251
|
Beringer A, Miossec P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases. Autoimmun Rev 2018; 17:1176-1185. [PMID: 30321671 DOI: 10.1016/j.autrev.2018.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023]
Abstract
The pro-inflammatory cytokine interleukin(IL)-17 and IL-17-producing cells are important players in the pathogenesis of many autoimmune / inflammatory diseases. More recently, they have been associated with liver diseases. This review first describes the general knowledge on IL-17 and IL-17 producing cells. The second part describes the in vitro and in vivo effects of IL-17 on liver cells and the contribution of IL-17 producing cells to liver diseases. IL-17 induces immune cell infiltration and liver damage driving to hepatic inflammation and fibrosis and contributes to autoimmune liver diseases. The circulating levels of IL-17 and the frequency of IL-17-producing cells are elevated in a variety of acute and chronic liver diseases. The last part focuses on the effects of IL-17 deletion or neutralization in various murine models. Some of these observed beneficial effects suggest that targeting the IL-17 axis could be a new therapeutic strategy to prevent chronicity and progression of various liver diseases.
Collapse
Affiliation(s)
- Audrey Beringer
- Immunogenomics and Inflammation Research Unit EA4130, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA4130, University of Lyon, Lyon, France.
| |
Collapse
|
252
|
Elimination of CD4 lowHLA-G + T cells overcomes castration-resistance in prostate cancer therapy. Cell Res 2018; 28:1103-1117. [PMID: 30297869 DOI: 10.1038/s41422-018-0089-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a main treatment for prostate cancer (PCa) but the disease often recurs and becomes castration-resistant in nearly all patients. Recent data implicate the involvement of immune cells in the development of this castration-resistant prostate cancer (CRPC). In particular, T cells have been found to be expanded in both PCa patients and mouse models shortly after androgen deprivation. However, whether or which of the T cell subtypes play an important role during the development of CRPC is unknown. Here we identified a novel population of CD4lowHLA-G+ T cells that undergo significant expansion in PCa patients after ADT. In mouse PCa models, a similar CD4low T cell population expands during the early stages of CRPC onset. These cells are identified as IL-4-expressing TH17 cells, and are shown to be associated with CRPC onset in patients and essential for the development of CRPC in mouse models. Mechanistically, CD4lowHLA-G+ T cells drive androgen-independent growth of prostate cancer cells by modulating the activity and migration of CD11blowF4/80hi macrophages. Furthermore, following androgen deprivation, elevated PGE2-EP2 signaling inhibited the expression of CD4 in thymocytes, and subsequently induced the polarization of CD4low naïve T cells towards the IL-4-expressing TH17 phenotype via up-regulation of IL23R. Therapeutically, inactivating PGE2 signaling with celecoxib at a time when CD4lowHLA-G+ T cells appeared, but not immediately following androgen deprivation, dramatically suppressed the onset of CRPC. Collectively, our results indicate that an unusual population of CD4lowHLA-G+ T cells is essential for the development of CRPC and point to a new therapeutic avenue of combining ADT with PGE2 inhibition for the treatment of prostate cancer.
Collapse
|
253
|
Bao L, Yin J, Gao W, Wang Q, Yao W, Gao X. A long-acting FGF21 alleviates hepatic steatosis and inflammation in a mouse model of non-alcoholic steatohepatitis partly through an FGF21-adiponectin-IL17A pathway. Br J Pharmacol 2018; 175:3379-3393. [PMID: 29859019 PMCID: PMC6057909 DOI: 10.1111/bph.14383] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Non-alcoholic steatohepatitis (NASH) is the most severe form of non-alcoholic fatty liver disease and is a serious public health problem around the world. There are currently no approved treatments for NASH. FGF21 has recently emerged as a promising drug candidate for metabolic diseases. However, the disadvantages of FGF21 as a clinically useful medicine include its short plasma half-life and poor drug-like properties. Here, we have explored the effects of PsTag600-FGF21, an engineered long-acting FGF21 fusion protein, in mice with NASH and describe some of the underlying mechanisms. EXPERIMENTAL APPROACH A long-acting FGF21 was prepared by genetic fusion with a 600 residues polypeptide (PsTag600). We used a choline-deficient high-fat diet-induced model of NASH in mice. The effects on body weight, insulin sensitivity, inflammation and levels of hormones and metabolites were studied first. We further investigated whether PsTag600-FGF21 attenuated inflammation through the Th17-IL17A axis and the associated mechanisms. KEY RESULTS PsTag600-FGF21 dose-dependently reduced body weight, blood glucose, and insulin and lipid levels and reversed hepatic steatosis. PsTag600-FGF21 enhanced fatty acid activation and mitochondrial β-oxidation in the liver. The profound reduction in hepatic inflammation in NASH mice following PsTag600-FGF21 was associated with inhibition of IL17A expression in Th17 cells. Furthermore, PsTag600-FGF21 depended on adiponectin to exert its suppression of Th17 cell differentiation and IL17A expression. CONCLUSIONS AND IMPLICATIONS Our data have uncovered some of the mechanisms by which PsTag600-FGF21 suppresses hepatic inflammation and further suggest that PsTag600-FGF21 could be an effective approach in NASH treatment.
Collapse
Affiliation(s)
- Lichen Bao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Qun Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
254
|
Lv Q, Wu K, Liu F, Wu W, Chen Y, Zhang W. Interleukin‑17A and heparanase promote angiogenesis and cell proliferation and invasion in cervical cancer. Int J Oncol 2018; 53:1809-1817. [PMID: 30066843 DOI: 10.3892/ijo.2018.4503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/12/2018] [Indexed: 11/05/2022] Open
Abstract
Interleukin‑17A (IL‑17A) is a CD4 T-cell-derived pro-inflammatory cytokine that is involved in human cervical tumorigenesis. Heparanase (HPSE) is an endo-glycosidase expressed in mammals, which has been confirmed to be associated with cervical cancer invasion. In the present study, it was hypothesized that IL‑17A and HPSE are key proteins promoting tumor angiogenesis and cell proliferation and invasion in cervical cancer. The expression of IL‑17A and HPSE in cervical cancer tissues was detected by immunohistochemical staining. In addition, the expression of IL‑17A and HPSE was down- and upregulated via RNAi and human recombinant proteins, and MTT and Transwell assays were performed to examine cervical cancer cell proliferation and invasion, respectively. Flow cytometry analysis was also performed to detect cell cycle distribution, and the levels of target mRNA and protein were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. IL‑17A and HPSE were highly expressed in cervical cancer tissues, and microvessel density was notably higher in the IL‑17A-positive group. IL‑17A and/or HPSE recombinant protein promoted the proliferation and invasion of cervical cancer cells, increased the proportion of cells in the G2/M phase, and enhanced the mRNA and protein expression of human papillomavirus E6, P53, vascular endothelial growth factor and CD31, whereas downregulation of IL‑17A and/or HPSE exerted the opposite effects. Furthermore, downregulation of IL‑17A and/or HPSE was found to inhibit the expression of nuclear factor (NF)-κB P65. In summary, IL‑17A and HPSE may promote tumor angiogenesis and cell proliferation and invasion in cervical cancer, possibly via the NF-κB signaling pathway. These findings may lead to the identification of new diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Qiongying Lv
- Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fulin Liu
- The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wanrong Wu
- The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yurou Chen
- The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Zhang
- Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
255
|
Understanding the Impact of Dietary Cholesterol on Chronic Metabolic Diseases through Studies in Rodent Models. Nutrients 2018; 10:nu10070939. [PMID: 30037080 PMCID: PMC6073247 DOI: 10.3390/nu10070939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The development of certain chronic metabolic diseases has been attributed to elevated levels of dietary cholesterol. However, decades of research in animal models and humans have demonstrated a high complexity with respect to the impact of dietary cholesterol on the progression of these diseases. Thus, recent investigations in non-alcoholic fatty liver disease (NAFLD) point to dietary cholesterol as a key factor for the activation of inflammatory pathways underlying the transition from NAFLD to non-alcoholic steatohepatitis (NASH) and to hepatic carcinoma. Dietary cholesterol was initially thought to be the key factor for cardiovascular disease development, but its impact on the disease depends partly on the capacity to modulate plasmatic circulating low-density lipoprotein (LDL) cholesterol levels. These studies evidence a complex relationship between these chronic metabolic diseases and dietary cholesterol, which, in certain conditions, might promote metabolic complications. In this review, we summarize rodent studies that evaluate the impact of dietary cholesterol on these two prevalent chronic diseases and their relevance to human pathology.
Collapse
|
256
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 831] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|
257
|
Moreno-Fernandez ME, Giles DA, Stankiewicz TE, Sheridan R, Karns R, Cappelletti M, Lampe K, Mukherjee R, Sina C, Sallese A, Bridges JP, Hogan SP, Aronow BJ, Hoebe K, Divanovic S. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight 2018; 3:93626. [PMID: 29563328 DOI: 10.1172/jci.insight.93626] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Daniel A Giles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA.,Immunology Graduate Program, CCHMC, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Rachel Sheridan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Pathology, CCHMC, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Gastroenterology, Hepatology, and Nutrition, CCHMC, Cincinnati, Ohio, USA
| | - Monica Cappelletti
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Kristin Lampe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Rajib Mukherjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Christian Sina
- Molecular Gastroenterology, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Anthony Sallese
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neonatology and Pulmonary Biology
| | - James P Bridges
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Neonatology and Pulmonary Biology
| | - Simon P Hogan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Allergy and Immunology, and
| | - Bruce J Aronow
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, CCHMC, Cincinnati, Ohio, USA
| | - Kasper Hoebe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| |
Collapse
|
258
|
Gingold JA, Zhu D, Lee DF, Kaseb A, Chen J. Genomic Profiling and Metabolic Homeostasis in Primary Liver Cancers. Trends Mol Med 2018. [PMID: 29530485 DOI: 10.1016/j.molmed.2018.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), the two most common primary liver cancers, represent the second most common cancer-related cause of death worldwide, with most cases being diagnosed at an advanced stage. Recent genome-wide studies have helped to elucidate the molecular pathogenesis and genetic heterogeneity of liver cancers. This review of the genetic landscape of HCC and iCCA discusses the most recent findings from genomic profiling and the current understanding of the pathways involved in the initiation and progression of liver cancer. We highlight recent insights gained from metabolic profiling of HCC and iCCA. This knowledge will be key to developing clinically useful diagnostic/prognostic profiles, building targeted molecular and immunologic therapies, and ultimately curing these complex and heterogeneous diseases.
Collapse
Affiliation(s)
- Julian A Gingold
- Women's Health Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Chen
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
259
|
Yoshino J, Baur JA, Imai SI. NAD + Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 2018; 27:513-528. [PMID: 29249689 PMCID: PMC5842119 DOI: 10.1016/j.cmet.2017.11.002] [Citation(s) in RCA: 610] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Research on the biology of NAD+ has been gaining momentum, providing many critical insights into the pathogenesis of age-associated functional decline and diseases. In particular, two key NAD+ intermediates, nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), have been extensively studied over the past several years. Supplementing these NAD+ intermediates has shown preventive and therapeutic effects, ameliorating age-associated pathophysiologies and disease conditions. Although the pharmacokinetics and metabolic fates of NMN and NR are still under intensive investigation, these NAD+ intermediates can exhibit distinct behavior, and their fates appear to depend on the tissue distribution and expression levels of NAD+ biosynthetic enzymes, nucleotidases, and presumptive transporters for each. A comprehensive concept that connects NAD+ metabolism to the control of aging and longevity in mammals has been proposed, and the stage is now set to test whether these exciting preclinical results can be translated to improve human health.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-114 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5160, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, Japan.
| |
Collapse
|
260
|
Walton ZE, Altman BJ, Brooks RC, Dang CV. Circadian Clock's Cancer Connections. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zandra E. Walton
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian J. Altman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebekah C. Brooks
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
261
|
Fujiwara N, Friedman SL, Goossens N, Hoshida Y. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine. J Hepatol 2018; 68:526-549. [PMID: 28989095 PMCID: PMC5818315 DOI: 10.1016/j.jhep.2017.09.016] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
Patients who develop chronic fibrotic liver disease, caused by viral or metabolic aetiologies, are at a high risk of developing hepatocellular carcinoma (HCC). Even after complete HCC tumour resection or ablation, the carcinogenic tissue microenvironment in the remnant liver can give rise to recurrent de novo HCC tumours, which progress into incurable, advanced-stage disease in most patients. Thus, early detection and prevention of HCC development is, in principle, the most impactful strategy to improve patient prognosis. However, a "one-size-fits-all" approach to HCC screening for early tumour detection, as recommended by clinical practice guidelines, is utilised in less than 20% of the target population, and the performance of screening modalities, including ultrasound and alpha-fetoprotein, is suboptimal. Furthermore, optimal screening strategies for emerging at-risk patient populations, such as those with chronic hepatitis C after viral cure, or those with non-cirrhotic, non-alcoholic fatty liver disease remain controversial. New HCC biomarkers and imaging modalities may improve the sensitivity and specificity of HCC detection. Clinical and molecular HCC risk scores will enable precise HCC risk prediction followed by tailoured HCC screening of individual patients, maximising cost-effectiveness and optimising allocation of limited medical resources. Several aetiology-specific and generic HCC chemoprevention strategies are evolving. Epidemiological and experimental studies have identified candidate chemoprevention targets and therapies, including statins, anti-diabetic drugs, and selective molecular targeted agents, although their clinical testing has been limited by the lengthy process of cancer development that requires long-term, costly studies. Individual HCC risk prediction is expected to overcome the challenge by enabling personalised chemoprevention, targeting high-risk patients for precision HCC prevention and substantially improving the dismal prognosis of HCC.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA; Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Japan
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA
| | - Nicolas Goossens
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, USA.
| |
Collapse
|
262
|
Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19:222-232. [PMID: 29379119 DOI: 10.1038/s41590-018-0044-z] [Citation(s) in RCA: 794] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
In contrast to most other malignancies, hepatocellular carcinoma (HCC), which accounts for approximately 90% of primary liver cancers, arises almost exclusively in the setting of chronic inflammation. Irrespective of etiology, a typical sequence of chronic necroinflammation, compensatory liver regeneration, induction of liver fibrosis and subsequent cirrhosis often precedes hepatocarcinogenesis. The liver is a central immunomodulator that ensures organ and systemic protection while maintaining immunotolerance. Deregulation of this tightly controlled liver immunological network is a hallmark of chronic liver disease and HCC. Notably, immunotherapies have raised hope for the successful treatment of advanced HCC. Here we summarize the roles of specific immune cell subsets in chronic liver disease, with a focus on non-alcoholic steatohepatitis and HCC. We review new advances in immunotherapeutic approaches for the treatment of HCC and discuss the challenges posed by the immunotolerant hepatic environment and the dual roles of adaptive and innate immune cells in HCC.
Collapse
Affiliation(s)
- Marc Ringelhan
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Tracy O'Connor
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum Munich, Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada and Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany. .,Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
263
|
Wang W, Wang Z, Qin Y, Tang G, Cai G, Liu Y, Zhang J, Zhang P, Shen Q, Shen L, Yu W. Th17, synchronically increased with T regs and B regs , promoted by tumour cells via cell-contact in primary hepatic carcinoma. Clin Exp Immunol 2018; 192:181-192. [PMID: 29271479 DOI: 10.1111/cei.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 01/14/2023] Open
Abstract
Documented reports about T helper type 17 (Th17) cells have revealed that Th17 plays a critical role in inflammation and autoimmunity diseases. However, the role of Th17 in cancer remains contradictory. The interplay between Th17 and tumour cells in the tumour microenvironment of primary hepatic carcinoma (PHC) needs to be explored further and the relationship between Th17, regulatory T cells (Tregs ) and regulatory B cells (Bregs ) has not been defined completely. In this study, numerous experiments were undertaken to elucidate the interaction of Th17 and Treg /Breg cells involved in PHC. Our work demonstrated that an increased Th17 was detected in the peripheral circulation and in tumour tissues in PHC patients. In addition, increases in peripheral blood Th17 corresponded with tumour-node-metastasis (TNM) stage progression. Also, further studies indicated that Th17 cells were promoted by tumour cells in the PHC tumour microenvironment through both contact-dependent and -independent mechanisms, but cell-contact played the major important role in promoting the production and proliferation of Th17. When isolated CD4+ CD25+ CD127low Tregs and CD4+ CD25- CD127+ non-Tregs were cultured with autologous tumour cells, it implied that the phenotype of Th17 and Tregs was modified by tumour cells in the tumour microenvironment. As well as this, Th17 cells were also found to correlate positively with CD4+ forkhead box protein 3+ Tregs and CD19+ CD5+ CD1dhi Bregs in PHC. Notably, Th17 increased synchronically with Tregs and Bregs in PHC. These findings may provide new clues to reveal the mechanisms of immune escape in PHC.
Collapse
Affiliation(s)
- W Wang
- Department of Clinical Laboratory, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Z Wang
- Department of Anesthesia, Eastern Hepatobiliary Hospital, Shanghai, China
| | - Y Qin
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - G Tang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - G Cai
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Y Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - J Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - P Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Q Shen
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - L Shen
- Department of Clinical Laboratory, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - W Yu
- Department of Anesthesia, Eastern Hepatobiliary Hospital, Shanghai, China
| |
Collapse
|
264
|
Roles and Functions of the Unconventional Prefoldin URI. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1106:95-108. [PMID: 30484155 DOI: 10.1007/978-3-030-00737-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Almost 15 years ago, the URI prefoldin-like complex was discovered by Krek and colleagues in immunoprecipitation experiments conducted in mammalian cells with the aim of identifying new binding partners of the E3 ubiquitin-protein ligase S-phase kinase-associated protein 2 (SKP2) (Gstaiger et al. Science 302(5648):1208-1212, 2003). The URI prefoldin-like complex is a heterohexameric chaperone complex comprising two α and four β subunits (α2β4). The α subunits are URI and STAP1, while the β subunits are PFDN2, PFDN6, and PFDN4r, one of which is probably present in duplicate. Elucidating the roles and functions of these components in vitro and in vivo will help to clarify the mechanistic behavior of what appears to be a remarkably important cellular machine.
Collapse
|
265
|
Zhang X. NAFLD Related-HCC: The Relationship with Metabolic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:55-62. [PMID: 29956206 DOI: 10.1007/978-981-10-8684-7_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity increases death rates of all cancers including non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (NAFLD-HCC). NAFLD is considered as hepatic manifestation of metabolic syndrome and is a multi-system disease. Recent prevalence studies have intensively reported the association of obesity, metabolic risk factors and HCC incidence and mortality. Mechanistic studies suggested that immune response, PI3K/AKT/mTOR/PTEN pathway, mitochondrial dysfunction and genetic alterations are important mediators in the progression of NAFLD-HCC from metabolic disorder. In this book chapter, we attempt to collate current research on NAFLD-HCC that lead to our understandings on how metabolic disorders may intersect with cancer development. We also discussed the prevention options of NAFLD-HCC in view of obesity and metabolic disorder. These studies have extended our knowledge on the complicated mechanism of NAFLD and HCC, and provided the prevention options of NAFLD-HCC in patients with obesity and metabolic diseases.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
266
|
Affiliation(s)
- Kouichi Miura
- Department of Gastroenterology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
267
|
Elsegood CL, Tirnitz-Parker JE, Olynyk JK, Yeoh GC. Immune checkpoint inhibition: prospects for prevention and therapy of hepatocellular carcinoma. Clin Transl Immunology 2017; 6:e161. [PMID: 29326816 PMCID: PMC5704099 DOI: 10.1038/cti.2017.47] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 08/10/2017] [Accepted: 09/10/2017] [Indexed: 02/06/2023] Open
Abstract
The global prevalence of liver cancer is rapidly rising, mostly as a result of the amplified incidence rates of viral hepatitis, alcohol abuse and obesity in recent decades. Treatment options for liver cancer are remarkably limited with sorafenib being the gold standard for advanced, unresectable hepatocellular carcinoma but offering extremely limited improvement of survival time. The immune system is now recognised as a key regulator of cancer development through its ability to protect against infection and chronic inflammation, which promote cancer development, and eliminate tumour cells when present. However, the tolerogenic nature of the liver means that the immune response to infection, chronic inflammation and tumour cells within the hepatic environment is usually ineffective. Here we review the roles that immune cells and cytokines have in the development of the most common primary liver cancer, hepatocellular carcinoma (HCC). We then examine how the immune system may be subverted throughout the stages of HCC development, particularly with respect to immune inhibitory molecules, also known as immune checkpoints, such as programmed cell death protein-1, programmed cell death 1 ligand 1 and cytotoxic T lymphocyte antigen 4, which have become therapeutic targets. Finally, we assess preclinical and clinical studies where immune checkpoint inhibitors have been used to modify disease during the carcinogenic process. In conclusion, inhibitory molecule-based immunotherapy for HCC is in its infancy and further detailed research in relevant in vivo models is required before its full potential can be realised.
Collapse
Affiliation(s)
- Caryn L Elsegood
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Janina Ee Tirnitz-Parker
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - John K Olynyk
- School of Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,Department of Gastroenterology and Hepatology, Fiona Stanley and Fremantle Hospitals, South Metropolitan Health Service, Murdoch, Western Australia, Australia.,School of Health and Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - George Ct Yeoh
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
268
|
Ma C, Zhang Q, Greten TF. Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. FEBS J 2017; 285:752-762. [DOI: 10.1111/febs.14209] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Chi Ma
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Qianfei Zhang
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| | - Tim F. Greten
- GI-Malignancy Section; Thoracic and GI Oncology Branch; Center for Cancer Research; National Cancer Institute; National Institutes of Health; Bethesda MD USA
| |
Collapse
|
269
|
JCAD Promotes Progression of Nonalcoholic Steatohepatitis to Liver Cancer by Inhibiting LATS2 Kinase Activity. Cancer Res 2017; 77:5287-5300. [DOI: 10.1158/0008-5472.can-17-0229] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
270
|
Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol 2017; 18:e457-e471. [PMID: 28759385 PMCID: PMC10441558 DOI: 10.1016/s1470-2045(17)30411-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/21/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
The lifestyle factors of physical activity, sedentary behaviour, and diet are increasingly being studied for their associations with cancer. Physical activity is inversely associated with and sedentary behaviour is positively (and independently) associated with an increased risk of more than ten types of cancer, including colorectal cancer (and advanced adenomas), endometrial cancers, and breast cancer. The most consistent dietary risk factor for premalignant and invasive breast cancer is alcohol, whether consumed during early or late adult life, even at low levels. Epidemiological studies show that the inclusion of wholegrain, fibre, fruits, and vegetables within diets are associated with reduced cancer risk, with diet during early life (age <8 years) having the strongest apparent association with cancer incidence. However, randomised controlled trials of diet-related factors have not yet shown any conclusive associations between diet and cancer incidence. Obesity is a key contributory factor associated with cancer risk and mortality, including in dose-response associations in endometrial and post-menopausal breast cancer, and in degree and duration of fatty liver disease-related hepatocellular carcinoma. Obesity produces an inflammatory state, characterised by macrophages clustered around enlarged hypertrophied, dead, and dying adipocytes, forming crown-like structures. Increased concentrations of aromatase and interleukin 6 in inflamed breast tissue and an increased number of macrophages, compared with healthy tissue, are also observed in women with normal body mass index, suggesting a metabolic obesity state. Emerging randomised controlled trials of physical activity and dietary factors and mechanistic studies of immunity, inflammation, extracellular matrix mechanics, epigenetic or transcriptional regulation, protein translation, circadian disruption, and interactions of the multibiome with lifestyle factors will be crucial to advance this field.
Collapse
Affiliation(s)
- Jacqueline Kerr
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Family Medicine and Public Health, University of California, La Jolla, San Diego, CA, USA
| | - Cheryl Anderson
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Family Medicine and Public Health, University of California, La Jolla, San Diego, CA, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA; Department of Medicine, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
271
|
Pathogenic Role of IL-17-Producing Immune Cells in Obesity, and Related Inflammatory Diseases. J Clin Med 2017; 6:jcm6070068. [PMID: 28708082 PMCID: PMC5532576 DOI: 10.3390/jcm6070068] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with low-grade chronic inflammation. Indeed, adipose tissues (AT) in obese individuals are the former site of progressive infiltration by pro-inflammatory immune cells, which together with increased inflammatory adipokine secretion induce adipocyte insulin resistance. IL-17-producing T (Th17) cells are part of obese AT infiltrating cells, and are likely to be promoted by adipose tissue-derived mesenchymal stem cells, as previously reported by our team. Whereas Th17 cell are physiologically implicated in the neutralization of fungal and bacterial pathogens through activation of neutrophils, they may also play a pivotal role in the onset and/or progression of chronic inflammatory diseases, or cancer, in which obesity is recognized as a risk factor. In this review, we will highlight the pathogenic role of IL-17A producing cells in the mechanisms leading to inflammation in obesity and to progression of obesity-related inflammatory diseases.
Collapse
|
272
|
Garrido A, Djouder N. NAD + Deficits in Age-Related Diseases and Cancer. Trends Cancer 2017; 3:593-610. [PMID: 28780936 DOI: 10.1016/j.trecan.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
The phenomenon of aging has gained widespread attention in recent times. Although significant advances have been made to better understand aging and its related pathologies including cancer, there is not yet a clear mechanism explaining why diseases and cancer are inherent parts of the aging process. Finding a unifying equation that could bridge aging and its related diseases would allow therapeutic development and solve an immense human health problem to live longer and better. In this review, we discuss NAD+ reduction as the central mechanism that may connect aging to its related pathologies and cancer. NAD+ boosters would ensure and ameliorate health quality during aging.
Collapse
Affiliation(s)
- Amanda Garrido
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain.
| |
Collapse
|
273
|
Teijeiro A, Djouder N. Nicotinamide riboside or IL-17A signaling blockers to prevent liver disorders. Oncoscience 2017; 4:1-2. [PMID: 28484725 PMCID: PMC5361639 DOI: 10.18632/oncoscience.338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/21/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ana Teijeiro
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Spanish National Cancer Research Centre, CNIO, Madrid, Spain
| |
Collapse
|
274
|
Tummala KS, Brandt M, Teijeiro A, Graña O, Schwabe RF, Perna C, Djouder N. Hepatocellular Carcinomas Originate Predominantly from Hepatocytes and Benign Lesions from Hepatic Progenitor Cells. Cell Rep 2017; 19:584-600. [PMID: 28423321 PMCID: PMC5409928 DOI: 10.1016/j.celrep.2017.03.059] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary liver cancer. However, its origin remains a debated question. Using human data and various hepatocarcinogenesis mouse models, we show that, in early stages, transformed hepatocytes, independent of their proliferation status, activate hepatic progenitor cell (HPC) expansion. Genetic lineage tracing of HPCs and hepatocytes reveals that, in all models, HCC originates from hepatocytes. However, whereas in various models tumors do not emanate from HPCs, tracking of progenitors in a model mimicking human hepatocarcinogenesis indicates that HPCs can generate benign lesions (regenerative nodules and adenomas) and aggressive HCCs. Mechanistically, galectin-3 and α-ketoglutarate paracrine signals emanating from oncogene-expressing hepatocytes instruct HPCs toward HCCs. α-Ketoglutarate preserves an HPC undifferentiated state, and galectin-3 maintains HPC stemness, expansion, and aggressiveness. Pharmacological or genetic blockage of galectin-3 reduces HCC, and its expression in human HCC correlates with poor survival. Our findings may have clinical implications for liver regeneration and HCC therapy.
Collapse
Affiliation(s)
- Krishna S Tummala
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Marta Brandt
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Ana Teijeiro
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Osvaldo Graña
- Structural Biology and Biocomputing Programme, Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain.
| |
Collapse
|
275
|
Camilleri M, Malhi H, Acosta A. Gastrointestinal Complications of Obesity. Gastroenterology 2017; 152:1656-1670. [PMID: 28192107 PMCID: PMC5609829 DOI: 10.1053/j.gastro.2016.12.052] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Abstract
Obesity usually is associated with morbidity related to diabetes mellitus and cardiovascular diseases. However, there are many gastrointestinal and hepatic diseases for which obesity is the direct cause (eg, nonalcoholic fatty liver disease) or is a significant risk factor, such as reflux esophagitis and gallstones. When obesity is a risk factor, it may interact with other mechanisms and result in earlier presentation or complicated diseases. There are increased odds ratios or relative risks of several gastrointestinal complications of obesity: gastroesophageal reflux disease, erosive esophagitis, Barrett's esophagus, esophageal adenocarcinoma, erosive gastritis, gastric cancer, diarrhea, colonic diverticular disease, polyps, cancer, liver disease including nonalcoholic fatty liver disease, cirrhosis, hepatocellular carcinoma, gallstones, acute pancreatitis, and pancreatic cancer. Gastroenterologists are uniquely poised to participate in the multidisciplinary management of obesity as physicians caring for people with obesity-related diseases, in addition to their expertise in nutrition and endoscopic interventions.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| | | | | |
Collapse
|
276
|
Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, Tsai S, Schroer SA, Park YJ, Chng MHY, Shen L, D’Angelo JA, Horton P, Chapman WC, Brockmeier D, Woo M, Engleman EG, Adeyi O, Hirano N, Jin T, Gehring AJ, Winer S, Winer DA. Type I Interferon Responses Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci Immunol 2017; 2:eaai7616. [PMID: 28567448 PMCID: PMC5447456 DOI: 10.1126/sciimmunol.aai7616] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity-related insulin resistance is driven by low-grade chronic inflammation of metabolic tissues. In the liver, non-alcoholic fatty liver disease (NAFLD) is associated with hepatic insulin resistance and systemic glucose dysregulation. However, the immunological factors supporting these processes are poorly understood. We found that the liver accumulates pathogenic CD8+ T cell subsets which control hepatic insulin sensitivity and gluconeogenesis during diet-induced obesity in mice. In a cohort of human patients, CD8+ T cells represent a dominant intrahepatic immune cell population which links to glucose dysregulation. Accumulation and activation of these cells are largely supported by type I interferon (IFN-I) responses in the liver. Livers from obese mice upregulate critical interferon regulatory factors (IRFs), interferon stimulatory genes (ISGs), and IFNα protein, while IFNαR1-/- mice, or CD8-specific IFNαR1-/- chimeric mice are protected from disease. IFNαR1 inhibitors improve metabolic parameters in mice, while CD8+ T cells and IFN-I responses correlate with NAFLD activity in human patients. Thus, IFN-I responses represent a central immunological axis that governs intrahepatic T cell pathogenicity during metabolic disease.
Collapse
Affiliation(s)
- Magar Ghazarian
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Xavier S. Revelo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mark K. Nøhr
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Helen Luck
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
| | - Kejing Zeng
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Helena Lei
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Sue Tsai
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stephanie A. Schroer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Yoo Jin Park
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Melissa Hui Yen Chng
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Lei Shen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - June Ann D’Angelo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Peter Horton
- Methodist University Hospital Transplant Institute, Memphis, TN 38104, USA
- Division of Abdominal Transplant, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - William C. Chapman
- Division of Abdominal Transplant, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Minna Woo
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Edgar G. Engleman
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94205, USA
| | - Oyedele Adeyi
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Naoto Hirano
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Campbell Family Cancer Research Institute, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Tianru Jin
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Adam J. Gehring
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Shawn Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Research Institute, University Health Network, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 3B3, Canada
- Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
277
|
Cho HJ, Kim SS, Nam JS, Oh MJ, Kang DR, Kim JK, Lee JH, Kim B, Yang MJ, Hwang JC, Lim SG, Shin SJ, Lee KM, Yoo BM, Lee KJ, Cho SW, Cheong JY. Higher serum interleukin-17A levels as a potential biomarker for predicting early disease progression in patients with hepatitis B virus-associated advanced hepatocellular carcinoma treated with sorafenib. Cytokine 2017; 95:118-125. [PMID: 28260649 DOI: 10.1016/j.cyto.2017.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/14/2017] [Accepted: 02/20/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although sorafenib is the only available drug with proven efficacy for patients with advanced hepatocellular carcinoma (HCC), the clinical efficacy of sorafenib is variable and unpredictable. The aim of the current study was to identify potential serum biomarkers predicting cancer progression and overall survival (OS) in patients with hepatitis B virus (HBV)-related advanced HCC treated with sorafenib. METHODS Thirty-four patients with HBV-related advanced HCC (modified Union for International Cancer Control [UICC] stage IVa or IVb) treated with sorafenib for more than 4weeks were retrospectively enrolled. Using a Luminex 200 system, 11 cytokines including interleukin-17A (IL-17A) were measured in baseline serum samples prior to sorafenib administration. Several clinical factors and the serum concentrations of the 11 cytokines were analyzed using Cox regression analysis. RESULTS In the analysis of progression-free survival (PFS), older age (year; hazard ratio [HR]=1.07; 95% confidence interval [CI]=1.00-1.15; P=0.046) and higher baseline serum IL-17A level (>1.94pg/mL; HR=19.96; 95% CI=3.32-119.86; P=0.001) were identified as significant risk factors for early progression with good predictive power (Harrell's C=0.817, standard error estimates (se)=0.085). In the analysis of OS, higher Child-Pugh score (>5; HR=2.35, 95% CI=1.09-5.10, P=0.030) and lower serum baseline fibroblast growth factor-2 level (≤20.57pg/mL; HR=3.24, 95% CI=1.22-8.60, P=0.018) were identified as negative predictive factors for OS, even though the model did not have significant predictive power (Harrell's C=0.634, se=0.062). CONCLUSION A higher serum IL-17A level is a potential biomarker for predicting poor PFS in patients with HBV-related advanced HCC treated with sorafenib.
Collapse
Affiliation(s)
- Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ji Sun Nam
- Human Genome Research & Bio-resource Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Min Jung Oh
- Office of Biostatistics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dae Ryong Kang
- Office of Biostatistics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jai Keun Kim
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jei Hee Lee
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bohyun Kim
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Min Jae Yang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Chul Hwang
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Gyo Lim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kee Myung Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byung Moo Yoo
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung Won Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
278
|
Amoedo ND, Obre E, Rossignol R. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:674-685. [PMID: 28213330 DOI: 10.1016/j.bbabio.2017.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [13C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [13C] can also be used to evaluate tumor metabolism and to follow the efficiency of a treatment at a preclinical or clinical stage. Relevant descriptors of tumor metabolism are now required to better stratify patients for the development of personalized metabolic medicine. In this review, we discuss the current limitations in basic research and drug discovery in the field of cancer metabolism to foster the need for more clinically relevant target identification and validation. We discuss the design of adapted drug screening assays and compound efficacy evaluation methods for the discovery of innovative anti-cancer therapeutic approaches at the level of tumor energetics. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- N D Amoedo
- University of Bordeaux, U1211MRGM, Bordeaux, France; INSERM, U1211MRGM, Bordeaux, France; Instituto de Bioquímica Médica Leopoldo De Meis, UFRJ, Rio de Janeiro, Brazil
| | - E Obre
- University of Bordeaux, U1211MRGM, Bordeaux, France; INSERM, U1211MRGM, Bordeaux, France; CELLOMET, Bordeaux, France
| | - R Rossignol
- University of Bordeaux, U1211MRGM, Bordeaux, France; INSERM, U1211MRGM, Bordeaux, France; CELLOMET, Bordeaux, France.
| |
Collapse
|
279
|
Hatting M, Tacke F. From NAFLD to HCC: Is IL-17 the crucial link? Hepatology 2017; 65:739-741. [PMID: 28012256 DOI: 10.1002/hep.28934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
280
|
Tumour microenvironment factors shaping the cancer metabolism landscape. Br J Cancer 2016; 116:277-286. [PMID: 28006817 PMCID: PMC5294476 DOI: 10.1038/bjc.2016.412] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer cells exhibit metabolic alterations that distinguish them from healthy tissues and make their metabolic processes susceptible to pharmacological targeting. Although typical cell-autonomous features of cancer metabolism have been emerging, it is increasingly appreciated that extrinsic factors also influence the metabolic properties of tumours. This review highlights evidence from the recent literature to discuss how conditions within the tumour microenvironment shape the metabolic character of tumours.
Collapse
|
281
|
Paquissi FC. Immune Imbalances in Non-Alcoholic Fatty Liver Disease: From General Biomarkers and Neutrophils to Interleukin-17 Axis Activation and New Therapeutic Targets. Front Immunol 2016; 7:490. [PMID: 27891128 PMCID: PMC5104753 DOI: 10.3389/fimmu.2016.00490] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasing problem worldwide and is associated with negative outcomes such as cirrhosis, hepatocellular carcinoma, insulin resistance, diabetes, and cardiovascular events. Current evidence shows that the immune response has an important participation driving the initiation, maintenance, and progression of the disease. So, various immune imbalances, from cellular to cytokines levels, have been studied, either for better compression of the disease pathophysiology or as biomarkers for severity assessment and outcome prediction. In this article, we performed a thorough review of studies that evaluated the role of inflammatory/immune imbalances in the NAFLD. At the cellular level, we gave special focus on the imbalance between neutrophils and lymphocytes counts (the neutrophil-to-lymphocyte ratio), and that which occurs between T helper 17 (Th17) and regulatory T cells as emerging biomarkers. By extension, we reviewed the reflection of these imbalances at the molecular level through pro-inflammatory cytokines including those involved in Th17 differentiation (IL-6, IL-21, IL-23, and transforming growth factor-beta), and those released by Th17 cells (IL-17A, IL-17F, IL-21, and IL-22). We gave particular attention to the role of IL-17, either produced by Th17 cells or neutrophils, in fibrogenesis and steatohepatitis. Finally, we reviewed the potential of these pathways as new therapeutic targets in NAFLD.
Collapse
|
282
|
Burén S, Gomes AL, Teijeiro A, Fawal MA, Yilmaz M, Tummala KS, Perez M, Rodriguez-Justo M, Campos-Olivas R, Megías D, Djouder N. Regulation of OGT by URI in Response to Glucose Confers c-MYC-Dependent Survival Mechanisms. Cancer Cell 2016; 30:290-307. [PMID: 27505673 DOI: 10.1016/j.ccell.2016.06.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 08/01/2015] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Cancer cells can adapt and survive under low nutrient conditions, but underlying mechanisms remain poorly explored. We demonstrate here that glucose maintains a functional complex between the co-chaperone URI, PP1γ, and OGT, the enzyme catalyzing O-GlcNAcylation. Glucose deprivation induces the activation of PKA, which phosphorylates URI at Ser-371, resulting in PP1γ release and URI-mediated OGT inhibition. Low OGT activity reduces O-GlcNAcylation and promotes c-MYC degradation to maintain cell survival. In the presence of glucose, PP1γ-bound URI increases OGT and c-MYC levels. Accordingly, mice expressing non-phosphorylatable URI (S371A) in hepatocytes exhibit high OGT activity and c-MYC stabilization, accelerating liver tumorigenesis in agreement with c-MYC oncogenic functions. Our work uncovers that URI-regulated OGT confers c-MYC-dependent survival functions in response to glucose fluctuations.
Collapse
Affiliation(s)
- Stefan Burén
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana L Gomes
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Ana Teijeiro
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Mohamad-Ali Fawal
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Mahmut Yilmaz
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Krishna S Tummala
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Manuel Perez
- Biotechnology Programme, Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Manuel Rodriguez-Justo
- Department of Research Pathology, Cancer Institute, University College London, London WC1E 6JJ, UK
| | - Ramón Campos-Olivas
- Structural Biology and Biocomputing Programme, Spectroscopy and Nuclear Magnetic Resonance Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Diego Megías
- Biotechnology Programme, Confocal Microscopy Core Unit, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain
| | - Nabil Djouder
- Cancer Cell Biology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid 28029, Spain.
| |
Collapse
|
283
|
Weber A, Heikenwalder M. P(URI)fying Novel Drivers of NASH and HCC: A Feedforward Loop of IL17A via White Adipose Tissue. Cancer Cell 2016; 30:15-17. [PMID: 27411585 DOI: 10.1016/j.ccell.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How obesity and metabolic syndrome trigger non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remains elusive. In this issue, Gomes and colleagues describe that nutrient surplus induces hepatic URI expression, triggering genotoxicity and IL17A expression, thus leading to insulin resistance, NASH, and HCC. IL17A signaling blockers might become a readily translatable therapy.
Collapse
Affiliation(s)
- Achim Weber
- Institute of Surgical Pathology, University and University Hospital Zurich, Zurich 8091, Switzerland
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich 81675, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|