251
|
Lan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R. Odd-skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development 2004; 131:3207-16. [PMID: 15175245 DOI: 10.1242/dev.01175] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the mammalian secondary palate involves multiple steps of highly regulated morphogenetic processes that are frequently disturbed during human development, resulting in the common birth defect of cleft palate. Neither the molecular processes governing normal palatogenesis nor the causes of cleft palate is well understood. In an expression screen to identify new transcription factors regulating palate development, we previously isolated the odd-skipped related 2 (Osr2) gene, encoding a zinc-finger protein homologous to the Drosophila odd-skipped gene product, and showed that Osr2 mRNA expression is specifically activated in the nascent palatal mesenchyme at the onset of palatal outgrowth. We report that a targeted null mutation in Osr2 impairs palatal shelf growth and causes delay in palatal shelf elevation, resulting in cleft palate. Whereas palatal outgrowth initiates normally in the Osr2 mutant embryos, a significant reduction in palatal mesenchyme proliferation occurs specifically in the medial halves of the downward growing palatal shelves at E13.5, which results in retarded, mediolaterally symmetric palatal shelves before palatal shelf elevation. The developmental timing of palatal growth retardation correlates exactly with the spatiotemporal pattern of Osr1 gene expression during palate development. Furthermore, we show that the Osr2 mutants exhibit altered gene expression patterns, including those of Osr1, Pax9 and Tgfb3, during palate development. These data identify Osr2 as a key intrinsic regulator of palatal growth and patterning.
Collapse
Affiliation(s)
- Yu Lan
- Center for Oral Biology and Department of Biomedical Genetics, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
252
|
Takio Y, Pasqualetti M, Kuraku S, Hirano S, Rijli FM, Kuratani S. Evolutionary biology: lamprey Hox genes and the evolution of jaws. Nature 2004; 429:1 p following 262. [PMID: 15154395 DOI: 10.1038/nature02616] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoko Takio
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN Kobe, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
253
|
Jeong J, Mao J, Tenzen T, Kottmann AH, McMahon AP. Hedgehog signaling in the neural crest cells regulates the patterning and growth of facial primordia. Genes Dev 2004; 18:937-51. [PMID: 15107405 PMCID: PMC395852 DOI: 10.1101/gad.1190304] [Citation(s) in RCA: 479] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Facial abnormalities in human SHH mutants have implicated the Hedgehog (Hh) pathway in craniofacial development, but early defects in mouse Shh mutants have precluded the experimental analysis of this phenotype. Here, we removed Hh-responsiveness specifically in neural crest cells (NCCs), the multipotent cell type that gives rise to much of the skeleton and connective tissue of the head. In these mutants, many of the NCC-derived skeletal and nonskeletal components are missing, but the NCC-derived neuronal cell types are unaffected. Although the initial formation of branchial arches (BAs) is normal, expression of several Fox genes, specific targets of Hh signaling in cranial NCCs, is lost in the mutant. The spatially restricted expression of Fox genes suggests that they may play an important role in BA patterning. Removing Hh signaling in NCCs also leads to increased apoptosis and decreased cell proliferation in the BAs, which results in facial truncation that is evident by embryonic day 11.5 (E11.5). Together, our results demonstrate that Hh signaling in NCCs is essential for normal patterning and growth of the face. Further, our analysis of Shh-Fox gene regulatory interactions leads us to propose that Fox genes mediate the action of Shh in facial development.
Collapse
Affiliation(s)
- Juhee Jeong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
254
|
Abstract
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
Collapse
Affiliation(s)
- Sylvia Alappat
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New orleans, LA 70118, USA
| | | | | |
Collapse
|
255
|
Lampe X, Picard JJ, Rezsohazy R. The Hoxa2 enhancer 2 contains a critical Hoxa2 responsive regulatory element. Biochem Biophys Res Commun 2004; 316:898-902. [PMID: 15033486 DOI: 10.1016/j.bbrc.2004.02.138] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 11/26/2022]
Abstract
Rhombomeres are embryonic territories arising from the transient segmentation of the hindbrain. Their identity is specified by Hox genes from paralogous groups 1-4. Hoxa2 is the only Hox gene to be expressed in the second rhombomere and the regulatory cues leading to this region-specific expression have been poorly investigated. A 2.5-kb DNA fragment overlapping with the 3' end of Hoxa2 was previously shown to specifically direct the expression of a reporter gene in the second rhombomere and the rostral somites of mouse embryos. Here, we report that this enhancer region is activated in vitro by Hoxa2 and that this activation is strictly dependent on a short 10-bp sequence matching the consensus for Hox-Pbx recognition sites.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université catholique de Louvain, 73 (boîte 82) avenue Mounier, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
256
|
Kulesa P, Ellies DL, Trainor PA. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Dev Dyn 2004; 229:14-29. [PMID: 14699574 DOI: 10.1002/dvdy.10485] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cranial neural crest cells are a multipotent, migratory population that generates most of the cartilage, bone, connective tissue and peripheral nervous system in the vertebrate head. Proper neural crest cell patterning is essential for normal craniofacial morphogenesis and is highly conserved among vertebrates. Neural crest cell patterning is intimately connected to the early segmentation of the neural tube, such that neural crest cells migrate in discrete segregated streams. Recent advances in live embryo imaging have begun to reveal the complex behaviour of neural crest cells which involve intricate cell-cell and cell-environment interactions. Despite the overall similarity in neural crest cell migration between distinct vertebrates species there are important mechanistic differences. Apoptosis for example, is important for neural crest cell patterning in chick embryos but not in mouse, frog or fish embryos. In this paper we highlight the potential evolutionary significance of such interspecies differences in jaw development and evolution. Developmental Dynamics 229:14-29, 2004.
Collapse
Affiliation(s)
- Paul Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | | |
Collapse
|
257
|
Knight RD, Javidan Y, Nelson S, Zhang T, Schilling T. Skeletal and pigment cell defects in the lockjaw mutant reveal multiple roles for zebrafish tfap2a in neural crest development. Dev Dyn 2004; 229:87-98. [PMID: 14699580 DOI: 10.1002/dvdy.10494] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the AP-2 transcription factor family have critical roles in many aspects of embryonic development. The zebrafish tfap2a mutant lockjaw (low) displays defects in skeletal and pigment cell derivatives of the neural crest. Here we show essential roles for tfap2a in subsets of embryonic cartilages and pigment cells. Defects in cartilage of the hyoid arch in low correlate with a loss of Hox group 2 gene expression and are suggestive of a transformation to a mandibular fate. In contrast, loss of joints in the mandibular arch and defects in certain types of pigment cells suggest a requirement for tfap2a independent of Hox regulation. Early melanophores do not develop in low mutants, and we propose that this results in part from a loss of kit function, leading to defects in migration, as well as kit-independent defects in melanophore specification. Iridophores are also reduced in low, in contrast to xanthophores, revealing a role for tfap2a in the development of pigment subpopulations. We propose a model of tfap2a function in the neural crest in which there are independent functions for tfap2a in specification of subpopulations of pigment cells and segmental patterning of the pharyngeal skeleton through the regulation of Hox genes. Developmental Dynamics 229:87-98, 2004.
Collapse
Affiliation(s)
- Robert D Knight
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
258
|
Abstract
The cranial neural crest has long been viewed as being of particular significance. First, it has been held that the cranial neural crest has a morphogenetic role, acting to coordinate the development of the pharyngeal arches. By contrast, the trunk crest seems to play a more subservient role in terms of embryonic patterning. Second, the cranial crest not only generates neurons, glia, and melanocytes, but additionally forms skeletal derivatives (bones, cartilage, and teeth, as well as smooth muscle and connective tissue), and this potential was thought to be a unique feature of the cranial crest. Recently, however, several studies have suggested that the cranial neural crest may not be so influential in terms of patterning, nor so exceptional in the derivatives that it makes. It is now becoming clear that the morphogenesis of the pharyngeal arches is largely driven by the pharyngeal endoderm. Furthermore, it is now apparent that trunk neural crest cells have skeletal potential. However, it has now been demonstrated that a key role for the cranial neural crest streams is to organise the innervation of the hindbrain by the cranial sensory ganglia. Thus, in the past few years, our views of the significance of the cranial neural crest for head development have been altered. Developmental Dynamics 229:5-13, 2004.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, New Hunts House, Guys Campus, Kings College London, London, United Kingdom.
| | | | | |
Collapse
|
259
|
Murakami Y, Pasqualetti M, Takio Y, Hirano S, Rijli FM, Kuratani S. Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development 2004; 131:983-95. [PMID: 14973269 DOI: 10.1242/dev.00986] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus(Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic,bulbar and Mauthner cells, develop in conserved rhombomere-specific positions,similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore,whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.
Collapse
Affiliation(s)
- Yasunori Murakami
- Evolutionary Morphology Research Team, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
260
|
Tucker AS, Lumsden A. Neural crest cells provide species-specific patterning information in the developing branchial skeleton. Evol Dev 2004; 6:32-40. [PMID: 15108816 DOI: 10.1111/j.1525-142x.2004.04004.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The skeletal elements of the branchial region are made by neural crest cells, following tissue interactions with the pharyngeal endoderm. Previous transplantation experiments have claimed that the cranial neural crest is morphogenetically prespecified in respect of its branchial skeletal derivatives, that is, that information for the number, size, shape, and position of its individual elements is already determined in these cells when they are still in the neural folds. This positional information would somehow be preserved during delamination from the neural tube and migration into the branchial arches, before being read out as a spatial pattern of chondrogenesis and osteogenesis. However, it now appears that signals from the endoderm are able to specify not only the histogenic differentiation state of neural crest cells but also the identity and orientation of the branchial skeletal elements. It is therefore important to ask whether fine details of branchial skeletal pattern such as those that exist between different species are also governed by extrinsic factors, such as the endoderm, or by the neural crest itself. We have grafted neural crest between duck and quail embryos and show that the shape and size of the resulting skeletal elements is donor derived. The ability to form species-specific patterns of craniofacial skeletal tissue thus appears to be an inherent property of the neural crest, expressed as species-specific responses to endodermal signals.
Collapse
Affiliation(s)
- Abigail S Tucker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Hospital, London, SE1 1UL, UK.
| | | |
Collapse
|
261
|
Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y, Geisler R, Rauch GJ, Schilling TF. lockjawencodes a zebrafishtfap2arequired for early neural crest development. Development 2003; 130:5755-68. [PMID: 14534133 DOI: 10.1242/dev.00575] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low)mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish tfap2a, one of a small family of transcription factors implicated in epidermal and neural crest development. A point mutation in lowtruncates the DNA binding and dimerization domains of tfap2a, causing a loss of function. Consistent with this, injection of antisense morpholino oligonucleotides directed against splice sites in tfap2a into wild-type embryos produces a phenotype identical to low. Analysis of early ectodermal markers revealed that neural crest specification and migration are disrupted in low mutant embryos. TUNEL labeling of dying cells in mutants revealed a transient period of apoptosis in crest cells prior to and during their migration. In the cranial neural crest, gene expression in the mandibular arch is unaffected in low mutants, in contrast to the hyoid arch, which shows severe reductions in dlx2 and hoxa2 expression. Mosaic analysis, using cell transplantation,demonstrated that neural crest defects in low are cell autonomous and secondarily cause disruptions in surrounding mesoderm. These studies demonstrate that low is required for early steps in neural crest development and suggest that tfap2a is essential for the survival of a subset of neural crest derivatives.
Collapse
Affiliation(s)
- Robert D Knight
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Santagati F, Rijli FM. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 2003; 4:806-18. [PMID: 14523380 DOI: 10.1038/nrn1221] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fabio Santagati
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Lousis Pasteur, BP 10142-67404 Illkirch Cedex, CU de Strasbourg, France
| | | |
Collapse
|
263
|
Abzhanov A, Tzahor E, Lassar AB, Tabin CJ. Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 2003; 130:4567-79. [PMID: 12925584 DOI: 10.1242/dev.00673] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development neural crest cells give rise to a wide variety of specialized cell types in response to cytokines from surrounding tissues. Depending on the cranial-caudal level of their origin, different populations of neural crest cells exhibit differential competence to respond to these signals as exemplified by the unique ability of cranial neural crest to form skeletal cell types. We show that in addition to differences in whether they respond to particular signals, cranial neural crest cells differ dramatically from the trunk neural crest cells in how they respond to specific extracellular signals, such that under identical conditions the same signal induces dissimilar cell fate decisions in the two populations in vitro. Conversely, the same differentiated cell types are induced by different signals in the two populations. These in vitro differences in neural crest response are consistent with in vivo manipulations. We also provide evidence that these differences in responsiveness are modulated, at least in part, by differential expression of Hox genes within the neural crest.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
264
|
Gavalas A, Ruhrberg C, Livet J, Henderson CE, Krumlauf R. Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 2003; 130:5663-79. [PMID: 14522873 DOI: 10.1242/dev.00802] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.
Collapse
Affiliation(s)
- Anthony Gavalas
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | |
Collapse
|
265
|
Nardelli J, Catala M, Charnay P. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers. J Neurosci Res 2003; 73:737-52. [PMID: 12949900 DOI: 10.1002/jnr.10716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube.
Collapse
|
266
|
Bobola N, Carapuço M, Ohnemus S, Kanzler B, Leibbrandt A, Neubüser A, Drouin J, Mallo M. Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1. Development 2003; 130:3403-14. [PMID: 12810588 DOI: 10.1242/dev.00554] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance because, in Hoxa2(-/-);Ptx1(-/-) embryos, the Hoxa2(-/-) phenotype is partially reversed. Hoxa2 interferes with the Ptx1 activating process, which is dependent on Fgf signals from the epithelium. Consistently, Lhx6, another target of Fgf8 signaling, is also upregulated in the Hoxa2(-/-) second arch mesenchyme. Our findings have important implications for the understanding of developmental processes in the branchial area and suggest a novel mechanism for mesenchymal patterning by Hox genes that acts to define the competence of mesenchymal cells to respond to skeletogenic signals.
Collapse
Affiliation(s)
- Nicoletta Bobola
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
267
|
Hunt R, Hunt PN. The role of cell mixing in branchial arch development. Mech Dev 2003; 120:769-90. [PMID: 12915228 DOI: 10.1016/s0925-4773(03)00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Compartmental structures are the basis of a number of developing systems, including parts of the vertebrate head. One of the characteristics of a series of compartments is that mixing between cells in adjacent units is restricted. This is a consequence of differential chemoaffinity between neighbouring cells in adjacent compartments. We set out to determine whether mesenchymal cells in the branchial arches and their precursors show cell-mixing properties consistent with a compartmental organisation. In chimaeric avian embryos we found no evidence of preferential association or segregation of neural crest cells when surrounded by cells derived from a different axial level. In reassociation assays using mesenchymal cells isolated from chick branchial arches at stage 18, cells reformed into clusters without exhibiting a preferential affinity for cells derived from the same branchial arch. We find no evidence for differential chemoaffinity in vivo or in vitro between mesenchymal cells in different branchial arches. Our findings suggest that branchial arch mesenchyme is not organised into a series of compartments.
Collapse
Affiliation(s)
- Romita Hunt
- School of Biological and Biomedical Sciences, University of Durham, South Road, DH1 3LE Durham, UK
| | | |
Collapse
|
268
|
Thyagarajan T, Totey S, Danton MJS, Kulkarni AB. Genetically altered mouse models: the good, the bad, and the ugly. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:154-74. [PMID: 12799320 DOI: 10.1177/154411130301400302] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted gene disruption in mice is a powerful tool for generating murine models for human development and disease. While the human genome program has helped to generate numerous candidate genes, few genes have been characterized for their precise in vivo functions. Gene targeting has had an enormous impact on our ability to delineate the functional roles of these genes. Many gene knockout mouse models faithfully mimic the phenotypes of the human diseases. Because some models display an unexpected or no phenotype, controversy has arisen about the value of gene-targeting strategies. We argue in favor of gene-targeting strategies, provided they are used with caution, particularly in interpreting phenotypes in craniofacial and oral biology, where many genes have pleiotropic roles. The potential pitfalls are outweighed by the unique opportunities for developing and testing different therapeutic strategies before they are introduced into the clinic. In the future, we believe that genetically engineered animal models will be indispensable for gaining important insights into the molecular mechanisms underlying development, as well as disease pathogenesis, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Tamizchelvi Thyagarajan
- Functional Genomics Unit and Gene Targeting Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 527, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
269
|
Abstract
The oro-pharyngeal apparatus has its origin in a series of bulges that is found on the lateral surface of the embryonic head, the pharyngeal arches. The development of the pharyngeal arches is complex involving a number of disparate embryonic cell types: ectoderm, endoderm, neural crest and mesoderm, whose development must be co-ordinated to generate the functional adult apparatus. In the past, most studies have emphasised the role played by the neural crest, which generates the skeletal elements of the arches, in directing pharyngeal arch development, but it has also become apparent that the other tissues of the arches, most notably the endoderm, also plays a prominent role in directing arch development. Thus pharyngeal arch development is more complex, and more consensual, than was previously believed.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, Kings College London, London, United Kingdom.
| |
Collapse
|
270
|
Mechta-Grigoriou F, Giudicelli F, Pujades C, Charnay P, Yaniv M. c-jun regulation and function in the developing hindbrain. Dev Biol 2003; 258:419-31. [PMID: 12798298 DOI: 10.1016/s0012-1606(03)00135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hindbrain development is a well-characterised segmentation process in vertebrates. The bZip transcription factor MafB/kreisler is specifically expressed in rhombomeres (r) 5 and 6 of the developing vertebrate hindbrain and is required for proper caudal hindbrain segmentation. Here, we provide evidence that the mouse protooncogene c-jun, which encodes a member of the bZip family, is coexpressed with MafB in prospective r5 and r6. Analysis of mouse mutants suggests that c-jun expression in these territories is dependent on MafB but independent of the zinc-finger transcription factor Krox20, another essential determinant of r5 development. Loss- and gain-of-function studies, performed in mouse and chick embryos, respectively, demonstrate that c-Jun participates, together with MafB and Krox20, in the transcriptional activation of the Hoxb3 gene in r5. The action of c-Jun is likely to be direct, since c-Jun homodimers and c-Jun/MafB heterodimers can bind to essential regulatory elements within the transcriptional enhancer responsible for Hoxb3 expression in r5. These data indicate that c-Jun acts both as a downstream effector and a cofactor of MafB and belongs to the complex network of factors governing hindbrain patterning.
Collapse
Affiliation(s)
- Fatima Mechta-Grigoriou
- Unité Expression génétique et maladies, CNRS URA 1644, Institut Pasteur 25, rue du Docteur Roux, 75724 15, Paris Cedex, France.
| | | | | | | | | |
Collapse
|
271
|
Ivins S, Pemberton K, Guidez F, Howell L, Krumlauf R, Zelent A. Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene 2003; 22:3685-97. [PMID: 12802276 DOI: 10.1038/sj.onc.1206328] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The PLZF gene is translocated in a subset of all-trans-retinoic acid resistant acute promyelocytic leukaemia (APL) cases, encodes a DNA binding transcription factor and is expressed highly in haematopoietic progenitor cells as well-developing central nervous system (CNS). The spatially restricted and temporally dynamic pattern of PLZF expression in the developing CNS suggested that it might play a role in the circuitry regulating hindbrain segmentation. We have now identified a PLZF binding site (PLZF-RE) in an enhancer region of Hoxb2 that itself is required for directing high-level expression in rhombomers 3 and 5 of the developing hindbrain. The wild-type r3/r5 enhancer linked to a heterologous promoter was responsive to regulation by PLZF, and this activity was lost in variants containing a mutated PLZF-RE. Compared with the wild-type protein, the binding of the APL-associated reciprocal RARalpha-PLZF fusion to PLZF-RE was much stronger, suggesting that the N-terminal PLZF sequences missing from the fusion may play a role in the regulation of DNA binding. Consistent with this, the N-terminal POZ domain was required for cooperative binding of PLZF to a multimerized PLZF-RE. In the context of the r3/r5 enhancer, the PLZF-RE cooperated for PLZF binding with an additional A/T-rich motif positioned downstream of the PLZF-RE. This A/T motif was previously shown to be essential for the regulation of Hoxb2 expression in r3 and r5 in cooperation with another Krüppel-like zinc finger protein Krox 20. The presence of both the PLZF-RE and the A/T-rich motif was required for a maximal effect of PLZF on a heterologous promoter and was essential in vivo to direct the expression of a lacZ reporter in the chick neural tube. Hence, both PLZF and Krox20 cooperate with a common A/T motif in mediating in vivo activity of the Hoxb2 enhancer. Our findings indicate that Hoxb2 is a direct target for regulation by PLZF in the developing CNS and suggest that deregulation of Hox gene expression may contribute to APL pathogenesis.
Collapse
Affiliation(s)
- Sarah Ivins
- Leukaemia Research Fund Centre at the Institute of Cancer Research, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
272
|
Richman JM, Lee SH. About face: signals and genes controlling jaw patterning and identity in vertebrates. Bioessays 2003; 25:554-68. [PMID: 12766945 DOI: 10.1002/bies.10288] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The embryonic vertebrate face is composed of similarly sized buds of neural crest-derived mesenchyme encased in epithelium. These buds or facial prominences grow and fuse together to give the postnatal morphology characteristic of each species. Here we review the role of neural crest cells and foregut endoderm in differentiating facial features. We relate the developing facial prominences to the skeletal structure of the face and review the signals and genes that have been shown to play an important role in facial morphogenesis. We also examine two experiments one at the genetic level and one at the signal level in which transformation of facial prominences and subsequent change of jaw identity was induced. We propose that signals such as retinoids and BMPs and downstream transcription factors such as Distal-less related genes specify jaw identity.
Collapse
Affiliation(s)
- Joy M Richman
- Department of Oral Health Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3 Canada.
| | | |
Collapse
|
273
|
Ware CB, Nelson AM, Liggitt D. Late gestation modulation of fetal glucocorticoid effects requires the receptor for leukemia inhibitory factor: an observational study. Reprod Biol Endocrinol 2003; 1:43. [PMID: 12823859 PMCID: PMC165445 DOI: 10.1186/1477-7827-1-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Accepted: 05/16/2003] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Ablation of the low-affinity receptor subunit for leukemia inhibitory factor (LIFR) causes multi-systemic defects in the late gestation fetus. Because corticosterone is known to have a broad range of effects and LIF function has been associated with the hypothalamo-pituitary-adrenal axis, this study was designed to determine the role for LIFR in the fetus when exposed to the elevated maternal glucocorticoid levels of late gestation. Uncovering a requirement for LIFR in appropriate glucocorticoid response will further understanding of control of glucocorticoid function. METHODS Maternal adrenalectomy or RU486 administration were used to determine the impact of the maternal glucocorticoid surge on fetal development in the absence of LIFR. The mice were analyzed by a variety of histological techniques including immunolabeling and staining techniques (hematoxylin and eosin, Alizarin red S and alcian blue). Plasma corticosterone was assayed using radioimmunoassay. RESULTS Maternal adrenalectomy does not improve the prognosis for LIFR null pups and exacerbates the effects of LIFR loss. RU486 noticeably improves many of the tissues affected by LIFR loss: bone density, skeletal muscle integrity and glial cell formation. LIFR null pups exposed during late gestation to RU486 in utero survive natural delivery, unlike LIFR null pups from untreated litters. But RU486 treated LIFR null pups succumb within the first day after birth, presumably due to neural deficit resulting in an inability to suckle. CONCLUSION LIFR plays an integral role in modulating the fetal response to elevated maternal glucocorticoids during late gestation. This role is likely to be mediated through the glucocorticoid receptor and has implications for adult homeostasis as a direct tie between immune, neural and hormone function.
Collapse
MESH Headings
- Abnormalities, Multiple/embryology
- Abnormalities, Multiple/genetics
- Adrenalectomy
- Adrenocorticotropic Hormone/analysis
- Animals
- Bone Diseases, Metabolic/embryology
- Bone Diseases, Metabolic/genetics
- Bone Diseases, Metabolic/prevention & control
- Corticosterone/blood
- Female
- Fetal Diseases/embryology
- Fetal Diseases/genetics
- Fetal Diseases/prevention & control
- Fetus/physiology
- Genes, Lethal
- Gestational Age
- Homeostasis
- Hormone Antagonists/pharmacology
- Hypothalamo-Hypophyseal System/physiology
- Interleukin-6
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mifepristone/pharmacology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/pathology
- Neuroglia/drug effects
- Neuroimmunomodulation/physiology
- Pituitary-Adrenal System/physiology
- Pregnancy
- Proteins/physiology
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Cytokine/physiology
- Receptors, Glucocorticoid/physiology
- Receptors, OSM-LIF
- Specific Pathogen-Free Organisms
- Spinal Cord/embryology
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Carol B Ware
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| | - Angelique M Nelson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195-7190
| |
Collapse
|
274
|
Abstract
To artists, the face is a mirror of the soul. To biologists, the face reflects remarkable structural diversity--think of bulldogs and wolfhounds or galapagos finches. How do such variations in skeletal form arise? Do the same mechanisms control skeletogenesis elsewhere in the body? The answers lie in the molecular machinery that generates neural crest cells, controls their migration, and guides their differentiation to cartilage and bone.
Collapse
Affiliation(s)
- J A Helms
- University of California at San Francisco, Room U-453, 533 Parnassus Avenue, San Francisco, California 94143-0514, USA.
| | | |
Collapse
|
275
|
Zhang Z, Zhang X, Avniel WA, Song Y, Jones SM, Jones TA, Fermin C, Chen Y. Malleal processus brevis is dispensable for normal hearing in mice. Dev Dyn 2003; 227:69-77. [PMID: 12701100 DOI: 10.1002/dvdy.10288] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mammalian middle ear cavity contains a chain of three ossicles (the malleus, incus, and stapes), which develop from the mesenchyme of the first two branchial arches. Mice deficient in the Msx1 homeobox gene exhibit craniofacial abnormalities, including the absence of the malleal processus brevis that is normally attached to the upper part of the tympanic membrane. Here, we show that the expression of Msx1 and Msx2 overlaps in the malleal primordium during early embryonic development. A functional redundancy of Msx1 and Msx2 in the development of the middle ear is suggested by the stronger hypomorphism in the malleus of Msx1(-/-)/Msx2(-/-) embryos, including the absence of the malleal manubrium and the malleal processus brevis. The expression of Bmp4, a known downstream target of Msx1 in several developing craniofacial organs, was down-regulated in the malleal primordium, particularly in the region of the developing malleal manubrium, of Msx1 and Msx1(-/-)/Msx2(-/-) embryos. Msx genes, thus, appear to act in a cell autonomous manner, possibly by regulating Bmp4 expression, in the formation of the malleus. Transgenic rescue of the cleft palate of Msx1(-/-) mice overcame the neonatal lethality and allowed Msx1(-/-) mice to grow into adulthood but retain the phenotype of the absence of the malleal processus brevis. The availability of this animal model for the first time allowed us to measure auditory evoked potentials to assess the functional significance of the malleal processus brevis. The results demonstrated unimpaired auditory function in Msx1(-/-) mice. In addition, mutant mice appeared normal in balance behavior and in the vestibular evoked potential screening test. These results indicate that the malleal processus brevis is not necessary for sound transmission and seems dispensable for normal hearing and balance in mammals.
Collapse
Affiliation(s)
- Zunyi Zhang
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | | | |
Collapse
|
276
|
Kuratani S. Evolutionary developmental biology and vertebrate head segmentation: A perspective from developmental constraint. Theory Biosci 2003. [DOI: 10.1007/s12064-003-0055-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
277
|
Hu D, Marcucio RS, Helms JA. A zone of frontonasal ectoderm regulates patterning and growth in the face. Development 2003; 130:1749-58. [PMID: 12642481 DOI: 10.1242/dev.00397] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental set of patterning genes may define the global organization of the craniofacial region. One of our goals has been to identify these basic patterning genes and understand how they regulate outgrowth of the frontonasal process, which gives rise to the mid and upper face. We identified a molecular boundary in the frontonasal process ectoderm, defined by the juxtaposed domains of Fibroblast growth factor 8 and Sonic hedgehog, which presaged the initial site of frontonasal process outgrowth. Fate maps confirmed that this boundary region later demarcated the dorsoventral axis of the upper beak. Ectopic transplantation of the ectodermal boundary region activated a cascade of molecular events that reprogrammed the developmental fate of neural crest-derived mesenchyme, which resulted in duplications of upper and lower beak structures. We discuss these data in the context of boundary/morphogen models of patterning, and in view of the recent controversy regarding neural crest pre-patterning versus neural crest plasticity.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, 533 Parnassus Avenue, Suite U-453, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
278
|
Huysseune A, Van der Heyden C, Verreijdt L, Wautier K, Van Damme N. Fish dentitions as paradigms for odontogenic questions. Connect Tissue Res 2003; 43:98-102. [PMID: 12489143 DOI: 10.1080/03008200290000808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bony fish, and in particular teleosts, represent a morphologically extremely diverse group of vertebrates, well suited to study certain problems in odontogenesis. In this article we address some questions that can benefit much from the use of fish dentitions as paradigms, such as endodermal participation in tooth formation and epithelial primacy in initiation events. Next, we highlight some results recently obtained in our laboratory with respect to two models, the zebrafish (Cyprinidae), and selected species of cichlids (Cichlidae). Finally, we pinpoint some questions that lend themselves admirably to be examined using fish models, such as the factors that control renewed initiation of teeth, and the relationship (or absence thereof) between Hox genes and tooth formation.
Collapse
Affiliation(s)
- A Huysseune
- Biology Department, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
279
|
Abstract
Gene-inactivation techniques in the mouse have become an essential tool for modern biomedical research. Both ubiquitous and tissue-specific inactivation are possible with current approaches, and recent developments facilitate a temporal control of the inactivation process. However, one of the limitations of current procedures is that inactivation is irreversible. We have produced complete and reversible inactivation of the Hoxa2 gene in the mouse using the control elements of the tetracycline-resistance operon. We show that a Hoxa2 allele containing tetracycline operator (tetO) sequences is susceptible to controlled regulation by tTS, a chimeric molecule containing the tetracycline repressor and a transcriptional repressing domain. This inhibition was specific to the tetO-modified allele, did not affect neighboring genes, and was reversible by administration of doxycycline to the pregnant female. This procedure allows the production of gene inactivation that is complete, is reversible, and can be controlled at the spatial and temporal levels.
Collapse
Affiliation(s)
- Moisés Mallo
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany.
| | | | | |
Collapse
|
280
|
Ghislain J, Desmarquet-Trin-Dinh C, Gilardi-Hebenstreit P, Charnay P, Frain M. Neural crest patterning: autoregulatory and crest-specific elements co-operate for Krox20 transcriptional control. Development 2003; 130:941-53. [PMID: 12538520 DOI: 10.1242/dev.00318] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural crest patterning constitutes an important element in the control of the morphogenesis of craniofacial structures. Krox20, a transcription factor gene that plays a critical role in the development of the segmented hindbrain, is expressed in rhombomeres (r) 3 and 5 and in a stream of neural crest cells migrating from r5 toward the third branchial arch. We have investigated the basis of the specific neural crest expression of Krox20 and identified a cis-acting enhancer element (NCE) located 26 kb upstream of the gene that is conserved between mouse, man and chick and can recapitulate the Krox20 neural crest pattern in transgenic mice. Functional dissection of the enhancer revealed the presence of two conserved Krox20 binding sites mediating direct Krox20 autoregulation in the neural crest. In addition, the enhancer included another essential element containing conserved binding sites for high mobility group (HMG) box proteins and which responded to factors expressed throughout the neural crest. Consistent with this the NCE was strongly activated in vitro by Sox10, a crest-specific HMG box protein, in synergism with Krox20, and the inactivation of Sox10 prevented the maintenance of Krox20 expression in the migrating neural crest. These results suggest that the dependency of the enhancer on both crest- (Sox10) and r5- (Krox20) specific factors limits its activity to the r5-derived neural crest. This organisation also suggests a mechanism for the transfer and maintenance of rhombomere-specific gene expression from the hindbrain neuroepithelium to the emerging neural crest and may be of more general significance for neural crest patterning.
Collapse
Affiliation(s)
- Julien Ghislain
- Unité 368 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
281
|
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
282
|
Abstract
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration.
Collapse
Affiliation(s)
- Nina Trokovic
- Institute of Biotechnology, Viikki Biocenter, 00014-University of Helsinki, Finland
| | | | | | | |
Collapse
|
283
|
Beverdam A, Merlo GR, Paleari L, Mantero S, Genova F, Barbieri O, Janvier P, Levi G. Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: mirror of the past? Genesis 2002; 34:221-7. [PMID: 12434331 DOI: 10.1002/gene.10156] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In modern vertebrates upper and lower jaws are morphologically different. Both develop from the mandibular arch, which is colonized mostly by Hox-free neural crest cells. Here we show that simultaneous inactivation of the murine homeobox genes Dlx5 and Dlx6 results in the transformation of the lower jaw into an upper jaw and in symmetry of the snout. This is the first homeotic-like transformation found in this Hox-free region after gene inactivation. A suggestive parallel comes from the paleontological record, which shows that in primitive vertebrates both jaws are essentially mirror images of each other. Our finding supports the notion that Dlx genes are homeotic genes associated with morphological novelty in the vertebrate lineage.
Collapse
Affiliation(s)
- Annemiek Beverdam
- Laboratory of Molecular Morphogenesis, National Institute for Cancer Research, Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Ren SY, Angrand PO, Rijli FM. Targeted insertion results in a rhombomere 2-specific Hoxa2 knockdown and ectopic activation of Hoxa1 expression. Dev Dyn 2002; 225:305-15. [PMID: 12412013 DOI: 10.1002/dvdy.10171] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies indicated that retention of selectable marker cassettes in targeted Hox loci may cause unexpected phenotypes in mutant mice, due to neighborhood effects. However, the molecular mechanisms have been poorly investigated. Here, we analysed the effects of the targeted insertion of a PGK-neo cassette in the 3' untranslated region of Hoxa2. Even at this 3' position, the insertion resulted in homozygous mutants that unexpectedly did not survive beyond 3 weeks of age. Molecular analysis of the targeted allele revealed a selective "knockdown" of Hoxa2 expression in rhombomere 2 and associated patterning abnormalities. Moreover, Hoxa1 was ectopically expressed in the hindbrain and branchial arches of mutant embryos. Of interest, we demonstrated that the ectopic expression was due to the generation of neo-Hoxa1 fusion transcripts, resulting from aberrant alternative splicing. These defects could be rescued after removal of the PGK-neo cassette by Flp-mediated recombination. These results underscore the complexity of transcriptional regulation at Hox loci and provide insights into the in vivo regulation of Hoxa2 segmental expression. They also provide a molecular basis for the interpretation of unexpected Hox knockout phenotypes in which the targeted selectable marker is retained in the locus.
Collapse
Affiliation(s)
- Shu-Yue Ren
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, Illkirch Cedex, CU de Strasbourg, France
| | | | | |
Collapse
|
285
|
Kuratani S, Kuraku S, Murakami Y. Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis 2002; 34:175-83. [PMID: 12395382 DOI: 10.1002/gene.10142] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lamprey, the living jawless vertebrate, has been regarded as one of the most primitive groups of vertebrates. The evolutionary phylogenetic position of the lamprey promises to provide hints about the origin of the vertebrate genome as well as the origin of the body plan, a part of which may be written in the genome. Since the lamprey split from the gnathostome lineage early in the history of vertebrates, the shared developmental mechanisms in lampreys and gnathostomes can be regarded as possessed by the hypothetical common ancestor of these animals, whereas the gnathostome-specific developmental mechanisms that are absent from lampreys indicate that they are relatively new, added to the developmental program only after the split of gnathostomes. Thus, the sequential establishment of the gnathostome body plan is inherently related to the history of genomic duplication events. In this review, recent molecular developmental and evolutionary molecular research on the living lampreys are summarized and discussed, taking vertebrate comparative morphology and embryology into consideration.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Evolutionary Morphology Research Team, Center for Developmental Biology, Riken, Kobe, Japan.
| | | | | |
Collapse
|
286
|
James CT, Ohazama A, Tucker AS, Sharpe PT. Tooth development is independent of a Hox patterning programme. Dev Dyn 2002; 225:332-5. [PMID: 12412017 DOI: 10.1002/dvdy.10168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hox genes have a critical role in controlling the patterning processes of many tissues by imparting positional information in embryogenesis. Patterning of the pharyngeal component of the skull (the visceroskeleton) has been proposed to be influenced by this "Hox code." Recently, it has been shown that Hox genes are associated with the evolution of jaws, loss of Hox gene expression in the first branchial arch being necessary for the transition from the agnathan condition to the gnathostome condition. Teeth develop on the first branchial arch in mammals and, therefore, might be expected to be under the control of Hox genes in a manner similar to that of the cranial skeletal elements. However, we show that, unlike cartilage and bone, the development of teeth is not affected by alterations in Hoxa2 expression. Tooth development in the first arch was unaffected by overexpression of Hoxa2, whereas recombinations of second arch mesenchyme with first arch epithelium led to tooth development within a Hoxa2-positive environment. These data demonstrate that teeth develop from local interactions and that tooth formation is not under the axial patterning program specified by the Hox genes. We propose that the evolutionary development of teeth in the first branchial arch is independent of the loss of Hox expression necessary for the development of the jaw.
Collapse
Affiliation(s)
- Chela T James
- Department of Craniofacial Development, GKT Dental Institute, Kings College London, Guy's Hospital, London Bridge, London, United Kingdom
| | | | | | | |
Collapse
|
287
|
Scemama JL, Hunter M, McCallum J, Prince V, Stellwag E. Evolutionary divergence of vertebrate Hoxb2 expression patterns and transcriptional regulatory loci. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:285-99. [PMID: 12362434 DOI: 10.1002/jez.90009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hox gene expression is regulated by a complex array of cis-acting elements that control spatial and temporal gene expression in developing embryos. Here, we report the isolation of the striped bass Hoxb2a gene, comparison of its expression to the orthologous gene from zebrafish, and comparative genomic analysis of the upstream regulatory region to that of other vertebrates. Comparison of the Hoxb2a gene expression patterns from striped bass to zebrafish revealed similar expression patterns within rhombomeres 3, 4, and 5 of the hindbrain but a notable absence of expression in neural crest tissues of striped bass while neural crest expression is observed in zebrafish and common to other vertebrates. Comparative genomic analysis of the striped bass Hoxb2a-b3a intergenic region to those from zebrafish, pufferfish, human, and mouse demonstrated the presence of common Meis, Hox/Pbx, Krox-20, and Box 1 elements, which are necessary for rhombomere 3, 4, and 5 expression. Despite their common occurrence, the location and orientation of these transcription elements differed among the five species analyzed, such that Krox-20 and Box 1 elements are located 3' to the Meis, Hox/Pbx elements in striped bass, pufferfish, and human while they are located 5' of this r4 enhancer in zebrafish and mouse. Our results suggest that the plasticity exhibited in the organization of key regulatory elements responsible for rhombomere-specific Hoxb2a expression may reflect the effects of stabilizing selection in the evolution cis-acting elements.
Collapse
Affiliation(s)
- Jean-Luc Scemama
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | | | | | |
Collapse
|
288
|
Abstract
The success of vertebrates was due in part to the acquisition and modification of jaws. Jaws are principally derived from the branchial arches, embryonic structures that exhibit proximodistal polarity. To investigate the mechanisms that specify the identity of skeletal elements within the arches, we examined mice lacking expression of Dlx5 and Dlx6, linked homeobox genes expressed distally but not proximally within the arches. Dlx5/6-/- mutants exhibit a homeotic transformation of lower jaws to upper jaws. We suggest that nested Dlx expression in the arches patterns their proximodistal axes. Evolutionary acquisition and subsequent refinement of jaws may have been dependent on modification of Dlx expression.
Collapse
Affiliation(s)
- Michael J Depew
- Nina Ireland Laboratory of Developmental Neurobiology, 401 Parnassus Avenue, University of California, San Francisco, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
289
|
Abstract
Genetically engineered strains of mice, modified by gene targeting (knockouts), are increasingly being employed as alternative effective research tools in elucidating the genetic basis of human deafness. An impressive array of auditory and vestibular mouse knockouts is already available as a valuable resource for studying the ontogenesis, morphogenesis and function of the mammalian inner ear. This article provides a current catalog of mouse knockouts with inner ear morphogenetic malformations and hearing or balance deficits resulting from ablation of genes that are regionally expressed in the inner ear and/or within surrounding tissues, such as the hindbrain, neural crest and mesenchyme.
Collapse
|
290
|
Creuzet S, Couly G, Vincent C, Le Douarin NM. Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 2002; 129:4301-13. [PMID: 12183382 DOI: 10.1242/dev.129.18.4301] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diencephalic, mesencephalic and metencephalic neural crest cells are skeletogenic and derive from neural folds that do not express Hox genes. In order to examine the influence of Hox gene expression on skull morphogenesis, expression of Hoxa2, Hoxa3 and Hoxb4 in conjunction with that of the green fluorescent protein has been selectively targeted to the Hox-negative neural folds of the avian embryo prior to the onset of crest cell emigration. Hoxa2 expression precludes the development of the entire facial skeleton. Transgenic Hoxa2 embryos such as those from which the Hox-negative domain of the cephalic neural crest has been removed have no upper or lower jaws and no frontonasal structures. Embryos subjected to the forced expression of Hoxa3 and Hoxb4 show severe defects in the facial skeleton but not a complete absence of facial cartilage. Hoxa3 prevents the formation of the skeleton derived from the first branchial arch, but allows the development (albeit reduced) of the nasal septum. Hoxb4, by contrast, hampers the formation of the nasal bud-derived skeleton, while allowing that of a proximal (but not distal) segment of the lower jaw. The combined effect of Hoxa3 and Hoxb4 prevents the formation of facial skeletal structures, comparable with Hoxa2. None of these genes impairs the formation of neural derivatives of the crest. These results suggest that over the course of evolution, the absence of Hox gene expression in the anterior part of the chordate embryo was crucial in the vertebrate phylum for the development of a face, jaws and brain case, and, hence, also for that of the forebrain.
Collapse
Affiliation(s)
- Sophie Creuzet
- Institut d'Embryologie cellulaire et moléculaire du CNRS et du Collège de France, 49bis, av. de la Belle Gabrielle - 94736 Nogent-sur-Marne cedex, France
| | | | | | | |
Collapse
|
291
|
Abstract
The cranial neural crest originates at the dorsal margin of the neural tube and produces migratory cells that populate various locations in the head. They are a crucial factor in the development of the vertebrate head because they give rise to numerous differentiated cell types, including the cartilage, bone and connective tissues of the skull. Thus, the coordinated regulation of crest cell movement and patterning is pivotal to the acquisition of organized head structure. Two recent papers cast light on the molecular mechanisms and tissue interactions employed by an embryo to achieve this goal. Here, we discuss the implications of these findings in view of pre-existing principles of neural crest patterning. Crucially, these new data implicate, for the first time, that head skeletal patterning is controlled by tissue other than the neural crest.
Collapse
|
292
|
Hunter MP, Prince VE. Zebrafish hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. Dev Biol 2002; 247:367-89. [PMID: 12086473 DOI: 10.1006/dbio.2002.0701] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pharyngeal arches are one of the defining features of the vertebrates, with the first arch forming the mandibles of the jaw and the second forming jaw support structures. The cartilaginous elements of each arch are formed from separate migratory neural crest cell streams, which derive from the dorsal aspect of the neural tube. The second and more posterior crest streams are characterized by specific Hox gene expression. The zebrafish has a larger overall number of Hox genes than the tetrapod vertebrates, as the result of a duplication event in its lineage. However, in both zebrafish and mouse, there are just two members of Hox paralogue group 2 (PG2): Hoxa2 and Hoxb2. Here, we show that morpholino-mediated "knock-down" of both zebrafish Hox PG2 genes results in major defects in second pharyngeal arch cartilages, involving replacement of ventral elements with a mirror-image duplication of first arch structures, and accompanying changes to pharyngeal musculature. In the mouse, null mutants of Hoxa2 have revealed that this single Hox gene is required for normal second arch patterning. By contrast, loss-of-function of either zebrafish Hox PG2 gene individually has no phenotypic consequence, showing that these two genes function redundantly to confer proper pattern to the second pharyngeal arch. We have also used hoxb1a mis-expression to induce localized ectopic expression of zebrafish Hox PG2 genes in the first arch; using this strategy, we find that ectopic expression of either Hox PG2 gene can confer second arch identity onto first arch structures, suggesting that the zebrafish Hox PG2 genes act as "selector genes."
Collapse
Affiliation(s)
- Michael P Hunter
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1027 E. 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
293
|
Tümpel S, Maconochie M, Wiedemann LM, Krumlauf R. Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 2002; 246:45-56. [PMID: 12027433 DOI: 10.1006/dbio.2002.0665] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of hindbrain rhombomeres and neural crest-derived structures. Transgenic regulatory studies have also begun to characterize enhancers and cis-elements for those mouse and chicken genes that direct restricted patterns of expression in the hindbrain and neural crest. In light of the conserved role of Hoxa2 in neural crest patterning in vertebrates and the similarities between paralogs, it is important to understand the extent to which common regulatory networks and elements have been preserved between species and between paralogs. To investigate this problem, we have cloned and sequenced the intergenic region between Hoxa2 and Hoxa3 in the chick HoxA complex and used it for making comparative analyses with the respective human, mouse, and horn shark regions. We have also used transgenic assays in mouse and chick embryos to test the functional activity of Hoxa2 enhancers in heterologous species. Our analysis reveals that three of the critical individual components of the Hoxa2 enhancer region from mouse necessary for hindbrain expression (Krox20, BoxA, and TCT motifs) have been partially conserved. However, their number and organization are highly varied for the same gene in different species and between paralogs within a species. Other essential mouse elements appear to have diverged or are absent in chick and shark. We find the mouse r3/r5 enhancer fails to work in chick embryos and the chick enhancer works poorly in mice. This implies that new motifs have been recruited or utilized to mediate restricted activity of the enhancer in other species. With respect to neural crest regulation, cis-components are embedded among the hindbrain control elements and are highly diverged between species. Hence, there has been no widespread conservation of sequence identity over the entire enhancer domain from shark to humans, despite the common function of these genes in head patterning. This provides insight into how apparently equivalent regulatory regions from the same gene in different species have evolved different components to potentiate their activity in combination with a selection of core components.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute, 1000 East 50th, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
294
|
Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 2002; 16:1423-32. [PMID: 12050119 PMCID: PMC186320 DOI: 10.1101/gad.993302] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian Hox complex is divided into four linkage groups containing 13 sets of paralogous genes. These paralogous genes have retained functional redundancy during evolution. For this reason, loss of only one or two Hox genes within a paralogous group often results in incompletely penetrant phenotypes which are difficult to interpret by molecular analysis. For example, mice individually mutant for Hoxa11 or Hoxd11 show no discernible kidney abnormalities. Hoxa11/Hoxd11 double mutants, however, demonstrate hypoplasia of the kidneys. As described in this study, removal of the last Hox11 paralogous member, Hoxc11, results in the complete loss of metanephric kidney induction. In these triple mutants, the metanephric blastema condenses, and expression of early patterning genes, Pax2 and Wt1, is unperturbed. Eya1 expression is also intact. Six2 expression, however, is absent, as is expression of the inducing growth factor, Gdnf. In the absence of Gdnf, ureteric bud formation is not initiated. Molecular analysis of this phenotype demonstrates that Hox11 control of early metanephric induction is accomplished by the interaction of Hox11 genes with the pax-eya-six regulatory cascade, a pathway that may be used by Hox genes more generally for the induction of multiple structures along the anteroposterior axis.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City 84112-5331, USA
| | | | | |
Collapse
|
295
|
Abstract
The hindbrain is responsible for controlling essential functions such as respiration and heart beat that we literally do not think about most of the time. In addition, cranial nerves projecting from the hindbrain control muscles in the jaw, eye, and face, and receive sensory input from these same areas. In all vertebrates that have been studied, the hindbrain passes through a segmented phase shortly after the neural tube has formed, with a series of seven bulges--the rhombomeres--forming along the anterior-posterior extent of the neural tube. Our current understanding of vertebrate hindbrain development comes from integrating data from several model systems. Work on the chick has helped us to understand the cell biology of the rhombomeres, whereas the power of mouse molecular genetics has allowed investigation of the molecular mechanisms underlying their development. This review focuses on the special insights that the zebrafish system has provided to our understanding of hindbrain development. As we will discuss, work in the zebrafish has elucidated inductive events that specify the presumptive hindbrain domain and has identified genes required for hindbrain segmentation and the specification of segment identities.
Collapse
Affiliation(s)
- Cecilia B Moens
- HHMI, Division of Basic Science, Fred Hutchinson Cancer Research Center B2-152, 1100 Fairview Avenue North, Seattle, WEA 98109, USA.
| | | |
Collapse
|
296
|
|
297
|
Mina M, Wang YH, Ivanisevic AM, Upholt WB, Rodgers B. Region- and stage-specific effects of FGFs and BMPs in chick mandibular morphogenesis. Dev Dyn 2002; 223:333-52. [PMID: 11891984 DOI: 10.1002/dvdy.10056] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mandibular processes are specified as at least two independent functional regions: two large lateral regions where morphogenesis is dependent on fibroblast growth factor (FGF)-8 signaling, and a small medial region where morphogenesis is independent of FGF-8 signaling. To gain insight into signaling pathways that may be involved in morphogenesis of the medial region, we have examined the roles of pathways regulated by FGFs and bone morphogenetic proteins (BMPs) in morphogenesis of the medial and lateral regions of the developing chick mandible. Our results show that, unlike in the lateral region, the proliferation and growth of the mesenchyme in the medial region is dependent on signals derived from the overlying epithelium. We also show that medial and lateral mandibular mesenchyme respond differently to exogenous FGFs and BMPs. FGF-2 and FGF-4 can mimic many of the effects of mandibular epithelium from the medial region, including supporting the expression of Msx genes, outgrowth of the mandibular processes and elongation of Meckel's cartilage. On the other hand, laterally placed FGF beads did not induce ectopic expression of Msx genes and did not affect the growth of the mandibular processes. These functional studies, together with our tissue distribution studies, suggest that FGF-mediated signaling (other than FGF-8), through interactions with FGF receptor-2 and downstream target genes including Msx genes, is part of the signaling pathway that mediates the growth-promoting interactions in the medial region of the developing mandible. Our observations also suggest that BMPs play multiple stage- and region-specific roles in mandibular morphogenesis. In this study, we show that exogenous BMP-7 applied to the lateral region at early stages of development (stage 20) caused apoptosis, ectopic expression of Msx genes, and inhibited outgrowth of the mandibular processes and the formation of Meckel's cartilage. Our additional experiments suggest that the differences between the effects of BMP-7 on lateral mandibular mesenchyme at stage 20 and previously reported results at stage 23 (Wang et al., [1999] Dev. Dyn. 216:320-335) are related to differences in stages of differentiation in that BMP-7 promotes apoptosis in undifferentiated lateral mandibular mesenchyme, whereas it promotes chondrogenesis at later stages of development. We also showed that, unlike mandibular epithelium and medially placed FGF beads, medially placed BMP-7 did not support outgrowth of the isolated mesenchyme and at stage 20 induced the formation of a duplicated rod of cartilage extending from the body of Meckel's cartilage. These observations suggest that BMPs do not play essential roles in growth-promoting interactions in the medial region of the developing mandible. However, BMP-mediated signaling is a part of the signaling pathways regulating chondrogenesis of the mandibular mesenchyme.
Collapse
Affiliation(s)
- Mina Mina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | |
Collapse
|
298
|
Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM. Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 2002; 129:1061-73. [PMID: 11861488 DOI: 10.1242/dev.129.4.1061] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate face contains bones that differentiate from mesenchymal cells of neural crest origin, which colonize the median nasofrontal bud and the first branchial arches. The patterning of individual facial bones and their relative positions occurs through mechanisms that remained elusive. During the early stages of head morphogenesis, an endodermal cul-de-sac, destined to become Sessel’s pouch, underlies the nasofrontal bud. Reiterative outpocketings of the foregut then form the branchial pouches. We have tested the capacity of endoderm of the avian neurula to specify the facial skeleton by performing ablations or grafts of defined endodermal regions. Neural crest cells that do not express Hox genes respond to patterning cues produced regionally in the anterior endoderm to yield distinct skeletal components of the upper face and jaws. However, Hox-expressing neural crest cells do not respond to these cues. Bone orientation is likewise dependent on the position of the endoderm relative to the embryonic axes. Our findings thus indicate that the endoderm instructs neural crest cells as to the size, shape and position of all the facial skeletal elements, whether they are cartilage or membrane bones.
Collapse
Affiliation(s)
- Gérard Couly
- Institut d'Embryologie cellulaire et moléculaire du CNRS et du Collège de France, 49bis, avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne cedex, France
| | | | | | | | | |
Collapse
|
299
|
Trainor PA, Ariza-McNaughton L, Krumlauf R. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 2002; 295:1288-91. [PMID: 11847340 DOI: 10.1126/science.1064540] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cranial neural crest cells generate the distinctive bone and connective tissues in the vertebrate head. Classical models of craniofacial development argue that the neural crest is prepatterned or preprogrammed to make specific head structures before its migration from the neural tube. In contrast, recent studies in several vertebrates have provided evidence for plasticity in patterning neural crest populations. Using tissue transposition and molecular analyses in avian embryos, we reconcile these findings by demonstrating that classical manipulation experiments, which form the basis of the prepatterning model, involved transplantation of a local signaling center, the isthmic organizer. FGF8 signaling from the isthmus alters Hoxa2 expression and consequently branchial arch patterning, demonstrating that neural crest cells are patterned by environmental signals.
Collapse
Affiliation(s)
- Paul A Trainor
- The Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
300
|
Pasqualetti M, Ren SY, Poulet M, LeMeur M, Dierich A, Rijli FM. AHoxa2 knockin allele that expresses EGFP upon conditional Cre-mediated recombination. Genesis 2002. [DOI: 10.1002/gene.10053] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|