251
|
Miotke JA, MacLennan AJ, Meyer RL. Immunohistochemical localization of CNTFRalpha in adult mouse retina and optic nerve following intraorbital nerve crush: evidence for the axonal loss of a trophic factor receptor after injury. J Comp Neurol 2007; 500:384-400. [PMID: 17111380 DOI: 10.1002/cne.21174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is important for the survival and outgrowth of retinal ganglion cells (RGCs) in vitro. However, in vivo adult RGCs fail to regenerate and subsequently die following axotomy, even though there are high levels of CNTF in the optic nerve. To address this discrepancy, we used immunohistochemistry to analyze the expression of CNTF receptor alpha (CNTFRalpha) in mouse retina and optic nerve following intraorbital nerve crush. In normal mice, RGC perikarya and axons were intensely labeled for CNTFRalpha. At 24 hours after crush, the immunoreactivity normally seen on axons in the nerve was lost near the lesion. This loss radiated from the crush site with time. At 2 days postlesion, labeled axons were not detected in the proximal nerve, and at 2 weeks were barely detectable in the retina. In the distal nerve, loss of axonal staining progressed to the optic chiasm by 7 days and remained undetectable at 2 weeks. Interfascicular glia in the normal optic nerve were faintly labeled, but by 24 hours after crush they became intensely labeled near the lesion. Double labeling showed these to be both astrocytes and oligodendrocytes. At 7 days postlesion, darkly labeled glia were seen throughout the optic nerve, but at 14 days labeling returned to normal. It is suggested that the loss of CNTFRalpha from axons renders RGCs unresponsive to CNTF, thereby contributing to regenerative failure and death, while its appearance on glia may promote glial scarring.
Collapse
Affiliation(s)
- Jill A Miotke
- Department of Developmental and Cell Biology, University of California at Irvine, Irvine, California 92697-2305, USA.
| | | | | |
Collapse
|
252
|
Watkins LR, Hutchinson MR, Ledeboer A, Wieseler-Frank J, Milligan ED, Maier SF. Norman Cousins Lecture. Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun 2007; 21:131-46. [PMID: 17175134 PMCID: PMC1857294 DOI: 10.1016/j.bbi.2006.10.011] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 12/19/2022] Open
Abstract
Within the past decade, there has been increasing recognition that glia are far more than simply "housekeepers" for neurons. This review explores two recently recognized roles of glia (microglia and astrocytes) in: (a) creating and maintaining enhanced pain states such as neuropathic pain, and (b) compromising the efficacy of morphine and other opioids for pain control. While glia have little-to-no role in pain under basal conditions, pain is amplified when glia become activated, inducing the release of proinflammatory products, especially proinflammatory cytokines. How glia are triggered to become activated is a key issue, and appears to involve a number of neuron-to-glia signals including neuronal chemokines, neurotransmitters, and substances released by damaged, dying and dead neurons. In addition, glia become increasingly activated in response to repeated administration of opioids. Products of activated glia increase neuronal excitability via numerous mechanisms, including direct receptor-mediated actions, upregulation of excitatory amino acid receptor function, downregulation of GABA receptor function, and so on. These downstream effects of glial activation amplify pain, suppress acute opioid analgesia, contribute to the apparent loss of opioid analgesia upon repeated opioid administration (tolerance), and contribute to the development of opioid dependence. The potential implications of such glial regulation of pain and opioid actions are vast, suggestive that targeting glia and their proinflammatory products may provide a novel and effective therapy for controlling clinical pain syndromes and increasing the clinical utility of analgesic drugs.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and the Center for Neuroscience, Muenzinger D-244, Campus Box 345, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | |
Collapse
|
253
|
Sobrado-Calvo P, Vidal-Sanz M, Villegas-Pérez MP. Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol 2007; 501:866-78. [PMID: 17311318 DOI: 10.1002/cne.21279] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal microglial cells may have a role in both degeneration and neuroprotection of retinal ganglion cells (RGC) after optic nerve (ON) section. We have used NDPase enzymohistochemistry to label adult rat retinal microglial cells and have studied these cells under normal conditions, after left ON section, and after left ON section and eye puncture or intravitreal injection of different substances: vehicle, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), or macrophage inhibitory factor (MIF). Resident microglial cells are present in four layers in the adult rat retina: the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), and outer plexiform layer (OPL). Left ON section induces microglial activation in the ipsilateral and contralateral retina as manifested by stronger staining intensity in both retinas and increased microglial cell densities in the NFL, IPL, and GCL of the ipsilateral retina. Left ON section followed by left eye puncture or intravitreal injection increases microglial cell density in both retinas and induces changes in the microglial cells of the ipsilateral retina that vary depending on the substance injected: BDNF injections delay microglial activation, possibly through retinal ganglion cell neuroprotection, whereas NT3 partially inhibits microglial activation in the NFL; MIF injections have no clear effects on microglial activation. In conclusion, retinal microglial cells become activated after an ON section and react more intensely when the eye is also punctured or injected, and this response may be altered by using neurotrophic factors, although the effects of MIF are less clear.
Collapse
Affiliation(s)
- Paloma Sobrado-Calvo
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
| | | | | |
Collapse
|
254
|
Zuiderwijk-Sick EA, van der Putten C, Bsibsi M, Deuzing IP, de Boer W, Persoon-Deen C, Kondova I, Boven LA, van Noort JM, 't Hart BA, Amor S, Bajramovic JJ. Differentiation of primary adult microglia alters their response to TLR8-mediated activation but not their capacity as APC. Glia 2007; 55:1589-600. [PMID: 17823968 DOI: 10.1002/glia.20572] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activated microglia are found in a variety of neuroinflammatory disorders where they have attributed roles as effector as well as antigen-presenting cells (APC). Critical determinants for the multifaceted role of microglia are the differentiation potential of microglia and their mode of activation. In this study, we have investigated the effects of M-CSF and GM-CSF-mediated differentiation of adult primate microglia on their cellular phenotype, antigen presentation, and phagocytic function as well as on Toll-like receptor (TLR)-mediated responses. We show that although cell morphology and expression levels of activation markers were markedly different, differentiation with either factor yielded microglia that phenotypically and functionally resemble macrophages. Both M-CSF and GM-CSF-differentiated microglia were responsive to TLR1/2, 2, 3, 4, 5, 6/2, and 8-mediated activation, but not to TLR7 or 9-mediated activation. Intriguingly, M-CSF-differentiated microglia expressed higher levels of TLR8-encoding mRNA and protein, and produced larger amounts of proinflammatory cytokines in response to TLR8-mediated activation as compared to GM-CSF-differentiated microglia. While differentiation of adult microglia by growth factors that can be produced endogenously in the central nervous system is thus unlikely to change their APC function, it can alter their innate responses to infectious stimuli such as ssRNA viruses. Resident primate microglia may thereby help shape rather than initiate adaptive immune responses.
Collapse
|
255
|
Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: new concepts. ACTA ACUST UNITED AC 2006; 53:344-54. [PMID: 17188751 DOI: 10.1016/j.brainresrev.2006.11.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/06/2006] [Accepted: 11/14/2006] [Indexed: 01/22/2023]
Abstract
Despite intense study, the precise origin and cell lineage of microglia, the resident mononuclear phagocytes of the nervous system, are still a matter for debate. Unlike macroglia (astrocytes and oligodendrocytes) and neurons, which are derived from neuroectoderm, microglial progenitors arise from peripheral mesodermal (myeloid) tissue. The view still commonly held is that tissue-resident mononuclear phagocytes (including microglia) are derived from circulating blood monocytes and these take up residence late in gestation and postnatally. However, microglial progenitors colonise the nervous system primarily during embryonic and fetal periods of development. Recent evidence indicates differences between the lineage of mononuclear phagocytes during the embryonic and fetal period from that in the neonate and adult-mononuclear phagocytes that take up residence within tissues are derived from a lineage of myeloid cells that is independent of the monocyte lineage. Our own findings on the development and differentiation of microglial progenitors, taken together with findings by other investigators, and in the context of the heterogeneity between myeloid differentiation in the fetus and in the adult, support the view that microglia are derived prenatally from mesodermal progenitors that are distinct from monocytes. Furthermore, microglial progenitors colonise the nervous system via extravascular routes initially. These findings challenge the concept that resident microglia in the nervous system are derived from circulating blood monocytes. Work is still underway to establish the tissue of origin and lineage of microglial progenitors in vivo. This information is critical not only from a developmental perspective, but significantly from a therapeutic viewpoint, as (i) the unique property of microglial progenitors to colonise the nervous system from the periphery allows these cells to be exploited as a biological and non-invasive means for cell therapy by delivering genes to the nervous system (microglial engraftment), and (ii) there are indications that microglial progenitors are specifically able to home to the nervous system. Use of microglial progenitors for therapeutic purposes becomes feasible only if the origin and cell lineage of these microglial progenitors are known and these cells can be isolated and manipulated in vitro (i.e., to express specific trophic factors) prior to therapeutic transfer (e.g., intravenously) in vivo. In this paper, we shall briefly consider the existing concepts on the origin and lineage of microglial progenitors and discuss new hypotheses in the light of emerging data that suggest clear differences between fetal and adult ontogeny of myeloid cells.
Collapse
Affiliation(s)
- W Y Chan
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
256
|
Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. A Requirement for Microglial TLR4 in Leukocyte Recruitment into Brain in Response to Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2006; 177:8103-10. [PMID: 17114485 DOI: 10.4049/jimmunol.177.11.8103] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.
Collapse
Affiliation(s)
- Hong Zhou
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Drive, Calgary NW, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
257
|
Casanova MF. Neuropathological and genetic findings in autism: the significance of a putative minicolumnopathy. Neuroscientist 2006; 12:435-41. [PMID: 16957005 DOI: 10.1177/1073858406290375] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autism is a condition manifested as abnormalities of relatedness, communication, range of interests, and repetitive behaviors. Despite alarming prevalence estimates and exhortations to research, little is known regarding its pathophysiology. Recent reports of a putative minicolumnopathy explain changes in brain size, gray/white matter ratios, and interareal connectivity. This article summarizes possible links between minicolumns and other topics-cortical modularity, age of onset, gliosis, and genetics-relevant to the pathophysiology of autism.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Psychiatry and Behavioral Sciences University of Louisville, 500 South Preston Street, Louisville, KY, USA.
| |
Collapse
|
258
|
Sethi N, Sondey M, Bai Y, Kim KS, Cadavid D. Interaction of a neurotropic strain of Borrelia turicatae with the cerebral microcirculation system. Infect Immun 2006; 74:6408-18. [PMID: 16940140 PMCID: PMC1695479 DOI: 10.1128/iai.00538-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relapsing fever (RF) is a spirochetal infection characterized by relapses of a febrile illness and spirochetemia due to the sequential appearance and disappearance of isogenic serotypes in the blood. The only difference between isogenic serotypes is the variable major outer membrane lipoprotein. In the absence of specific antibody, established serotypes cause persistent infection. Studies in our laboratory indicate that another consequence of serotype switching in RF is a change in neuroinvasiveness. As the next step to elucidate this phenomenon, we studied the interaction of the neurotropic Oz1 strain of the RF agent Borrelia turicatae with the cerebral microcirculation. During persistent infection of antibody-deficient mice, we found that serotype 1 entered the brain in larger numbers and caused more severe cerebral microgliosis than isogenic serotype 2. Microscopic examination revealed binding of B. turicatae to brain microvascular endothelial cells in vivo. In vitro we found that B. turicatae associated with brain microvascular endothelial cells (BMEC) significantly more than with fibroblasts or arachnoidal cells. The binding was completely eliminated by pretreatment of BMEC with proteinase K. Using transwell chambers with BMEC barriers, we found that serotype 1 crossed into the lower compartment significantly better than serotype 2. Heat killing significantly reduced BMEC crossing but not binding. We concluded that the interaction of B. turicatae with the cerebral microcirculation involves both binding and crossing brain microvascular endothelial cells, with significant differences among isogenic serotypes.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Neurology and Neuroscience, Center for the Study of Emerging Pathogens, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, MSB H506, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
259
|
Pedersen MD, Minuzzi L, Wirenfeldt M, Meldgaard M, Slidsborg C, Cumming P, Finsen B. Up-regulation of PK11195 binding in areas of axonal degeneration coincides with early microglial activation in mouse brain. Eur J Neurosci 2006; 24:991-1000. [PMID: 16930426 DOI: 10.1111/j.1460-9568.2006.04975.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increased binding of the peripheral benzodiazepine binding site (PBBS) ligand [(3)H]PK11195 in the central nervous system of patients suffering from acute and chronic neuropathology has been associated with reactive microgliosis. However, it remains uncertain which stages of microglial activation occur in conjunction with the increased [(3)H]PK11195 binding. We used quantitative autoradiography for [(3)H]PK11195 and quantitative polymerase chain reaction for PBBS mRNA and markers of early and late microglial activation to investigate the time-course of cellular responses in the hippocampus of mice with degeneration of the entorhinal-hippocampal perforant path. The axonal lesion evoked an increase in the B(max) for [(3)H]PK11195 in hippocampus which peaked at 2 days post-lesion, remained elevated at day 5 and began to decline at 10 days post-lesion. These changes occurred in the absence of significant changes in affinity in vitro. Quantitative polymerase chain reaction analysis of isolated hippocampi using exon-specific primers indicated the presence of several splice variants of PBBS mRNA, which appeared to be affected differentially by the lesion. The changes in PBBS mRNA and CD11b mRNA levels correlated with the B(max) for [(3)H]PK11195 during 10 days post-lesion, suggesting that microglial activation couples with increases in mRNA levels for these markers. In addition, the onset of changes in PBBS mRNA levels coincided with the significantly elevated tumor necrosis factor mRNA levels present during early microglial activation at 2 days post-lesion. We conclude that up-regulation of [(3)H]PK11195 binding and PBBS mRNA levels coincided with early microglial activation, characterized by concomitantly increased microglial tumor necrosis factor mRNA levels, and persisted throughout the period with reactive microgliosis.
Collapse
Affiliation(s)
- Mads D Pedersen
- Medical Biotechnology Center, University of Southern Denmark, Winsløwparken 25, 2, DK-5000 Odense C, Denmark
| | | | | | | | | | | | | |
Collapse
|
260
|
Rankine EL, Hughes PM, Botham MS, Perry VH, Felton LM. Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur J Neurosci 2006; 24:77-86. [PMID: 16882009 DOI: 10.1111/j.1460-9568.2006.04891.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have previously shown that ischaemic lesions are smaller in monocyte chemoattractant protein-1-deficient (MCP-1(-/-)) mice than in wild-type (wt) controls. In addition to its role as a monocyte chemoattractant, monocyte chemoattractant protein-1 (MCP-1) has been proposed to contribute to lesion progression after focal ischaemia by driving local cytokine synthesis by resident glia. To investigate this hypothesis we injected lipopolysaccharide (LPS) into the brain parenchyma of MCP-1(-/-) mice and compared the resulting inflammatory response and production of proinflammatory cytokines to those in wt mice. Microglial and astrocyte morphological activation was the same in the two strains, but MCP-1(-/-) mice showed significantly lower levels of proinflammatory cytokine synthesis; interleukin-1beta (IL-1beta) and tumour necrosis factor-alpha (TNF-alpha) levels were up to 50% lower than in wt controls after 6 h. This reduced synthesis of proinflammatory cytokines occurred well before leucocyte recruitment to the central nervous system (CNS) is observed in this model of acute inflammation and thus cannot be attributed to lower numbers of recruited monocytes at the site of injury. We propose that MCP-1 contributes to acute CNS inflammation by pleiotropic mechanisms. In addition to being a potent chemoattractant for monocytes, we provide evidence here that MCP-1 can modify the responsiveness of CNS glia to acute inflammatory stimuli prior to leucocyte recruitment, thereby acting as a priming stimulus for cytokine synthesis in cells such as microglia.
Collapse
Affiliation(s)
- E L Rankine
- Nurin Ltd, School of Biological Sciences, University of Southampton, Southampton, SO16 7PX, UK
| | | | | | | | | |
Collapse
|
261
|
Deng XH, Bertini G, Xu YZ, Yan Z, Bentivoglio M. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age. Neuroscience 2006; 141:645-661. [PMID: 16730918 DOI: 10.1016/j.neuroscience.2006.04.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 11/26/2022]
Abstract
Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.
Collapse
Affiliation(s)
- X-H Deng
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy; Department of Anatomy and Neurobiology, Xiangya Medical College, Central South University, Changsha, Hunan, PR China
| | - G Bertini
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy
| | - Y-Z Xu
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy; Department of Anatomy and Neurobiology, Xiangya Medical College, Central South University, Changsha, Hunan, PR China
| | - Z Yan
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy
| | - M Bentivoglio
- Department of Morphological and Biomedical Sciences, University of Verona, Faculty of Medicine, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
262
|
Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2006; 25:6734-44. [PMID: 16033883 PMCID: PMC6725352 DOI: 10.1523/jneurosci.1510-05.2005] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects of these cytokines on neuronal death caused by exposure of mouse organotypic hippocampal slice cultures to toxic concentrations of AMPA. Either potentiation of excitotoxicity or neuroprotection was observed, depending on the concentration of the cytokines and the timing of exposure. A relatively high concentration of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol. By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed by macrophage antigen-1 and bromodeoxyuridine immunohistochemistry, suggesting a functional recruitment of cytokine-producing cells at sites of neurodegeneration. Together, these findings are relevant for understanding the role of proinflammatory cytokines and microglia activation in acute and chronic excitotoxic conditions.
Collapse
Affiliation(s)
- Liliana Bernardino
- Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
263
|
Hazama GI, Yasuhara O, Morita H, Aimi Y, Tooyama I, Kimura H. Mouse brain IgG-like immunoreactivity: strain-specific occurrence in microglia and biochemical identification of IgG. J Comp Neurol 2006; 492:234-49. [PMID: 16196032 DOI: 10.1002/cne.20710] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike the brains of most mammals, the mouse brain appears unique in the massive appearance of cells showing IgG-like immunoreactivity, which has repeatedly been shown via immunohistochemistry. In the present study, we first examined possible species differences in IgG-like immunohistochemical staining in the brains of various rodents, including mice. In four of six mouse strains examined (ICR, Balb/c, C57BL/6, and AKR/J), antibodies against mouse IgG revealed positive staining in many brain microglia. However, no such positive staining was detected in brains of the rat, hamster, guinea pig, or two other mouse strains (CBA/N and CBA/J). We purified IgG-like-immunoreactive molecule(s) biochemically from brain of the ICR mouse as a representative mouse strain. Our amino-acid-sequence analysis proved that the purified protein was identical to serum IgG. The possibility of IgG synthesis by brain microglia in the ICR mouse was denied by our RT-PCR experiments and in situ hybridization histochemistry. In addition, Fcgamma-receptor-deficient double-knockout mice of the C57BL/6 genetic background contained no IgG-immunoreactive microglia in the brain. These results clearly indicate that microglial IgG staining is due to the uptake of serum IgG through Fcgamma receptors. However, the strain-specific mechanisms resulting in microglial IgG uptake remain to be elucidated, in that Fcgamma receptors are omnipresent in microglia of all rodents examined here.
Collapse
Affiliation(s)
- Gen-I Hazama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
264
|
Monier A, Evrard P, Gressens P, Verney C. Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J Comp Neurol 2006; 499:565-82. [PMID: 17029271 DOI: 10.1002/cne.21123] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe the topographical distribution of microglial subpopulations during development of the human diencephalon and telencephalon. Brains from embryos and fetuses age 5-23.5 gestational weeks (gw) were subjected to single- and double-immunolabeling for lectin RCA-1 (Ricinus Communis Agglutinin 1), Iba1 (a microglial marker), CD68 (specific of macrophages), CD45 (marker for mononucleate cells of hematopoietic lineage), CD34 (expressed on endothelial cells), and MIB1 and Ki67 (markers for cell proliferation). At 5.5 gw the first intracerebral microglial cells were seen close to the meninges and choroid plexus near the di-telencephalic fissure. They were amoeboid and positive for Iba1, CD45, and RCA-1, whereas cells in the deep parenchyma expressed Iba1/CD68/RCA-1 and constituted clusters. In the developing diencephalon, microglial clusters were located in junctional regions of the white matter anlagen, most notably at the junctions of the internal capsule with the thalamic projections, the external capsule, and the cerebral peduncle. In the cortical anlagen, Iba1+/RCA-1/CD68+/CD45+ cells accumulated at 10-12 gw, constituting a tangential band at the junction between the cortical plate and the subplate. Between 10 and 16 gw microglial clusters increased markedly in size and cellular density. Contact between Iba1+ microglia and CD34+ blood vessels was clearly visible from 10-12 gw onward, first in microglial clusters of the white matter anlagen and subsequently throughout the parenchyma. From the middle of the second trimester onward microglial cells colonized the entire cerebral parenchyma, developed a ramified morphology, and downregulated their surface antigens, but remained more numerous in the white matter.
Collapse
|
265
|
Nataf S, Strazielle N, Hatterer E, Mouchiroud G, Belin MF, Ghersi-Egea JF. Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 2006; 54:160-71. [PMID: 16817190 DOI: 10.1002/glia.20373] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interface between the blood and the cerebrospinal fluid (CSF) is formed by the choroid plexuses (CPs), which are specialized structures located within the brain ventricles. They are composed of a vascularized stroma surrounded by a tight epithelium that controls molecular and cellular traffic between the blood and the CSF. Cells expressing myeloid markers are present within the choroidal stroma. However, the exact identity, maturation state, and functions of these CP-associated myeloid cells are not fully clarified. We show here that this cell population contains immature myeloid progenitors displaying a high proliferative potential. Thus, in neonate rats and, to a lesser extent, in adult rats, cultured CP stroma cells form large colonies of macrophages, in response to M-CSF or GM-CSF, while, under the same conditions, peripheral blood monocytes do not. In addition, under GM-CSF treatment, free-floating colonies of CD11c(+) monocytic cells are generated which, when restimulated with GM-CSF and IL-4, differentiate into OX62(+)/MHC class II(+) dendritic cells. Interestingly, in CP stroma cultures, myeloid cells are found in close association with fibroblastic-like cells expressing the neural stem-cell marker nestin. Similarly, in the developing brain, macrophages and nestin(+) fibroblastic cells accumulate in vivo within the choroidal stroma. Taken together, these results suggest that the CP stroma represents a niche for myeloid progenitors and may serve as a reservoir for brain macrophages.
Collapse
Affiliation(s)
- Serge Nataf
- INSERM U433, IFR 19, Faculté de Médecine Laennec and Hôpital Neurologique, Lyon, France.
| | | | | | | | | | | |
Collapse
|
266
|
Watkins LR, Wieseler-Frank J, Milligan ED, Johnston I, Maier SF. Chapter 22 Contribution of glia to pain processing in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:309-23. [PMID: 18808844 DOI: 10.1016/s0072-9752(06)80026-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
267
|
Wu CY, Kaur C, Lu J, Cao Q, Guo CH, Zhou Y, Sivakumar V, Ling EA. Transient expression of endothelins in the amoeboid microglial cells in the developing rat brain. Glia 2006; 54:513-25. [PMID: 16897776 DOI: 10.1002/glia.20402] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amoeboid microglial cells (AMC) which transiently exist in the corpus callosum in the postnatal rat brain expressed endothelins (ETs), specifically endothelin-1 (ET-1) and ET3 as revealed by real time RT-PCR. ET immunoreactive AMC occurred in large numbers at birth, but were progressively reduced with age and were undetected in 14 days. In rats subjected to hypoxia exposure, ET immunoexpression in AMC was reduced but the incidence of apoptotic cells was not increased when compared with the control suggesting that this was due to its downregulation that may help regulate the constriction of blood vessels bearing ET-A receptor. AMC were endowed ET-B receptor indicating that ET released by the cells may also act via an autocrine manner. In microglia activated by lipopolysaccharide (LPS), ET-1 mNA expression coupled with that of monocyte chemoattractant protein (MCP-1) and stromal derived factor-1 (SDF-1) was markedly increased; ET-3 mRNA, however, remained unaffected. AMC exposed to oxygen glucose deprivation (OGD) in vitro resulted in increase in both ET-1 and ET-3 mRNA expression. It is suggested that the downregulated ETs expression in vivo of AMC subjected to hypoxia as opposed to its upregulated expression in vitro may be due to the complexity of the brain tissue. Furthermore, the differential ET-1 and ET-3 mRNA expression in LPS and OGD treatments may be due to different signaling pathways independently regulating the two isoforms. The present novel finding has added microglia as a new cellular source of ET that may take part in multiple functions including regulating vascular constriction and chemokines release.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/embryology
- Brain/growth & development
- Brain/ultrastructure
- Cell Differentiation/physiology
- Cell Movement/physiology
- Cells, Cultured
- Down-Regulation/physiology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelin-3/genetics
- Endothelin-3/metabolism
- Endothelins/genetics
- Endothelins/metabolism
- Female
- Gene Expression Regulation, Developmental/physiology
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Male
- Microcirculation/embryology
- Microcirculation/growth & development
- Microcirculation/metabolism
- Microglia/metabolism
- Microglia/ultrastructure
- Microscopy, Electron, Transmission
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Endothelin/metabolism
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Chun-Yun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
The enteric nervous system is composed of both neurons and glia. Recent evidence indicates that enteric glia-which vastly outnumber enteric neurons-are actively involved in the control of gastrointestinal functions: they contain neurotransmitter precursors, have the machinery for uptake and degradation of neuroligands, and express neurotransmitter-receptors which makes them well suited as intermediaries in enteric neurotransmission and information processing in the ENS. Novel data further suggest that enteric glia have an important role in maintaining the integrity of the mucosal barrier of the gut. Finally, enteric glia may also serve as a link between the nervous and immune systems of the gut as indicated by their potential to synthesize cytokines, present antigen and respond to inflammatory insults. The role of enteric glia in human disease has not yet been systematically studied, but based on the available evidence it is predictable that enteric glia are involved in the etiopathogenesis of various pathological processes in the gut, particularly such with neuroinflammatory or neurodegenerative components.
Collapse
Affiliation(s)
- A Rühl
- Department of Human Biology, Technical University of Munich, Germany.
| |
Collapse
|
269
|
Xiang Z, Burnstock G. Expression of P2X receptors on rat microglial cells during early development. Glia 2005; 52:119-26. [PMID: 15920729 DOI: 10.1002/glia.20227] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have used single- and double-labeling immunfluorescence and reverse transcription-polymerase chain reaction (RT-PCR) methods to examine expression of P2X receptor subtypes on microglial cells of brain in late embryonic and postnatal rat, in the N9 microglial cell line and primary cultured microglial cells. P2X1, P2X4, and P2X7 receptors were shown on microglial cells from late embryonic day 16. Almost all the microglial cells that were positive for the marker ED1, expressed P2X1 and P2X4 receptors, whereas only about 30% of the cells with ED1-immunoreactivity were found to express the P2X7 receptor. Positive cells were localized mainly in the white matter and around ventricles. From postnatal day 7, many microglial cells with P2X4 receptor-immunoreactivity were seen around the blood vessels. At postnatal day 30, microglial cells with P2X1 receptor-immunoreactivity disappeared and the cells with P2X4 receptor-immunoreactivity were mainly localized around blood vessels and lining the subarachnoid space. From postnatal day 30, the microglial cells with P2X7 receptor-immunoreactivity were found to be distributed widely in the forebrain. Cells with P2X7 receptor-immunoreactivity from P30 were not labeled by ED1, but some were labeled by isolectin B4. The expression of P2X1, P2X4, and P2X7 receptor mRNA and protein on primary cultures of rat microglial cells and on the N9 microglial cell line was demonstrated with immunocytochemistry and RT-PCR. This is the first report that the P2X1 receptor is expressed on microglial cells, at least in early development, before postnatal day 30.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 200433 Shanghai, People's Republic of China
| | | |
Collapse
|
270
|
Raivich G. Like cops on the beat: the active role of resting microglia. Trends Neurosci 2005; 28:571-3. [PMID: 16165228 DOI: 10.1016/j.tins.2005.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 08/12/2005] [Accepted: 09/05/2005] [Indexed: 11/17/2022]
Abstract
Microglia form the first line of defence for the neural parenchyma. But do these cells pursue an active role in the normal brain, or do they become activated only after injury? Two papers published recently by Nimmerjahn et al. and Davalos et al. used in vivo two-photon laser-scanning microscopy reveal that the fine branches of 'resting' microglia are highly mobile, and provide extensive and continuous surveillance of their cellular environment. These moving branches show a rapid chemotactic response to tissue injury that depends on purine receptors and connexin hemichannels, and they appear to take cues from surrounding astrocytes both in the normal and the injured brain.
Collapse
Affiliation(s)
- Gennadij Raivich
- Perinatal Brain Repair Group, Department of Anatomy, Obstetrics and Gynaecology, University College London, Chenies Mews 86-96, London WC1E 6HX, UK.
| |
Collapse
|
271
|
Abstract
Transplantation of cells and tissues to the mammalian brain and CNS has revived the interest in the immunological status of brain and its response to grafted tissue. The previously held view that the brain was an absolute "immunologically privileged site" allowing indefinite survival without rejection of grafts of cells has proven to be wrong. Thus, the brain should be regarded as a site where immune responses can occur, albeit in a modified form, and under certain circumstances these are as vigorous as those seen in other peripheral sites. Clinical cell transplant trials have now been performed in Parkinson's disease, Huntington's disease, demyelinating diseases, retinal disorders, stroke, epilepsy, and even deafness, and normally are designed as cell replacement strategies, although implantation of genetically modified cells for supplementation of growth factors has also been tried. In addition, some disorders of the CNS for which cell therapies are being considered have an immunological basis, such as multiple sclerosis, which further complicates the situation. Embryonic neural tissue allografted into the CNS of animals and patients with neurodegenerative conditions survives, makes and receives synapses, and ameliorates behavioral deficits. The use of aborted human tissue is logistically and ethically complicated, which has lead to the search for alternative sources of cells, including xenogeneic tissue, genetically modified cells, and stem cells, all of which can and will induce some level of immune reaction. We review some of the immunological factors involved in transplantation of cells to CNS.
Collapse
Affiliation(s)
- Roger A Barker
- Cambridge Center for Brain Repair and Department of Neurology, Cambridge CB2 6SP, United Kingdom
| | | |
Collapse
|
272
|
Yuita H, Tsuiji M, Tajika Y, Matsumoto Y, Hirano K, Suzuki N, Irimura T. Retardation of removal of radiation-induced apoptotic cells in developing neural tubes in macrophage galactose-type C-type lectin-1-deficient mouse embryos. Glycobiology 2005; 15:1368-75. [PMID: 16096344 DOI: 10.1093/glycob/cwj028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MGL1/CD301a is a C-type lectin that recognizes galactose and N-acetylgalactosamine as monosaccharides and is expressed on limited populations of macrophages and dendritic cells at least in adult mice. In this study, pregnant mice with Mgl1+/- genotype were mated with Mgl1+/- or Mgl1-/- genotype males, and the embryos were used to assess a hypothesis that this molecule plays an important role in the clearance of apoptotic cells. After X-ray irradiation at 1 Gy of developing embryos at 10.5 days post coitus (d.p.c.), the number of Mgl1-/- pups was significantly reduced as compared with Mgl1+/+ pups. Distributions of MGL1-positive cells, MGL2-positive cells, and apoptotic cells were histologically examined in irradiated Mgl1+/+ embryos. MGL1-positive cells were detected in the neural tube in which many cells undergo apoptosis, whereas MGL2-positive cells were not observed. Biotinylated recombinant MGL1 bound a significant portion of the apoptotic cells. When Mgl1+/+ and Mgl1-/- embryos were examined for the presence of apoptotic cells, similar numbers of apoptotic cells gave rise, but the clearance of these cells was slower in Mgl1-/- embryos than in Mgl1+/+ embryos. These results strongly suggest that MGL1/CD301a is involved in the clearance of apoptotic cells. This process should be essential in the repair and normal development of X-ray-irradiated embryos.
Collapse
Affiliation(s)
- Hiroshi Yuita
- Department of Radiation Oncology, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Microglia, one of three glial cell types in the central nervous system (CNS), play an important role as resident immunocompetent and phagocytic cells in the CNS in the event of injury and disease. It was del Rio Hortega in 1927 who determined that microglia belong a distinct glial cell type apart from astrocytes and oligodendrocytes, and since 1970s there has been wide recognition that microglia are immune effectors in the CNS that respond to pathological conditions and participate in initiation and progression of neurological disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and acquired immune deficiency syndrome dementia complex by releasing potentially cytotoxic molecules such as proinflammatory cytokines, reactive oxygen intermediates, proteinases and complement proteins. There is also evidence to suggest that microglia are capable of secreting neurotrophic or neuron survival factors upon activation via inflammation or injury. It is thus timely to review current status of knowledge on biology and immunology of microglia, and consider new directions of investigation on microglia in health and disease.
Collapse
Affiliation(s)
- Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
274
|
Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cells. ACTA ACUST UNITED AC 2005; 48:220-33. [PMID: 15850661 DOI: 10.1016/j.brainresrev.2004.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 12/21/2022]
Abstract
In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical Biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
275
|
Wisniewski HM, Vorbrodt AW, Wegiel J, Morys J, Lossinsky AS. Ultrastructure of the cells forming amyloid fibers in Alzheimer disease and scrapie. AMERICAN JOURNAL OF MEDICAL GENETICS. SUPPLEMENT 2005; 7:287-97. [PMID: 1963537 DOI: 10.1002/ajmg.1320370757] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultrastructural, three-dimensional reconstruction of cells surrounding the amyloid star in classical plaques in Alzheimer disease (AD) and histochemical studies of the cells associated with the deposits of amyloid fibers in scrapie were carried out. These studies showed that in both diseases, the fibers appear within the smooth endoplasmic reticulum (ER) and infoldings of cytoplasmic membranes of microglia/macrophages. Additional information about the site of formation of the amyloid fibers derives from histochemical studies of the localization of nucleoside diphosphatase (NDPase) activity. In normal microglia, this enzyme is associated with smooth ER and cell membranes. In the cells that form amyloid fibers, the NDPase activity is associated with the newly formed amyloid fibers within the distended cisternae of ER and the finger-like cytoplasmic projections. In the center of the amyloid star, the NDPase activity disappears. The presence of NDPase-positive amyloid fibers in the same location, where the enzyme is found in non-amyloid-forming cells, further supports our conclusion that the microglia/macrophages are the source of amyloid deposits. These studies also show that in spite of the differences in the proteins that produce the amyloid fibers in AD and scrapie, in both diseases, the microglia/macrophages play a key role in amyloid formation.
Collapse
Affiliation(s)
- H M Wisniewski
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | | | |
Collapse
|
276
|
Cunningham C, Wilcockson DC, Boche D, Perry VH. Comparison of inflammatory and acute-phase responses in the brain and peripheral organs of the ME7 model of prion disease. J Virol 2005; 79:5174-84. [PMID: 15795301 PMCID: PMC1069550 DOI: 10.1128/jvi.79.8.5174-5184.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic neurodegenerative diseases such as prion disease and Alzheimer's disease (AD) are reported to be associated with microglial activation and increased brain and serum cytokines and acute-phase proteins (APPs). Unlike AD, prion disease is also associated with a peripheral component in that the presumed causative agent, PrPSc, also accumulates in the spleen and other lymphoreticular organs. It is unclear whether the reported systemic acute-phase response represents a systemic inflammatory response to prion disease or merely reflects central nervous system (CNS) inflammation. For this study, we investigated whether intracerebrally initiated prion disease (ME7 model) provokes splenic, hepatic, or brain inflammatory and acute-phase responses. We detected no significant elevation of proinflammatory cytokines or activation of macrophages in the spleens of these animals, despite clear PrPSc deposition. Similarly, at 19 weeks we detected no significant elevation of transcripts for the APPs serum amyloid A, complement C3, pentraxin 3, and alpha2-antiplasmin in the liver, despite CNS neurodegeneration and splenic PrPSc deposition at this time. However, despite the low CNS expression levels of proinflammatory cytokines, there was robust expression of these APPs in degenerating brains. These findings suggest that PrPSc is not a stimulus for splenic macrophages and that neither peripheral PrPSc deposition nor CNS neurodegeneration is sufficient to produce a systemic acute-phase response. We also propose that serum cytokine and APP measurements are not useful during preclinical disease. Possible consequences of the clear chronic elevation of APPs in the CNS are discussed.
Collapse
Affiliation(s)
- Colm Cunningham
- CNS Inflammation Group, School of Biological Sciences, Bassett Crescent East, Southampton, Hampshire SO16 7PX, United Kingdom.
| | | | | | | |
Collapse
|
277
|
Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, Finsen B. Microglial cell population dynamics in the injured adult central nervous system. ACTA ACUST UNITED AC 2005; 48:196-206. [PMID: 15850658 DOI: 10.1016/j.brainresrev.2004.12.009] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 11/22/2022]
Abstract
Reactive microgliosis is characteristic of trauma and stroke as well as inflammatory and chronic neurodegenerative disease. A conspicuous feature of the microglial reaction to acute neural injury is a massive expansion of the microglial cell population which peaks a few days following injury. New data based on the use of radiation bone marrow-chimeric mice suggest this expansion also involves recruitment of bone marrow-derived cells, which migrate into the neural parenchyma and differentiate into microglia. Here, we discuss the contribution of bone marrow-derived cells to the injury-induced expansion of the microglial cell population, seen in the dentate gyrus with ongoing anterograde axonal and terminal synaptic degeneration, subsequent to transection of the entorhino-dentate perforant path projection. In this paradigm of minor brain injury, the bone marrow-derived cells are grossly outnumbered by activated resident microglia, which express the stem cell antigen CD34 concurrent to a marked capacity for self-renewal. The observation of a mixed origin of lesion-reactive microglia, consisting of a smaller subpopulation of exogenous bone marrow-derived microglia, and a larger population of activated resident microglia, the majority of which express CD34 and undergo proliferation, suggests that lesion-reactive microglia consist of functionally distinct cell populations. The demonstration of an injury-enhanced recruitment of bone marrow-derived cells into the perforant path-denervated dentate gyrus, raises the possibility of using genetically manipulated cells as vectors for lesion-site-specific gene therapy even in minimally injured areas of the central nervous system.
Collapse
Affiliation(s)
- Rune Ladeby
- Medical Biotechnology Center, University of Southern Denmark, Odense C
| | | | | | | | | | | | | |
Collapse
|
278
|
Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol 2005; 109:141-50. [PMID: 15619128 DOI: 10.1007/s00401-004-0919-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 05/17/2004] [Accepted: 07/30/2004] [Indexed: 11/24/2022]
Abstract
Dementia is a frequent complication of Parkinson's disease (PD) and usually occurs late in the protracted course of the illness. We have already reported numerous MHC class II-positive microglia in the hippocampus in PD patients, and that this phenomenon may be responsible for functional changes in the neurons and the cognitive decline in PD patients. In this study, we have investigated the distribution of activated microglia and the immunohistochemical and the mRNA expression of several cytokines and neurotrophic factors of the hippocampus in PD and dementia with Lewy bodies (DLB). The brains from five cases of PD and five cases of DLB that were clinically and neuropathologically diagnosed, and those from four normal controls (NC) were evaluated by immunohistochemistry using anti-HLA-DP, -DQ, -DR (CR3/43), anti-alpha-synuclein, anti-brain-derived neurotrophic factor (BDNF), and anti-glial fibrillary acidic protein antibodies. In addition, the mRNA expressions of cytokines (IL-1alpha, IL-1beta, TNF-alpha, IL-6, TGF-beta) and neurotrophic factors (BDNF, GDNF, NGF, NT-3) of these brains were evaluated by the reverse transcription-PCR method. MHC class II-positive microglia were distributed diffusely in the hippocampus of PD and DLB brains. Although the cytoplasm of pyramidal and granular cells of the hippocampus in NC brains was strongly stained by anti-BDNF antibodies, it was only weakly stained in PD and DLB brains. The mRNA expression of IL-6 was significantly increased in the hippocampus of PD and DLB brains, and that of BDNF was significantly decreased in the hippocampus of DLB brains. The increased number of activated microglia and the production of neurotrophic cytokines such as IL-6, together with the decreased expression of the neurotrophic factors of neurons in the hippocampus of PD and DLB brains, may be related to functional cellular changes associated with dementia.
Collapse
Affiliation(s)
- Kazuhiro Imamura
- Department of Neurology, Okazaki City Hospital, 3-1 Goshoai, Kouryuuji-cho, 444-8553, Okazaki, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Shepherd D, Perry VH. Self-destruct programs in the processes of developing neurons. Curr Top Dev Biol 2005; 65:149-67. [PMID: 15642382 DOI: 10.1016/s0070-2153(04)65005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- David Shepherd
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | | |
Collapse
|
280
|
Duke DC, Moran LB, Turkheimer FE, Banati R, Graeber MB. Microglia in Culture: What Genes Do They Express? Dev Neurosci 2004; 26:30-7. [PMID: 15509896 DOI: 10.1159/000080709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 05/06/2004] [Indexed: 11/19/2022] Open
Abstract
The cell culture model utilized in this study represents one of the most widely used paradigms of microglia in vitro. After 14 days, microglia harvested from the neonatal rat brain are considered 'mature'. However, it is clear that this represents a somewhat arbitrary definition. In this paper, we provide a transcriptome definition of such microglial cells. More than 7,000 known genes and 1,000 expressed sequence tag clusters were analysed. 'Microglia genes' were defined as sequences consistently expressed in all microglia samples tested. Accordingly, 388 genes were identified as microglia genes. Another 1,440 sequences were detected in a subset of the cultures. Genes consistently expressed by microglia included genes known to be involved in the cellular immune response, brain tissue surveillance, microglial migration as well as proliferation. The expression profile reported here provides a baseline against which changes of microglia in vitro can be examined. Importantly, expression profiling of normal microglia will help to provide the presently purely operational definition of 'microglial activation' with a molecular biological correlate. Furthermore, the data reported here add to our understanding of microglia biology and allow projections as to what functions microglia may exert in vivo, as well as in vitro.
Collapse
Affiliation(s)
- D C Duke
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
281
|
Rezaie P, Dean A, Male D, Ulfig N. Microglia in the cerebral wall of the human telencephalon at second trimester. ACTA ACUST UNITED AC 2004; 15:938-49. [PMID: 15483047 DOI: 10.1093/cercor/bhh194] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have recently begun to gain a clearer understanding of the phasing and patterns of colonization of the developing human brain by microglia. In this study we investigated the distribution, morphology and phenotype of microglia specifically within the wall of the human telencephalon from 12 to 24 gestational weeks (gw), a period that corresponds to the development of thalamocortical fibres passing through the transient subplate region of the developing cerebral wall. Sections from a total of 45 human fetal brains were immunoreacted to detect CD68 and MHC class II antigens and histochemically reacted with RCA-1 and tomato lectins. These markers were differentially expressed by anatomically discrete populations of microglia in the cerebral wall: two cell populations were noted during the initial phase of colonization (12-14 gw): (i) CD68++ RCA-1+ MHC II- amoeboid cells aligned within the subplate, and (ii) RCA-1++ CD68- MHC II- progenitors in the marginal layer and lower cortical plate that progressively ramified within the subplate, without seemingly passing through an 'amoeboid' state. At this stage microglia were largely absent from the germinal layers and the intermediate zone. From 14 to 15 gw, however, MHC class II positive cells were also detected within germinal layers and in the corpus callosum, and these cells, which coexpressed CD68 antigen (a marker associated with phagocytosis), further populated the lower half of the telencephalon from 18 to 24 gw. These findings are discussed in relation to developmental events that take place during the second trimester within the wall of the telencephalon.
Collapse
Affiliation(s)
- Payam Rezaie
- Department of Biological Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | | |
Collapse
|
282
|
Mader K, Andermahr J, Angelov DN, Neiss WF. Dual mode of signalling of the axotomy reaction: retrograde electric stimulation or block of retrograde transport differently mimic the reaction of motoneurons to nerve transection in the rat brainstem. J Neurotrauma 2004; 21:956-68. [PMID: 15307907 DOI: 10.1089/0897715041526113] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Axotomy of a peripheral nerve causes a complex central response of neuronal perikarya, astroglia and microglia. The signal initiating this axotomy reaction is currently explained either by deprivation of target-derived trophic factors after interruption of transport (trophic hypothesis) or by electrophysiological disturbances of the axotomized neurons (electric hypothesis). In 108 adult Wistar rats we have compared the time course and intensity of the axotomy reaction in the hypoglossal nucleus after (1) resection of the nerve (permanent axotomy), (2) one-time electric stimulation (intact nerve, brief transient electric disturbance), and (3) colchicine block of transport (intact nerve, prolonged transient loss of trophic factors). Nerve resection activated microglia at 2-35 days post-operation (dpo), elevated GFAP in astrocytes at 3-35 dpo and increased CGRP in motoneurons at 2-15 dpo. Fluorogold prelabeling revealed neurophagocytosis and 25% neuron loss at 25 dpo. Colchicine block similarly activated microglia at 5-35 dpo, elevated GFAP at 7-35 dpo and upregulated CGRP at 7-25 dpo. Neurophagocytosis and 15% motoneuron loss were evident at 25 dpo. Electric stimulation (15 min, 4 Hz, 0.1 msec impulse, 2 mAmp) of the intact nerve activated microglia at 1-10 dpo, elevated astroglial GFAP-expression at 7-35 dpo, and upregulated CGRP at 1-10 dpo, but no neuron death and neurophagocytosis were detected. Hence electric stimulation elicited a faster, shorter-lasting response, but transport block as well as axotomy a slower, longer-lasting response. This suggests a dual mode of signaling: Onset and early phase of the axotomy reaction are triggered by electric disturbances, late phase and neuron death by deprivation of trophic factors.
Collapse
Affiliation(s)
- Konrad Mader
- Klinik für Unfallchirurgie, Hand- und Wiederherstellungschirurgie, St. Vinzenz Hospital, Köln, Germany.
| | | | | | | |
Collapse
|
283
|
Mitrasinovic OM, Robinson CC, Tenen DG, Lee YL, Poon C, Murphy GM. Biolistic expression of the macrophage colony stimulating factor receptor in organotypic cultures induces an inflammatory response. J Neurosci Res 2004; 77:420-9. [PMID: 15248298 DOI: 10.1002/jnr.20168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The receptor for macrophage colony-stimulating factor (M-CSFR; c-fms) is expressed at increased levels by microglia in Alzheimer's disease (AD) and in mouse models for AD. Increased expression of M-CSFR on cultured microglia results in a strong proinflammatory response, but the relevance of this cell culture finding to intact brain is unknown. To determine the effects of increased microglial expression of M-CSFR in a complex organotypic environment, we developed a system for biolistic transfection of microglia in hippocampal slice cultures. The promoter for the Mac-1 integrin alpha subunit CD11b is active in cells of myeloid origin. In the brain, CD11b expression is restricted to microglia. Constructs consisting of the promoter for CD11b and a c-fms cDNA or an enhanced green fluorescent protein (EGFP) cDNA were introduced into monotypic cultures of microglia, neurons, and astrocytes. Strong CD11b promoter activity was observed in microglia, whereas little activity was observed in other cell types. Biolistic transfection of organotypic hippocampal cultures with the CD11b/c-fms construct resulted in expression of the c-fms mRNA and protein that was localized to microglia. Furthermore, biolistic overexpression of M-CSFR on microglia resulted in significantly increased production by the hippocampal cultures of the proinflammatory cytokines interleukin (IL)-1alpha macrophage inflammatory protein (MIP-1alpha), and trends toward increased production of IL-6 and M-CSF. These findings demonstrate that microglial overexpression of M-CSFR in an organotypic environment induces an inflammatory response, and suggest that increased microglial expression of M-CSFR could contribute to the inflammatory response observed in AD brain.
Collapse
Affiliation(s)
- Olivera M Mitrasinovic
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5485, USA
| | | | | | | | | | | |
Collapse
|
284
|
Schuetz E, Thanos S. Neuro-glial interactions in the adult rat retina after reaxotomy of ganglion cells: examination of neuron survival and phagocytic microglia using fluorescent tracers. Brain Res Bull 2004; 62:391-6. [PMID: 15168904 DOI: 10.1016/j.brainresbull.2003.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 09/19/2003] [Accepted: 10/28/2003] [Indexed: 01/05/2023]
Abstract
Retinal ganglion cells (RGCs) regenerating through peripheral nerve grafts show enhanced survival after further axonal injury for at least 4 weeks [Restor. Neurol. Neurosci. 21 (2003) 11]. Here, we examined the survival of the neurons and their microglial phagocytosis in dependence of the site of reaxotomy. Therefore, the optic nerve in adult rats was transected at different distances from the eye cup and replaced with an autologous piece of sciatic nerve. After 14 days of axonal growth, the regenerated neurites were reaxotomized either within the remaining optic stump or within the graft and their cell bodies were retrogradely labeled. Reaxotomy of regenerated ganglion cells within the remaining optic nerve resulted in reduced (but not significant) ganglion cell survival and significant microglial phagocytosis in contrast to reaxotomy within the peripheral nerve graft. Furthermore, phagocytosis-dependent labeling using two different fluorescent tracers revealed that the same microglial cell can phagocytose further dying ganglion cells within 14 days after the first activation. The results suggest that the intrasciatic segments of axons receive some trophic support that is retrogradely transported and required to limit the microglial activation. The microglial capability to phagocytose dying neurons several fold emphasizes their function in permanent scavenging within the retina.
Collapse
Affiliation(s)
- Erik Schuetz
- Department of Experimental Ophthalmology, University Eye Hospital Münster, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
285
|
Wirenfeldt M, Dalmau I, Finsen B. Estimation of absolute microglial cell numbers in mouse fascia dentata using unbiased and efficient stereological cell counting principles. Glia 2003; 44:129-39. [PMID: 14515329 DOI: 10.1002/glia.10277] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stereology offers a set of unbiased principles to obtain precise estimates of total cell numbers in a defined region. In terms of microglia, which in the traumatized and diseased CNS is an extremely dynamic cell population, the strength of stereology is that the resultant estimate is unaffected by shrinkage or expansion of the tissue. The optical fractionator technique is very efficient but requires relatively thick sections (e.g., > or =20 microm after coverslipping) and the unequivocal identification of labeled cells throughout the section thickness. We have adapted our protocol for Mac-1 immunohistochemical visualization of microglial cells in thick (70 microm) vibratome sections for stereological counting within the murine hippocampus, and we have compared the staining results with other selective microglial markers: the histochemical demonstration of nucleotide diphosphatase (NDPase) activity and the tomato lectin histochemistry. The protocol gives sections of high quality with a final mean section thickness of >20 microm (h=22.3 microm +/- 0.64 microm), and with excellent rendition of Mac-1+ microglia through the entire height of the section. The NDPase staining gives an excellent visualization of microglia, although with this thickness, the intensity of the staining is too high to distinguish single cells. Lectin histochemistry does not visualize microglia throughout the section and, accordingly, is not suited for the optical fractionator. The mean total number of Mac-1+ microglial cells in the unilateral dentate gyrus of the normal young adult male C57BL/6 mouse was estimated to be 12,300 (coefficient of variation (CV)=0.13) with a mean coefficient of error (CE) of 0.06. The perspective of estimating microglial cell numbers using stereology is to establish a solid basis for studying the dynamics of the microglial cell population in the developing and in the injured, diseased and normal adult CNS.
Collapse
Affiliation(s)
- Martin Wirenfeldt
- Anatomy and Neurobiology, University of Southern Denmark, Odense C, Denmark.
| | | | | |
Collapse
|
286
|
Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 2003; 75:388-97. [PMID: 14612429 DOI: 10.1189/jlb.0303114] [Citation(s) in RCA: 406] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phenotypic differentiation of systemic macrophages that have infiltrated the central nervous system, pericytes, perivascular macrophages, and the "real" resident microglial cells is a major immunocytochemical and immunohistochemical concern for all users of cultures of brain cells and brain sections. It is not only important in assessing the purity of cell cultures; it is also of fundamental importance in the assessment of the pathogenetic significance of perivascular inflammatory phenomena within the brain. The lack of a single membranous and/or biochemical marker allowing conclusive identification of these cells is still a major problem in neurobiology. This review briefly discusses the functions of these cells and catalogs a large number of membranous and biochemical markers, which can assist in the identification of these cells.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Neuroimmunology Department, St. Vincent's Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
287
|
Bette M, Kaut O, Schäfer MKH, Weihe E. Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. J Comp Neurol 2003; 465:417-30. [PMID: 12966565 DOI: 10.1002/cne.10877] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serum tumor necrosis factor (TNF) functions as a mediator of the immune-to-brain axis. Numerous TNF receptor-mediated effects on the nervous system are described but the knowledge about the regional and cellular expression of TNF receptor p55TNFR and p75TNFR in vivo is far from being complete. It is unclear whether TNF mediates its neuroimmune effects alone or in combination with other factors, e.g., bacterial mitogens. Here, we investigated the distribution of TNFalpha, p55TNFR, and p75TNFR in normal mouse brain and examined the stimulus-specific effects of lipopolysaccharide (LPS) and staphylococcal enterotoxin B (SEB) on the expression of the cerebral TNF system. Both mitogens caused enhanced TNFalpha serum levels and induced c-fos mRNA in the paraventricular nucleus but exhibited different effects on the cerebral gene expression of the TNF system. LPS but not SEB rapidly induced TNFalpha mRNA in circumventricular organs (CVOs) followed by spreading of TNFalpha mRNA into brain parenchyma close to the CVOs. The p55TNFR gene was constitutively expressed in many neurons with high levels in brainstem motor nuclei and in neurons of the sensory mesencephalic trigeminal nucleus. Moderate levels of p75TNFR mRNA were seen in single cells scattered throughout the brain in a pattern resembling microglia. Neither LPS nor SEB modulated the p55TNFR gene expression in any region or cell type of the brain, and LPS but not SEB induced p75TNFR mRNA in the CVOs. Thus, enhanced TNF serum levels able to stimulate c-fos mRNA expression in the paraventricular nucleus did not necessarily result in a modulation of the cerebral TNF system.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Brain/drug effects
- Brain/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Lipopolysaccharides/pharmacology
- Mice
- Mitogens/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Michael Bette
- Department of Molecular Neuroscience, Institute of Anatomy and Cell Biology, Philipps-University Marburg, Robert-Koch-Strasse 8, 35033 Marburg, Germany.
| | | | | | | |
Collapse
|
288
|
The developmental loss of the ability of Purkinje cells to regenerate their axons occurs in the absence of myelin: an in vitro model to prevent myelination. J Neurosci 2003. [PMID: 12967994 DOI: 10.1523/jneurosci.23-23-08318.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axonal regeneration in the mammalian CNS is a property of immature neurons that is lost during development. Using organotypic culture of cerebellum, we have shown that in vitro Purkinje cells lose their regenerative capacity in parallel with the process of myelination. We have investigated whether myelination is involved in the age-dependent loss of regeneration of these neurons. By applying a high dose of bromodeoxyuridine in the culture medium of newborn cerebellar slices during the first 3 d in vitro, we have succeeded in obtaining cultures with oligodendrocyte depletion, together with a lack of ameboid microglia and enhancement of Purkinje cell survival. These cultures, after 14 d in vitro, are completely devoid of myelin. We have compared the ability of Purkinje cells to regenerate their axons in the presence or absence of myelin. Purkinje cells in cerebellar explants taken at birth, treated with bromodeoxyuridine and axotomized after 7 d in vitro, survive better than similar neurons in untreated cultures. However, despite the lack of myelin and the enhanced survival, Purkinje cells do not regenerate, whereas they do regenerate when the axotomy is done at postnatal day 0. Thus, the Purkinje cell developmental switch from axonal regeneration to lack of regeneration does not appear to be regulated by myelin.
Collapse
|
289
|
Abstract
Reactive gliosis, the cellular manifestation of neuroinflammation, is a pathological hallmark of neurodegenerative diseases including Parkinson's disease. The persistent gliosis observed in the Parkinson's disease substantia nigra (SN) and in humans and animals exposed to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) may represent a chronic inflammatory response that contributes to pathology. We have previously shown that in the absence of interleukin-6 (IL-6) dopaminergic neurons are more vulnerable to MPTP. Since IL-6 is both an autocrine and paracrine proliferation factor for CNS glia, we investigated reactive gliosis in MPTP-lesioned IL-6 (-/-) mice. While astrogliosis was similar in injured IL-6 (+/+) and IL-6 (-/-) SN pars compacta (pc), microgliosis was severely compromised in IL-6 (-/-) mice. In the absence of IL-6, an acute reactive microgliosis was transient with a complete absence of reactive microglia at day 7 post-lesion. Extensive reactive microgliosis was observed in the SNpc of MPTP-lesioned IL-6 (+/+) mice. Because glial derived inducible nitric oxide synthase (iNOS) has been implicated in dopaminergic cell death, we examined glial iNOS expression in the IL-6 genotypes to determine if it correlated with the greater vulnerability and reduced microgliosis observed in the MPTP-lesioned IL-6 (-/-) nigrostriatal system. Both reactive microglia and astrocytes expressed iNOS in the lesioned SNpc. In the IL-6 (-/-) mice, microglial iNOS expression diminished as reactive microgliosis declined. The data suggest IL-6 regulation of microglia activation, while iNOS expression appears to be secondary to cell activation.
Collapse
Affiliation(s)
- Hernan Cardenas
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA 94089, USA
| | | |
Collapse
|
290
|
Ma XC, Gottschall PE, Chen LT, Wiranowska M, Phelps CP. Role and mechanisms of interleukin-1 in the modulation of neurotoxicity. Neuroimmunomodulation 2003; 10:199-207. [PMID: 12584407 DOI: 10.1159/000068322] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 05/23/2002] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Recent studies on cerebral ischemia in the rat have demonstrated that administration of interleukin-1 receptor antagonist (IL-1ra) markedly reduces the volumes of infarcts which are associated with N-methyl-D-aspartate (NMDA)-mediated neurotoxicity. These observations suggested that endogenous interleukin-1 (IL-1) may be involved in the mediation of excitotoxic neuronal injury following ischemia. METHOD In the present studies, we examined the role of interleukin-1beta (IL-1beta) in NMDA-related and microglia-induced excitotoxicity in cocultures of mixed neurons and microglia. RESULTS Our observations in these mixed cultures indicated that addition of IL-1beta exaggerated NMDA and glutamate-evoked hippocampal neuron death. Addition of microglia, activated by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), to cocultures of cortical neurons and glia induced significantly greater neurotoxicity when compared with cocultures of cortical neurons and untreated microglia. This neurotoxicity did not require that activated glia be in cell-to-cell contact with neurons. Addition of either IL-1ra or the NMDA receptor antagonist MK-801 to cocultures of cortical neurons and activated glia partially reversed the neuronal damage mediated by activated microglia. Finally, IL-1beta concentrations in the supernatant of cocultures of cortical neurons and microglia treated by LPS and IFN-gamma were markedly increased when compared with coculture of neurons with untreated microglia. CONCLUSION These results suggest that both the NMDA receptor and the IL-1 receptor are involved in microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Xiaoling C Ma
- Department of Anatomy, University of South Florida, Tampa, Florida 336124-4799, USA
| | | | | | | | | |
Collapse
|
291
|
O'Banion MK, Kyrkanides S, Olschowka JA. Selective inhibition of cyclooxygenase-2 attenuates expression of inflammation-related genes in CNS injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 507:155-60. [PMID: 12664579 DOI: 10.1007/978-1-4615-0193-0_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- M Kerry O'Banion
- Department of Neurology, Department of Neurobiology & Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
| | | | | |
Collapse
|
292
|
Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 2003; 117:531-9. [PMID: 12617960 DOI: 10.1016/s0306-4522(02)00954-5] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Brain ischemia induces a marked response of resident microglia and hematopoietic cells including monocytes/macrophages. The present study was designed to assess the distribution of microglia/macrophages in cerebral ischemia using bone marrow chimera mice known to express enhanced green fluorescent protein (EGFP). At 24 h after middle cerebral artery occlusion (MCAO), many round-shaped EGFP-positive cells migrated to the ischemic core and peri-infarct area. At 48-72 h after MCAO, irregular round- or oval-shaped EGFP/ionized calcium-binding adapter molecule 1 (Iba 1)-positive cells increased in the transition zone, while many amoeboid-shaped or large-cell-body EGFP/Iba 1-positive cells were increased in number in the innermost area of ischemia. At 7 days after MCAO, many process-bearing ramified shaped EGFP/Iba 1-positive cells were detected in the transition to the peri-infarct area, while phagocytic cells were distributed in the transition to the core area of the infarction. The distribution of these morphologically variable EGFP/Iba 1-positive cells was similar up to 14 days from MCAO. The present study directly showed the migration and distribution of bone marrow-derived monocytes/macrophages and the relationship between resident microglia and infiltrated hematogenous element in ischemic mouse brain. It is important to study the distribution of intrinsic and extrinsic microglia/macrophage in ischemic brain, since such findings may allow the design of appropriate gene-delivery system using exogenous microglia/macrophages to the ischemic brain area.
Collapse
Affiliation(s)
- R Tanaka
- Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Cucchiarini M, Ren XL, Perides G, Terwilliger EF. Selective gene expression in brain microglia mediated via adeno-associated virus type 2 and type 5 vectors. Gene Ther 2003; 10:657-67. [PMID: 12692594 DOI: 10.1038/sj.gt.3301925] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglia represent a crucial cell population in the central nervous system, participating in the regulation and surveillance of physiological processes as well as playing key roles in the etiologies of several major brain disorders. The ability to target gene transfer vehicles selectively to microglia would provide a powerful new approach to investigations of mechanisms regulating brain pathologies, as well as enable the development of novel therapeutic strategies. In this study, we evaluate the feasibility of specifically and efficiently targeting microglia relative to other brain cells, using vectors based on two different serotypes of adeno-associated virus (AAV) carrying cell-type-specific transcriptional elements to regulate gene expression. Among a set of promoter choices examined, an element derived from the gene for the murine macrophage marker F4/80 was the most discriminating for microglia. Gene expression from vectors controlled by this element was highly selective for microglia, both in vitro and in vivo. To our knowledge, this is the first demonstration of selective expression of transferred genes in microglia using AAV-derived vectors, as well as the first utilization of recombinant AAV-5 vectors in any macrophage lineage. These results provide strong encouragement for the application of these vectors and this approach for delivering therapeutic and other genes selectively to microglia.
Collapse
Affiliation(s)
- M Cucchiarini
- Harvard Institutes of Medicine and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | |
Collapse
|
294
|
Dalmau I, Vela JM, González B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol 2003; 458:144-57. [PMID: 12596255 DOI: 10.1002/cne.10572] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entrance of mesodermal precursors into the developing CNS is the most well-accepted origin of microglia. However, the contribution of proliferation and death of recruited microglial precursors to the final microglial cell population remains to be elucidated. To investigate microglial proliferation and apoptosis during development, we combined proliferating cell nuclear antigen (PCNA) immunohistochemistry, in situ detection of nuclear DNA fragmentation (TUNEL), and caspase-3 immunohistochemistry with tomato lectin histochemistry, a selective microglial marker. The study was carried out in Wistar rats from embryonic day (E) 16 to postnatal day (P) 18 in cerebral cortex, subcortical white matter, and hippocampus. Proliferating microglial cells were found at all ages in the three brain regions and represented a significant fraction of the total microglial cell population. The percentage of microglia expressing PCNA progressively increased from the embryonic period (25-51% at E16) to a maximum at P9, when the great majority of microglia expressed PCNA (92-99%) in all the brain regions analyzed. In spite of the remarkable proliferation and expansion of the microglial population with time, the density of microglia remained quite constant in most brain regions because of the considerable growth of the brain during late prenatal and early postnatal periods. In contrast, apoptosis of microglia was detected only at certain times and was restricted to some ameboid cells in white matter and primitive ramified cells in gray matter, representing a small fraction of the microglial population. Therefore, our results point to proliferation of microglial precursors in the developing brain as a physiological mechanism contributing to the acquisition of the adult microglial cell population. In contrast, microglial apoptosis occurs only locally at certain developmental stages and thus seems less crucial for the establishment of the final density of microglia.
Collapse
Affiliation(s)
- Ishar Dalmau
- Departmet of Histology, Faculty of Medicine, Autonomous University of Barcelona, E-08193-Bellaterra, Spain
| | | | | | | | | |
Collapse
|
295
|
Abstract
Astrocyte glutamate release can modulate synaptic activity and participate in brain intercellular signaling. P2X7 receptors form large ion channels when activated by ATP or other ligands. Here we show that P2X7 receptors provide a route for excitatory amino acid release from astrocytes. Studies were performed using murine cortical astrocyte cultures. ATP produced an inward current in patch-clamped astrocytes with properties characteristic of P2X7 receptor activation: the current was amplified in low divalent cation medium, blocked by pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and more potently activated by 3'-O-(4-benzoyl)benzoyl ATP (BzATP) than by ATP itself. Measurement of current reversal potentials showed the relative BzATP-induced permeabilities to different substrates to be Na+, 1 > Cl-, 0.34 > N-methyl-D-glucamine, 0.27 > L-glutamate, 0.15 approximately D-aspartate, 0.16. Astrocytes exposed to BzATP also became permeable to Lucifer yellow, indicating a large channel opening. Release of L-glutamate and D-aspartate through P2X7 channels was confirmed using radiolabeled tracers. As with the inward current, release of glutamate and D-aspartate was induced by BzATP more potently than ATP, amplified in Ca2+/Mg2+-free medium, and blocked by PPADS or oxidized ATP. Efflux through P2X7 channels is a previously unrecognized route of ligand-stimulated, nonvesicular astrocyte glutamate release.
Collapse
|
296
|
Gomes WA, Mehler MF, Kessler JA. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev Biol 2003; 255:164-77. [PMID: 12618141 DOI: 10.1016/s0012-1606(02)00037-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic proteins (BMPs) promote astrocytic differentiation of cultured subventricular zone stem cells. To determine whether BMPs regulate the astrocytic lineage in vivo, transgenic mice were constructed that overexpress BMP4 under control of the neuron-specific enolase (NSE) promoter. Overexpression of BMP4 was first detectable by Western analysis on embryonic day 16 and persisted into the adult. The overexpression of BMP4 resulted in a remarkable 40% increase in the density of astrocytes in multiple brain regions accompanied by a decrease in the density of oligodendrocytes ranging between 11 and 26%, depending on the brain region and the developmental stage. No changes in neuron numbers or the pattern of myelination were detected, and there were no gross structural abnormalities. Similar phenotypes were observed in three independently derived transgenic lines. Coculture of transgenic neurons with neural progenitor cells significantly enhanced astrocytic lineage commitment by the progenitors; this effect was blocked by the BMP inhibitor Noggin, indicating that the stimulation of astrogliogenesis was due to BMP4 release by the transgenic neurons. These observations suggest that BMP4 directs progenitor cells in vivo to commit to the astrocytic rather than the oligodendroglial lineage. Further, differentiation of radial glial cells into astrocytes was accelerated, suggesting that radial glia were a source of at least some of the supernumerary astrocytes. Therefore, BMPs are likely important mediators of astrocyte development in vivo.
Collapse
Affiliation(s)
- William A Gomes
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
297
|
Polazzi E, Contestabile A. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 2003; 13:221-42. [PMID: 12405226 DOI: 10.1515/revneuro.2002.13.3.221] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microglia represent a major cellular component of the brain, where they constitute a widely distributed network of immunoprotective cells. During the last decades, it has become clear that the functions traditionally ascribed to microglia, i.e. to dispose of dead cells and debris and to mediate brain inflammatory states, are only a fraction of a much wider repertoire of functions spanning from brain development to aging and neuropathology. The aim of the present survey is to critically discuss some of these functions, focusing in particular on the reciprocal microglia-neuron interactions and on the complex signaling systems subserving them. We consider first some of the functional interactions dealing with invasion, proliferation and migration of microglia as well as with the establishment of the initial blueprint of neural circuits in the developing brain. The signals related to the suppression of immunological properties of microglia by neurons in the healthy brain, and the derangement from this physiological equilibrium in aging and diseases, are then examined. Finally, we make a closer examination of the reciprocal signaling between damaged neurons and microglia and, on these bases, we propose that microglial activation, consequent to neuronal injury, is primarily aimed at neuroprotection. The loss of specific communication between damaged neurons and microglia is viewed as responsible for the turning of microglia to a hyperactivated state, which allows them to escape neuronal control and to give rise to persistent inflammation, resulting in exacerbation of neuropathology. The data surveyed here point at microglial-neuron interactions as the basis of a complex network of signals conveying messages with high information content and regulating the most important aspects of brain function. This network shares similar features with some fundamental principles governing the activity of brain circuits: it is provided with memory and it continuously evolves in relation to the flow of time and information.
Collapse
|
298
|
Ke ZJ, DeGiorgio LA, Volpe BT, Gibson GE. Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 2003; 62:195-207. [PMID: 12578229 DOI: 10.1093/jnen/62.2.195] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative diseases are characterized by abnormalities in oxidative processes, region-selective neuron loss, and diminished thiamine-dependent enzymes. Thiamine deficiency (TD) diminishes thiamine dependent enzymes, alters mitochondrial function, impairs oxidative metabolism, and causes selective neuronal death. In mice, the time course of TD-induced changes in neurons and microglia were determined in the brain region most sensitive to TD. Significant neuron loss (29%) occurred after 8 or 9 days of TD (TD8-9) and increased to 90% neuron loss by TD10-11. The number of microglia increased 16% by TD8 and by nearly 400% on TD11. Hemeoxygenase-1 (HO-1)-positive microglia were not detectable at TD8, yet increased dramatically coincident with neuron loss. To test the duration of TD critical for irrevocable changes, mice received thiamine after various durations of TD. Thiamine administration on TD8 blocked further neuronal loss and induction of HO-1-positive microglia, whereas other microglial changes persisted. Thiamine only partially reversed effects on TD9, and was ineffective on TD10-11. These studies indicate that irreversible steps leading to neuronal death and induction of HO-1-positive microglia occur on TD9. The results indicate that TD induces alterations in neurons. endothelial cells, and microglia contemporaneously. This model provides a unique paradigm for elucidating the molecular mechanisms involved in neuronal commitment to neuronal death cascades and contributory microglial activity.
Collapse
Affiliation(s)
- Zun-Ji Ke
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University at Burke Medical Research Institute, White Plains, New York, USA
| | | | | | | |
Collapse
|
299
|
Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003; 101:1155-63. [PMID: 12393599 DOI: 10.1182/blood-2002-02-0569] [Citation(s) in RCA: 511] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the downstream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function.
Collapse
Affiliation(s)
- R Tedjo Sasmono
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
300
|
Abstract
The physiological role of basal laminae (BL) and connective tissue (meninges and their projections) in the adult brain is unknown. We recently described novel forms of BL, termed fractones, in the most neurogenic zone of the adult brain, the subependymal layer (SEL) of the lateral ventricle. Here, we investigated the organization of BL throughout the hypothalamus, using confocal and electron microscopy. New types of BL were identified. First, fractones, similar to those found in the lateral ventricle wall, were regularly arranged along the walls of the third ventricle. Fractones consisted of labyrinthine BL projecting from SEL blood vessels to terminate immediately beneath the ependyma. Numerous processes of astrocytes and of microglial cells directly contacted fractones. Second, another form of BL projection, termed anastomotic BL, was found between capillaries in dense capillary beds. The anastomotic BL enclosed extraparenchymal cells that networked with the perivascular cells coursing in the sheaths of adjacent blood vessels. Vimentin immunoreactivity was often detected in the anastomotic BL. In addition, the anastomotic BL overlying macrophages contained numerous fibrils of collagen. We also found that the BL located at the pial surface formed labyrinthine tube-like structures enclosing numerous fibroblast and astrocyte endfeet, with pouches of collagen fibrils at the interface between the two cell types. We suggest that cytokines and growth factors produced by connective tissue cells might concentrate in BL, where their interactions with extracellular matrix proteins might contribute to their effects on the overlying neural tissue, promoting cytogenesis and morphological changes and participating in neuroendocrine regulation.
Collapse
Affiliation(s)
- Frederic Mercier
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, California 92521, USA.
| | | | | |
Collapse
|