growth inhibition and apoptosis in cholangiocarcinoma cells and the apoptosis pathway was confirmed by proteomic analysis.
Collapse
Affiliation(s)
| | | | - Khajeelak Chiablaem
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
284
|
Park S, Lim W, Bazer FW, Song G. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J Cell Physiol 2017; 233:3055-3065. [DOI: 10.1002/jcp.26054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sunwoo Park
- Institute of Animal Molecular Biotechnology; Korea University; Seoul Republic of Korea
- Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| | - Whasun Lim
- Department of Biomedical Sciences; Catholic Kwandong University; Gangneung Republic of Korea
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science; Texas A&M University; College Station Texas
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology; Korea University; Seoul Republic of Korea
- Department of Biotechnology; College of Life Sciences and Biotechnology; Korea University; Seoul Republic of Korea
| |
Collapse
|
285
|
de Rus Jacquet A, Tambe MA, Ma SY, McCabe GP, Vest JHC, Rochet JC. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:393-407. [PMID: 28088492 PMCID: PMC6149223 DOI: 10.1016/j.jep.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is a multifactorial neurodegenerative disorder affecting 5% of the population over the age of 85 years. Current treatments primarily involve dopamine replacement therapy, which leads to temporary relief of motor symptoms but fails to slow the underlying neurodegeneration. Thus, there is a need for safe PD therapies with neuroprotective activity. In this study, we analyzed contemporary herbal medicinal practices used by members of the Pikuni-Blackfeet tribe from Western Montana to treat PD-related symptoms, in an effort to identify medicinal plants that are affordable to traditional communities and accessible to larger populations. AIM OF THE STUDY The aims of this study were to (i) identify medicinal plants used by the Pikuni-Blackfeet tribe to treat individuals with symptoms related to PD or other CNS disorders, and (ii) characterize a subset of the identified plants in terms of antioxidant and neuroprotective activities in cellular models of PD. MATERIALS AND METHODS Interviews of healers and local people were carried out on the Blackfeet Indian reservation. Plant samples were collected, and water extracts were produced for subsequent analysis. A subset of botanical extracts was tested for the ability to induce activation of the Nrf2-mediated transcriptional response and to protect against neurotoxicity elicited by the PD-related toxins rotenone and paraquat. RESULTS The ethnopharmacological interviews resulted in the documentation of 26 medicinal plants used to treat various ailments and diseases, including symptoms related to PD. Seven botanical extracts (out of a total of 10 extracts tested) showed activation of Nrf2-mediated transcriptional activity in primary cortical astrocytes. Extracts prepared from Allium sativum cloves, Trifolium pratense flowers, and Amelanchier arborea berries exhibited neuroprotective activity against toxicity elicited by rotenone, whereas only the extracts prepared from Allium sativum and Amelanchier arborea alleviated PQ-induced dopaminergic cell death. CONCLUSIONS Our findings highlight the potential clinical utility of plants used for medicinal purposes over generations by the Pikuni-Blackfeet people, and they shed light on mechanisms by which the plant extracts could slow neurodegeneration in PD.
Collapse
Affiliation(s)
- Aurélie de Rus Jacquet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Mitali Arun Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Sin Ying Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - George P McCabe
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
286
|
Ayyalasomayajula N, Suresh C. Mechanistic comparison of current pharmacological treatments and novel phytochemicals to target amyloid peptides in Alzheimer’s and neurodegenerative diseases. Nutr Neurosci 2017; 21:682-694. [DOI: 10.1080/1028415x.2017.1345425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Challa Suresh
- Department of Biochemistry, National Institute of Nutrition, Hyderabad 500007, India
| |
Collapse
|
287
|
Apigenin oxidovanadium(IV) cation interactions. Synthesis, spectral, bovine serum albumin binding, antioxidant and anticancer studies. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
288
|
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180:160-170. [DOI: 10.1016/j.lfs.2017.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|
289
|
Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 2017; 18:ijms18071381. [PMID: 28657580 PMCID: PMC5535874 DOI: 10.3390/ijms18071381] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022] Open
Abstract
In mammals, the effects of estrogen are mainly mediated by two different estrogen receptors, ERα and ERβ. These proteins are members of the nuclear receptor family, characterized by distinct structural and functional domains, and participate in the regulation of different biological processes, including cell growth, survival and differentiation. The two estrogen receptor (ER) subtypes are generated from two distinct genes and have partially distinct expression patterns. Their activities are modulated differently by a range of natural and synthetic ligands. Some of these ligands show agonistic or antagonistic effects depending on ER subtype and are described as selective ER modulators (SERMs). Accordingly, a few phytochemicals, called phytoestrogens, which are synthesized from plants and vegetables, show low estrogenic activity or anti-estrogenic activity with potentially anti-proliferative effects that offer nutraceutical or pharmacological advantages. These compounds may be used as hormonal substitutes or as complements in breast cancer treatments. In this review, we discuss and summarize the in vitro and in vivo effects of certain phytoestrogens and their potential roles in the interaction with estrogen receptors.
Collapse
|
290
|
Gadioli IL, da Cunha MDSB, de Carvalho MVO, Costa AM, Pineli LDLDO. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Crit Rev Food Sci Nutr 2017; 58:785-807. [PMID: 27645583 DOI: 10.1080/10408398.2016.1224805] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Passiflora plants are strategic in the context of biodiversity for food and nutrition. We applied the procedures of a systematic review protocol to study the state of the art on identification of phenolic compounds from Passiflora plants. An automated literature search was conducted using six databases and a combination of seven keywords. All the analytical, chromatographic, and spectroscopic methods were included. The studies were classified according to their method of identification, phenolic classes, and method of extraction. In total, 8,592 abstracts were found, from which 122 studies were selected for complete reading and 82 were selected for further analysis. Techniques of extraction, evaluated parts of the plant and methods of identification were systematized. Studies with leaves were most conspicuous (54.4%), 34 species of Passiflora were evaluated and orientin, isoorientin, vitexin, isovitexin were commonly found structures. A High Performance Liquid Chromatography-diode array detector was the technique most applied, with which the same structures were identified all through the studies, although other unknown structures were detected, but not elucidated. The use of Nuclear Magnetic Resonance and Mass Spectrometry, which are more sensitive techniques, needs to be intensified, to identify other unconventional compounds detected in Passiflora, to enhance the comprehension of the bioactive compounds in these plants.
Collapse
Affiliation(s)
- Izabel Lucena Gadioli
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Marcela de Sá Barreto da Cunha
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Mariana Veras Oliveira de Carvalho
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| | - Ana Maria Costa
- b Embrapa Cerrados, Laboratory of Food Science , Planaltina, Federal District , Brazil
| | - Lívia de Lacerda de Oliveira Pineli
- a Department of Nutrition, Faculty of Health Sciences , Campus Universitário Darcy Ribeiro, Universidade de Brasília , Brasília , DF , Brazil
| |
Collapse
|
291
|
Seo HS, Ku JM, Choi HS, Woo JK, Lee BH, Kim DS, Song HJ, Jang BH, Shin YC, Ko SG. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells. Oncol Rep 2017; 38:715-724. [PMID: 28656316 PMCID: PMC5562081 DOI: 10.3892/or.2017.5752] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P-glycoprotein (P-gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin-resistant breast cancer cells (MCF-7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF-7/ADR cells and parental MCF-7 cells. This growth inhibition was related to the accumulation of cells in the sub-G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated proteins (MRPs) in MCF-7/ADR cells. Apigenin also downregulated the expression of P-gp. Apigenin reversed drug efflux from MCF-7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p-STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP-9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF-1α inhibitor decreased cell growth in MCF-7 and MCF-7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance.
Collapse
Affiliation(s)
- Hye-Sook Seo
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Mo Ku
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Hyeong Sim Choi
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong-Kyu Woo
- College of Veterinary Medicine, Seoul National University, Gwanak‑gu, Seoul 08826, Republic of Korea
| | - Byung Hoon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Doh Sun Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Hyun Jong Song
- Department of Applied Korean Medicine, Graduate School, Kyung Hee University, Dongdaemun‑gu, Seoul 02447, Republic of Korea
| | - Bo-Hyoung Jang
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Cheol Shin
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Laboratory of Clinical Biology and Pharmacogenomics and Center for Clinical Research and Genomics, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
292
|
Miron A, Aprotosoaie AC, Trifan A, Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann N Y Acad Sci 2017. [PMID: 28632894 DOI: 10.1111/nyas.13384] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anca Miron
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Adriana Trifan
- Faculty of Pharmacy; Grigore T. Popa University of Medicine and Pharmacy; Iasi Romania
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine; University of Macau; Taipa Macau
- College of Food Science; Fujian Agriculture and Forestry University; Fuzhou Fujian China
| |
Collapse
|
293
|
Masuelli L, Benvenuto M, Mattera R, Di Stefano E, Zago E, Taffera G, Tresoldi I, Giganti MG, Frajese GV, Berardi G, Modesti A, Bei R. In Vitro and In Vivo Anti-tumoral Effects of the Flavonoid Apigenin in Malignant Mesothelioma. Front Pharmacol 2017; 8:373. [PMID: 28674496 PMCID: PMC5474957 DOI: 10.3389/fphar.2017.00373] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023] Open
Abstract
Malignant mesothelioma (MM) is a tumor arising from mesothelium. MM patients’ survival is poor. The polyphenol 4′,5,7,-trihydroxyflavone Apigenin (API) is a “multifunctional drug”. Several studies have demonstrated API anti-tumoral effects. However, little is known on the in vitro and in vivo anti-tumoral effects of API in MM. Thus, we analyzed the in vitro effects of API on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis, and autophagy of human and mouse MM cells. We evaluated the in vivo anti-tumor activities of API in mice transplanted with MM #40a cells forming ascites. API inhibited in vitro MM cells survival, increased reactive oxygen species intracellular production and induced DNA damage. API activated apoptosis but not autophagy. API-induced apoptosis was sustained by the increase of Bax/Bcl-2 ratio, increase of p53 expression, activation of both caspase 9 and caspase 8, cleavage of PARP-1, and increase of the percentage of cells in subG1 phase. API treatment affected the phosphorylation of ERK1/2, JNK and p38 MAPKs in a cell-type specific manner, inhibited AKT phosphorylation, decreased c-Jun expression and phosphorylation, and inhibited NF-κB nuclear translocation. Intraperitoneal administration of API increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of tumor growth. Our findings may have important implications for the design of MM treatment using API.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Enrica Di Stefano
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Erika Zago
- Department of Experimental Medicine, University of Rome "Sapienza",Rome, Italy
| | - Gloria Taffera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Giovanni Vanni Frajese
- Department of Sports Science, Human and Health, University of Rome "Foro Italico",Rome, Italy
| | - Ginevra Berardi
- Department of Chemistry, University of Rome "Sapienza",Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy.,Center for Regenerative Medicine, University of Rome "Tor Vergata",Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata",Rome, Italy.,Center for Regenerative Medicine, University of Rome "Tor Vergata",Rome, Italy
| |
Collapse
|
294
|
Lefranc F, Tabanca N, Kiss R. Assessing the anticancer effects associated with food products and/or nutraceuticals using in vitro and in vivo preclinical development-related pharmacological tests. Semin Cancer Biol 2017; 46:14-32. [PMID: 28602819 DOI: 10.1016/j.semcancer.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
Abstract
This review is part of a special issue entitled "Role of dietary pattern, foods, nutrients and nutraceuticals in supporting cancer prevention and treatment" and describes a pharmacological strategy to determine the potential contribution of food-related components as anticancer agents against established cancer. Therefore, this review does not relate to chemoprevention, which is analysed in several other reviews in the current special issue, but rather focuses on the following: i) the biological events that currently represent barriers against the treatment of certain types of cancers, primarily metastatic cancers; ii) the in vitro and in vivo pharmacological pre-clinical tests that can be used to analyse the potential anticancer effects of food-related components; and iii) several examples of food-related components with anticancer effects. This review does not represent a catalogue-based listing of food-related components with more or less anticancer activity. By contrast, this review proposes an original pharmacological strategy that researchers can use to analyse the potential anticancer activity of any food-related component-e.g., by considering the crucial characteristics of cancer biological aggressiveness. This review also highlights that cancer patients undergoing chemotherapy should restrict the use of "food complements" without supervision by a medical nutritionist. By contrast, an equilibrated diet that includes the food-related components listed herein would be beneficial for cancer patients who are not undergoing chemotherapy.
Collapse
Affiliation(s)
- Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 808 route de Lennik, 1070 Brussels, Belgium.
| | - Nurhayat Tabanca
- U.S Department of Agriculture-Agricultural Research Service, Subtropical Horticulture Research Station,13601 Old Cutler Rd., Miami, FL 33158, USA.
| | - Robert Kiss
- Retired-formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS, Brussels, Belgium), 5 rue d'Egmont, 1000 Brussels, Belgium.
| |
Collapse
|
295
|
Cytotoxic activity evaluation and molecular docking study of phenolic derivatives from Achillea fragrantissima (Forssk.) growing in Egypt. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1918-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
296
|
Liu H, Xu RX, Gao S, Cheng AX. The Functional Characterization of a Site-Specific Apigenin 4'-O-methyltransferase Synthesized by the Liverwort Species Plagiochasma appendiculatum. Molecules 2017; 22:molecules22050759. [PMID: 28481281 PMCID: PMC6154639 DOI: 10.3390/molecules22050759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 11/16/2022] Open
Abstract
Apigenin, a widely distributed flavone, exhibits excellent antioxidant, anti-inflammatory, and antitumor properties. In addition, the methylation of apigenin is generally considered to result in better absorption and greatly increased bioavailability. Here, four putative Class II methyltransferase genes were identified from the transcriptome sequences generated from the liverwort species Plagiochasma appendiculatum. Each was heterologously expressed as a His-fusion protein in Escherichia coli and their methylation activity against apigenin was tested. One of the four Class II OMT enzymes named 4'-O-methyltransferase (Pa4'OMT) was shown to react effectively with apigenin, catalyzing its conversion to acacetin. Besides the favorite substrate apigenin, the recombinant PaF4'OMT was shown to catalyze luteolin, naringenin, kaempferol, quercetin, genistein, scutellarein, and genkwanin to the corresponding 4'-methylation products. In vivo feeding experiments indicated that PaF4'OMT could convert apigenin to acacetin efficiently in E. coli and approximately 88.8 µM (25.2 mg/L) of product was synthesized when 100 µM of apigenin was supplemented. This is the first time that a Class II plant O-methyltransferase has been characterized in liverworts.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Rui-Xue Xu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
297
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
298
|
Shakeel F, Alshehri S, Ibrahim MA, Elzayat EM, Altamimi MA, Mohsin K, Alanazi FK, Alsarra IA. Solubility and thermodynamic parameters of apigenin in different neat solvents at different temperatures. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
299
|
Karim R, Palazzo C, Laloy J, Delvigne AS, Vanslambrouck S, Jerome C, Lepeltier E, Orange F, Dogne JM, Evrard B, Passirani C, Piel G. Development and evaluation of injectable nanosized drug delivery systems for apigenin. Int J Pharm 2017; 532:757-768. [PMID: 28456651 DOI: 10.1016/j.ijpharm.2017.04.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to develop different injectable nanosized drug delivery systems (NDDSs) i.e. liposome, lipid nanocapsule (LNC) and polymeric nanocapsule (PNC) encapsulating apigenin (AG) and compare their characteristics to identify the nanovector(s) that can deliver the largest quantity of AG while being biocompatible. Two liposomes with different surface characteristics (cationic and anionic), a LNC and a PNC were prepared. A novel tocopherol modified poly(ethylene glycol)-b-polyphosphate block-copolymer was used for the first time for the PNC preparation. The NDDSs were compared by their physicochemical characteristics, AG release, storage stability, stability in serum, complement consumption and toxicity against a human macrovascular endothelial cell line (EAhy926). The diameter and surface charge of the NDDSs were comparable with previously reported injectable nanocarriers. The NDDSs showed good encapsulation efficiency and drug loading. Moreover, the NDDSs were stable during storage and in fetal bovine serum for extended periods, showed low complement consumption and were non-toxic to EAhy926 cells up to high concentrations. Therefore, they can be considered as potential injectable nanocarriers of AG. Due to less pronounced burst effect and extended release characteristics, the nanocapsules could be favorable approaches for achieving prolonged pharmacological activity of AG using injectable NDDS.
Collapse
Affiliation(s)
- Reatul Karim
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium; MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | - Claudio Palazzo
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Julie Laloy
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Anne-Sophie Delvigne
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Stéphanie Vanslambrouck
- Center for Education and Research on Macromolecules (CERM), University of Liege, UR-CESAM, Liege, Belgium
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM), University of Liege, UR-CESAM, Liege, Belgium
| | - Elise Lepeltier
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Francois Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Nice, France
| | - Jean-Michel Dogne
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| |
Collapse
|
300
|
Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS One 2017; 12:e0175558. [PMID: 28441391 PMCID: PMC5404872 DOI: 10.1371/journal.pone.0175558] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-associated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.
Collapse
|