251
|
Gao J, Sepúlveda MS, Klinkhamer C, Wei A, Gao Y, Mahapatra CT. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos. CHEMOSPHERE 2015; 119:948-952. [PMID: 25303653 DOI: 10.1016/j.chemosphere.2014.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/21/2014] [Accepted: 08/15/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) are being incorporated and are known to be released from various consumer products such as textiles. However, no data are available on the toxicity of AgNPs released from any of these commercial products. In this study, we quantified total silver released from socks into wash water by inductively coupled plasma mass spectrometry (ICP-MS) and determined the presence of AgNPs using transmission electron microscopy (TEM). We then exposed zebrafish (Danio rerio) embryos for 72 h to either this leachate ("sock-AgNP") or to the centrifugate ("spun-AgNP") free of AgNPs and compared their toxicity to that of ionic silver (Ag(+)). Our data suggest that AgNPs do get released into the wash water, and centrifugation eliminated AgNPs but did not decrease total silver concentrations, indicating that most of the silver in the sock-AgNP solution was in the ionic form. All embryos died during the first 24 h when exposed to undiluted sock-AgNP and spun-AgNP solutions resulting in significantly lower LC50 values (0.14 and 0.26 mg L(-1)) compared to AgNO3 (0.80 mg L(-1)). Similarly, at 72 hpf, both sock-derived solutions were more potent at affecting hatching and inducing abnormal development. These results suggest that both sock-AgNP and spun-AgNP solutions were more toxic than AgNO3. Previous studies have consistently shown the opposite, i.e., AgNPs are about 10 times less toxic that Ag(+). All together our results show that the high toxicity induced by the leachate of these socks is likely not caused by AgNPs or Ag(+). More studies are needed to evaluate the toxicity of the myriad of AgNP-coated commercial products that are now estimated to be close to 500.
Collapse
Affiliation(s)
- Jiejun Gao
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, United States
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, United States
| | - Christopher Klinkhamer
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander Wei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Yu Gao
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, United States
| | - Cecon T Mahapatra
- Department of Forestry and Natural Resources and Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
252
|
Ecotoxicology of Nanomaterials in Aquatic Systems. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-08-099948-7.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
253
|
Shrivastava R, Kushwaha P, Bhutia YC, Flora SJS. Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health 2014; 32:1391-1404. [DOI: 10.1177/0748233714562623] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Silver (Ag) and gold nanoparticles (Au NPs) have wide applications. They are increasingly being used in the medical devices, biosensors, cancer cell imaging, and cosmetics. Increased applications of these NPs in the technological advances have also led to the risk of exposure to these particles. This study investigated the toxic effects of Ag and Au NPs (1 μM and 2 μM, oral) on mouse erythrocytes and tissues after 14 consecutive days’ exposure. Our results demonstrate significant increase in reactive oxygen species (ROS) and depletion of antioxidant enzyme status in erythrocytes and tissues. Hepatic and renal toxicity was evident from liver and kidney function tests. Inflammatory markers, interleukin-6 and nitric oxide synthase increased in plasma on administration following exposure to these NPs at both the doses. A more pronounced increase was noted in kidney metallothionein (MT) compared to liver MT on exposure to these NPs. Toxic potential of these NPs was further confirmed by increased 8-hydroxy-2′-deoxyguanosine levels in urine, a biomarker of DNA damage. Among the two NPs, Ag NP was more toxic at 2 μM dose compared to lower dose of 1 μM. The study suggests oxidative stress as the major mechanism responsible for the toxic manifestations induced by Ag and Au NPs.
Collapse
Affiliation(s)
- Rupal Shrivastava
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Pramod Kushwaha
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - Yang Chen Bhutia
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| | - SJS Flora
- Division of Regulatory Toxicology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
254
|
Contreras EQ, Puppala HL, Escalera G, Zhong W, Colvin VL. Size-dependent impacts of silver nanoparticles on the lifespan, fertility, growth, and locomotion of Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2716-23. [PMID: 25088842 PMCID: PMC4331122 DOI: 10.1002/etc.2705] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/23/2014] [Accepted: 07/29/2014] [Indexed: 05/19/2023]
Abstract
The increased bioavailability of nanoparticles engineered for good dispersion in water may have biological and environmental impacts. To examine this issue, the authors assessed the biological effects in nematodes as they relate to exposure to silver nanoparticles (AgNPs) of different sizes at low (1 mg/L Ag), medium (10 mg/L Ag), and high concentrations (100 mg/L Ag). Over multiple generations, the authors found that the smallest particle, at 2 nm, had a notable impact on nematode fertility. In contrast, the largest particle, at 10 nm, significantly reduced the lifespan of parent nematodes (P0 ) by 28.8% and over the span of 3 generations (F1 -F3). In addition, a computer vision system automatically measured the adverse effects in body length and motility, which were not size-dependent.
Collapse
Affiliation(s)
| | - Hema L. Puppala
- Department of Chemistry, Rice University, Houston, Texas, USA
| | | | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | - Vicki L. Colvin
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
255
|
Wu F, Zheng Y, Gao J, Chen S, Wang Z. Induction of oxidative stress and the transcription of genes related to apoptosis in rare minnow (Gobiocypris rarus) larvae with Aroclor 1254 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:254-260. [PMID: 25265027 DOI: 10.1016/j.ecoenv.2014.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of environmental contaminants widely dispersed in aquatic system. Recent data have shown that Aroclor 1254 (a highly chlorinated PCB mixture) has the potential to induce oxidative stress. The antioxidant genes are usually up-regulated in response to the oxidative stress. However, the mechanisms underlying the modulation are little known. We hypothesized that nuclear factors erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) might be involved in the regulation. In this study, rare minnow (Gobiocypris rarus) larvae were exposed to the Aroclor 1254 at four concentrations (5, 50, 500 and 5000μg/L) for 7 days. We found that the mRNA expressions of antioxidant genes (Cu/Zn-sod, Mn-sod, Cat, Gpx1 and Gclc) were strongly enhanced by Aroclor 1254 at high concentrations. H2O2 was significantly induced by 500 and 5000μg/L Aroclor 1254 exposure and protein thiol significantly decreased with 5000μg/L Aroclor 1254 exposure. The expression of Nrf2 and NF-κB were significantly up-regulated. Taken together, we proposed that the activation of Nrf2 and NF-κB by ROS might be a potential mechanism underlying the antioxidant gene expression induction in G. rarus larvae by Aroclor 1254. Furthermore, we investigated that the expression of genes related with apoptosis. The gene expression patterns reveal that waterborne Aroclor 1254-induced apoptosis is probably through DNA damage (p53 and p53 upregulated modulator of apoptosis (Puma)), disrupting mitochondrial membrane integrity (B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X (Bax)) and c-jin N-terminal kinase (JNK)-mediated apoptotic pathway (thioredoxin 1 (Trx1) and c-jun N-terminal kinase (JNK)). Aroclor 1254 at 5μg/L did not cause any changes in G. rarus. The findings will help us to understand the toxicological mechanism of Aroclor 1254 in fish and properly assess the risk of the environmental contaminant.
Collapse
Affiliation(s)
- Feili Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yao Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
256
|
Teng Y, Zou L, Huang M, Zong W. Molecular interaction of 2-mercaptobenzimidazole with catalase reveals a potentially toxic mechanism of the inhibitor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:241-6. [DOI: 10.1016/j.jphotobiol.2014.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
|
257
|
Cong Y, Banta GT, Selck H, Berhanu D, Valsami-Jones E, Forbes VE. Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:106-115. [PMID: 25179147 DOI: 10.1016/j.aquatox.2014.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/24/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
In this study, the toxicities of sediment-associated silver added to sediment as commercially available silver nanoparticles (Ag NPs, 20 and 80 nm) and aqueous Ag (AgNO3) to the estuarine polychaete, Nereis (Hediste) diversicolor, were investigated for both individual and subcellular endpoints after 10 d of exposure. Both Ag NP types were characterized in parallel to the toxicity studies and found to be polydispersed and overlapping in size. Burrowing activity decreased (marginally) with increasing Ag concentration and depended on the form of Ag added to sediment. All worms accumulated Ag regardless of the form in which it was added to the sediment, and worm size (expressed as dry weight) was found to significantly affect bioaccumulation such that smaller worms accumulated more Ag per body weight than larger worms. Lysosomal membrane permeability (neutral red retention time, NRRT) and DNA damage (comet assay tail moment and tail DNA intensity %) of Nereis coelomocytes increased in a concentration-dependent manner in all three Ag treatments. Ag NP treatments were more toxic than aqueous Ag for all toxicity endpoints, even though bioaccumulation did not differ significantly among Ag forms. No significant difference in toxicity was observed between the two Ag NP treatments which was attributed to their overlap in particle size.
Collapse
Affiliation(s)
- Yi Cong
- Department of Environmental Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000 Roskilde, Denmark; National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Gary T Banta
- Department of Environmental Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000 Roskilde, Denmark.
| | - Henriette Selck
- Department of Environmental Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000 Roskilde, Denmark.
| | - Deborah Berhanu
- Department of Mineralogy, Natural History Museum, London SW7 5BD, UK.
| | - Eugenia Valsami-Jones
- Department of Mineralogy, Natural History Museum, London SW7 5BD, UK; School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Valery E Forbes
- Department of Environmental Social and Spatial Change (ENSPAC), Roskilde University, PO Box 260, 4000 Roskilde, Denmark; School of Biological Sciences, University of Nebraska Lincoln, 348 Manter Hall, Lincoln, NE 68588-0118, USA.
| |
Collapse
|
258
|
Ribeiro F, Gallego-Urrea JA, Goodhead RM, Van Gestel CAM, Moger J, Soares AMVM, Loureiro S. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution. Nanotoxicology 2014; 9:686-95. [PMID: 25307070 DOI: 10.3109/17435390.2014.963724] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Raphidocelis subcapitata is a freshwater algae species that constitutes the basis of many aquatic trophic chains. In this study, R. subcapitata was used as a model species to investigate the kinetics of uptake and elimination of silver nanoparticles (AgNP) in comparison to silver nitrate (AgNO3) with particular focus on the Ag sized-fractions in solution. AgNP used in this study were provided in a suspension of 1 mg Ag/l, with an initial size of 3-8 nm and coated with an alkane material. Algae was exposed for 48 h to both AgNP and AgNO3 and sampled at different time points to determine their internal Ag concentration over time. Samples were collected and separated into different sized fractions: total (Agtot), water column Ag (Agwater), small particulate Ag (Agsmall.part.) and dissolved Ag (Agdis). At AgNO3 exposures algae reached higher bioconcentration factor (BCF) and lower elimination rate constants than at AgNP exposures, meaning that Ag is more readily taken up by algae in its dissolved form than in its small particulate form, however slowly eliminated. When modelling the kinetics based on the Agdis fraction, a higher BCF was found. This supports our hypothesis that Ag would be internalised by algae only in its dissolved form. In addition, algae images obtained by Coherent Anti-stokes Raman Scattering (CARS) microscopy demonstrated large aggregates of nanoparticles external to the algae cells with no evidence of its internalisation, thus providing a strong suggestion that these AgNP were not able to penetrate the cells and Ag accumulation happens through the uptake of Ag ions.
Collapse
Affiliation(s)
- Fabianne Ribeiro
- Department of Biology & CESAM, University of Aveiro , Aveiro , Portugal
| | | | | | | | | | | | | |
Collapse
|
259
|
Jang MH, Kim WK, Lee SK, Henry TB, Park JW. Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11568-11574. [PMID: 25171685 DOI: 10.1021/es5022813] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The increased use and disposal of silver nanoparticles (AgNPs) has led to their release from wastewater treatment plants into surface waters and concern over potential for negative effects in aquatic organisms. Investigations of the toxicity of AgNPs in fish have considered various species, exposure routes, and test end points; however, the toxicokinetics of total silver has not been studied in fish exposed to aqueous AgNPs. In this study, we investigated the toxicokinetics of total silver in common carp (Cayprinus carpio) exposed to AgNPs [0.62 ± 0.12 (mean ± standard deviation) mg L(-1)] for 7 days followed by a 2 week depuration period. During exposure and depuration, fish were sampled, tissues were excised (gills, brain, skeletal muscle, gastrointestinal tract, liver, and blood) and digested in acid, and total silver concentrations were analyzed by inductively coupled plasma-optical emission spectrometry. Total silver in tissues increased during the 7 day exposure, and mean concentrations were 5.61 mg/kg of liver, 3.32 mg/kg of gills, 2.93 mg/kg of gastrointestinal tract, 0.48 mg/kg of skeletal muscle, 0.14 mg/kg of brain, and 0.02 mg/kg of blood. Transmission electron microscopy energy-dispersive spectroscopy confirmed the presence of silver in the tissues. After depuration for 14 days, total silver returned to control levels in all tissues except liver (4.22 mg/kg), gastrointestinal tract (1.26 mg/kg), and gills (0.77 mg/kg).
Collapse
Affiliation(s)
- Min-Hee Jang
- Future Environmental Research Center, Korea Institute of Toxicology , Jinju 660-844, Republic of Korea
| | | | | | | | | |
Collapse
|
260
|
Gomes T, Pereira CG, Cardoso C, Sousa VS, Teixeira MR, Pinheiro JP, Bebianno MJ. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2014; 101:208-214. [PMID: 25066339 DOI: 10.1016/j.marenvres.2014.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles (Ag NPs) have emerged as one of the most commonly used NPs in a wide range of industrial and commercial applications. This has caused increasing concern about their fate in the environment as well as uptake and potential toxicity towards aquatic organisms. Accordingly, mussels Mytilus galloprovincialis were exposed to 10 μg L(-1) of Ag NPs and ionic silver (Ag+) for 15 days, and biomarkers of oxidative stress and metal accumulation were determined. Accumulation results show that both Ag NPs and Ag+ accumulated in both gills and digestive glands. Antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) were activated by Ag NPs and Ag+, showing different antioxidant patterns in both gills and digestive glands. Moreover, metallothionein was inducted in gills, directly related to Ag accumulation, while in the digestive glands only a small fraction of Ag seems to be associated with this protein. Lipid peroxidation was higher in gills exposed to Ag NPs, whereas in the digestive glands only Ag+ induced lipid peroxidation. Ag NPs and Ag+ cause oxidative stress with distinct modes of action and it's not clear if for Ag NPs the observed effects are attributed to free Ag+ ions associated with the nanoparticle effect.
Collapse
Affiliation(s)
- Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Catarina G Pereira
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Cátia Cardoso
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vânia Serrão Sousa
- CENSE and University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE and University of Algarve, Faculty of Sciences and Technology, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P Pinheiro
- CBME, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
261
|
Völker C, Kämpken I, Boedicker C, Oehlmann J, Oetken M. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clamSphaerium corneum. Nanotoxicology 2014; 9:677-85. [DOI: 10.3109/17435390.2014.963723] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
262
|
He Y, Chen S, Liu Z, Cheng C, Li H, Wang M. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels. Life Sci 2014; 115:44-51. [PMID: 25219884 DOI: 10.1016/j.lfs.2014.08.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/13/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
AIMS We synthesized selenium nanoparticles (SeNPs) and examined their toxicity in male rats at supranutritional and nonlethal doses. MAIN METHODS The SeNPs were administered daily by gavage at doses of 0.0, 0.2, 0.4, 0.8, 2.0, 4.0, or 8.0 mg Se/kg-body weight (bw) in 2 mL of 0.9% saline for 14 consecutive days. Body weight, viscera index and blood biochemical parameters were measured. Histopathological examination was performed on selected tissues, and liver tissue was examined for apoptotic cells. KEY FINDINGS Body weight decreased considerably in the groups given doses of 2.0, 4.0, and 8.0 mg Se/kg-bw, but increased in the groups given doses of 0.2 and 0.4 mg Se/kg-bw. The viscera index and some biochemical parameters in the 8.0 mg Se/kg-bw group differed from the control group. Lesions in the liver, kidneys, lungs, and thymus, and apoptotic liver cells were observed in the 4.0 and 8.0 mg Se/kg-bw groups. SIGNIFICANCE From this study, we conclude that supranutritional levels of SeNPs had no obvious toxic effects in rats, and could be used as potential candidates for cancer chemoprevention, although doses greater than 2.0 mg Se/kg-bw induced chronic toxicity.
Collapse
Affiliation(s)
- Yudan He
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Siyi Chen
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Zixun Liu
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Chu Cheng
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Hui Li
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China
| | - Minqi Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
263
|
Silver nanoparticles induce apoptotic cell death in cultured cerebral cortical neurons. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0019-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
264
|
Xu L, Shi C, Shao A, Li X, Cheng X, Ding R, Wu G, Chou LL. Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy. Nanotoxicology 2014; 9:513-22. [DOI: 10.3109/17435390.2014.948942] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Liming Xu
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Temple of Heaven, Beijing, People's Republic of China,
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, People's Republic of China,
- Baotou Medical College, Baotou, People's Republic of China,
| | - Chang Shi
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, Beijing, People's Republic of China,
| | - Anliang Shao
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Temple of Heaven, Beijing, People's Republic of China,
| | - Xuefei Li
- Baotou Medical College, Baotou, People's Republic of China,
- The First Affiliated Hospital, Baotou Medical College, Baotou, People's Republic of China,
| | - Xiang Cheng
- Institute for Medical Device Control, National Institutes for Food and Drug Control, Temple of Heaven, Beijing, People's Republic of China,
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China, and
| | - Rigao Ding
- Beijing Institute of Pharmacology and Toxicology, National Beijing Center for Drug Safety Evaluation and Research, Beijing, People's Republic of China,
| | - Gang Wu
- The First Affiliated Hospital, Baotou Medical College, Baotou, People's Republic of China,
| | - Laisheng Lee Chou
- Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| |
Collapse
|
265
|
Setyawati MI, Yuan X, Xie J, Leong DT. The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials 2014; 35:6707-15. [DOI: 10.1016/j.biomaterials.2014.05.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/01/2014] [Indexed: 12/19/2022]
|
266
|
Yang Y, Wang Y, Westerhoff P, Hristovski K, Jin VL, Johnson MVV, Arnold JG. Metal and nanoparticle occurrence in biosolid-amended soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 485-486:441-449. [PMID: 24742554 DOI: 10.1016/j.scitotenv.2014.03.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/25/2023]
Abstract
Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils.
Collapse
Affiliation(s)
- Yu Yang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States.
| | - Yifei Wang
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States
| | - Kiril Hristovski
- College of Technology and Innovation, Arizona State University at the Polytechnic Campus, Mesa, AZ 85212, United States
| | - Virginia L Jin
- USDA - Agricultural Research Service, University of Nebraska-Lincoln, East Campus, Lincoln, NE 68583-0937, United States
| | - Mari-Vaughn V Johnson
- USDA - Natural Resources Conservation Service, Grassland, Soil, and Water Research Laboratory, Temple, TX 76502, United States
| | - Jeffrey G Arnold
- USDA - Agricultural Research Service, Grassland, Soil, and Water Research Laboratory, Temple, TX 76502, United States
| |
Collapse
|
267
|
Nickel Oxide Nanoparticles Induce Oxidative Stress and Morphological Changes on Marine Chlorella vulgaris. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amr.955-959.956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The status of oxidative stress of marineChlorella vulgariswas investigated via measuring the content of H2O2, MDA, SOD and CAT in cells after 72h NiO nanoparticles (nNiO) exposure. Morphological changes of algal cells were also determined by transmission electron microscopy (TEM). The results showed that nNiO induced the ROS generation and stimulated the antioxidant defense system of algae. Significant increases (p < 0.01) in MDA level and SOD activity were found after 72h 10 mg L-1nNiO treatment. H2O2content and CAT activity also increased under higher concentration treatments although non-significant. The disruption of plasma membrane and the disordered thylakoid lamella of algal cells were found under nNiO exposure, which indicated cell morphological changes. Our results implied that oxidative damage was one of toxic causes of nanoparticles on algae. It also indicates the potential impacts on aquatic biota by nanomaterials.
Collapse
|
268
|
Fent K, Chew G, Li J, Gomez E. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity in vitro and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 482-483:125-36. [PMID: 24642098 DOI: 10.1016/j.scitotenv.2014.02.109] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 02/22/2014] [Accepted: 02/23/2014] [Indexed: 05/14/2023]
Abstract
Benzotriazole UV-stabilizers (BUVs) are applied in materials for protection against UV-irradiation. They are widely used, bioaccumulate and share structural similarities to benzotriazole. Benzotriazole (1HBT) finds application as corrosion inhibitor in dishwashing detergents, antifreeze (vehicles) and aircraft de-icing agent. BUVs and 1HBT are persistent and ubiquitous in the aquatic environment, but there is little understanding of the ecotoxicological implications. Here, we comparatively analyze the hormonal activity in vitro and effects in zebrafish eleuthero-embryos in vivo. 2-(2-Hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (UV-326), UV-327, UV-328, UV-329 and UV-320 showed no estrogenicity (YES assay) and androgenicity (YAS assay). However, UV-P and 1HBT showed significant antiandrogenic activity. We assessed the transcription profiles of up to 26 genes associated with different toxicological pathways in zebrafish eleuthero-embryos to elucidate potential modes of action of UV-P, UV-326 and 1HBT. Embryos were experimentally exposed for 144hpf to three measured concentrations of 15.8, 70.8, and 690μg/L UV-P, 7.5, 31.7, and 84.3μg/L UV-326 and 7.9, 97.3 and 1197.3μg/L 1HBT. Among the 26 transcripts, the induction of the aryl hydrocarbon receptor (AHR) pathway by UV-P and UV-326 was the most significant finding. UV-P led to dose-related induction of AHR1, ARNT2 and cyp1a1, as well as of phase II enzymes glutathione-S-transferase (gstp1) and ugt1a. UV-326 led to a significant induction of cyp1a1 and AHR2, but down-regulation of gstp1 at 84μg/L. Only little transcriptional alterations occurred in genes related to apoptosis, oxidative stress, hormone receptors, and steroidogenesis including aromatase. 1HBT led to only a few expressional changes at 1197μg/L. Our data lead to the conclusion that UV-P and UV-326 activate the AHR-pathway, whereas 1HBT shows only little transcriptional alterations. It should be noted, however, that effects have been observed at concentration much higher than those occurring in the environment. Forthcoming studies should show whether the observed antiandrogenic activities and transcriptional changes translate into physiological effects .
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| | - Geraldine Chew
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Jun Li
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Elena Gomez
- UMR Hydrosciences - Université Montpellier 1, DSESP - Faculté de Pharmacie, BP 1449115, Av. Charles Flahault, F-34093 Montpellier Cedex 05, France
| |
Collapse
|
269
|
Zhong JX, Zhou L, Li Z, Wang Y, Gui JF. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis. Cell Death Differ 2014; 21:1013-24. [PMID: 24608793 PMCID: PMC4013518 DOI: 10.1038/cdd.2014.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.
Collapse
Affiliation(s)
- J-X Zhong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - L Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Z Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - Y Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| | - J-F Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate University of the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
270
|
Jiang HS, Qiu XN, Li GB, Li W, Yin LY. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1398-1405. [PMID: 24619507 DOI: 10.1002/etc.2577] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/18/2013] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used commercially because of their antibacterial properties. Oxidative stress is known to be involved in the toxicity of AgNPs to bacteria, animals, and algae. The authors used Spirodela polyrhiza to investigate whether AgNPs can induce oxidative stress in higher plants. Results showed that there was a dose-dependent increase in levels of reactive oxygen species, superoxide dismutase and peroxidase activity, and the antioxidant glutathione content in 6-nm AgNP treatments. Catalase activity and malondialdehyde content in 6-nm AgNP treatments was significantly higher than the control at silver concentrations of 5 mg L(-1) . Superoxide dismutase and catalase activity and antioxidant glutathione and malondialdehyde content were not significantly different at 10 mg L(-1) of AgNPs (6 nm and 20 nm). Treatment with 20 µg L(-1) Ag(+) (the amount almost equal to 10 mg L(-1) AgNPs released) did not change the reactive oxygen species level or antioxidant enzymes activity. Micron-sized Ag particles had no effect on S. polyrhiza. Transmission electron microscopy showed that, compared with the control, chloroplasts in S. polyrhiza treated with 6-nm and 20-nm AgNPs accumulated starch grains and had reduced intergranal thylakoids. These results clearly indicate that AgNPs are able to cause oxidative stress and affect the chloroplast structure and function of S. polyrhiza, and this effect was not caused by Ag(+) released from particles.
Collapse
Affiliation(s)
- Hong-Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
271
|
Gopalakrishnan Nair PM, Chung IM. Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:719-725. [PMID: 24652625 DOI: 10.1007/s00128-014-1254-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
The expression of cell cycle genes and DNA mismatch repair (MMR) genes were analyzed in Arabidopsis thaliana seedlings exposed to 0, 0.2, 0.5 and 1 mg/L of silver nanoparticles for 24, 48 and 72 h using real-time PCR. Significant up-regulation of AtPCNA1 was observed after 24 h exposure to 0.2 and 0.5 mg/L of silver nanoparticles. AtPCNA2 gene was up-regulated after 24, 48 and 72 h exposure to 0.5 and 1 mg/L of silver nanoparticles. AtMLH1 gene was up-regulated after 48 h exposure to 0.5 and 1 mg/L of silver nanoparticles and down-regulated after 72 h. Down-regulation of AtMSH2, AtMSH3, AtMSH6 and AtMSH7 mRNA was observed after exposure to all concentrations of silver nanoparticles for different time periods. Exposure to silver ions showed no significant change in the expression levels of AtPCNA and MMR genes. The results show that AtPCNA and MMR genes could be used as potential molecular biomarkers.
Collapse
Affiliation(s)
- Prakash M Gopalakrishnan Nair
- Department of Applied Biosciences, College of Life and Environmental Sciences, Konkuk University, Seoul, South Korea
| | | |
Collapse
|
272
|
Pavagadhi S, Sathishkumar M, Balasubramanian R. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment. WATER RESEARCH 2014; 55:280-291. [PMID: 24631877 DOI: 10.1016/j.watres.2014.02.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
The present study aimed at evaluating the uptake of two widely used nanoparticles (NPs), namely, silver (Ag) and titanium dioxide (TiO2) NPs by zebrafish embryos under different simulated environmental conditions. AgNPs and TiO2NPs are widely used in a number of consumer products, and are thus likely to be introduced into the aquatic environments from both domestic and industrial sources. These NPs could interact with other contaminants in aquatic systems, which could affect their uptake by fish and biodistribution kinetics. To provide insights into these interactions, uptake studies were conducted in the presence of 12 elements and 3 major inorganic nutrients using (1) single (AgNPs and TiO2NPs separately), (2) binary (containing either both AgNPs and TiO2NPs or one of the NPs and elements/nutrients) and (3) multi-components (conducted in real water samples collected from a tropical reservoir). In addition to the uptake of NPs, mortality, hatchability and heart rates of zebrafish embryos were also measured as part of these experiments. Results showed that AgNPs were taken up by the embryos to a larger extent as compared to TiO2NPs. Moreover, AgNPs were more toxic to zebrafish embryos as compared to TiO2NPs. In the presence of elements (5 μg mL(-1)) and nutrients (5 and 10 μg mL(-1)) together with one of the two NPs (10 μg mL(-1)), both an increase and a decrease in the uptake of NPs were observed in embryos. Results from this exploratory study show that in the presence of environmental contaminants, the uptake of these NPs can be affected significantly. Furthermore, the toxic effects of NPs depend not only on their relative environmental concentrations, but also on those of other environmental pollutants.
Collapse
Affiliation(s)
- Shruti Pavagadhi
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Muthuswamy Sathishkumar
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rajasekhar Balasubramanian
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
273
|
Inkielewicz-Stepniak I, Santos-Martinez MJ, Medina C, Radomski MW. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int J Nanomedicine 2014; 9:1677-87. [PMID: 24729703 PMCID: PMC3979695 DOI: 10.2147/ijn.s59172] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Silver nanoparticles (AgNPs) and fluoride (F) are pharmacological agents widely used in oral medicine and dental practice due to their anti-microbial/anti-cavity properties. However, risks associated with the co-exposure of local cells and tissues to these xenobiotics are not clear. Therefore, we have evaluated the effects of AgNPs and F co-exposure on human gingival fibroblast cells. Methods Human gingival fibroblast cells (CRL-2014) were exposed to AgNPs and/or F at different concentrations for up to 24 hours. Cellular uptake of AgNPs was examined by transmission electron microscopy. Downstream inflammatory effects and oxidative stress were measured by real-time quantitative polymerase chain reaction (PCR) and reactive oxygen species (ROS) generation. Cytotoxicity and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and real-time quantitative PCR and flow cytometry, respectively. Finally, the involvement of mitogen-activated protein kinases (MAPK) was studied using Western blot. Results We found that AgNPs penetrated the cell membrane and localized inside the mitochondria. Co-incubation experiments resulted in increased oxidative stress, inflammation, and apoptosis. In addition, we found that co-exposure to both xenobiotics phosphorylated MAPK, particularly p42/44 MAPK. Conclusion A combined exposure of human fibroblasts to AgNPs and F results in increased cellular damage. Further studies are needed in order to evaluate pharmacological and potentially toxicological effects of AgNPs and F on oral health.
Collapse
Affiliation(s)
| | - Maria Jose Santos-Martinez
- The School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland ; School of Medicine, Trinity College Dublin, Dublin, Ireland ; Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Carlos Medina
- The School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland ; Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Marek W Radomski
- The School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland ; Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
274
|
Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS. In vitro assay for the toxicity of silver nanoparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp Biochem Physiol C Toxicol Pharmacol 2014; 161:41-52. [PMID: 24524868 DOI: 10.1016/j.cbpc.2014.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Silver nanoparticles (Ag-NPs) are used in commercial products for their antimicrobial properties. The Ag-NPs in some of these products are likely to reach the aquatic environment, thereby posing a health concern for humans and aquatic species. The silver nanoparticles were synthesized and characterized using, UV-vis spectra, Dynamic light scattering (DLS) and Transmission electron microscopy (TEM) analysis. Acute toxicity tests on fish were conducted by exposing Catla catla and Labeo rohita for 96h to AgNO3 and Ag-NPs under static conditions. The cytotoxic effect of AgNO3 and Ag-NPs in Sahul India C. catla heart cell line (SICH), Indian C. catla gill cell line (ICG) and L. rohita gill cell line (LRG) was assessed using MTT and neutral red (NR) assay. Linear correlations between each in vitro EC50 and the in vivo LC50 data were highly significant. DNA damage and nuclear fragmentation (condensation) were assessed by comet assay and Hoechst staining, respectively in SICH, ICG and LRG cells exposed to Ag-NPs. The results of antioxidant parameter obtained show significantly increased lipid peroxidation (LPO) level and decreased level of GSH, SOD and CAT in SICH, ICG and LRG cell lines after exposure to increasing Ag-NPs in a concentration-dependent manner. This work proves that fish cell lines could be used as an alternative to whole animals using cytotoxicity tests, genotoxicity tests and oxidative stress assessment after exposure to nanoparticles.
Collapse
Affiliation(s)
- G Taju
- OIE Reference Laboratory for WTD, Aquaculture Biotechnology Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu 632 509, India
| | - S Abdul Majeed
- OIE Reference Laboratory for WTD, Aquaculture Biotechnology Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu 632 509, India
| | - K S N Nambi
- OIE Reference Laboratory for WTD, Aquaculture Biotechnology Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu 632 509, India
| | - A S Sahul Hameed
- OIE Reference Laboratory for WTD, Aquaculture Biotechnology Laboratory, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Tamil Nadu 632 509, India.
| |
Collapse
|
275
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
276
|
He X, Aker WG, Leszczynski J, Hwang HM. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal 2014; 22:128-146. [PMID: 24673910 PMCID: PMC9359143 DOI: 10.1016/j.jfda.2014.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
In this report, we critically reviewed selected intrinsic physicochemical properties of engineered nanomaterials (ENMs) and their role in the interaction of the ENMs with the immediate surroundings in representative aquatic environments. The behavior of ENMs with respect to dynamic microenvironments at the nano–bio–eco interface level, and the resulting impact on their toxicity, fate, and exposure potential are elaborated. Based on this literature review, we conclude that a holistic approach is urgently needed to fulfill our knowledge gap regarding the safety of discharged ENMs. This comparative approach affords the capability to recognize and understand the potential hazards of ENMs and their toxicity mechanisms, and ultimately to establish a quantitative and reliable system to predict such outcomes.
Collapse
|
277
|
Chatterjee N, Eom HJ, Choi J. Effects of silver nanoparticles on oxidative DNA damage-repair as a function of p38 MAPK status: a comparative approach using human Jurkat T cells and the nematode Caenorhabditis elegans. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:122-133. [PMID: 24347047 DOI: 10.1002/em.21844] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/19/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
The large-scale use of silver nanoparticles (AgNPs) has raised concerns over potential impacts on the environment and human health. We previously reported that AgNP exposure causes an increase in reactive oxygen species, DNA damage, and induction of p38 MAPK and PMK-1 in Jurkat T cells and in Caenorhabditis elegans. To elucidate the underlying mechanisms of AgNP toxicity, here we evaluate the effects of AgNPs on oxidative DNA damage-repair (in human and C. elegans DNA glycosylases hOGG1, hNTH1, NTH-1, and 8-oxo-GTPases-hMTH1, NDX-4) and explore the role of p38 MAPK and PMK-1 in this process. Our comparative approach examined viability, gene expression, and enzyme activities in wild type (WT) and p38 MAPK knock-down (KD) Jurkat T cells (in vitro) and in WT and pmk-1 loss-of-function mutant strains of C. elegans (in vivo). The results suggest that p38 MAPK/PMK-1 plays protective role against AgNP-mediated toxicity, reduced viability and greater accumulation of 8OHdG was observed in AgNP-treated KD cells, and in pmk-1 mutant worms compared with their WT counterparts, respectively. Furthermore, dose-dependent alterations in hOGG1, hMTH1, and NDX-4 expression and enzyme activity, and survival in ndx-4 mutant worms occurred following AgNP exposure. Interestingly, the absence or depletion of p38 MAPK/PMK-1 caused impaired and additive effects in AgNP-induced ndx-4(ok1003); pmk-1(RNAi) mutant survival, and hOGG1 and NDX-4 expression and enzyme activity, which may lead to higher accumulation of 8OHdG. Together, the results indicate that p38 MAPK/PMK-1 plays an important protective role in AgNP-induced oxidative DNA damage-repair which is conserved from C. elegans to humans.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 130-743, Korea
| | | | | |
Collapse
|
278
|
Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escuredo K, Rainieri S. Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 2014; 34:562-75. [PMID: 24395442 DOI: 10.1002/jat.2975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/22/2013] [Accepted: 11/15/2013] [Indexed: 01/28/2023]
Abstract
A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.
Collapse
Affiliation(s)
- Maider Olasagasti
- AZTI-Tecnalia, Food Research Division, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | | | | | | | | | | | | |
Collapse
|
279
|
McQuillan JS, Shaw AM. Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 2014; 8 Suppl 1:177-84. [PMID: 24392705 DOI: 10.3109/17435390.2013.870243] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report the whole-transcriptome response of Escherichia coli bacteria to acute treatment with silver nanoparticles (AgNPs) or silver ions [Ag(I)] as silver nitrate using gene expression microarrays. In total, 188 genes were regulated by both silver treatments, 161 were up-regulated and 27 were down-regulated. Significant regulation was observed for heat shock response genes in line with protein denaturation associated with protein structure vulnerability indicating Ag(I)-labile -SH bonds. Disruption to iron-sulphur clusters led to the positive regulation of iron-sulphur assembly systems and the expression of genes for iron and sulphate homeostasis. Further, Ag ions induced a redox stress response associated with large (>600-fold) up-regulation of the E. coli soxS transcriptional regulator gene. Ag(I) is isoelectronic with Cu(I), and genes associated with copper homeostasis were positively regulated indicating Ag(I)-activation of copper signalling. Differential gene expression was observed for the silver nitrate and AgNP silver delivery. Nanoparticle delivery of Ag(I) induced the differential regulation of 379 genes; 309 genes were uniquely regulated by silver nanoparticles and 70 genes were uniquely regulated by silver nitrate. The differential silver nanoparticle-silver nitrate response indicates that the toxic effect of labile Ag(I) in the system depends upon the mechanism of delivery to the target cell.
Collapse
Affiliation(s)
- Jonathan S McQuillan
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter , Exeter , UK
| | | |
Collapse
|
280
|
Oliveira E, Santos HM, Garcia-Pardo J, Diniz M, Lorenzo J, Rodríguez-González B, Capelo JL, Lodeiro C. Synthesis of functionalized fluorescent silver nanoparticles and their toxicological effect in aquatic environments (Goldfish) and HEPG2 cells. Front Chem 2013; 1:29. [PMID: 24790957 PMCID: PMC3988373 DOI: 10.3389/fchem.2013.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/13/2013] [Indexed: 01/24/2023] Open
Abstract
Silver nanoparticles, AgNPs, are widely used in our daily life, mostly due to their antibacterial, antiviral, and antifungal properties. However, their potential toxicity remains unclear. In order to unravel this issue, emissive AgNPs were first synthetized using an inexpensive photochemical method, and then their permeation was assessed in vivo in goldfish and in vitro in human hepatoma cells (HepG2). In addition, the oxidative stress caused by AgNPs was assessed in enzymes such as glutathione-S-transferase (GST), catalase (CAT), and in lipid peroxidation (LPO). This study demonstrates that the smallest sized AgNPs@3 promote the largest changes in gold fish livers, whereas AgNPs@1 were found to be toxic in HEPG2 cells depending on both the size and functionalized/stabilizer ligand.
Collapse
Affiliation(s)
- Elisabete Oliveira
- Bioscope Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon Lisbon, Portugal ; Veterinary Science Departments, CECAV, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Hugo M Santos
- Bioscope Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon Lisbon, Portugal
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | - Mário Diniz
- Bioscope Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon Lisbon, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona Bellaterra, Barcelona, Spain
| | | | - José L Capelo
- Bioscope Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon Lisbon, Portugal
| | - Carlos Lodeiro
- Bioscope Group, REQUIMTE, Chemistry Department, Faculty of Science and Technology, University Nova of Lisbon Lisbon, Portugal
| |
Collapse
|
281
|
Yu WJ, Son JM, Lee J, Kim SH, Lee IC, Baek HS, Shin IS, Moon C, Kim SH, Kim JC. Effects of silver nanoparticles on pregnant dams and embryo-fetal development in rats. Nanotoxicology 2013; 8 Suppl 1:85-91. [DOI: 10.3109/17435390.2013.857734] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wook-Joon Yu
- Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea,
| | - Jung-Mo Son
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - Jinsoo Lee
- Korea Institute of Toxicology, KRICT, Daejeon, Republic of Korea,
| | - Sung-Hwan Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - In-Chul Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - Hyung-Seon Baek
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
- Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - Sung-Ho Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea, and
| |
Collapse
|
282
|
Oliveira E, Casado M, Faria M, Soares AMVM, Navas JM, Barata C, Piña B. Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology 2013; 8 Suppl 1:92-9. [PMID: 24266889 DOI: 10.3109/17435390.2013.858376] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The progressive practical applications of engineered nanoparticles results in their ever-increasing release into the environment. Accurate assessment of their environmental and health risks requires the development of methods allowing their monitoring in different environmental compartments and the evaluation of their potential toxicity at different levels of organization. Toxic effects of third-generation (G3) and fourth-generation (G4) poly(amidoamine) dendrimers (ethylenediamine cored, imine-terminated) were assessed on zebrafish embryos during the first two days post-fertilization. Particle characterization by dynamic light scattering showed no tendency to form aggregates in the assay conditions. G3 particles showed somewhat a higher acute toxicity than G4 particles, with LC50 values of 1.8 and 2.3 mg/L, respectively. At sublethal concentrations, both particles affected the zebrafish transcriptome following similar patterns, suggesting a similar mode of action. About 700 transcripts were affected by at least one of the treatments, following a pattern with significant correlations to the effects of bacterial infection in zebrafish embryos. We concluded that the response to G3 and G4 dendrimers was consistent with the activation of the innate immune response, a still unreported potential effect of these particles. These data may contribute to the characterization of hazards of these nanomaterials for both human health and the environment.
Collapse
|
283
|
Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages - comparative study. Interdiscip Toxicol 2013; 6:67-73. [PMID: 24179431 PMCID: PMC3798858 DOI: 10.2478/intox-2013-0012] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 11/20/2022] Open
Abstract
At present, nanoparticles are beginning to influence our lives in many ways and understanding the environmental health and safety aspect of nanomaterials has become a crucial issue. The aim of the work was to assess and compare the acute toxicity of 31 different nanomaterials to fish mature individuals Danio rerio with that to fish early life stages on using evaluation of the 48- and 96- hour LC50 values. A further aim was to evaluate teratogenicity of the nanoparticles tested to fish eggs. The nanoparticles tested were: 8 pure metals, 10 metal oxides, 5 other metal compounds and their mixtures, 2 silicon compounds, 3 calcium compounds, and 3 carbon compounds. Using 48-h and 96-h tests of acute toxicity (according to OECD 203), we evaluated mortality data, LC50 values, occurrence of malformations, as well as hatching time. In our study, 6 kinds of nanoparticles – calcium oxide, copper, copper in the form of oxide and CuZnFe4O4, magnesium oxide, and nickel – caused cumulative mortality. Two kinds of nanoparticles – copper and silver – were toxic for fish with LC50 values of approximately 3 mg/L. We did not observe marked differences between the 48-hour and 96-hour acute toxicity LC50 values, yet the possibility to evaluate hatching time in the 96-h acute fish toxicity test seems to be an advantage against that of the 48-hour toxicity.
Collapse
|
284
|
Hejazy M, Koohi MK, Asadi F, Jabbarvand Behrouz H. Induction of renal metallothionein expression by nano-zinc in cadmium-treated rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1809-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
285
|
Thwala M, Musee N, Sikhwivhilu L, Wepener V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1830-1843. [PMID: 23917884 DOI: 10.1039/c3em00235g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The toxicity effects of silver (nAg) and zinc oxide (nZnO) engineered nanoparticles (ENPs) on the duckweed Spirodela punctuta were studied to investigate the potential risks posed by these ENPs towards higher aquatic plants. The influence of media abiotic factors on the stability of the ENPs was also evaluated. Marked agglomeration of ENPs was observed after introduction into testing media whereby large particles settled out of suspension and accumulated at the bottom of testing vessels. The high ionic strength (IS) promoted agglomeration of ENPs because it reduced the inter-particle repulsion caused by a reduction in their surface charge. Low dissolution was observed for nAg, reaching only 0.015% at 1000 mg L(-1), whilst improved dissolution was observed for nZnO, only falling below analytical quantification at 0.1 mg L(-1) and lower. The quantification of free radicals namely, reactive oxygen and nitrogen species (ROS/RNS) and hydrogen peroxide (H2O2), indicated the induction of oxidative stress in plants exposed to the ENPs. A definite dose influence was observed for ROS/RNS volumes in plants exposed to nZnO for 14 days, a response not always observed. The total antioxidant capacity (TAC) and superoxide dismutase (SOD) activity in plants indicated varying degrees of oxidative toxicity caused by exposure to ENPs. This toxicity was driven mainly by particulates in plants exposed to nAg, whilst dissolved Zn(2+) was the main driver for toxicity in plants exposed to nZnO. Our findings suggest that the toxicity of nAg and nZnO could be caused by both the particulates and ionic forms, as modified by media properties.
Collapse
Affiliation(s)
- Melusi Thwala
- Nanotech Environmental Impacts Research Group, CSIR, P.O. Box 395, Pretoria 0001, South Africa.
| | | | | | | |
Collapse
|
286
|
Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2356-2364. [PMID: 23761010 DOI: 10.1002/etc.2300] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/18/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
The most persistent question regarding the toxicity of silver nanoparticles (AgNPs) is whether this toxicity is due to the nanoparticles themselves or the silver ions (Ag(+)) they release. The present study investigates the role of surface coating and the presence of dissolved organic carbon on the toxicity of AgNPs to Daphnia magna and tests the hypothesis that the acute toxicity of AgNPs is a function of dissolved Ag produced by nanoparticle dissolution. Toxicity of silver nitrate (AgNO3) and AgNPs with surface coatings-gum arabic (AgGA), polyethylene glycol (AgPEG), and polyvinylpyrrolidone (AgPVP)-at 48 h was assessed in US Environmental Protection Agency moderately hard reconstituted water alone and augmented with Suwannee River dissolved organic carbon (DOC). As expected, AgNO3 was the most toxic to D. magna and AgPVPs were the least toxic. In general, Suwannee River DOC presence reduced the toxicity of AgNO3, AgGAs, and AgPEG, while the toxicity of AgPVPs was unaffected. The measured dissolved Ag concentrations for all AgNPs and AgNO3 at the 48-h median lethal concentration in moderately hard reconstituted water were similar. The presence of Suwannee River DOC decreased the ratio of measured dissolved Ag to measured total Ag concentration. These results support the hypothesis that toxicity of AgNPs to D. magna is a function of dissolved Ag concentration from these particles.
Collapse
Affiliation(s)
- Kim M Newton
- Clemson University Institute of Environmental Toxicology, Pendleton, South Carolina, USA.
| | | | | | | | | |
Collapse
|
287
|
Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 2013; 272:519-28. [DOI: 10.1016/j.taap.2013.06.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/01/2013] [Accepted: 06/13/2013] [Indexed: 01/05/2023]
|
288
|
Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A, Mclamore ES, Rickus J, Porterfield DM, Sepúlveda MS. Silver nanoparticle-specific mitotoxicity inDaphnia magna. Nanotoxicology 2013; 8:833-42. [DOI: 10.3109/17435390.2013.832430] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
289
|
Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:224-33. [PMID: 23619766 DOI: 10.1007/s00244-013-9905-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/05/2013] [Indexed: 05/21/2023]
Abstract
Engineered cerium oxide nanoparticles (CeO2 NPs) are widely used in biomedical and engineering manufacturing industries. Previous research has shown the ability of CeO2 NPs to act as a redox catalyst, suggesting potential to both induce and alleviate oxidative stress in organisms. In this study, Caenorhabditis elegans and zebrafish (Danio rerio) were dosed with commercially available CeO2 NPs. Non-nano cerium oxide powder (CeO2) was used as a positive control for cerium toxicity. CeO2 NPs suspended in standard United States Environmental Protection Agency reconstituted moderately hard water, used to culture the C. elegans, quickly formed large polydisperse aggregates. Dosing solutions were renewed daily for 3 days. Exposure of wild-type nematodes resulted in dose-dependent growth inhibition detected for all 3 days (p < 0.0001). Non-nano CeO2 also caused significant growth inhibition (p < 0.0001), but the scale of inhibition was less at equivalent mass exposures compared with CeO2 NP exposure. Some metal and oxidative stress-sensitive mutant nematode strains showed mildly altered growth relative to the wild-type when dosed with 5 mg/L CeO2 NPs on days 2 and 3, thus providing weak evidence for a role for oxidative stress or metal sensitivity in CeO2 NP toxicity. Zebrafish microinjected with CeO2 NPs or CeO2 did not exhibit increased gross developmental defects compared with controls. Hyperspectral imaging showed that CeO2 NPs were ingested but not detectable inside the cells of C. elegans. Growth inhibition observed in C. elegans may be explained at least in part by a non-specific inhibition of feeding caused by CeO2 NPs aggregating around bacterial food and/or inside the gut tract.
Collapse
Affiliation(s)
- M C Arnold
- Nicholas School of the Environment, Duke University, P.O. 90328, Durham, NC 27708-0328, USA
| | | | | | | | | |
Collapse
|
290
|
Stepwise embryonic toxicity of silver nanoparticles on Oryzias latipes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:494671. [PMID: 23984374 PMCID: PMC3745929 DOI: 10.1155/2013/494671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022]
Abstract
The developmental toxicity of silver nanoparticles (AgNPs) was investigated following exposure of Oryzias latipes (medaka) embryos to 0.1−1 mg/L of homogeneously dispersed AgNPs for 14 days. During this period, developmental endpoints, including lethality, heart rate, and hatching rate, were evaluated by microscopy for different stages of medaka embryonic development. To compare toxic sensitivity, acute adult toxicity was assessed. There was no difference in acute lethal toxicity between embryo and adult medaka. Interestingly, we found that the increase in stepwise toxicity was dependent on the developmental stage of the embryo. Lethal embryonic toxicity increased from exposure days 1 to 3 and exposure days 5 to 8, whereas there was no change from exposure days 3 to 5. In addition, 7 d exposure to 0.8 mg/L AgNPs resulted in significant heart beat retardation in medaka embryos. AgNPs also caused a dose-dependent decrease in the hatching rate and body length of larvae. These results indicate that AgNP exposure causes severe developmental toxicity to medaka embryos and that toxicity levels are enhanced at certain developmental stages, which should be taken into consideration in assessments of metallic NPs toxicity to embryos.
Collapse
|
291
|
van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, de-Bastos E, Booth T, Tyler CR, Santos EM. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8005-14. [PMID: 23758687 PMCID: PMC3854648 DOI: 10.1021/es401758d] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 05/17/2023]
Abstract
Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk-, and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24 h of exposure, but with a recovery at 48 h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24 h, but not at 48 h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms.
Collapse
Affiliation(s)
- Ronny van Aerle
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Gomes T, Pereira CG, Cardoso C, Bebianno MJ. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:79-90. [PMID: 23665239 DOI: 10.1016/j.aquatox.2013.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/19/2013] [Accepted: 03/29/2013] [Indexed: 05/04/2023]
Abstract
Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag(+) (10 μg L(-1)) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two-dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag(+). Fifteen of these proteins were subsequently identified by MALDI-TOF-TOF and database search. Ag NPs affected similar cellular pathways as Ag(+), with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in cytoskeleton and cell structure (paramyosin), while exposure to Ag(+) had a strong influence in one protein related to stress response (putative c1q domain containing protein) and two proteins involved in cytoskeleton and cell structure (actin and α-tubulin). Protein identification showed that Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades (including mitochondria and nucleus) that can lead to cell death. This toxicity represents the cumulative effect of Ag(+) released from the particles and other properties as particle size and surface reactivity. This study helped to unravel the molecular mechanisms that can be associated with Ag NPs toxicity; nevertheless, some additional studies are required to investigate the exact interaction between these NPs and cellular components.
Collapse
Affiliation(s)
- Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
293
|
Zhao X, Wang S, Wu Y, You H, Lv L. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 136-137:49-59. [PMID: 23643724 DOI: 10.1016/j.aquatox.2013.03.019] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/15/2023]
Abstract
Nano-scale zinc oxide (nano-ZnO) is widely used in various industrial and commercial applications. However, the available toxicological information was inadequate to assess the potential ecological risk of nano-ZnO to aquatic organisms and the publics. In this study, the developmental toxicity, oxidative stress and DNA damage of nano-ZnO embryos were investigated in the embryo-larval zebrafish, the toxicity of Zn(2+) releasing from nano-ZnO were also investigated to ascertain the relationship between the nano-ZnO and corresponding Zn(2+). Zebrafish embryos were exposed to 1, 5, 10, 20, 50, and 100mg/L nano-ZnO and 0.59, 2.15, 3.63, 4.07, 5.31, and 6.04 mg/L Zn(2+) for 144 h post-fertilisation (hpf), respectively. Up to 144 hpf, activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and malondialdehyde (MDA) contents, the genes related to oxidative damage, reactive oxygen species (ROS) generation and DNA damage in zebrafish embryos were measured. The nano-ZnO was found to exert a dose-dependent toxicity to zebrafish embryos and larvae, reducing the hatching rate and inducing malformation and the acute toxicity to zebrafish embryos was greater than that of the Zn(2+) solution. The generation of ROS was significantly increased at 50 and 100mg/L nano-ZnO. DNA damage of zebrafish embryo was evaluated by single-cell gel electrophoresis and was enhanced with increasing nano-ZnO concentration. Moreover, the transcriptional expression of mitochondrial inner membrane genes related to ROS production, such as Bcl-2, in response to oxidative damage, such as Nqo1, and related to antioxidant response element such as Gstp2 were significantly down-regulated in the nano-ZnO treatment groups. However, the nano-ZnO up-regulated the transcriptional expression of Ucp2-related to ROS production. In conclusion, nano-ZnO induces developmental toxicity, oxidative stress and DNA damage on zebrafish embryos and the dissolved Zn(2+) only partially contributed to the toxicity of nano-ZnO. The adverse effects of nano-ZnO may be the important mechanisms of its toxicity to zebrafish embryos.
Collapse
Affiliation(s)
- Xuesong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | | | | | | |
Collapse
|
294
|
Connolly M, Pérez Y, Mann E, Herradón B, Fernández-Cruz ML, Navas JM. Peptide-biphenyl hybrid-capped AuNPs: stability and biocompatibility under cell culture conditions. NANOSCALE RESEARCH LETTERS 2013; 8:315. [PMID: 23829784 PMCID: PMC3716793 DOI: 10.1186/1556-276x-8-315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
In this study, we explored the biocompatibility of Au nanoparticles (NPs) capped with peptide-biphenyl hybrid (PBH) ligands containing glycine (Gly), cysteine (Cys), tyrosine (Tyr), tryptophan (Trp) and methionine (Met) amino acids in the human hepatocellular carcinoma cell line Hep G2. Five AuNPs, Au[(Gly-Tyr-Met)2B], Au[(Gly-Trp-Met)2B], Au[(Met)2B], Au[(Gly-Tyr-TrCys)2B] and Au[(TrCys)2B], were synthesised. Physico-chemical and cytotoxic properties were thoroughly studied. Transmission electron micrographs showed isolated near-spherical nanoparticles with diameters of 1.5, 1.6, 2.3, 1.8 and 2.3 nm, respectively. Dynamic light scattering evidenced the high stability of suspensions in Milli-Q water and culture medium, particularly when supplemented with serum, showing in all cases a tendency to form agglomerates with diameters approximately 200 nm. In the cytotoxicity studies, interference caused by AuNPs with some typical cytotoxicity assays was demonstrated; thus, only data obtained from the resazurin based assay were used. After 48-h incubation, only concentrations ≥50 μg/ml exhibited cytotoxicity. Such doses were also responsible for an increase in reactive oxygen species (ROS). Some differences were observed among the studied NPs. Of particular importance is the AuNPs capped with the PBH ligand (Gly-Tyr-TrCys)2B showing remarkable stability in culture medium, even in the absence of serum. Moreover, these AuNPs have unique biological effects on Hep G2 cells while showing low toxicity. The production of ROS along with supporting optical microscopy images suggests cellular interaction/uptake of these particular AuNPs. Future research efforts should further test this hypothesis, as such interaction/uptake is highly relevant in drug delivery systems.
Collapse
Affiliation(s)
- Mona Connolly
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid 28040, Spain
| | - Yolanda Pérez
- Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, Madrid 28933, Spain
| | - Enrique Mann
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Orgánica General, Juan de la Cierva 3, Madrid 28006, Spain
| | - Bernardo Herradón
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Química Orgánica General, Juan de la Cierva 3, Madrid 28006, Spain
| | - María L Fernández-Cruz
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid 28040, Spain
| | - José M Navas
- Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7.5, Madrid 28040, Spain
| |
Collapse
|
295
|
Nair PMG, Park SY, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. CHEMOSPHERE 2013; 92:592-599. [PMID: 23664472 DOI: 10.1016/j.chemosphere.2013.03.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 05/29/2023]
Abstract
Silver nanoparticles (AgNPs) are extensively used in many commercial products because of their antimicrobial properties and they are therefore released into the environment from various products. A number of genes, especially those representing antioxidant and detoxification pathways, have potential application for studying mechanism of action of environmental pollutants at molecular level. In the present study, the stress responsive transcription of antioxidant and detoxification genes in response to AgNPs and Ag(+) ions exposure is studied in the ecotoxicologically important model species Chironomus riparius. The selected genes were superoxide dismutases (CuZnSOD and MnSOD), catalase (CAT), phospholipid hydroperoxide glutathione peroxidase 1 (PHGPx1), thioredoxin reductase 1 (TrxR1), and delta-3, sigma-4 and epsilon-1 classes of glutathione S-transferases (GSTs). The mRNA expression levels of each gene were determined after exposure of animals for 24h to three different AgNP and Ag(+) ion concentrations using Real-Time PCR method. Significant up-regulation of CuZnSOD and MnSOD was found after exposure to Ag(+) ions and AgNPs, respectively. The transcript levels of CAT, PHGPx1 and TrxR1 were significantly up-regulated only after exposure to AgNPs and no significant change was observed after exposure to Ag(+) ions. The expression levels of all the GSTs were more pronounced after exposure to AgNPs as compared to Ag(+) ions. The overall results suggest that AgNPs led to pronounced induction of genes related to oxidative stress and detoxification than Ag(+) ions.
Collapse
Affiliation(s)
- Prakash M Gopalakrishnan Nair
- School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, 90 Jeonnong-dong, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | | | |
Collapse
|
296
|
Si J, Zhang H, Wang Z, Wu Z, Lu J, Di C, Zhou X, Wang X. Effects of (12)C(6+) ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression. Mutat Res 2013; 745-746:26-33. [PMID: 23535216 DOI: 10.1016/j.mrfmmm.2013.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects.
Collapse
Affiliation(s)
- Jing Si
- Department of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Zhao CM, Wang WX. Regulation of sodium and calcium in Daphnia magna exposed to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:913-919. [PMID: 23344927 DOI: 10.1002/etc.2133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/05/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
The toxicity of manufactured silver nanoparticles (AgNPs) has been widely studied, but the influence of AgNPs on the major ions (such as sodium [Na] and calcium [Ca]) regulations are unknown. In the present study, a freshwater cladoceran Daphnia magna was exposed to commercial AgNPs coated with polyvinylpyrrolidone. After 48 h, the Na body content was significantly reduced by AgNO3 exposure, but the Ca body content was significantly increased under AgNO3 and AgNP exposures, respectively. No effect was observed on the body concentrations of Na and Ca at 50 to 500 µg/L AgNPs with 1-µM cysteine addition. Exposure of AgNO3 and AgNPs inhibited the Na influx and elevated the Na efflux. In contrast, their exposure increased the Ca influx, but did not affect the Ca efflux. The results of the present study demonstrated the significant influences of AgNO3 and AgNPs (without cysteine) on Na and Ca regulations. Such effect of AgNPs on Na and Ca regulation disappeared after cysteine addition, indicating that the soluble Ag released from AgNPs played a major role in the ionoregulatory dysfunction.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | |
Collapse
|
298
|
Wang K, Ma J, He M, Gao G, Xu H, Sang J, Wang Y, Zhao B, Cui D. Toxicity assessments of near-infrared upconversion luminescent LaF3:Yb,Er in early development of zebrafish embryos. Theranostics 2013; 3:258-66. [PMID: 23606912 PMCID: PMC3630526 DOI: 10.7150/thno.5701] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022] Open
Abstract
This study reports the effects of upconversion nanoparticles (UCNPs) LaF3:Yb,Er on zebrafish, with the aim of investigating UCNPs toxicity. LaF3:Yb,Er were prepared by an oleic acid/ionic liquid two-phase system, and characterized by transmission electron microscope and X-ray powder diffraction. 140 zebrafish embryos were divided into six test groups and one control group, and respectively were injected into 5, 25, 50, 100, 200, 400 μg/mL LaF3:Yb,Er@SiO2 solution, and respectively were raised for 5 days. Each experiment was repeated ten times. Results showed that water-soluble LaF3:Yb,Er were successfully prepared, and did not exhibit obvious toxicity to zebrafish embryos under 100 μg/mL, but exhibited chronic toxicities 200 μg/mL in vivo, resulting in malformations and delayed hatching rate and embryonic and larval development. The excretion channels of LaF3:Yb,Er in adult zebrafish were mainly found in the intestine after being injected evenly for 24 h. In conclusion, the exploration of LaF3:Yb,Er for in vivo applications in animals and humans must consider UCNPs biocompatibility.
Collapse
|
299
|
Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 2013; 8:983-93. [PMID: 23493450 PMCID: PMC3593769 DOI: 10.2147/ijn.s42028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles.
Collapse
Affiliation(s)
- Saud Alarifi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
300
|
Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A, Bebianno MJ. Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2013; 84:51-9. [PMID: 23294529 DOI: 10.1016/j.marenvres.2012.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/22/2012] [Accepted: 11/30/2012] [Indexed: 05/14/2023]
Abstract
Though there is some information on cytotoxicity of copper nanoparticles and silver nanoparticles on human cell lines, there is no information on their genotoxic and cytotoxic behaviour in bivalve molluscs. The aim of this study was to investigate the genotoxic impact of copper oxide and silver nanoparticles using mussels Mytilus galloprovincialis. Mussels were exposed to 10 μg L⁻¹ of CuO nanoparticles and Cu²⁺ and Ag nanoparticles and Ag⁺ for 15 days to assess genotoxic effects in hemocytes using the comet assay. The results obtained indicated that copper and silver forms (nanoparticles and ionic) induced DNA damage in hemolymph cells and a time-response effect was evident when compared to unexposed mussels. Ionic forms presented higher genotoxicity than nanoparticles, suggesting different mechanisms of action that may be mediated through oxidative stress. DNA strand breaks proved to be a useful biomarker of exposure to genotoxic effects of CuO and Ag nanoparticles in marine molluscs.
Collapse
Affiliation(s)
- Tânia Gomes
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | |
Collapse
|