251
|
Rousset S, Nocentini S, Rouillard D, Baroche C, Moustacchi E. Mitochondrial Alterations in Fanconi Anemia Fibroblasts Following Ultraviolet A or Psoralen Photoactivation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750159maifaf2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
252
|
|
253
|
Kraffe E, Marty Y, Guderley H. Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. ACTA ACUST UNITED AC 2007; 210:149-65. [PMID: 17170158 DOI: 10.1242/jeb.02628] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in the properties of mitochondria from oxidative muscle of rainbow trout Oncorhynchus mykiss were examined during warm (5 degrees C to 15 degrees C) acclimation. Trout were studied shortly after the initial thermal change and after 8 weeks acclimation to 15 degrees C. To identify potential mechanisms by which oxidative capacities change, the modifications of phospholipid composition, membrane proteins and functional capacities of red muscle mitochondria were examined. Marked functional changes of isolated muscle mitochondria during warm acclimation of rainbow trout were reflected by a host of modifications in phospholipid composition, but by few shifts in protein components. Shortly after transfer of trout from 5 degrees C to 15 degrees C, the maximal oxidative capacity of mitochondria measured at 15 degrees C increased slightly, but rates at both assay temperatures (5 degrees C and 15 degrees C) decreased markedly after warm acclimation. The increase in capacity in short-term warm exposed trout was most pronounced when rates at 15 degrees C were expressed relative to cytochrome a and c(1) levels. Non-phosphorylating (State 4) rates of oxygen uptake increased with short-term warm exposure before returning to initial levels after warm acclimation. Cytochrome c oxidase (CCO) activity in the mitochondrial preparations decreased with warm acclimation. The thermal sensitivity of the ADP affinity was markedly modified during short-term warm exposure, when the ADP/O ratio increased, but warm acclimation returned these values to those observed initially. ADP affinity increased after warm acclimation. Changes in the mitochondrial content of cytochromes and adenine nucleotide translocase (ANT) could not explain these patterns. On the other hand, changes in the proportions of the lipid classes and in the acyl chain composition of certain phospholipid classes mirror the modifications in functional properties. Short-term exposure to 15 degrees C decreased the ratio of diacylphosphatidylethanolamine/diacylphosphatidylcholine (diacylPE/diacylPC), whereas warm acclimation led to restructuring of fatty acids (FA) and to increases of plasmalogen forms of PE and PC. Modification of overall membrane unsaturation did not appear to be the primary aim of restructuring membrane FA during warm acclimation, as total mitochondrial phospholipids and the major phospholipid classes only showed slight shifts of their acyl composition with warm acclimation. On the other hand, natural lysophosphatidylcholine (LysoPC) showed dramatic changes in FA content, as 16:0 and 18:1n-9 doubled whereas 22:6n-3 decreased from around 50% to 32% in warm acclimated trout. Similarly, in cardiolipin (CL), the levels of 16:0 and 18:1n-7 halved while 18:2n-6 increased to over 20% of the FA with warm acclimation. Given the central role of CL in modulating the activity of CCO, F(0)F(1)-ATPase and ANT, these changes suggest that specific compositional changes in CL are important modulators of mitochondrial capacities. The many structural changes in membrane lipids contrast with the limited modifications of the membrane protein components examined and support the concept of lipid structure modulating mitochondrial capacities.
Collapse
Affiliation(s)
- Edouard Kraffe
- Unité mixte CNRS 6521, Université de Bretagne Occidentale, C.S. 93837, 29238 Brest cedex 3, France.
| | | | | |
Collapse
|
254
|
Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 2007; 145:1233-48. [PMID: 17303344 DOI: 10.1016/j.neuroscience.2006.10.056] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/24/2006] [Accepted: 10/27/2006] [Indexed: 11/16/2022]
Abstract
In recent years, it has become increasingly clear that mitochondrial dysfunction and oxidative damage are major contributors to neuronal loss. Free radicals, typically generated from mitochondrial respiration, cause oxidative damage of nucleic acids, lipids, carbohydrates and proteins. Despite enormous amount of effort, however, the mechanism by which oxidative damage causes neuronal death is not well understood. Emerging data from a number of neurodegenerative diseases suggest that there may be common features of toxicity that are related to oxidative damage. In this review, while focusing on Huntington's disease (HD), we discuss similarities among HD, Friedreich ataxia and xeroderma pigmentosum, which provide insight into shared mechanisms of neuronal death.
Collapse
Affiliation(s)
- E Trushina
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
255
|
Lewis RNAH, Zweytick D, Pabst G, Lohner K, McElhaney RN. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Biophys J 2007; 92:3166-77. [PMID: 17293402 PMCID: PMC1852355 DOI: 10.1529/biophysj.106.094003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermotropic phase behavior and organization of aqueous dispersions of the quadruple-chained, anionic phospholipid tetramyristoyl diphosphatidylglycerol or tetramyristoyl cardiolipin (TMCL) was studied by differential scanning calorimetry, x-ray diffraction, (31)P NMR, and Fourier-transform infrared (FTIR) spectroscopy. At physiological pH and ionic strength, our calorimetric studies indicate that fully equilibrated aqueous dispersions of TMCL exhibit two thermotropic phase transitions upon heating. The lower temperature transition is much less cooperative but of relatively high enthalpy and exhibits marked cooling hysteresis, whereas the higher temperature transition is much more cooperative and also exhibits a relatively high enthalpy but with no appreciable cooling hysteresis. Also, the properties of these two-phase transitions are sensitive to the ionic strength of the dispersing buffer. Our spectroscopic and x-ray diffraction data indicate that the lower temperature transition corresponds to a lamellar subgel (L(c)') to gel (L(beta)) phase transition and the higher temperature endotherm to a L(beta) to lamellar liquid-crystalline (L(alpha)) phase transition. At the L(c)'/L(beta) phase transition, there is a fivefold increase of the thickness of the interlamellar aqueous space from approximately 11 A to approximately 50 A, and this value decreases slightly at the L(beta)/L(alpha) phase transition. The bilayer thickness (i.e., the mean phosphate-phosphate distance across the bilayer) increases from 42.8 A to 43.5 A at the L(c)'/L(beta) phase transition, consistent with the loss of the hydrocarbon chain tilt of approximately 12 degrees , and decreases to 37.8 A at the L(beta)/L(alpha) phase transition. The calculated cross-sectional areas of the TMCL molecules are approximately 79 A(2) and approximately 83 A(2) in the L(c)' and L(beta) phases, respectively, and we estimate a value of approximately 100 A(2) in the L(alpha) phase. The combination of x-ray and FTIR spectroscopic data indicate that in the L(c)' phase, TMCL molecules possess tilted all-trans hydrocarbon chains packed into an orthorhombic subcell in which the zig-zag planes of the chains are parallel, while in the L(beta) phase the untilted, all-trans hydrocarbon chains possess rotational mobility and are packed into a hexagonal subcell, as are the conformationally disordered hydrocarbon chains in the L(alpha) phase. Our FTIR spectroscopic results demonstrate that the four carbonyl groups of the TMCL molecule become progressively more hydrated as one proceeds from the L(c)' to the L(beta) and then to the L(alpha) phase, while the two phosphate moieties of the polar headgroup are comparably well hydrated in all three phases. Our (31)P-NMR results indicate that although the polar headgroup retains some mobility in the L(c)' phase, its motion is much more restricted in the L(beta) and especially in the L(alpha) phase than that of other phospholipids. We can explain most of our experimental results on the basis of the relatively small size of the polar headgroup of TMCL relative to other phospholipids and the covalent attachment of the two phosphate moieties to a single glycerol moiety, which results in a partially immobilized polar headgroup that is more exposed to the solvent than in other glycerophospholipids. Finally, we discuss the biological relevance of the unique properties of TMCL to the structure and function of cardiolipin-containing biological membranes.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
256
|
Van Q, Liu J, Lu B, Feingold K, Shi Y, Lee R, Hatch G. Phospholipid scramblase-3 regulates cardiolipin de novo biosynthesis and its resynthesis in growing HeLa cells. Biochem J 2007; 401:103-9. [PMID: 16939411 PMCID: PMC1698660 DOI: 10.1042/bj20060373] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PLS3 (phospholipid scramblase-3) is a new member of the family of phospholipid scramblases and transports CL (cardiolipin) from the inner to the outer mitochondrial membrane. In the present paper we examined whether changing the levels of functional PLS3 in HeLa cells altered de novo CL biosynthesis and its resynthesis. HeLa cells overexpressing PLS3 or expressing a disrupted PLS3 (F258V) or control were incubated with [1,3-3H]glycerol and radioactivity incorporated into CL was determined. CL biosynthesis from [1,3-3H]glycerol was increased 1.8-fold in PLS3 cells and 2.1-fold in F258V cells compared with control. This was due to a 64% (P<0.05) and 2.6-fold (P<0.05) elevation in CL synthase activity in PLS3 and F258V cells respectively, compared with control, and not due to changes in phosphatidylglycerolphosphate synthase activity. The increase in CL synthase activity in these cells was due to an increase in its mRNA expression. In contrast, resynthesis of CL from [1-14C]linoleic acid was reduced 52% (P<0.05) in PLS3 and 45% (P<0.05) in F258V cells compared with control and this was due to a reduction in mitochondrial monolysocardiolipin acyltransferase activity. Although protein levels of mitochondrial monolysocardiolipin acyltransferase were unaltered, activity and mRNA expression of endoplasmic reticulum monolysocardiolipin acyltransferase was upregulated in PLS3 and F258V cells compared with controls. These data indicate that the CL resynthesis in HeLa cells is sensitive to the mitochondrial localization of CL and not the level of the reacylating enzymes. Alterations in functional PLS3 levels in PLS3 or F258V cells did not affect the mitochondrial decarboxylation of phosphatidylserine to phosphatidylethanolamine indicating that the biosynthetic changes to CL were specific for this mitochondrial phospholipid. We hypothesize that the cardiolipin resynthesis machinery in the cell 'senses' altered levels of CL on mitochondrial membranes and that de novo CL biosynthesis is up-regulated in HeLa cells as a compensatory mechanism in response to altered movement of mitochondrial CL. The results identify PLS3 as a novel regulator of CL de novo biosynthesis and its resynthesis.
Collapse
Affiliation(s)
- Quyen Van
- *Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0T6
| | - Jihua Liu
- †University of Utah, Salt Lake City, Utah 84112, U.S.A
| | - Biao Lu
- ‡Department of Medicine, University of California, San Francisco, CA 94121, U.S.A
| | - Kenneth R. Feingold
- ‡Department of Medicine, University of California, San Francisco, CA 94121, U.S.A
| | - Yuguang Shi
- §Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, U.S.A
| | - Ray M. Lee
- ∥Virginia Commonwealth University, Richmond, VA 23298, U.S.A
| | - Grant M. Hatch
- *Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0T6
- ¶Departments of Biochemistry and Medical Genetics, Internal Medicine and Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Manitoba, Canada, R3E 0T6
- To whom correspondence should be addressed (email )
| |
Collapse
|
257
|
Alessandrini A, Valdrè G, Valdrè U, Muscatello U. Defects in ordered aggregates of cardiolipin visualized by atomic force microscopy. Chem Phys Lipids 2007; 146:111-24. [PMID: 17274972 DOI: 10.1016/j.chemphyslip.2007.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 01/01/2007] [Accepted: 01/09/2007] [Indexed: 11/23/2022]
Abstract
The formation and the nature of defects in ordered aggregates of cardiolipin (tetra acyl diphosphatidylglycerol) supported on solid substrates have been investigated by atomic force microscopy (AFM). The experiments were performed on two model systems, i.e. three-dimensional liquid crystals dispersed in water and partially de-hydrated on a hydrophilic surface, and two-dimensional films of molecules self-assembled onto an isotropic hydrophobic surface. Defects were induced both by varying the preparation temperature and by treatment with specific chemicals known to modify the order parameters in natural and artificial membranes, specifically: 2,4-dinitro-phenol (DNP) and pentachloro-phenol (PCP). The effect of lipid oxidation on the nanocrystalline order was also investigated. The images obtained by AFM allow to characterize the type of defects and their local density at nanoscale level. They also provide additional information to differentiate the specific role of acyl chains and polar heads in the process of lipid self-organization.
Collapse
Affiliation(s)
- Andrea Alessandrini
- CNR-INFM-S3 NanoStructures and BioSystems at Surfaces, Via Campi 213/A, I-41100, Modena, Italy.
| | | | | | | |
Collapse
|
258
|
Garrett TA, Kordestani R, Raetz CR. Quantification of Cardiolipin by Liquid Chromatography‐Electrospray Ionization Mass Spectrometry. Methods Enzymol 2007; 433:213-30. [DOI: 10.1016/s0076-6879(07)33012-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
259
|
Riva A, Tandler B, Lesnefsky EJ, Conti G, Loffredo F, Vazquez E, Hoppel CL. Structure of cristae in cardiac mitochondria of aged rat. Mech Ageing Dev 2006; 127:917-21. [PMID: 17101170 PMCID: PMC1903371 DOI: 10.1016/j.mad.2006.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 08/15/2006] [Accepted: 09/07/2006] [Indexed: 11/18/2022]
Abstract
Interfibrillar mitochondria (IFM) of the heart in aged Fischer 344 rats show a biochemical defect which might be reflected in their morphology. We examined by high resolution scanning electron microscopy over 5500 mitochondria to determine if a concomitant structural alteration existed. This methodology provides a means of examining mitochondrial cristae in three dimensions. Cristae of in situ subsarcolemmal mitochondria (SSM) and of IFM in both 6- and 24-month-old Fischer rats are predominantly lamelliform. When isolated, these organelles, whether of SSM or IFM origin, display enhanced heterogeneity, but they have similar crista morphology irrespective of the age of the rat. Crista configuration does not play a major role in age-related cardiac mitochondrial defects.
Collapse
Affiliation(s)
- Alessandro Riva
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Bernard Tandler
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, and Medical Service
| | - Edward J. Lesnefsky
- Departments of Medicine (Divisions of Cardiology and Clinical Pharmacology), Case Western Reserve University, and Medical Service
- Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Gabriele Conti
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Felice Loffredo
- Department of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Edwin Vazquez
- School of Medicine, Case Western Reserve University, and Medical Service
| | - Charles L. Hoppel
- Department of Pharmacology, Case Western Reserve University, and Medical Service
- School of Medicine, Case Western Reserve University, and Medical Service
- Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
260
|
Martin G, Cagnon N, Sabido O, Sion B, Grizard G, Durand P, Levy R. Kinetics of occurrence of some features of apoptosis during the cryopreservation process of bovine spermatozoa. Hum Reprod 2006; 22:380-8. [PMID: 17092986 DOI: 10.1093/humrep/del399] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cryopreservation/thawing of bovine spermatozoa induces a reduction in cell viability and is possibly associated with a form of programmed cell death that we previously named 'apoptosis-like phenomenon'. METHODS In this study, we specified, by flow cytometry, the moment of appearance of some characteristics of apoptosis during the cryopreservation process. We also studied the presence and/or activation in bovine sperm cells of specific proteins involved in somatic cell apoptosis by western blot and fluorimetry. RESULTS A decrease of the mitochondrial membrane potential (DeltaPsim) was detectable 5 min after sperm dilution in the cryopreservation medium, caspase activation after 3 h of equilibration and an increase in plasma membrane permeability after the complete process of cryopreservation/thawing. The presence of the pro-apoptotic factor Bax, a protein that facilitates the formation of mitochondrial pores, was observed in bovine spermatozoa, but the anti-apoptotic factor Bcl-2 was not detectable. Moreover, it was observed that bovine spermatozoa contain cytochrome c and apoptosis-inducing factor (AIF), two proteins usually released from the mitochondria during the apoptotic process. Activated caspase-9, involved in the mitochondrial pathway, was detected in bovine spermatozoa but not caspase-3 and -8. CONCLUSIONS The early features of apoptosis appear as ordered events during the cryopreservation/thawing process of bovine sperm cells. Bovine spermatozoa contain the machinery necessary to proceed to apoptosis involving especially the mitochondrial pathway.
Collapse
Affiliation(s)
- G Martin
- Laboratoire de Biologie de la Reproduction-GIMAP, Hôpital Nord, Saint-Etienne, France
| | | | | | | | | | | | | |
Collapse
|
261
|
Lesnefsky EJ, Hoppel CL. Oxidative phosphorylation and aging. Ageing Res Rev 2006; 5:402-33. [PMID: 16831573 DOI: 10.1016/j.arr.2006.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 10/24/2022]
Abstract
This review addresses the data that support the presence and contribution of decreased mitochondrial oxidative phosphorylation during aging to impaired cellular metabolism. Aging impairs substrate oxidation, decreases cellular energy production and increases the production of reactive intermediates that are toxic to the cell. First, the basic principles of mitochondrial oxidative physiology are briefly reviewed. Second, the focus on the relationship of altered mitochondrial respiration to the increased production of reactive oxygen species that are employed by the "rate of living" and the "uncoupling to survive" theories of aging are discussed. Third, the impairment of function of respiration in aging is reviewed using an organ-based approach in mammalian systems. Fourth, the current state of knowledge regarding aging-induced alterations in the composition and function of key mitochondrial constituents is addressed. Model organisms, including C. elegans and D. melanogaster are included where pertinent. Fifth, these defects are related to knowledge regarding the production of reactive oxygen species from specific sites of the electron transport chain.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
262
|
De Marchi U, Basso E, Szabò I, Zoratti M. Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore. Mol Membr Biol 2006; 23:521-30. [PMID: 17127624 DOI: 10.1080/09687860600907644] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria isolated from engineered mice lacking Cyclophilin D (CypD), a component of the Permeability Transition Pore (PTP) complex, can still undergo a Ca2+ -dependent but Cyclosporin A-insensitive permeabilization of the inner membrane. Higher Ca2+ concentrations are required than for wild-type controls. The characteristics of the pore formed in this system were not known, and it has been proposed that they might differ substantially from those of the normal PTP. To test this hypothesis, we have characterized the PTP of isogenic wild-type and CypD- mouse liver mitochondria in patch clamp experiments, which allow biophysical characterization. The pores observed in the two cases, very similar to those of rat liver mitochondria, are indistinguishable according to a number of criteria. The only clear difference is in their sensitivity to Cyclosporin A. CypD is thus shown to be an auxiliary, modulatory component of the "standard" PTP, which forms and has essentially the same properties even in its absence. The observations suggest that Ca2+, CypD, and presumably other inducers and inhibitors act at the level of an activation or assembly process. Activation is separate and upstream of the gating observable on a short or medium-term time scale. Once the pore is activated, its molecular dynamics and biophysical properties may thus be predicted not to depend on the details of the induction process.
Collapse
Affiliation(s)
- Umberto De Marchi
- Department of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
263
|
Novák F, Tvrzická E, Hamplová B, Kolár F, Nováková O. Postnatal development of phospholipids and their fatty acid profile in rat heart. Mol Cell Biochem 2006; 293:23-33. [PMID: 17066318 DOI: 10.1007/s11010-006-2215-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/17/2005] [Indexed: 10/24/2022]
Abstract
The aim of this study was to determine the concentration of phospholipids (PL), plasmalogen components of choline (PC) and ethanolamine (PE) phosphoglycerides (PLPC, PLPE) and fatty acid profile of PL and triacylglycerols (TAG) in developing rat left ventricular myocardium between postnatal day (d) 2 and 100. The steepest increase of total PL (TPL) concentration occurs between d2 and d5, followed by a further slower increase between d20 and d40. Similar developmental changes were observed in PC and PE. The PLPE concentration rises by d10, whereas PLPC does not change during the whole period investigated, except for the transient decline on d5. The concentration of diphosphatidylglycerol (DPG) increases by d60; the steepest rise occurs between d20 and d40. Phosphatidylinositol (PI) concentration rises only by d5. The concentration of phosphatidylserine (PS) decreases between d5 and d10 and then it does not change. Sphingomyelin (SM) concentration is maintained till d10, it declines on d20 and does not change thereafter. The proportion of saturated fatty acids (SFA) increases by d5 in PC, PE, PS and TAG, and by d10 in DPG and PI. After d20 the SFA proportion gradually decline in all lipids. Monounsaturated FA (MUFA) proportion decreases in PC, PE, PI and PS from d2 till d10, and in the weaning period it tends to rise again. In contrast, in DPG and TAG the proportion of MUFA declines during the whole postnatal period. N-6 polyunsaturated FA (PUFA) decrease in all PL by d20 and rise again thereafter; in TAG they decline between d2 and d10 and return to the initial level by d100. N-3 PUFA increase in all PL during the suckling period and decline after weaning; in TAG they increase only by d5 and then they decline. This remodeling of myocardial PL and TAG composition during postnatal development may affect membrane properties and contribute to developmental changes in the function of membrane proteins and cell signaling.
Collapse
Affiliation(s)
- Frantisek Novák
- Department of Biochemistry, Faculty of Science UK, Charles University, Hlavova 8, 128-43 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
264
|
|
265
|
Sasaki Y, Iwamoto S, Mukai M, Kikuchi JI. Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2006.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
266
|
Rostovtseva TK, Kazemi N, Weinrich M, Bezrukov SM. Voltage gating of VDAC is regulated by nonlamellar lipids of mitochondrial membranes. J Biol Chem 2006; 281:37496-506. [PMID: 16990283 DOI: 10.1074/jbc.m602548200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Evidence is accumulating that lipids play important roles in permeabilization of the mitochondria outer membrane (MOM) at the early stage of apoptosis. Lamellar phosphatidylcholine (PC) and nonlamellar phosphatidylethanolamine (PE) lipids are the major membrane components of the MOM. Cardiolipin (CL), the characteristic lipid from the mitochondrial inner membrane, is another nonlamellar lipid recently shown to play a role in MOM permeabilization. We investigate the effect of these three key lipids on the gating properties of the voltage-dependent anion channel (VDAC), the major channel in MOM. We find that PE induces voltage asymmetry in VDAC current-voltage characteristics by promoting channel closure at cis negative applied potentials. Significant asymmetry is also induced by CL. The observed differences in VDAC behavior in PC and PE membranes cannot be explained by differences in the insertion orientation of VDAC in these membranes. Rather, it is clear that the two nonlamellar lipids affect VDAC gating. Using gramicidin A channels as a tool to probe bilayer mechanics, we show that VDAC channels are much more sensitive to the presence of CL than could be expected from the experiments with gramicidin channels. We suggest that this is due to the preferential insertion of VDAC into CL-rich domains. We propose that the specific lipid composition of the mitochondria outer membrane and/or of contact sites might influence MOM permeability by regulating VDAC gating.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Laboratory of Physical and Structural Biology and National Center for Medical Rehabilitation Research, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
267
|
Chen Q, Camara AKS, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol 2006; 292:C137-47. [PMID: 16971498 DOI: 10.1152/ajpcell.00270.2006] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are increasingly recognized as lynchpins in the evolution of cardiac injury during ischemia and reperfusion. This review addresses the emerging concept that modulation of mitochondrial respiration during and immediately following an episode of ischemia can attenuate the extent of myocardial injury. The blockade of electron transport and the partial uncoupling of respiration are two mechanisms whereby manipulation of mitochondrial metabolism during ischemia decreases cardiac injury. Although protection by inhibition of electron transport or uncoupling of respiration initially appears to be counterintuitive, the continuation of mitochondrial oxidative phosphorylation in the pathological milieu of ischemia generates reactive oxygen species, mitochondrial calcium overload, and the release of cytochrome c. The initial target of these deleterious mitochondrial-driven processes is the mitochondria themselves. Consequences to the cardiomyocyte, in turn, include oxidative damage, the onset of mitochondrial permeability transition, and activation of apoptotic cascades, all favoring cardiomyocyte death. Ischemia-induced mitochondrial damage carried forward into reperfusion further amplifies these mechanisms of mitochondrial-driven myocyte injury. Interruption of mitochondrial respiration during early reperfusion by pharmacologic blockade of electron transport or even recurrent hypoxia or brief ischemia paradoxically decreases cardiac injury. It increasingly appears that the cardioprotective paradigms of ischemic preconditioning and postconditioning utilize modulation of mitochondrial oxidative metabolism as a key effector mechanism. The initially counterintuitive approach to inhibit mitochondrial respiration provides a new cardioprotective paradigm to decrease cellular injury during both ischemia and reperfusion.
Collapse
Affiliation(s)
- Qun Chen
- Cardiology Section, Medical Service 111(W), Louis Stokes VA Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
268
|
Jones MR. Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 2006; 46:56-87. [PMID: 16963124 DOI: 10.1016/j.plipres.2006.06.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 12/19/2022]
Abstract
Photosynthetic proteins power the biosphere. Reaction centres, light harvesting antenna proteins and cytochrome b(6)f (or bc(1)) complexes are expressed at high levels, have been subjected to an intensive spectroscopic, biochemical and mutagenic analysis, and several have been characterised to an informatively high resolution by X-ray crystallography. In addition to revealing the structural basis for the transduction of light energy, X-ray crystallography has brought molecular insights into the relationships between these multicomponent membrane proteins and their lipid environment. Lipids resolved in the X-ray crystal structures of photosynthetic proteins bind light harvesting cofactors, fill intra-protein cavities through which quinones can diffuse, form an important part of the monomer-monomer interface in multimeric structures and may facilitate structural flexibility in complexes that undergo partial disassembly and repair. It has been proposed that individual lipids influence the biophysical properties of reaction centre cofactors, and so affect the rate of electron transfer through the complex. Lipids have also been shown to be important for successful crystallisation of photosynthetic proteins. Comparison of the three types of reaction centre that have been structurally characterised reveals interesting similarities in the position of bound lipids that may point towards a generic requirement to reinforce the structure of the core electron transfer domain. The crystallographic data are also providing new opportunities to find molecular explanations for observed effects of different types of lipid on the structure, mechanism and organisation of reaction centres and other photosynthetic proteins.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
269
|
Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 2006; 292:C33-44. [PMID: 16899548 DOI: 10.1152/ajpcell.00243.2006] [Citation(s) in RCA: 453] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiolipin (CL) is a structurally unique dimeric phospholipid localized in the inner mitochondrial membrane where it is required for optimal mitochondrial function. In addition to its role in maintaining membrane potential and architecture, CL is known to provide essential structural and functional support to several proteins involved in mitochondrial bioenergetics. A loss of CL content, alterations in its acyl chain composition, and/or CL peroxidation have been associated with mitochondrial dysfunction in multiple tissues in a variety of pathological conditions, including ischemia, hypothyroidism, aging, and heart failure. Recently, aberrations in CL metabolism have been implicated as a primary causative factor in the cardioskeletal myopathy known as Barth syndrome, underscoring an important role of CL in human health and disease. The purpose of this review is to provide an overview of evidence that has linked changes in the CL profile to mitochondrial dysfunction in various pathological conditions. In addition, a brief overview of CL function and biosynthesis, and a discussion of methods used to examine CL in biological tissues are provided.
Collapse
Affiliation(s)
- Adam J Chicco
- Department of Integrative Physiology, University of Colorado at Boulder, Campus Box 354, Boulder, CO 80309-0354, USA
| | | |
Collapse
|
270
|
Bacman SR, Bradley WG, Moraes CT. Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol Neurobiol 2006; 33:113-31. [PMID: 16603792 DOI: 10.1385/mn:33:2:113] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 11/30/1999] [Accepted: 07/19/2005] [Indexed: 12/11/2022]
Abstract
Despite numerous reports demonstrating mitochondrial abnormalities associated with amyotrophic lateral sclerosis (ALS), the role of mitochondrial dysfunction in the disease onset and progression remains unknown. The intrinsic mitochondrial apoptotic program is activated in the central nervous system of mouse models of ALS harboring mutant superoxide dismutase 1 protein. This is associated with the release of cytochrome-c from the mitochondrial intermembrane space and mitochondrial swelling. However, it is unclear if the observed mitochondrial changes are caused by the decreasing cellular viability or if these changes precede and actually trigger apoptosis. This article discusses the current evidence for mitochondrial involvement in familial and sporadic ALS and concludes that mitochondria is likely to be both a trigger and a target in ALS and that their demise is a critical step in the motor neuron death.
Collapse
Affiliation(s)
- Sandra R Bacman
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
271
|
Adibhatla RM, Hatcher JF, Dempsey RJ. Lipids and lipidomics in brain injury and diseases. AAPS JOURNAL 2006; 8:E314-21. [PMID: 16796382 PMCID: PMC3231558 DOI: 10.1007/bf02854902] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipidomics is systems-level analysis and characterization of lipids and their interacting moieties. The amount of information in the genomic and proteomic fields is greater than that in the lipidomics field, because of the complex nature of lipids and the limitations of tools for analysis. The main innovation during recent years that has spurred advances in lipid analysis has been the development of new mass spectroscopic techniques, particularly the "soft ionization" techniques electrospray ionization and matrix-assisted laser desorption/ionization. Lipid metabolism may be of particular importance for the central nervous system, as it has a high concentration of lipids. The crucial role of lipids in cell signaling and tissue physiology is demonstrated by the many neurological disorders, including bipolar disorders and schizophrenia, and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Niemann-Pick diseases, that involve deregulated lipid metabolism. Altered lipid metabolism is also believed to contribute to cerebral ischemic (stroke) injury. Lipidomics will provide a molecular signature to a certain pathway or a disease condition. Lipidomic analyses (characterizing complex mixtures of lipids and identifying previously unknown changes in lipid metabolism) together with RNA silencing, using small interfering RNA (siRNA), may provide powerful tools to elucidate the specific roles of lipid intermediates in cell signaling and open new opportunities for drug development.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, H4-330, Clinical Science Center, 600 Highland Avenue, University of Wisconsin-Madison, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
272
|
Lizasoain I, Cárdenas A, Hurtado O, Romera C, Mallolas J, Lorenzo P, Castillo J, Moro MA. Targets of cytoprotection in acute ischemic stroke: present and future. Cerebrovasc Dis 2006; 21 Suppl 2:1-8. [PMID: 16651809 DOI: 10.1159/000091698] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the management of stroke has improved remarkably over the last decade due mainly to the advent of thrombolysis, most neuroprotective agents, although successful in animal studies, have failed in humans. Our increasing knowledge concerning the ischemic cascade is leading to a considerable development of pharmacological tools suggesting that each step of this cascade might be a target for cytoprotection. Glutamate has long been recognized to play key roles in the pathophysiology of ischemia. However, although some trials are still ongoing, the results from several completed trials with drugs interfering with the glutamatergic pathway have been disappointing. Regarding the inhibition of glutamate release as a possible target for cytoprotection, it might be afforded either by decreasing glutamate efflux or by increasing glutamate uptake. In this context, it has been shown that glutamate transport is the primary and only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels. This transport is executed by the five high-affinity, sodium-dependent plasma membrane glutamate transporters. Among them, the transporter EAAT2 is responsible for up to 90% of all glutamate transport. We will discuss the effect of different neuroprotective tools (membrane stabilizers or endogenous neuroprotection) affecting glutamate efflux and/or expression of EAAT2. We will also describe the finding of a novel polymorphism in the EAAT2 promoter region which could be responsible for differences in both gene function and regulation under pathological conditions such as cerebral ischemia, and which might well account for the failure of glutamate antagonists in the clinical practice. These results may possess important therapeutic implications in the management of patients at risk of ischemic events, since it has been demonstrated that those patients with progressing stroke have higher plasma concentrations of glutamate which remain elevated up to 24 h when compared to the levels in patients without neurological deterioration.
Collapse
Affiliation(s)
- I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Mitochondrial metabolism in mammalian cold-acclimation: Magnitude and mechanisms of fatty-acid uncoupling. J Therm Biol 2006. [DOI: 10.1016/j.jtherbio.2006.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
274
|
Sedlák E, Panda M, Dale MP, Weintraub ST, Robinson NC. Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 2006; 45:746-54. [PMID: 16411750 PMCID: PMC2561917 DOI: 10.1021/bi050870z] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Subunits located near the cardiolipin binding sites of bovine heart cytochrome c oxidase (CcO) were identified by photolabeling with arylazido-cardiolipin analogues and detecting labeled subunits by reversed-phase HPLC and HPLC-electrospray ionization mass spectrometry. Two arylazido-containing cardiolipin analogues were synthesized: (1) 2-SAND-gly-CL with a nitrophenylazido group attached to the polar headgroup of cardiolipin (CL) via a linker containing a cleavable disulfide; (2) 2',2''-bis-(AzC12)-CL with two of the four fatty acid tails of cardiolipin replaced by 12-(N-4-azido-2-nitrophenyl) aminododecanoic acid. Both arylazido-CL derivatives were used to map the cardiolipin binding sites within two types of detergent-solubilized CcO: (1) intact 13-subunit CL-containing CcO (three to four molecules of endogenous CL remain bound per CcO monomer); (2) 11-subunit CL-free CcO (subunits VIa and VIb are missing because they dissociate during CL removal). Upon the basis of these photolabeling studies, we conclude that (1) subunits VIIa, VIIc, and possibly VIII are located near the two high-affinity cardiolipin binding sites, which are present in either form of CcO, and (2) subunit VIa is located adjacent to the lower affinity cardiolipin binding site, which is only present in the 13-subunit form of CcO. These data are consistent with the recent CcO crystal structure in which one cardiolipin is located near subunit VIIa and a second is located near subunit VIa (PDB ID code referenced in Tomitake, T. et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 15304-15309). However, we propose that a third cardiolipin is bound between subunits VIIa and VIIc near the entrance to the D-channel. Cardiolipin bound at this location could potentially function as a proton antenna to facilitate proton entry into the D-channel. If true, it would explain the CcO requirement of bound cardiolipin for full electron transport activity.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, The University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
275
|
Chen Q, Lesnefsky EJ. Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 2006; 40:976-82. [PMID: 16540393 DOI: 10.1016/j.freeradbiomed.2005.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 10/04/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Mitochondrial electron transport is a major source of reactive oxygen species (ROS) during cardiac ischemia and reperfusion. In the isolated rabbit heart, 30 and 45 min of ischemia decrease the contents of cardiolipin and cytochrome c in subsarcolemmal mitochondria (SSM) located beneath the plasma membrane. In contrast, interfibrillar mitochondria (IFM) in the interior of the myocyte do not sustain a decrease in cardiolipin. We proposed that the depletion of cardiolipin and the accompanying cytochrome c loss during ischemia were critical events that amplified ROS production by mitochondria. The total production of H2O2 was measured in submitochondrial particles (SMP) prepared from rabbit heart SSM and IFM after 0, 15, 30, and 45 min of ischemia. With NADH as substrate, total H2O2 production was increased only in SMP from SSM after 30 and 45 min ischemia, when ischemia decreased the content of cardiolipin and cytochrome c. In contrast, ischemia did not augment H2O2 generation in SMP from IFM with preserved cardiolipin and cytochrome c content. Thus, during the evolution of ischemic injury, H2O2 production from the electron transport chain increased after depletion of cardiolipin and the loss of cytochrome c.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine, Division of Cardiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
276
|
Terlecki G, Czapiñska E, Rogozik K, Lisowski M, Gutowicz J. Investigation of the interaction of pig muscle lactate dehydrogenase with acidic phospholipids at low pH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:133-44. [PMID: 16650378 DOI: 10.1016/j.bbamem.2006.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 02/10/2006] [Accepted: 02/13/2006] [Indexed: 11/22/2022]
Abstract
Interaction of pig muscle lactate dehydrogenase (LDH) with acidic phospholipids is strongly dependent on pH and is most efficient at pH values<6.5. The interaction is ionic strength sensitive and is not observed when bilayer structures are disrupted by detergents. Bilayers made of phosphatidylcholine (PC) do not bind the enzyme. The LDH interaction with mixed composition bilayers phosphatidylserine/phosphatidylcholine (PS/PC) and cardiolipin/phosphatidylcholine (CL/PC) leads to dramatic changes in the specific activity of the enzyme above a threshold of acidic phospholipid concentration likely when a necessary surface charge density is achieved. The threshold is dependent on the kind of phospholipid. Cardiolipin (CL) is much more effective compared to phosphatidylserine, which is explained as an effect of availability of both phosphate groups in a CL molecule for interaction with the enzyme. A requirement of more than one binding point on the enzyme molecule for the modification of the specific activity is postulated and discussed. Changes in CD spectra induced by the presence of CL and PS vesicles evidence modification of the conformational state of the protein molecules. In vivo qualitative as well as quantitative phospholipid composition of membrane binding sites for LDH molecules would be crucial for the yield of the binding and its consequences for the enzyme activity in the conditions of lowered pH.
Collapse
Affiliation(s)
- Grzegorz Terlecki
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
277
|
Abstract
The present state of the mitochondrial free radical theory of aging is reviewed. Available studies do not support the hypothesis that antioxidants control the rate of aging because: (a) they correlate inversely with maximum longevity in vertebrates, and (b) increasing their concentration by different methods does not increase maximum lifespan. On the other hand, comparative studies consistently show that long-lived mammals and birds have low rates of mitochondrial reactive oxygen species (ROS) production and low levels of oxidative damage in their mitochondrial DNA. Furthermore, caloric restriction, which extends longevity, also decreases mitochondrial ROS production at complex I and lowers mtDNA oxidative damage. Recent data show that these changes can also be obtained with protein restriction without strong caloric restriction. Another trait of long-lived mammals and birds is the possession of low degrees of unsaturation in their cellular membranes. This is mainly due to minimizing the presence of highly unsaturated fatty acids such as 22:6n-3 and emphasizing the presence of less unsaturated fatty acids such as 18:2n-6 in long-lived animals, without changing the total amount of polyunsaturated fatty acids. This leads to lower levels of lipid peroxidation and lipoxidation-derived protein modification in long-lived species. Taken together, available information is consistent with the predictions of the mitochondrial free radical theory of aging, although definitive proof and many mechanistic details are still lacking.
Collapse
Affiliation(s)
- Alberto Sanz
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
278
|
Abstract
Many advances have occurred in the field of Barth Syndrome biology in the 26 years since it was first described as an X-linked cardiomyopathy. Barth Syndrome is the first human disease recognized in which the primary causative factor is an alteration in cardiolipin remodeling. Cardiolipin is required for the optimal function of many proteins within the mitochondria, particularly in the respiratory chain and is involved in the mitochondrial-mediated apoptotic process. The appropriate content of cardiolipin appears to be critical for these functions. Cardiolipin is synthesized de novo in mitochondria and is rapidly remodeled to produce CL enriched in linoleic acid. The Barth Syndrome gene TAZ has been identified and expression of the gene yields proteins known as tafazzins. Mutations in TAZ result in a decrease in tetra-linoleoyl species of cardiolipin and an accumulation of monolysocardiolipin within cells from Barth Syndrome patients. Although the protein product of the TAZ gene shows sequence homology to the glycerolipid acyltransferase family of enzymes, its precise biochemical function remains to be elucidated. In this review we highlight some of the recent literature on cardiolipin metabolism and Barth Syndrome.
Collapse
Affiliation(s)
- Kristin D Hauff
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0T6
| | | |
Collapse
|
279
|
Su X, Dowhan W. Translational regulation of nuclear gene COX4 expression by mitochondrial content of phosphatidylglycerol and cardiolipin in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:743-53. [PMID: 16428432 PMCID: PMC1347020 DOI: 10.1128/mcb.26.3.743-753.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.
Collapse
Affiliation(s)
- Xuefeng Su
- Department of Biochemistry and Molecular Biology, 6431 Fannin St., Suite 6.200, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
280
|
Ritov VB, Menshikova EV, Kelley DE. Analysis of cardiolipin in human muscle biopsy. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 831:63-71. [PMID: 16337440 DOI: 10.1016/j.jchromb.2005.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/28/2022]
Abstract
Cardiolipin is a phospholipid that is specific to the inner mitochondrial membrane and essential for numerous mitochondrial functions. Accordingly, a quantitative assay for cardiolipin can be a valuable aspect of assessing mitochondrial content and functional capacity. The current study was undertaken to develop a simple and reliable method for direct analysis of the major molecular species of cardiolipin and with particular application for analysis of human skeletal muscle. The method that is presented is based on derivatization of cardiolipin in a total lipid extract with 1-pyrenyldiazomethane (PDAM), to form stable, fluorescent 1-pyrenylmethyl esters. The derivatization reaction takes 30 min on ice in a two-phase system (chloroform:methanol:H(2)O:H(2)SO(4)) containing 0.5-1.0mM PDAM and detergent. The contents of the major cardiolipin species in the derivatization mixture can be estimated by HPLC separation with fluorescent detection during a 20 min run on a reverse phase column and with HPLC grade ethanol/0.5mM H(3)PO(4) as the mobile phase. The recovery is about 80%. The method is specific and sensitive with quantitation limits of 0.5-1 pmol cardiolipin. The response of the fluorescence detector (peak area) is linear across a range 5-40 pmol. The assay is linear over the range between 0.3 and 3.0mg of tissue (R(2)=0.998). The assay provides good reproducibility and accuracy (within 5-10%).
Collapse
Affiliation(s)
- Vladimir B Ritov
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, University of Pittsburgh, 3459 Fifth Avenue, MUH N809 Pittsburgh, PA 15213-3236, USA.
| | | | | |
Collapse
|
281
|
Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G, Ruggiero FM. Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemiareperfusion: role of cardiolipin. FASEB J 2006; 20:269-76. [PMID: 16449799 DOI: 10.1096/fj.05-4692com] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive oxygen species (ROS) are considered an important factor in ischemia/reperfusion injury to cardiac myocytes. Mitochondrial respiration, mainly at the level of complex I and III, is an important source of ROS generation and hence a potential contributor of cardiac reperfusion injury. Appropriate antioxidant strategies could be particularly useful to limit this ROS generation and associated mitochondrial dysfunction. Melatonin has been shown to effectively protect against ischemic-reperfusion myocardial damage. The mechanism by which melatonin exerts this cardioprotective effect is not well established. In the present study we examined the effects of melatonin on various parameters of mitochondrial bioenergetics in a Langerdoff isolated perfused rat heart model. After isolation of mitochondria from control, ischemic-reperfused and melatonin-treated ischemic-reperfused rat heart, various bioenergetic parameters were evaluated such as rates of mitochondrial oxygen consumption, complex I and complex III activity, H2O2 production as well as the degree of lipid peroxidation, cardiolipin content, and cardiolipin oxidation. We found that reperfusion significantly altered all these mitochondrial parameters, while melatonin treatment had strong protective effect attenuating these alterations. This effect appears to be due, at least in part, to the preservation, by ROS attack, of the content and integrity of cardiolipin molecules which play a pivotal role in mitochondrial bioenergetics. Protection of mitochondrial dysfunction was associated with an improvement of post-ischemic hemodynamic function of the heart. Melatonin had also strong protective effect against oxidative alterations to complex I and III as well as to cardiolipin in isolated mitochondria.
Collapse
Affiliation(s)
- G Petrosillo
- Department of Biochemistry and Molecular Biology and CNR Institute of Biomembranes and Bioenergetics, University of Bari, Bari Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Savitha S, Panneerselvam C. Mitochondrial membrane damage during aging process in rat heart: potential efficacy of L-carnitine and DL alpha lipoic acid. Mech Ageing Dev 2006; 127:349-55. [PMID: 16430943 DOI: 10.1016/j.mad.2005.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 12/09/2005] [Indexed: 11/24/2022]
Abstract
Mitochondria are the main intracellular source of oxidizing free radicals and these oxidants produced exhibit selectivity in damaging mitochondrial macromolecules and membrane functions. In the present study we have investigated the effect of co-supplementation of carnitine (300 mg/kg bw) and lipoic acid (100 mg/kg bw) for 28 days in young, middle aged and aged rats and evaluated the effect of these compounds on age-related alterations in mitochondrial membrane functions. The levels of H2O2 were increased in both middle aged and aged rats with a concomitant decrease in the levels of cardiolipin and mitochondrial membrane potential. The levels of membrane bound ATPases were also decreased in aged rats along with alterations in mitochondrial morphology. Supplementation of carnitine and lipoic acid to middle aged and aged rats brought these changes to near normalcy. Thus, lipoic acid acts with carnitine to improve mitochondrial-supported bioenergetics and also improves general antioxidant status, thereby effectively attenuating any putative increase in oxidative stress with age.
Collapse
Affiliation(s)
- S Savitha
- Department of Medical Biochemistry, Dr. ALMPG, Institute of Basic Medical Science, University of Madras, Taramani, Chennai 600113, India
| | | |
Collapse
|
283
|
Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A. Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 2006; 84:202-8. [PMID: 16673405 DOI: 10.1002/jnr.20868] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFA) in membrane lipids are prone to attack by reactive oxygen species (ROS), and the resulting lipid peroxidation can cause injury and death of cells. Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme that can directly detoxify lipid hydroperoxides generated by ROS. Overexpression of Gpx4 has been shown to be protective against oxidative damage in several cell lines. We examined in this study the stress response of neurons with increased expression of Gpx4, because neurons are especially vulnerable to oxidative injury as a result of their high content of PUFA. Our results show that primary culture cortical neurons derived from Gpx4 transgenic mice, which had increased expression of Gpx4, had increased cell survival and reduced level of apoptosis after exposure to t-butyl hydroperoxide and hydrogen peroxide. We also studied the protective role of Gpx4 against beta-amyloid toxicity, because beta-amyloid-induced neural toxicity is believed to be mediated through lipid peroxidation. Primary culture cortical neurons from Gpx4 transgenic mice had significantly less cell toxicity than their wild-type counterparts after exposure to Abeta25-35 and Abeta1-40 peptides, and apoptosis induced by Abeta25-35 was attenuated in neurons from Gpx4 transgenic mice. Our data demonstrate that overexpression of Gpx4 protects neurons against oxidative injury and beta-amyloid-induced cytotoxicity.
Collapse
Affiliation(s)
- Qitao Ran
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | |
Collapse
|
284
|
Petrosillo G, Di Venosa N, Ruggiero FM, Pistolese M, D'Agostino D, Tiravanti E, Fiore T, Paradies G. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1710:78-86. [PMID: 16325647 DOI: 10.1016/j.bbabio.2005.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 01/16/2023]
Abstract
Reactive oxygen species (ROS) are considered an important factor in ischemia/reperfusion injury to cardiac myocites. Mitochondrial respiration is an important source of ROS generation and hence a potential contributor to cardiac reperfusion injury. Appropriate treatment strategy could be particularly useful to limit this ROS generation and associated mitochondrial dysfunction. In the present study, we examined the effect of lowering the oxygen tension, at the onset of the reperfusion, on various parameters of mitochondrial bioenergetics in rat heart tissue. After isolation of mitochondria from control, ischemic, normoxic and hypoxic reperfused rat heart, various bioenergetic parameters were evaluated such as rates of mitochondrial oxygen consumption, complex I and complex III activity, H2O2 production and in addition, the degree of lipid peroxidation, cardiolipin content and cardiolipin oxidation. We found that normoxic reperfusion significantly altered all these mitochondrial parameters, while hypoxic reperfusion had a protective effect attenuating these alterations. This effect appears to be due, at least in part, to a reduction of mitochondrial ROS generation with subsequent preservation of cardiolipin integrity, protection of mitochondrial function and improvement of post-ischemic hemodynamic function of the heart.
Collapse
Affiliation(s)
- G Petrosillo
- Department of Biochemistry and Molecular Biology and CNR Institute of Biomembranes and Bioenergetics, via E. Orabona, 4, 70126 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
285
|
Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 2005; 138:38-49. [PMID: 16226238 DOI: 10.1016/j.chemphyslip.2005.08.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/09/2005] [Indexed: 11/16/2022]
Abstract
Cardiolipin is a unique mitochondrial phospholipid with an atypical fatty acid profile, but the significance of its acyl specificity has not been understood. We explored the enormous combinatorial diversity among cardiolipin species, which results from the presence of four fatty acids in each molecule, by integrated use of high-performance liquid chromatography, mass spectrometry, diacylglycerol species analysis, fatty acid analysis, and selective cleavage of fatty acids by phospholipase A2. The most abundant cardiolipin species from various organisms and tissues (human heart, human lymphoblasts, rat liver, Drosophila, sea urchin sperm, yeast, mung bean hypocotyls) contained only one or two types of fatty acids, which generated a high degree of structural uniformity and molecular symmetry. However, an exception was found in patients with Barth syndrome, in whom an acyltransferase deficiency led to loss of acyl selectivity and formation of multiple molecular species. These results suggest that restriction of the number of fatty acid species, rather than the selection of a particular kind of fatty acid, is the common theme of eukaryotic cardiolipins. This limits the structural diversity of the cardiolipin species and creates molecular symmetry with implications for the stereochemistry of cardiolipin.
Collapse
Affiliation(s)
- Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, 550 First Ave, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
286
|
Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species generated by the mitochondrial respiratory chain affect the complex III activity via cardiolipin peroxidation in beef-heart submitochondrial particles. Mitochondrion 2005; 1:151-9. [PMID: 16120275 DOI: 10.1016/s1567-7249(01)00011-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Revised: 03/26/2001] [Accepted: 03/29/2001] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the effect of reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, on the activity of complex III and on the cardiolipin content in bovine-heart submitochondrial particles (SMP). ROS were produced by treatment of nicotinamide adenine dinucleotide (NADH) respiring SMP with rotenone. This treatment resulted in a production of superoxide anion, detected by the epinephrine method, which was blocked by superoxide dismutase (SOD). Exposure of SMP to mitochondrial-mediated ROS generation resulted in a marked loss of complex III activity and in a parallel loss of mitochondrial cardiolipin content. Both these effects were completely abolished by SOD + catalase. Exogenous added cardiolipin was able to almost completely prevent the ROS-mediated loss of complex III activity. No effect was obtained with other major phospholipid components of the mitochondrial membrane such as phosphatidylcholine and phosphatidylethanolamine, or with peroxidized cardiolipin. The results demonstrate that mitochondrial-mediated ROS generation affects the activity of complex III via peroxidation of cardiolipin, which is required for the functioning of this multisubunit enzyme complex. These results may prove useful in probing molecular mechanisms of ROS-induced peroxidative damage to mitochondria, which have been proposed to contribute to those physiopathological conditions characterized by an increase in the basal production of ROS such as aging, ischemia/reperfusion and chronic degenerative diseases.
Collapse
Affiliation(s)
- G Paradies
- Department of Biochemistry and Molecular Biology and CNR Unit for the Study of Mitochondria and Bioenergetics, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
287
|
Tyciakova S, Obernauerova M, Dokusova L, Kooistra RA, Steensma HY, Sulo P, Subik J. The KlPGS1 gene encoding phosphatidylglycerolphosphate synthase in Kluyveromyces lactis is essential and assigned to chromosome I. FEMS Yeast Res 2005; 5:19-27. [PMID: 15381119 DOI: 10.1016/j.femsyr.2004.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 05/04/2004] [Accepted: 05/25/2004] [Indexed: 11/15/2022] Open
Abstract
The phosphatidylglycerolphosphate synthase (CDP-diacylglycerol:sn-glycerol-3-phosphate 3-phosphatidyltransferase, EC 2.7.8.5) is an essential enzyme in biosynthesis of cardiolipin. In this work we report the isolation, heterological cloning, molecular characterization and physical mapping of the Saccharomyces cerevisiae PEL1/PGS1 homologue from Kluyveromyces lactis. The pel1 mutant strain of S. cerevisiae was used to isolate this homologue by screening a K. lactis genomic library. The novel cloned gene was named KlPGS1. Its coding region was found to consist of 1623 bp. The corresponding protein exhibits 55% amino acid identity to its S. cerevisiae counterpart. The presence of the mitochondrial presequence indicates its mitochondrial localization. Sporulation and ascus dissection of diploids heterozygous for single-copy disruption of KlPGS1 revealed that the KlPGS1 gene, is essential in K. lactis. Using a DIG-dUTP-labeled DNA probe-originated from the KlPGS1 gene and Southern hybridization of contour-clamped homogeneous electric field (CHEF)-separated K. lactis chromosomal DNA, the KlPGS1 gene was assigned to chromosome I. The nucleotide sequence data reported in this paper were submitted to GenBank and assigned the Accession No. AY176328.
Collapse
Affiliation(s)
- Silvia Tyciakova
- Department of Microbiology and Virology, Faculty of Sciences, Comenius University in Bratislava, Mlynska dolina B-2, 842 15 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
288
|
Brandner K, Mick DU, Frazier AE, Taylor RD, Meisinger C, Rehling P. Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. Mol Biol Cell 2005; 16:5202-14. [PMID: 16135531 PMCID: PMC1266419 DOI: 10.1091/mbc.e05-03-0256] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Taz1 protein is the orthologue of human Tafazzin, a protein that when inactive causes Barth Syndrome (BTHS), a severe inherited X-linked disease. Taz1 is a mitochondrial acyltransferase involved in the remodeling of cardiolipin. We show that Taz1 is an outer mitochondrial membrane protein exposed to the intermembrane space (IMS). Transport of Taz1 into mitochondria depends on the receptor Tom5 of the translocase of the outer membrane (TOM complex) and the small Tim proteins of the IMS, but is independent of the sorting and assembly complex (SAM). TAZ1 deletion in yeast leads to growth defects on nonfermentable carbon sources, indicative of a defect in respiration. Because cardiolipin has been proposed to stabilize supercomplexes of the respiratory chain complexes III and IV, we assess supercomplexes in taz1delta mitochondria and show that these are destabilized in taz1Delta mitochondria. This leads to a selective release of a complex IV monomer from the III2IV2 supercomplex. In addition, assembly analyses of newly imported subunits into complex IV show that incorporation of the complex IV monomer into supercomplexes is affected in taz1Delta mitochondria. We conclude that inactivation of Taz1 affects both assembly and stability of respiratory chain complexes in the inner membrane of mitochondria.
Collapse
Affiliation(s)
- Katrin Brandner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
289
|
Kirkinezos IG, Bacman SR, Hernandez D, Oca-Cossio J, Arias LJ, Perez-Pinzon MA, Bradley WG, Moraes CT. Cytochrome c association with the inner mitochondrial membrane is impaired in the CNS of G93A-SOD1 mice. J Neurosci 2005; 25:164-72. [PMID: 15634778 PMCID: PMC6725219 DOI: 10.1523/jneurosci.3829-04.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A "gain-of-function" toxic property of mutant Cu-Zn superoxide dismutase 1 (SOD1) is involved in the pathogenesis of some familial cases of amyotrophic lateral sclerosis (ALS). Expression of a mutant form of the human SOD1 gene in mice causes a degeneration of motor neurons, leading to progressive muscle weakness and hindlimb paralysis. Transgenic mice overexpressing a mutant human SOD1 gene (G93A-SOD1) were used to examine the mitochondrial involvement in familial ALS. We observed a decrease in mitochondrial respiration in brain and spinal cord of the G93A-SOD1 mice. This decrease was significant only at the last step of the respiratory chain (complex IV), and it was not observed in transgenic wild-type SOD1 and nontransgenic mice. Interestingly, this decrease was evident even at a very early age in mice, long before any clinical symptoms arose. The effect seemed to be CNS specific, because no decrease was observed in liver mitochondria. Differences in complex IV respiration between brain mitochondria of G93A-SOD1 and control mice were abolished when reduced cytochrome c was used as an electron donor, pinpointing the defect to cytochrome c. Submitochondrial studies showed that cytochrome c in the brain of G93A-SOD1 mice had a reduced association with the inner mitochondrial membrane (IMM). Brain mitochondrial lipids, including cardiolipin, had increased peroxidation in G93A-SOD1 mice. These results suggest a mechanism by which mutant SOD1 can disrupt the association of cytochrome c with the IMM, thereby priming an apoptotic program.
Collapse
Affiliation(s)
- Ilias G Kirkinezos
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Sparagna GC, Johnson CA, McCune SA, Moore RL, Murphy RC. Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J Lipid Res 2005; 46:1196-204. [PMID: 15772420 DOI: 10.1194/jlr.m500031-jlr200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electrospray ionization mass spectrometry has previously been used to probe qualitative changes in the phospholipid cardiolipin (CL), but it has rarely been used in a quantitative manner. We assessed changes in the amount of individual molecular species of cardiac CL present in a model of congestive heart failure using 1,1',2,2'-tetramyristoyl cardiolipin as an internal standard. There was a linear relationship between the ratio of the negative molecular ion ([M-H]-) current from four different CL reference standards and the [M-H]- from the internal standard, as a function of the concentration of CL molecular species. Therefore, this internal standard can be used to quantitate many naturally occurring CL molecular species over a wide range of CL concentrations. Using this method, changes to individual molecular species of CL in failing hearts from male spontaneously hypertensive heart failure rats were examined. CL isolated from cardiac mitochondria was compared with left ventricular tissue to demonstrate the feasibility of extracting and quantitating CL from either mitochondrial or tissue samples. The acyl chain composition of individual CL molecular species was identified using tandem mass spectrometry. In animals with heart failure, the major cardiac CL species (tetralinoloyl) decreased significantly, whereas other minor CL species were significantly increased.
Collapse
Affiliation(s)
- Genevieve C Sparagna
- Department of Integrative Physiology, University of Colorado Cardiovascular Institute, University of Colorado at Boulder, Boulder, CO 80309-0354, USA.
| | | | | | | | | |
Collapse
|
291
|
Hurtado O, Moro MA, Cárdenas A, Sánchez V, Fernández-Tomé P, Leza JC, Lorenzo P, Secades JJ, Lozano R, Dávalos A, Castillo J, Lizasoain I. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol Dis 2005; 18:336-45. [PMID: 15686962 DOI: 10.1016/j.nbd.2004.10.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/23/2004] [Accepted: 10/13/2004] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Cytidine-5'-diphosphocholine (citicoline or CDP-choline), an intermediate in the biosynthesis of phosphatidylcholine, has shown beneficial effects in a number of CNS injury models including cerebral ischemia. Citicoline is the only neuroprotectant that has proved efficacy in patients with moderate to severe stroke. However, the precise mechanism by which citicoline is neuroprotective is not fully known. The present study was designed to search for mechanisms of citicoline neuroprotective properties using in vivo and in vitro models of brain ischemia. METHODS Focal brain ischemia was produced in male adult Fischer rats by occluding both the common carotid and middle cerebral arteries. Brain glutamate levels were determined at fixed intervals after occlusion. Animals were then sacrificed, and infarct volume and brain ATP levels were measured. As in vitro model of ischemia, rat cultured cortical neurones or astrocytes, isolated or in co-culture, were exposed to oxygen-glucose deprivation (OGD) either in the absence or in the presence of citicoline (1-100 microM). Viability was studied by measuring LDH release. Glutamate release and uptake, and ATP levels were also determined. RESULTS Citicoline (0.5, 1 and 2 g/kg i.p. administered 1 h before the occlusion) produced a reduction of the infarct size measured at striatum (18, 27 and 42% inhibition, respectively, n = 8, P < 0.05 vs. ischemia), effect that correlated with the inhibition caused by citicoline on ischemia-induced increase in glutamate concentrations after the onset of the ischemia. Citicoline also inhibited ischemia-induced decrease in cortical and striatal ATP levels. Incubation of cultured rat cortical neurones with citicoline (10 and 100 microM) prevented OGD-induced LDH and glutamate release and caused a recovery in ATP levels after OGD, confirming our previous results. In addition, citicoline (100 microM) caused an increase in glutamate uptake and in EAAT2 glutamate transporter membrane expression in cultured rat astrocytes. CONCLUSIONS Our present findings show novel mechanisms for the neuroprotective effects of citicoline, which cooperate to decrease brain glutamate release after ischemia.
Collapse
Affiliation(s)
- Olivia Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Hsu FF, Turk J, Rhoades ER, Russell DG, Shi Y, Groisman EA. Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:491-504. [PMID: 15792718 DOI: 10.1016/j.jasms.2004.12.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 12/28/2004] [Accepted: 12/29/2004] [Indexed: 05/21/2023]
Abstract
We report negative-ion electrospray tandem mass spectrometric methods for structural characterization of cardiolipin (CL), a four-acyl-chain phospholipid containing two distinct phosphatidyl moieties, of which structural assignment of the fatty acid residues attached to the glycerol backbones performed by low-energy CAD tandem mass spectrometry has not been previously described. The low-energy MS2-spectra of the [M - H]- and [M - 2H]2- ions obtained with ion-trap or with tandem quadrupole instrument combined with ion-trap MS3-spectra or with source CAD product-ion spectra provide complete structural information for CL characterization. The MS2-spectra of the [M - H]- ions contain two sets of prominent fragment ions that comprise a phosphatidic acid, a dehydrated phosphatidylglycerol, and a (phosphatidic acid + 136) anion. The substantial differences in the abundances of the two distinct phosphatidic anions observed in the MS2-spectra of the [M -H]- ions lead to the assignment of the phosphatidyl moieties attached to the 1' or 3' position of central glycerol. Upon further collisional dissociation, the MS3-spectra of the phosphatidic anions provide information to identify the fatty acyl substituents and their position in the glycerol backbone. The MS2-spectra of the [M - 2H]2- ions obtained with TSQ or ITMS contain complementary information to confirm structural assignment. The applications of the above methods in the differentiation of cardiolipin isomers and in the identification of complex cardiolipin species consisting of multiple molecular structures are also demonstrated.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
293
|
Katayama K, Sakurai I, Wada H. Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 2005; 577:193-8. [PMID: 15527784 DOI: 10.1016/j.febslet.2004.10.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/30/2004] [Accepted: 10/01/2004] [Indexed: 11/24/2022]
Abstract
Cardiolipin (CL) is an anionic phospholipid with a dimeric structure. In eukaryotes, it is primarily localized in the inner membranes of mitochondria. Although the biosynthetic pathway of CL is well known, the gene for CL synthase has not been identified in any higher organisms. In this study, the CLS gene for a CL synthase has been identified in a higher plant, Arabidopsis thaliana. We have shown that the CLS gene encodes a CL synthase by demonstrating its ability to catalyze the reaction of CL synthesis from CDP-diacylglycerol and phosphatidylglycerol, and that CLS is targeted into mitochondria. These findings demonstrate that CLS is a CL synthase located in mitochondria.
Collapse
Affiliation(s)
- Kenta Katayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
294
|
Nakagawa Y. Role of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx) as an antiapoptotic factor. Biol Pharm Bull 2005; 27:956-60. [PMID: 15256721 DOI: 10.1248/bpb.27.956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a unique antioxidant enzyme that markedly reduces lipid hydroperoxide generated in biomembranes. Overexpression of mitochondrial PHGPx potentially suppresses the release of cytochrome c (cyt. c) from mitochondria and apoptosis. The hydroperoxide level in mitochondria was elevated in 2-deoxyglucose (2DG)-induced apoptosis, but not in apoptosis-resistant cells in which mitochondrial PHGPx was overexpressed. From studies of the overexpression of PHGPx, the generation of hydrogen peroxide and lipid hydroperoxide in mitochondria might be important triggers of apoptosis. In particular lipid hydroperoxide could be involved in the initiation of cyt. c liberation from mitochondria in 2DG-induced apoptosis since lipid hydroperoxide is a primary substrate for PHGPx. The release of cyt. c from mitochondria is an important proapoptotic signal in the mitochondrial death pathway. Several reports demonstrated the reactive oxgen species could be involved in cyt. c liberation, although its mechanism is still unknown. Cardiolipin (CL), which exclusively locates in the innermembrane of mitochondria, shows strong affinity for cyt. c is required for the adenine nucleotide translocator (ANT) that controls the opening and closing of the permeability transition pore. Association of cyt. c with CL is lost upon peroxidation. CL hydroperoxide (CLOOH), in contrast to CL, does not bind to cyt. c. Furthermore, CLOOH can open the permeability transion pore by the inactivation of ANT. These previous results suggest that mitochondrial PHGPx inhibits the release of cyt. c from mitochondria by the scavenging CLOOH and could prevent apoptosis.
Collapse
Affiliation(s)
- Yasuhito Nakagawa
- School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan.
| |
Collapse
|
295
|
Mileykovskaya E, Zhang M, Dowhan W. Cardiolipin in energy transducing membranes. BIOCHEMISTRY (MOSCOW) 2005; 70:154-8. [PMID: 15807653 DOI: 10.1007/s10541-005-0095-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cardiolipin is a phospholipid located exclusively in energy transducing membranes such as the bacterial cytoplasmic membrane and the inner membrane of mitochondria. It plays both a structural and a functional role in many multimeric complexes associated with these membranes. The role of cardiolipin in higher order organization of components of the mitochondrial respiratory chain revealed by a combined molecular genetic and biochemical approach is described.
Collapse
Affiliation(s)
- E Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77030, USA.
| | | | | |
Collapse
|
296
|
Kriska T, Korytowski W, Girotti AW. Role of mitochondrial cardiolipin peroxidation in apoptotic photokilling of 5-aminolevulinate-treated tumor cells. Arch Biochem Biophys 2005; 433:435-46. [PMID: 15581600 DOI: 10.1016/j.abb.2004.09.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 09/10/2004] [Indexed: 12/13/2022]
Abstract
In 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), ALA taken up by tumor cells is metabolized to protoporphyrin IX (PpIX), which sensitizes photodamage leading to apoptotic or necrotic cell death. Since lipophilic PpIX originates in mitochondria, we postulated that photoperoxidation of highly unsaturated cardiolipin (CL), which anchors cytochrome c (cyt c) to the inner membrane, is an early proapoptotic event. As initial evidence, PpIX-sensitized photooxidation of liposomal CL to hydroperoxide (CLOOH) species precluded cyt c binding, but this could be reinstated by GSH/selenoperoxidase (GPX4) treatment. Further support derived from site-specific effects observed using (i) a mitochondrial GPX4-overexpressing clone (7G4) of COH-BR1 tumor cells, and (ii) an ALA treatment protocol in which most cellular PpIX is either inside (Pr-1) or outside (Pr-2) mitochondria. Sensitized cells were exposed to a lethal light dose, and then analyzed for death mechanism and lipid hydroperoxide (LOOH) levels. Irradiated Pr-1 vector control (VC) cells died apoptotically following cyt c release and caspase-3 activation, whereas 7G4 cells were highly resistant. Irradiated Pr-2 VC and 7G4 cells showed negligible cyt c release or caspase-3 activation, and both types died via necrosis. CLOOH (detected long before cyt c release) accumulated approximately 70% slower in Pr-1 7G4 cells than in Pr-1 VC, and this slowdown exceeded that of all other LOOHs. These and related findings support the hypothesis that CL is a key upstream target in mitochondria-dependent ALA-PDT-induced apoptosis.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
297
|
Garcia Fernandez MI, Ceccarelli D, Muscatello U. Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal Biochem 2005; 328:174-80. [PMID: 15113694 DOI: 10.1016/j.ab.2004.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Indexed: 01/04/2023]
Abstract
The fluorescent dye 10-N-nonyl acridine orange (NAO) is extensively used for location and quantitative assays of cardiolipin in living cells on the assumption of its high specificity for cardiolipin; however, the limits and the mechanism of this specificity are not clear. Moreover, whether factors such as the membrane potential in mitochondria may limit the consistency of the results obtained by this method is open to discussion. The aim of this research was to investigate the effects of some experimental factors on the selective fluorescence of NAO in the presence of cardiolipin in artificial and natural membranes (mitochondria). The results show that the fluorescence of NAO, due to interaction with cardiolipin, is significantly modified by factors that control the spatial arrangement of cardiolipin molecules within the space of the membrane under investigation. Moreover, the present observations suggest that the specific effect of cardiolipin is to facilitate the dimerization of this fluorescent dye, thus confirming that reliable measurements of cardiolipin concentration can be obtained only when the NAO/cardiolipin molar ratio is equal to 2. The finding is also reported that in isolated respiring mitochondria the interaction of NAO with cardiolipin is somewhat related to the respiratory state of mitochondria.
Collapse
|
298
|
Nichols-Smith S, Kuhl T. Electrostatic interactions between model mitochondrial membranes. Colloids Surf B Biointerfaces 2005; 41:121-7. [PMID: 15737537 DOI: 10.1016/j.colsurfb.2004.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
Lipids are very diverse in both their respective structures and functions; and cells exquisitely control membrane composition. One intriguing issue is the specific role of lipids in modulating the physical properties of membranes. Cardiolipin (CL) is a unique four-tailed, doubly negatively charged lipid found predominately within the inner mitochondrial membrane, and is thought to be influential in determining the inner mitochondrial membrane potential and permeability. To determine the role of cardiolipin in modulating the charge properties of membranes, this study investigated the electrostatic interactions between mixed cardiolipin and phosphatidylcholine bilayers as a function of cardiolipin concentration. For physiologically relevant concentrations of cardiolipin, the surface charge density of the membrane was found to increase linearly with increasing concentration of cardiolipin. However, only a fraction of the cardiolipin molecules predicted to carry a charge from pK-values were ionized. Clearly environmental factors, beyond that of pH, play a role in determining the charge of bilayers containing cardiolipin.
Collapse
Affiliation(s)
- Stephanie Nichols-Smith
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616-5294, USA
| | | |
Collapse
|
299
|
Vaena de Avalos S, Su X, Zhang M, Okamoto Y, Dowhan W, Hannun YA. The phosphatidylglycerol/cardiolipin biosynthetic pathway is required for the activation of inositol phosphosphingolipid phospholipase C, Isc1p, during growth of Saccharomyces cerevisiae. J Biol Chem 2004; 280:7170-7. [PMID: 15611094 DOI: 10.1074/jbc.m411058200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositolsphingolipid phospholipase C (Isc1p) is the Saccharomyces cerevisiae member of the extended family of neutral sphingomyelinases that regulates the generation of bioactive ceramides. Recently, we reported that Isc1p is post-translationally activated in the post-diauxic phase of growth and that it localizes to mitochondria (Vaena de Avalos, S., Okamoto, Y., and Hannun, Y. A. (2004) J. Biol. Chem. 279, 11537-11545). In this study the in vivo mechanisms of activation and function of Isc1p were investigated. Deletion of ISC1 resulted in markedly lower growth in non-fermentable carbon sources. Interestingly, the growth defect of isc1Delta strains resembled that of pgs1Delta strains, lacking the committed step in the synthesis of phosphatidylglycerol (PG) and cardiolipin (CL), which were shown to activate Isc1p in vitro. Therefore, the role of Pgs1p in activation of Isc1p in vivo was investigated. The results showed that in the pgs1Delta strain, the growth-dependent activation of Isc1p was impaired as was the ISC1-dependent increase in the levels of phytoceramide during the post-diauxic phase, demonstrating that the activation of Isc1p in vivo is dependent on PGS1 and on the mitochondrial phospholipids PG/CL. Mechanistically, loss of Isc1p resulted in lower levels of mitochondrial cytochrome c oxidase subunits cox3p and cox4p, previously established targets of both PG and CL (Ostrander, D. B., Zhang, M., Mileykovskaya, E., Rho, M., and Dowhan, W. (2001) J. Biol. Chem. 276, 25262-25272), thus suggesting that Isc1p mediates at least some functions downstream of PG/CL. This study provides the first evidence for the mechanism of in vivo activation and function of Isc1p. A model with endogenous PG/CL as the in vivo activator of Isc1p is proposed.
Collapse
Affiliation(s)
- Silvia Vaena de Avalos
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
300
|
Bakholdina SI, Sanina NM, Krasikova IN, Popova OB, Solov'eva TF. The impact of abiotic factors (temperature and glucose) on physicochemical properties of lipids from Yersinia pseudotuberculosis. Biochimie 2004; 86:875-81. [PMID: 15667937 DOI: 10.1016/j.biochi.2004.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The impact of the availability of glucose in nutrition medium and growth temperature on the composition and thermotropic behavior of lipids from Yersinia pseudotuberculosis (Enterobacteriaceae) was studied. Y. pseudotuberculosis was grown in nutrition broth (NB) with/without glucose at 8 and 37 degrees C, corresponding to the temperatures of saprophytic and parasitic phases of this bacterium life. The decrease of phosphatidylethanolamine, phosphatidylglycerol and unsaturated fatty acids and the parallel increase of lysophosphatidylethanolamine and diphosphatidylglycerol and saturated and cyclopropane acids were the most significant changes with temperature in bacterial phospholipid (PL) classes and fatty acids, respectively. Glucose did not effect the direction of temperature-induced changes in the contents of PLs, fatty acids, however it enhanced (for PLs) or diminished (for fatty acids) intensity of these changes. The thermally induced transitions of lipids were studied by differential scanning calorimetry (DSC). It was revealed that the addition of glucose to NB induced a sharp shift of DSC thermograms to lower temperatures in the "warm" variants of bacteria. The peak maximum temperature (Tmax) of thermal transitions dropped from 50 to 26 degrees C that is the optimal growth temperature of Y. pseudotuberculosis. Tmax of total lipids of the cells grown at 8 degrees C without glucose in NB was equal to growth temperature that corresponded to the classical mechanism of homeoviscous adaptation of bacteria. An addition of glucose to NB at this growth temperature caused the subsequent reduction of Tmax to -8 degrees C, while the temperature ranges of thermograms were not substantially changed. So, not only the temperature growth of bacteria, but also the presence of glucose in NB can modify the physical state of lipids from Y. pseudotuberculosis. In this case, both factors affect additively. It is suggested that glucose influences some membrane-associated proteins and then the fluidity of lipid matrix through temperature-inducible genes.
Collapse
Affiliation(s)
- S I Bakholdina
- Pacific Institute of Bioorganic Chemistry, Far East Branch of Russian Academy of Sciences, prospect 100-let Vladivostoku, 159, Vladivostok 690022, Russia
| | | | | | | | | |
Collapse
|