251
|
Wang L, Li X, Zhang W, Yang Y, Meng Q, Wang C, Xin X, Jiang X, Song S, Lu Y, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. miR24-2 Promotes Malignant Progression of Human Liver Cancer Stem Cells by Enhancing Tyrosine Kinase Src Epigenetically. Mol Ther 2020; 28:572-586. [PMID: 31732298 PMCID: PMC7001004 DOI: 10.1016/j.ymthe.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/23/2019] [Accepted: 10/18/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNA24-2 (miR24-2) is associated with human tumorigenesis; however, its molecular mechanisms are poorly understood. Herein, our findings demonstrate that miR24-2 promotes the proliferation ability in vitro and the tumorigenic ability in vivo in human liver cancer stem cells (hLCSCs). Mechanically, the miR24-2 targets for 3' UTR (2,627-2,648) of protein arginine methyltransferase 7 (PRMT7) inhibit the translational ability of prmt7 gene. Moreover, miR24-2 inhibits the di-/tri-methylation of histone H4 arginine 3 by reducing PRMT7 and then promotes the expression of Nanog via long noncoding RNA HULC. Notably, miR24-2 inhibits histone deacetylase HDAC3 through miR675, which promotes the acetylation of histone H4 at lysine 16. Subsequently, miR24-2 enhances the interaction between LC3 and ATG4 dependent on PI3K and triggers cellular autophagy. Strikingly, miR24-2 inhibits the degradation of pyruvate kinase M1 via autophagosome-P62 in hLCSCs. Furthermore, miR24-2 enhances the activity of Src by promoting the binding of PKM1 to the Src promoter regions in hLCSCs. In particular, our results also indicate that src gene determines the oncogenic functions of miR24-2. These results provided a valuable theoretical basis for the discovery of liver cancer therapeutic targets and diagnosis markers based on miR24-2.
Collapse
Affiliation(s)
- Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qiuyu Meng
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Chen Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
252
|
Witkowski MT, Kousteni S, Aifantis I. Mapping and targeting of the leukemic microenvironment. J Exp Med 2020; 217:e20190589. [PMID: 31873722 PMCID: PMC7041707 DOI: 10.1084/jem.20190589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies support a role of the microenvironment in maintenance of the leukemic clone, as well as in treatment resistance. It is clear that disruption of the normal bone marrow microenvironment is sufficient to promote leukemic transformation and survival in both a cell autonomous and non-cell autonomous manner. In this review, we provide a snapshot of the various cell types shown to contribute to the leukemic microenvironment as well as treatment resistance. Several of these studies suggest that leukemic blasts occupy specific cellular and biochemical "niches." Effective dissection of critical leukemic niche components using single-cell approaches has allowed a more precise and extensive characterization of complexity that underpins both the healthy and malignant bone marrow microenvironment. Knowledge gained from these observations can have an important impact in the development of microenvironment-directed targeted approaches aimed at mitigating disease relapse.
Collapse
Affiliation(s)
- Matthew T. Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
253
|
Domingues AF, Kulkarni R, Giotopoulos G, Gupta S, Vinnenberg L, Arede L, Foerner E, Khalili M, Adao RR, Johns A, Tan S, Zeka K, Huntly BJ, Prabakaran S, Pina C. Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells. eLife 2020; 9:e51754. [PMID: 31985402 PMCID: PMC7039681 DOI: 10.7554/elife.51754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy with abnormal progenitor self-renewal and defective white blood cell differentiation. Its pathogenesis comprises subversion of transcriptional regulation, through mutation and by hijacking normal chromatin regulation. Kat2a is a histone acetyltransferase central to promoter activity, that we recently associated with stability of pluripotency networks, and identified as a genetic vulnerability in AML. Through combined chromatin profiling and single-cell transcriptomics of a conditional knockout mouse, we demonstrate that Kat2a contributes to leukemia propagation through preservation of leukemia stem-like cells. Kat2a loss impacts transcription factor binding and reduces transcriptional burst frequency in a subset of gene promoters, generating enhanced variability of transcript levels. Destabilization of target programs shifts leukemia cell fate out of self-renewal into differentiation. We propose that control of transcriptional variability is central to leukemia stem-like cell propagation, and establish a paradigm exploitable in different tumors and distinct stages of cancer evolution.
Collapse
Affiliation(s)
- Ana Filipa Domingues
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
| | - Rashmi Kulkarni
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
| | - George Giotopoulos
- Department of HaematologyUniversity of Cambridge, Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell InstituteCambridgeUnited Kingdom
| | - Shikha Gupta
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Laura Vinnenberg
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
| | - Liliana Arede
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Elena Foerner
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
| | - Mitra Khalili
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
- Department of Medical Genetics and Molecular Medicine, School of MedicineZanjan University of Medical Sciences (ZUMS)ZanjanIslamic Republic of Iran
| | - Rita Romano Adao
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
| | - Ayona Johns
- Division of Biosciences, College of Health and Life SciencesBrunel University LondonUxbridgeUnited Kingdom
| | - Shengjiang Tan
- Department of HaematologyUniversity of Cambridge, Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
| | - Keti Zeka
- Department of HaematologyUniversity of Cambridge, NHS-BT Blood Donor CentreCambridgeUnited Kingdom
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Brian J Huntly
- Department of HaematologyUniversity of Cambridge, Cambridge Institute for Medical ResearchCambridgeUnited Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell InstituteCambridgeUnited Kingdom
| | - Sudhakaran Prabakaran
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Department of BiologyIISERPuneIndia
| | - Cristina Pina
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Division of Biosciences, College of Health and Life SciencesBrunel University LondonUxbridgeUnited Kingdom
| |
Collapse
|
254
|
|
255
|
Wang S, Denton KE, Hobbs KF, Weaver T, McFarlane JMB, Connelly KE, Gignac MC, Milosevich N, Hof F, Paci I, Musselman CA, Dykhuizen EC, Krusemark CJ. Optimization of Ligands Using Focused DNA-Encoded Libraries To Develop a Selective, Cell-Permeable CBX8 Chromodomain Inhibitor. ACS Chem Biol 2020; 15:112-131. [PMID: 31755685 DOI: 10.1021/acschembio.9b00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycomb repressive complex 1 (PRC1) is critical for mediating gene expression during development. Five chromobox (CBX) homolog proteins, CBX2, CBX4, CBX6, CBX7, and CBX8, are incorporated into PRC1 complexes, where they mediate targeting to trimethylated lysine 27 of histone H3 (H3K27me3) via the N-terminal chromodomain (ChD). Individual CBX paralogs have been implicated as drug targets in cancer; however, high similarities in sequence and structure among the CBX ChDs provide a major obstacle in developing selective CBX ChD inhibitors. Here we report the selection of small, focused, DNA-encoded libraries (DELs) against multiple homologous ChDs to identify modifications to a parental ligand that confer both selectivity and potency for the ChD of CBX8. This on-DNA, medicinal chemistry approach enabled the development of SW2_110A, a selective, cell-permeable inhibitor of the CBX8 ChD. SW2_110A binds CBX8 ChD with a Kd of 800 nM, with minimal 5-fold selectivity for CBX8 ChD over all other CBX paralogs in vitro. SW2_110A specifically inhibits the association of CBX8 with chromatin in cells and inhibits the proliferation of THP1 leukemia cells driven by the MLL-AF9 translocation. In THP1 cells, SW2_110A treatment results in a significant decrease in the expression of MLL-AF9 target genes, including HOXA9, validating the previously established role for CBX8 in MLL-AF9 transcriptional activation, and defining the ChD as necessary for this function. The success of SW2_110A provides great promise for the development of highly selective and cell-permeable probes for the full CBX family. In addition, the approach taken provides a proof-of-principle demonstration of how DELs can be used iteratively for optimization of both ligand potency and selectivity.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Kyle E. Denton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Kathryn F. Hobbs
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Tyler Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | | | - Katelyn E. Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Michael C. Gignac
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Natalia Milosevich
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Irina Paci
- Department of Chemistry, University of Victoria, Victoria V8W 3V6, Canada
| | - Catherine A. Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, United States
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 575 Stadium Mall Drive, West Lafayette, Indiana 47906, United States
| |
Collapse
|
256
|
Yoo H, Lee YJ, Park C, Son D, Choi DY, Park JH, Choi HJ, La HW, Choi YJ, Moon EH, Saur D, Chung HM, Song H, Do JT, Jang H, Lee DR, Park C, Lee OH, Cho SG, Hong SH, Kong G, Kim JH, Choi Y, Hong K. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis 2020; 11:14. [PMID: 31908356 PMCID: PMC6944698 DOI: 10.1038/s41419-019-2201-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Proper functioning of the lymphatic system is required for normal immune responses, fluid balance, and lipid reabsorption. Multiple regulatory mechanisms are employed to ensure the correct formation and function of lymphatic vessels; however, the epigenetic modulators and mechanisms involved in this process are poorly understood. Here, we assess the regulatory role of mouse Dot1l, a histone H3 lysine (K) 79 (H3K79) methyltransferase, in lymphatic formation. Genetic ablation of Dot1l in Tie2(+) endothelial cells (ECs), but not in Lyve1(+) or Prox1(+) lymphatic endothelial cells (LECs) or Vav1(+) definitive hematopoietic stem cells, leads to catastrophic lymphatic anomalies, including skin edema, blood–lymphatic mixing, and underdeveloped lymphatic valves and vessels in multiple organs. Remarkably, targeted Dot1l loss in Tie2(+) ECs leads to fully penetrant lymphatic aplasia, whereas Dot1l overexpression in the same cells results in partially hyperplastic lymphatics in the mesentery. Genetic studies reveal that Dot1l functions in c-Kit(+) hemogenic ECs during mesenteric lymphatic formation. Mechanistically, inactivation of Dot1l causes a reduction of both H3K79me2 levels and the expression of genes important for LEC development and function. Thus, our study establishes that Dot1l-mediated epigenetic priming and transcriptional regulation in LEC progenitors safeguard the proper lymphatic development and functioning of lymphatic vessels.
Collapse
Affiliation(s)
- Hyunjin Yoo
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Chanhyeok Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dabin Son
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Dong Yoon Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ji-Hyun Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hee-Jin Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyun Woo La
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Korea Mouse Phenotyping Center (KMPC), Gachon University, Incheon, Yeonsu-gu, 21999, Republic of Korea
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Baden-Württemberg, Heidelberg, 69120, Germany.,Department of Medicine II and Institute of Translational Cancer Research, Klinikum rechts der Isar, Technische Universität München, Bavaria, München, 81675, Germany
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Hoon Jang
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, CHA University, Seongnam, Bundang-gu, 13488, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Seongdong-gu, 04763, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| | - Kwonho Hong
- Department of Stem Cell & Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Gwangjin-gu, 05029, Republic of Korea.
| |
Collapse
|
257
|
Gibbons GS, Chakraborty A, Grigsby SM, Umeano AC, Liao C, Moukha-Chafiq O, Pathak V, Mathew B, Lee YT, Dou Y, Schürer SC, Reynolds RC, Snowden TS, Nikolovska-Coleska Z. Identification of DOT1L inhibitors by structure-based virtual screening adapted from a nucleoside-focused library. Eur J Med Chem 2020; 189:112023. [PMID: 31978781 DOI: 10.1016/j.ejmech.2019.112023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Disruptor of Telomeric Silencing 1-Like (DOT1L), the sole histone H3 lysine 79 (H3K79) methyltransferase, is required for leukemogenic transformation in a subset of leukemias bearing chromosomal translocations of the Mixed Lineage Leukemia (MLL) gene, as well as other cancers. Thus, DOT1L is an attractive therapeutic target and discovery of small molecule inhibitors remain of high interest. Herein, we are presenting screening results for a unique focused library of 1200 nucleoside analogs originally produced under the aegis of the NIH Pilot Scale Library Program. The complete nucleoside set was screened virtually against DOT1L, resulting in 210 putative hits. In vitro screening of the virtual hits resulted in validation of 11 compounds as DOT1L inhibitors clustered into two distinct chemical classes, adenosine-based inhibitors and a new chemotype that lacks adenosine. Based on the developed DOT1L ligand binding model, a structure-based design strategy was applied and a second-generation of non-nucleoside DOT1L inhibitors was developed. Newly synthesized compound 25 was the most potent DOT1L inhibitor in the new series with an IC50 of 1.0 μM, showing 40-fold improvement in comparison with hit 9 and exhibiting reasonable on target effects in a DOT1L dependent murine cell line. These compounds represent novel chemical probes with a unique non-nucleoside scaffold that bind and compete with the SAM binding site of DOT1L, thus providing foundation for further medicinal chemistry efforts to develop more potent compounds.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Amarraj Chakraborty
- Department of Chemistry and Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Sierrah M Grigsby
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Afoma C Umeano
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Chenzhong Liao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Omar Moukha-Chafiq
- Southern Research Institute, Drug Discovery Division, Birmingham, AL, 35205, USA
| | - Vibha Pathak
- Southern Research Institute, Drug Discovery Division, Birmingham, AL, 35205, USA
| | - Bini Mathew
- Southern Research Institute, Drug Discovery Division, Birmingham, AL, 35205, USA
| | - Young-Tae Lee
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stephan C Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Center for Computational Science, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Robert C Reynolds
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Timothy S Snowden
- Department of Chemistry and Biochemistry, The University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA.
| | - Zaneta Nikolovska-Coleska
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA; Rogel Cancer Center at University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
258
|
Birch NW, Shilatifard A. The role of histone modifications in leukemogenesis. J Biosci 2020; 45:6. [PMID: 31965984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Histone modifications play a critical role in coordinating accurate gene expression. Aside from genetic mutations which cause altered DNA sequence, it has become increasingly clear that aberrant post-translational modifications of histone tails are also associated with leukemogenesis. The functional roles of specific histone marks has informed the basis of our understanding for underlying mechanisms of leukemia, while global analyses of interacting histone modifications has begun to distinguish subtypes of leukemia with prognostic and therapeutic implications. In this current era of personalized and precision medicine, it will be necessary to not only identify the specific genetic mutations present in a patient's leukemia but to also appreciate the dynamic chromatin states which are driven by histone modifications that can aid our diagnostic and therapeutic strategies for improved management of leukemia.
Collapse
Affiliation(s)
- Noah W Birch
- Simpson Querrey Center for Epigenetics, and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
259
|
Zhang Y, Good-Jacobson KL. Epigenetic regulation of B cell fate and function during an immune response. Immunol Rev 2019; 288:75-84. [PMID: 30874352 DOI: 10.1111/imr.12733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
The humoral immune response requires coordination of molecular programs to mediate differentiation into unique B cell subsets that help clear the infection and form immune memory. Epigenetic modifications are crucial for ensuring that the appropriate genes are transcribed or repressed during B cell differentiation. Recent studies have illuminated the changes in DNA methylation and histone post-translational modifications that accompany the formation of germinal center and antibody-secreting cells during an immune response. In particular, the B cell subset-specific expression and function of DNA methyltransferases and histone-modifying complexes that mediate epigenome changes have begun to be unravelled. This review will discuss the recent advances in this field, as well as highlight critical questions about the relationship between epigenetic regulation and B cell fate and function that are yet to be answered.
Collapse
Affiliation(s)
- Yan Zhang
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
260
|
Cao L, Mitra P, Gonda TJ. The mechanism of MYB transcriptional regulation by MLL-AF9 oncoprotein. Sci Rep 2019; 9:20084. [PMID: 31882723 PMCID: PMC6934848 DOI: 10.1038/s41598-019-56426-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/08/2019] [Indexed: 11/18/2022] Open
Abstract
Acute leukaemias express high levels of MYB which are required for the initiation and maintenance of the disease. Inhibition of MYB expression or activity has been shown to suppress MLL-fusion oncoprotein-induced acute myeloid leukaemias (AML), which are among the most aggressive forms of AML, and indeed MYB transcription has been reported to be regulated by the MLL-AF9 oncoprotein. This highlights the importance of understanding the mechanism of MYB transcriptional regulation in these leukaemias. Here we have demonstrated that the MLL-AF9 fusion protein regulates MYB transcription directly at the promoter region, in part by recruiting the transcriptional regulator kinase CDK9, and CDK9 inhibition effectively suppresses MYB expression as well as cell proliferation. However, MYB regulation by MLL-AF9 does not require H3K79 methylation mediated by the methyltransferase DOT1L, which has also been shown to be a key mediator of MLL-AF9 leukemogenicity. The identification of specific, essential and druggable transcriptional regulators may enable effective targeting of MYB expression, which in turn could potentially lead to new therapeutic approaches for acute myeloid leukaemia with MLL-AF9.
Collapse
Affiliation(s)
- Lu Cao
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, QLD, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, Woolloongabba, QLD, Australia
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
261
|
Byun WS, Kim WK, Han HJ, Chung HJ, Jang K, Kim HS, Kim S, Kim D, Bae ES, Park S, Lee J, Park HG, Lee SK. Targeting Histone Methyltransferase DOT1L by a Novel Psammaplin A Analog Inhibits Growth and Metastasis of Triple-Negative Breast Cancer. Mol Ther Oncolytics 2019; 15:140-152. [PMID: 31720371 PMCID: PMC6838941 DOI: 10.1016/j.omto.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/19/2019] [Indexed: 01/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most intractable cancer in women with a high risk of metastasis. While hyper-methylation of histone H3 catalyzed by disruptor of telomeric silencing 1-like (DOT1L), a specific methyltransferase for histone H3 at lysine residue 79 (H3K79), is reported as a potential target for TNBCs, early developed nucleoside-type DOT1L inhibitors are not sufficient for effective inhibition of growth and metastasis of TNBC cells. We found that TNBC cells had a high expression level of DOT1L and a low expression level of E-cadherin compared to normal breast epithelial cells and non-TNBC cells. Here, a novel psammaplin A analog (PsA-3091) exhibited a potent inhibitory effect of DOT1L-mediated H3K79 methylation. Consistently, PsA-3091 also significantly inhibited the proliferation, migration, and invasion of TNBC cells along with the augmented expression of E-cadherin and the suppression of N-cadherin, ZEB1, and vimentin expression. In an orthotopic mouse model, PsA-3091 effectively inhibited lung metastasis and tumor growth by the regulation of DOT1L activity and EMT biomarkers. Together, we report here a new template of DOT1L inhibitor and suggest that targeting DOT1L-mediated H3K79 methylation by a novel PsA analog may be a promising strategy for the treatment of metastatic breast cancer patients.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Ju Han
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungkuk Jang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Sun Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghwa Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Bae
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeeyeon Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeung-geun Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
262
|
Chen X, Burkhardt DB, Hartman AA, Hu X, Eastman AE, Sun C, Wang X, Zhong M, Krishnaswamy S, Guo S. MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat Commun 2019; 10:5767. [PMID: 31852898 PMCID: PMC6920141 DOI: 10.1038/s41467-019-13666-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/19/2019] [Indexed: 01/16/2023] Open
Abstract
Cancer is a hyper-proliferative disease. Whether the proliferative state originates from the cell-of-origin or emerges later remains difficult to resolve. By tracking de novo transformation from normal hematopoietic progenitors expressing an acute myeloid leukemia (AML) oncogene MLL-AF9, we reveal that the cell cycle rate heterogeneity among granulocyte-macrophage progenitors (GMPs) determines their probability of transformation. A fast cell cycle intrinsic to these progenitors provide permissiveness for transformation, with the fastest cycling 3% GMPs acquiring malignancy with near certainty. Molecularly, we propose that MLL-AF9 preserves gene expression of the cellular states in which it is expressed. As such, when expressed in the naturally-existing, rapidly-cycling immature myeloid progenitors, this cell state becomes perpetuated, yielding malignancy. In humans, high CCND1 expression predicts worse prognosis for MLL fusion AMLs. Our work elucidates one of the earliest steps toward malignancy and suggests that modifying the cycling state of the cell-of-origin could be a preventative approach against malignancy.
Collapse
MESH Headings
- Animals
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cyclin D1/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation, Leukemic
- Gene Knock-In Techniques
- Humans
- Kaplan-Meier Estimate
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Mice, Transgenic
- Myeloid Progenitor Cells/pathology
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Piperazines/administration & dosage
- Primary Cell Culture
- Prognosis
- Pyridines/administration & dosage
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | | | - Amaleah A. Hartman
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Xiao Hu
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Anna E. Eastman
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Chao Sun
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | - Xujun Wang
- SJTU-Yale Joint Center for Biostatistics and Data Science, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Mei Zhong
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| | | | - Shangqin Guo
- Department of Cell Biology, Yale University, New Haven, CT 06520 USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
263
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
264
|
Stauffer F, Weiss A, Scheufler C, Möbitz H, Ragot C, Beyer KS, Calkins K, Guthy D, Kiffe M, Van Eerdenbrugh B, Tiedt R, Gaul C. New Potent DOT1L Inhibitors for in Vivo Evaluation in Mouse. ACS Med Chem Lett 2019; 10:1655-1660. [PMID: 31857842 DOI: 10.1021/acsmedchemlett.9b00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
In MLL-rearranged cancer cells, disruptor of telomeric silencing 1-like protein (DOT1L) is aberrantly recruited to ectopic loci leading to local hypermethylation of H3K79 and consequently misexpression of leukemogenic genes. A structure-guided optimization of a HTS hit led to the discovery of DOT1L inhibitors with subnanomolar potency, allowing testing of the therapeutic principle of DOT1L inhibition in a preclinical mouse tumor xenograft model. Compounds displaying good exposure in mouse and nanomolar inhibition of target gene expression in cells were obtained and tested in vivo.
Collapse
Affiliation(s)
- Frédéric Stauffer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Andreas Weiss
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Clemens Scheufler
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Henrik Möbitz
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Christian Ragot
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Kim S. Beyer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Keith Calkins
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Daniel Guthy
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Michael Kiffe
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | | | - Ralph Tiedt
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| | - Christoph Gaul
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland
| |
Collapse
|
265
|
Krivtsov AV, Evans K, Gadrey JY, Eschle BK, Hatton C, Uckelmann HJ, Ross KN, Perner F, Olsen SN, Pritchard T, McDermott L, Jones CD, Jing D, Braytee A, Chacon D, Earley E, McKeever BM, Claremon D, Gifford AJ, Lee HJ, Teicher BA, Pimanda JE, Beck D, Perry JA, Smith MA, McGeehan GM, Lock RB, Armstrong SA. A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell 2019; 36:660-673.e11. [PMID: 31821784 PMCID: PMC7227117 DOI: 10.1016/j.ccell.2019.11.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
Inhibition of the Menin (MEN1) and MLL (MLL1, KMT2A) interaction is a potential therapeutic strategy for MLL-rearranged (MLL-r) leukemia. Structure-based design yielded the potent, highly selective, and orally bioavailable small-molecule inhibitor VTP50469. Cell lines carrying MLL rearrangements were selectively responsive to VTP50469. VTP50469 displaced Menin from protein complexes and inhibited chromatin occupancy of MLL at select genes. Loss of MLL binding led to changes in gene expression, differentiation, and apoptosis. Patient-derived xenograft (PDX) models derived from patients with either MLL-r acute myeloid leukemia or MLL-r acute lymphoblastic leukemia (ALL) showed dramatic reductions of leukemia burden when treated with VTP50469. Multiple mice engrafted with MLL-r ALL remained disease free for more than 1 year after treatment. These data support rapid translation of this approach to clinical trials.
Collapse
Affiliation(s)
- Andrei V Krivtsov
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Kathryn Evans
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Jayant Y Gadrey
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Benjamin K Eschle
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Kenneth N Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Sarah N Olsen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | - Tara Pritchard
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Lisa McDermott
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Connor D Jones
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Duohui Jing
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Ali Braytee
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney 2052, Australia; Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Diego Chacon
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney 2052, Australia; Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Eric Earley
- RTI International, Research Triangle Park, NC 27709, USA
| | | | | | - Andrew J Gifford
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia; Department of Anatomical Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - John E Pimanda
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney 2052, Australia; Department of Haematology, Prince of Wales Hospital, Sydney, NSW 2210, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and the Prince of Wales Clinical School, UNSW, Sydney 2052, Australia; Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA
| | | | | | - Richard B Lock
- Children's Cancer Institute, School of Women's and Children's Health, UNSW, Sydney 2052, Australia
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
266
|
Abstract
Comprehensive cataloguing of the acute myeloid leukaemia (AML) genome has revealed a high frequency of mutations and deletions in epigenetic factors that are frequently linked to treatment resistance and poor patient outcome. In this review, we discuss how the epigenetic mechanisms that underpin normal haematopoiesis are subverted in AML, and in particular how these processes are altered in childhood and adolescent leukaemias. We also provide a brief summary of the burgeoning field of epigenetic-based therapies, and how AML treatment might be improved through provision of better conceptual frameworks for understanding the pleiotropic molecular effects of epigenetic disruption.
Collapse
Affiliation(s)
- Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Peter McCarthy
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
267
|
Abstract
An important capacity of genes is the rapid change of expression levels to cope with the environment, known as expression responsiveness or plasticity. Elucidating the genomic mechanisms determining expression plasticity is critical for understanding the molecular basis of phenotypic plasticity, fitness and adaptation. In this study, we systematically quantified gene expression plasticity in four metazoan species by integrating changes of expression levels under a large number of genetic and environmental conditions. From this, we demonstrated that expression plasticity measures a distinct feature of gene expression that is orthogonal to other well-studied features, including gene expression level and tissue specificity/broadness. Expression plasticity is conserved across species with important physiological implications. The magnitude of expression plasticity is highly correlated with gene function and genes with high plasticity are implicated in disease susceptibility. Genome-wide analysis identified many conserved promoter cis-elements, trans-acting factors (such as CTCF), and gene body histone modifications (H3K36me3, H3K79me2 and H4K20me1) that are significantly associated with expression plasticity. Analysis of expression changes in perturbation experiments further validated a causal role of specific transcription factors and histone modifications. Collectively, this work reveals the general properties, physiological implications and multivariable regulation of gene expression plasticity in metazoans, extending the mechanistic understanding of gene regulation.
Collapse
Affiliation(s)
- Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Fei He
- Biology Department, Brookhaven National Lab, Upton, NY 11967, USA
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
268
|
Wang F, Li Z, Wang G, Tian X, Zhou J, Yu W, Fan Z, Dong L, Lu J, Xu J, Zhang W, Liang A. Integrated transcriptomic and epigenetic data analysis identifiesaberrant expression of genes in acute myeloid leukemia with MLL‑AF9 translocation. Mol Med Rep 2019; 21:883-893. [PMID: 31789407 PMCID: PMC6947934 DOI: 10.3892/mmr.2019.10849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022] Open
Abstract
Rearrangement of the mixed lineage leukemia (MLL; also known as lysine methyltransferase 2A) gene is a recurrent genomic aberration in acute myeloid leukemia (AML). MLLT3, super elongation complex subunit (AF9) is one of the most common MLL fusion partners in AML. The present study aimed to explore the aberrant expression of genes associated with the MLL-AF9 translocation and identified potential new targets for the therapy of AML with MLL-AF9 translocation. The transcriptomic and epigenetic datasets were downloaded from National Center of Biotechnology Information Gene Expression Omnibus (GEO) database. Differentially expressed genes were obtained from two independent datasets (GSE68643 and GSE73457). Gene Ontology biological process and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. MLL-AF9-associated chromatin immunoprecipitation sequencing (ChIP-Seq) data was analyzed and identified binding sites for MLL-AF9 and wild type MLL (MLL WT). The ChIP-Seq of histone modification data was downloaded from the GEO database, including histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 79 dimethylation (H3K79me2) and histone 3 lysine 27 acetylation (H3K27ac), was used for comparing histone modification marks between the MLL-AF9 leukemia cells and normal hematopoietic cells at MLL-AF9 and MLL WT binding sites. The differentially expressed genes with the same trend in H3K79me2, H3K27ac and H3K4me3 alteration were identified as potential MLL-AF9 direct target genes. Upon validation using RNA-Seq data from the Therapeutically Applicable Research to Generate Effective Treatments AML project, eight potential direct target genes of MLL-AF9 were identified and further confirmed in MLL-AF9 mouse model using reverse transcription-quantitative polymerase chain reaction. These genes may have a critical role in AML with MLL-AF9 translocation.
Collapse
Affiliation(s)
- Fangce Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zheng Li
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Guangming Wang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoxue Tian
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jie Zhou
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Wenlei Yu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Zhuoyi Fan
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Lin Dong
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jinyuan Lu
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jun Xu
- Medical Center for Stem Cell Engineering and Transformation, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
269
|
Brumbaugh J, Di Stefano B, Hochedlinger K. Reprogramming: identifying the mechanisms that safeguard cell identity. Development 2019; 146:146/23/dev182170. [PMID: 31792064 DOI: 10.1242/dev.182170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA .,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
270
|
Calvanese V, Nguyen AT, Bolan TJ, Vavilina A, Su T, Lee LK, Wang Y, Lay FD, Magnusson M, Crooks GM, Kurdistani SK, Mikkola HKA. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 2019; 576:281-286. [PMID: 31776511 DOI: 10.1038/s41586-019-1790-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.
| | - Andrew T Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy J Bolan
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Anastasia Vavilina
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Trent Su
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Lydia K Lee
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | - Yanling Wang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Fides D Lay
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mattias Magnusson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Gay M Crooks
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Siavash K Kurdistani
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.,Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
271
|
Forgione MO, McClure BJ, Eadie LN, Yeung DT, White DL. KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett 2019; 469:410-418. [PMID: 31705930 DOI: 10.1016/j.canlet.2019.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
KMT2A rearranged (KMT2Ar) acute lymphoblastic leukaemia (ALL) is a high-risk genomic subtype, with long-term survival rates of less than 60% across all age groups. These cases present a complex clinical challenge, with a high incidence in infants, high-risk clinical features and propensity for aggressive relapse. KMT2A rearrangements are highly pathogenic leukaemic drivers, reflected by the high incidence of KMT2Ar ALL in infants, who carry few leukaemia-associated cooperative mutations. However, transgenic murine models of KMT2Ar ALL typically exhibit long latency and mature or mixed phenotype, and fail to recapitulate the aggressive disease observed clinically. Next-generation sequencing has revealed that KMT2Ar ALL also occurs in adolescents and adults, and potentially cooperative genomic lesions such as PI3K-RAS pathway variants are present in KMT2Ar patients of all ages. This review addresses the aetiology of KMT2Ar ALL, with a focus on the cell of origin and mutational landscape, and how genomic profiling of KMT2Ar ALL patients in the era of next-generation sequencing demonstrates that KMT2Ar ALL is a complex heterogenous disease. Ultimately, understanding the underlying biology of KMT2Ar ALL will be important in improving long-term outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia.
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Department of Haematology, Royal Adelaide Hospital, SA, 5000, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia; School of Biological Sciences, University of Adelaide, SA, 5000, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, 5000, Australia; Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Vic, 3052, Australia; Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, Vic, 3168, Australia
| |
Collapse
|
272
|
Cai XC, Zhang T, Kim EJ, Jiang M, Wang K, Wang J, Chen S, Zhang N, Wu H, Li F, Dela Seña CC, Zeng H, Vivcharuk V, Niu X, Zheng W, Lee JP, Chen Y, Barsyte D, Szewczyk M, Hajian T, Ibáñez G, Dong A, Dombrovski L, Zhang Z, Deng H, Min J, Arrowsmith CH, Mazutis L, Shi L, Vedadi M, Brown PJ, Xiang J, Qin LX, Xu W, Luo M. A chemical probe of CARM1 alters epigenetic plasticity against breast cancer cell invasion. eLife 2019; 8:47110. [PMID: 31657716 PMCID: PMC6917500 DOI: 10.7554/elife.47110] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022] Open
Abstract
CARM1 is a cancer-relevant protein arginine methyltransferase that regulates many aspects of transcription. Its pharmacological inhibition is a promising anti-cancer strategy. Here SKI-73 (6a in this work) is presented as a CARM1 chemical probe with pro-drug properties. SKI-73 (6a) can rapidly penetrate cell membranes and then be processed into active inhibitors, which are retained intracellularly with 10-fold enrichment for several days. These compounds were characterized for their potency, selectivity, modes of action, and on-target engagement. SKI-73 (6a) recapitulates the effect of CARM1 knockout against breast cancer cell invasion. Single-cell RNA-seq analysis revealed that the SKI-73(6a)-associated reduction of invasiveness acts by altering epigenetic plasticity and suppressing the invasion-prone subpopulation. Interestingly, SKI-73 (6a) and CARM1 knockout alter the epigenetic plasticity with remarkable difference, suggesting distinct modes of action for small-molecule and genetic perturbations. We therefore discovered a CARM1-addiction mechanism of cancer metastasis and developed a chemical probe to target this process. Drugs that are small molecules have the potential to block the individual proteins that drive the spread of cancer, but their design is a challenge. This is because they need to get inside the cell and find their target without binding to other proteins on the way. However, small molecule drugs often have an electric charge, which makes it hard for them to cross the cell membrane. Additionally, most proteins are not completely unique, making it harder for the drugs to find the correct target. CARM1 is a protein that plays a role in the spread of breast cancer cells, and scientists are currently looking for a small molecule that will inhibit its action. The group of enzymes that CARM1 belongs to act by taking a small chemical group, called a methyl group, from a molecule called SAM, and transferring it to proteins that switch genes on and off. In the case of CARM1, this changes cell behavior by turning on genes involved in cell movement. Genetically modifying cells so they will not produce any CARM1 stops the spread of breast cancer cells, but developing a drug with the same effects has proved difficult. Existing drugs that can inhibit CARM1 in a test tube struggle to get inside cells and to distinguish between CARM1 and its related enzymes. Now, Cai et al. have modified and tested a CARM1 inhibitor to address these problems, and find out how these small molecules work. At its core, the inhibitor has a structure very similar to a SAM molecule, so it can fit into the SAM binding pocket of CARM1 and its related enzymes. To stop the inhibitor from binding to other proteins, Cai et al. made small changes to its structure until it only interacted with CARM1.Then, to get the inhibitor inside breast cancer cells, Cai et al. cloaked its charged area with a chemical shield, allowing it to cross the cell membrane. Inside the cell, the chemical shield broke away, allowing the inhibitor to attach to CARM1. Analysis of cells showed that this inhibition only affected the cancer cells most likely to spread. Blocking CARM1 switched off genes involved in cell movement and stopped cancer cells from travelling through 3D gels. This work is a step towards making a drug that can block CARM1 in cancer cells, but there is still further work to be done. The next stages will be to test whether the new inhibitor works in other types of cancer cells, in living animals, and in human patient samples.
Collapse
Affiliation(s)
- Xiao-Chuan Cai
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medical College, Cornell University, New York, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, United States
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, United States
| | - Ke Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Junyi Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Shi Chen
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nawei Zhang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Department of Obstetrics and Gynecology, Chaoyang Hospital, Affiliation Hospital of Capital Medical University, Beijing, China
| | - Hong Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Carlo C Dela Seña
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Victor Vivcharuk
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
| | - Xiang Niu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Tri-Institutional PhD Program in Computational Biology and Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Weihong Zheng
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jonghan P Lee
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Yuling Chen
- Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dalia Barsyte
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Magda Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Glorymar Ibáñez
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | | | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Chaoyang Hospital, Affiliation Hospital of Capital Medical University, Beijing, China
| | - Haiteng Deng
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Canada
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medical College, Cornell University, New York, United States
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, United States
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, United States
| |
Collapse
|
273
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
274
|
Methylation of Histone H3K79 by Dot1L Requires Multiple Contacts with the Ubiquitinated Nucleosome. Mol Cell 2019; 74:862-863. [PMID: 31173720 DOI: 10.1016/j.molcel.2019.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cryo-EM structures of Dot1L in complex with a ubiquitinated nucleosome provide the long-sought-after molecular mechanism of Dot1L-mediated methylation of lysine 79 in histone H3 and explain crosstalk with histone H2B ubiquitination.
Collapse
|
275
|
Park PH, Yamamoto TM, Li H, Alcivar AL, Xia B, Wang Y, Bernhardy AJ, Turner KM, Kossenkov AV, Watson ZL, Behbakht K, Casadei S, Swisher EM, Mischel PS, Johnson N, Bitler BG. Amplification of the Mutation-Carrying BRCA2 Allele Promotes RAD51 Loading and PARP Inhibitor Resistance in the Absence of Reversion Mutations. Mol Cancer Ther 2019; 19:602-613. [PMID: 31575654 DOI: 10.1158/1535-7163.mct-17-0256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/04/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022]
Abstract
Patients harboring germline breast cancer susceptibility genes 1 and 2 (BRCA1/2) mutations are predisposed to developing breast, pancreatic, and ovarian cancers. BRCA2 plays a critical role in homologous recombination (HR) DNA repair and deleterious mutations in BRCA2 confer sensitivity to PARP inhibition. Recently, the PARP inhibitors olaparib and rucaparib were FDA approved for the treatment of metastatic breast cancer and patients with recurrent ovarian cancer with mutations in BRCA1/2. Despite their initial antitumor activity, the development of resistance limits the clinical utility of PARP inhibitor therapy. Multiple resistance mechanisms have been described, including reversion mutations that restore the reading frame of the BRCA2 gene. In this study, we generated olaparib- and rucaparib-resistant BRCA2-mutant Capan1 cell lines. We did not detect secondary reversion mutations in the olaparib- or rucaparib-resistant clones. Several of the resistant clones had gene duplication and amplification of the mutant BRCA2 allele, with a corresponding increase in expression of a truncated BRCA2 protein. In addition, HR-mediated DNA repair was rescued, as evidenced by the restoration of RAD51 foci formation. Using mass spectrometry, we identified Disruptor Of Telomeric silencing 1-Like (DOT1L), as an interacting partner of truncated BRCA2. RNAi-mediated knockdown of BRCA2 or DOT1L was sufficient to resensitize cells to olaparib. The results demonstrate that independent of a BRCA2 reversion, mutation amplification of a mutant-carrying BRCA2 contributes to PARP inhibitor resistance.
Collapse
Affiliation(s)
- Pyoung Hwa Park
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tomomi M Yamamoto
- Division of Reproductive Sciences, The University of Colorado, Aurora, Colorado
| | - Hua Li
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Allen L Alcivar
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Yifan Wang
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andrea J Bernhardy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kristen M Turner
- Moores Cancer Center, University of California at San Diego, La Jolla, California
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Zachary L Watson
- Division of Reproductive Sciences, The University of Colorado, Aurora, Colorado
| | - Kian Behbakht
- Division of Gynecologic Oncology, The University of Colorado, Aurora, Colorado
| | - Silvia Casadei
- Department of Ob/Gyn, University of Washington, Seattle, Washington
| | | | - Paul S Mischel
- Moores Cancer Center, University of California at San Diego, La Jolla, California
| | - Neil Johnson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Benjamin G Bitler
- Division of Reproductive Sciences, The University of Colorado, Aurora, Colorado.
| |
Collapse
|
276
|
Wingelhofer B, Somervaille TCP. Emerging Epigenetic Therapeutic Targets in Acute Myeloid Leukemia. Front Oncol 2019; 9:850. [PMID: 31552175 PMCID: PMC6743337 DOI: 10.3389/fonc.2019.00850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy for which treatment options have been largely limited to cytotoxic chemotherapy for the past four decades. Next-generation sequencing and other approaches have identified a spectrum of genomic and epigenomic alterations that contribute to AML initiation and maintenance. The key role of epigenetic modifiers and the reversibility of epigenetic changes have paved the way for evaluation of a new set of drug targets, and facilitated the design of novel candidate treatment strategies. More recently, seven new targeted therapies have been FDA-approved demonstrating successful implementation of the past decades' research. In this review, we will summarize the most recent advances in targeted therapeutics designed for a focused group of key epigenetic regulators in AML, outline their mechanism of action and their current status in clinical development. Furthermore, we will discuss promising new approaches for epigenetic targeted treatment in AML which are currently being tested in pre-clinical trials.
Collapse
Affiliation(s)
| | - Tim C. P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
277
|
Hurtz C, Chan LN, Geng H, Ballabio E, Xiao G, Deb G, Khoury H, Chen CW, Armstrong SA, Chen J, Ernst P, Melnick A, Milne T, Müschen M. Rationale for targeting BCL6 in MLL-rearranged acute lymphoblastic leukemia. Genes Dev 2019; 33:1265-1279. [PMID: 31395741 PMCID: PMC6719625 DOI: 10.1101/gad.327593.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Chromosomal rearrangements of the mixed lineage leukemia (MLL) gene occur in ∼10% of B-cell acute lymphoblastic leukemia (B-ALL) and define a group of patients with dismal outcomes. Immunohistochemical staining of bone marrow biopsies from most of these patients revealed aberrant expression of BCL6, a transcription factor that promotes oncogenic B-cell transformation and drug resistance in B-ALL. Our genetic and ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analyses showed that MLL-AF4 and MLL-ENL fusions directly bound to the BCL6 promoter and up-regulated BCL6 expression. While oncogenic MLL fusions strongly induced aberrant BCL6 expression in B-ALL cells, germline MLL was required to up-regulate Bcl6 in response to physiological stimuli during normal B-cell development. Inducible expression of Bcl6 increased MLL mRNA levels, which was reversed by genetic deletion and pharmacological inhibition of Bcl6, suggesting a positive feedback loop between MLL and BCL6. Highlighting the central role of BCL6 in MLL-rearranged B-ALL, conditional deletion and pharmacological inhibition of BCL6 compromised leukemogenesis in transplant recipient mice and restored sensitivity to vincristine chemotherapy in MLL-rearranged B-ALL patient samples. Oncogenic MLL fusions strongly induced transcriptional activation of the proapoptotic BH3-only molecule BIM, while BCL6 was required to curb MLL-induced expression of BIM. Notably, peptide (RI-BPI) and small molecule (FX1) BCL6 inhibitors derepressed BIM and synergized with the BH3-mimetic ABT-199 in eradicating MLL-rearranged B-ALL cells. These findings uncover MLL-dependent transcriptional activation of BCL6 as a previously unrecognized requirement of malignant transformation by oncogenic MLL fusions and identified BCL6 as a novel target for the treatment of MLL-rearranged B-ALL.
Collapse
Affiliation(s)
- Christian Hurtz
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Lai N Chan
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Huimin Geng
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Erica Ballabio
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Gang Xiao
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| | - Gauri Deb
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
| | - Haytham Khoury
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
| | - Chun-Wei Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jianjun Chen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
| | - Patricia Ernst
- Department of Pediatrics, University of Colorado, Denver, Colorado 80045, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Thomas Milne
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Markus Müschen
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, California 91016, USA
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
278
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
279
|
Sharma A, Jyotsana N, Gabdoulline R, Heckl D, Kuchenbauer F, Slany RK, Ganser A, Heuser M. Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia. Haematologica 2019; 105:1294-1305. [PMID: 31413090 PMCID: PMC7193500 DOI: 10.3324/haematol.2018.211201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mixed lineage leukemia (MLL/KMT2A) rearrangements (MLL-r) are one of the most frequent chromosomal aberrations in acute myeloid leukemia. We evaluated the function of Meningioma 1 (MN1), a co-factor of HOXA9 and MEIS1, in human and murine MLL-rearranged leukemia by CRISPR-Cas9 mediated deletion of MN1. MN1 was required for in vivo leukemogenicity of MLL positive murine and human leukemia cells. Loss of MN1 inhibited cell cycle and proliferation, promoted apoptosis and induced differentiation of MLL-rearranged cells. Expression analysis and chromatin immunoprecipitation with sequencing from previously reported data sets demonstrated that MN1 primarily maintains active transcription of HOXA9 and HOXA10, which are critical downstream genes of MLL, and their target genes like BCL2, MCL1 and Survivin. Treatment of MLL-rearranged primary leukemia cells with anti-MN1 siRNA significantly reduced their clonogenic potential in contrast to normal CD34+ hematopoietic progenitor cells, suggesting a therapeutic window for MN1 targeting. In summary, our findings demonstrate that MN1 plays an essential role in MLL fusion leukemias and serve as a therapeutic target in MLL-rearranged acute myeloid leukemia.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
280
|
Abnormal expression of menin predicts the pathogenesis and poor prognosis of adult gliomas. Cancer Gene Ther 2019; 27:539-547. [PMID: 31383953 DOI: 10.1038/s41417-019-0127-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Several brain tumors is closely related to the disorder of chromatin histone modification, whereas the epigenetic mechanisms of the incidence of highly malignant adult glioma is not yet deeply studied. Deletion or mutation of the MEN1 gene, which encodes the epigenetic regulator menin, specifically induces poorly differentiated neuroendocrine tumors; however, the biological and clinical importance of MEN1 in the nervous system remains poorly understood. Menin expression was robustly activated in 44.4% of adult gliomas. Abnormally high expression of menin was closely related to a shorter median survival time of 20 months, a larger tumor volume and a higher percentage of Ki67 staining. Interestingly, menin expression was also activated in the cytoplasm of tumor cells (38.8%) and was also closely related to the poor prognosis of patients with glioma. Importantly, in a screening of 96 types of small-molecule targeted histone modification regulators, menin inhibitors were found to significantly block the proliferation of adult glioma cells. Our findings confirm that menin is a potential biomarker of poor prognosis in adult gliomas, independent of the WHO grade. Targeting menin may effectively inhibit certain gliomas, and this information provides novel insight into therapeutic strategies for glioma.
Collapse
|
281
|
Chandhok NS, Prebet T. Insights into novel emerging epigenetic drugs in myeloid malignancies. Ther Adv Hematol 2019; 10:2040620719866081. [PMID: 31431820 PMCID: PMC6685116 DOI: 10.1177/2040620719866081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetics has been defined as ‘a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence’ and several epigenetic regulators are recurrently mutated in hematological malignancies. Epigenetic modifications include changes such as DNA methylation, histone modifications and RNA associated gene silencing. Transcriptional regulation, chromosome stability, DNA replication and DNA repair are all controlled by these modifications. Mutations in genes encoding epigenetic modifiers are a frequent occurrence in hematologic malignancies and important in both the initiation and progression of cancer. Epigenetic modifications are also frequently reversible, allowing excellent opportunities for therapeutic intervention. The goal of epigenetic therapies is to reverse epigenetic dysregulation, restore the epigenetic balance, and revert malignant cells to a more normal condition. The role of epigenetic therapies thus far is most established in hematologic malignancies, with several agents already approved by the US Food and Drug Administration. In this review, we discuss pharmacological agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | - Thomas Prebet
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, 35 Park Street, New Haven, CT 06511, USA
| |
Collapse
|
282
|
Yoshida M, Nakabayashi K, Ogata-Kawata H, Osumi T, Tsujimoto SI, Shirai R, Yoshida K, Okamura K, Matsumoto K, Kiyokawa N, Tomizawa D, Hata K, Kato M. A novel KMT2A-ACTN2 fusion in infant B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2019; 66:e27821. [PMID: 31115144 DOI: 10.1002/pbc.27821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Kaoru Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
283
|
Transcriptional addiction in mixed lineage leukemia: new avenues for target therapies. BLOOD SCIENCE 2019; 1:50-56. [PMID: 35402805 PMCID: PMC8975088 DOI: 10.1097/bs9.0000000000000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022] Open
Abstract
Mixed lineage leukemia (MLL) is an aggressive and refractory blood cancer that predominantly occurs in pediatric patients and is often associated with poor prognosis and dismal outcomes. Thus far, no effective target therapy for the treatment of MLL leukemia is available. MLL leukemia is caused by the rearrangement of MLL genes at 11q23, which generates various MLL chimeric proteins that promote leukemogenesis through transcriptional misregulation of MLL target genes. Biochemical studies on MLL chimeras have identified that the most common partners exist in the superelongation complex (SEC) and DOT1L complex, which activate or sustain MLL target gene expression through processive transcription elongation. The results of these studies indicate a transcription-related mechanism for MLL leukemogenesis and maintenance. In this study, we first review the history of MLL leukemia and its related clinical features. Then, we discuss the biological functions of MLL and MLL chimeras, significant cooperating events, and transcriptional addiction mechanisms in MLL leukemia with an emphasis on potential and rational therapy development. Collectively, we believe that targeting the transcriptional addiction mediated by SEC and the DOT1L complex will provide new avenues for target therapies in MLL leukemia and serve as a novel paradigm for targeting transcriptional addiction in other cancers.
Collapse
|
284
|
Epigenetic Abnormalities in Acute Myeloid Leukemia and Leukemia Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31338820 DOI: 10.1007/978-981-13-7342-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Recently advances in cancer genomics revealed the unexpected high frequencies of epigenetic abnormalities in human acute myeloid leukemia (AML). Accumulating data suggest that these leukemia-associated epigenetic factors play critical roles in both normal hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs). In turn, these abnormalities result in susceptibilities of LSC and related diseases to epigenetic inhibitors. In this chapter, we will focus on the mutations of epigenetic factors in AML, their functional roles and mechanisms in normal hematopoiesis and leukemia genesis, especially in LSC, and potential treatment opportunities specifically for AML with epigenetic dysregulations.
Collapse
|
285
|
Vlaming H, McLean CM, Korthout T, Alemdehy MF, Hendriks S, Lancini C, Palit S, Klarenbeek S, Kwesi‐Maliepaard EM, Molenaar TM, Hoekman L, Schmidlin TT, Altelaar AFM, van Welsem T, Dannenberg J, Jacobs H, van Leeuwen F. Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1L-dose dependency in HDAC1-deficient thymic lymphoma. EMBO J 2019; 38:e101564. [PMID: 31304633 PMCID: PMC6627229 DOI: 10.15252/embj.2019101564] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
DOT1L methylates histone H3K79 and is aberrantly regulated in MLL-rearranged leukemia. Inhibitors have been developed to target DOT1L activity in leukemia, but cellular mechanisms that regulate DOT1L are still poorly understood. We have identified the histone deacetylase Rpd3 as a negative regulator of budding yeast Dot1. At its target genes, the transcriptional repressor Rpd3 restricts H3K79 methylation, explaining the absence of H3K79me3 at a subset of genes in the yeast genome. Similar to the crosstalk in yeast, inactivation of the murine Rpd3 homolog HDAC1 in thymocytes led to an increase in H3K79 methylation. Thymic lymphomas that arise upon genetic deletion of Hdac1 retained the increased H3K79 methylation and were sensitive to reduced DOT1L dosage. Furthermore, cell lines derived from Hdac1Δ/Δ thymic lymphomas were sensitive to a DOT1L inhibitor, which induced apoptosis. In summary, we identified an evolutionarily conserved crosstalk between HDAC1 and DOT1L with impact in murine thymic lymphoma development.
Collapse
Affiliation(s)
- Hanneke Vlaming
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMAUSA
| | - Chelsea M McLean
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tessy Korthout
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mir Farshid Alemdehy
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Hendriks
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Cesare Lancini
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sander Palit
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | | | - Thom M Molenaar
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Liesbeth Hoekman
- Experimental Animal PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Thierry T Schmidlin
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
| | - AF Maarten Altelaar
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht Institute for Pharmaceutical SciencesUtrecht University and Netherlands Proteomics CentreUtrechtThe Netherlands
- Proteomics FacilityNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Tibor van Welsem
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jan‐Hermen Dannenberg
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
- Present address:
Genmab B.V.Antibody SciencesUtrechtThe Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & ImmunologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Fred van Leeuwen
- Division of Gene RegulationNetherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
286
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
287
|
Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J Cell Biochem 2019; 120:18332-18345. [PMID: 31257681 PMCID: PMC6772115 DOI: 10.1002/jcb.29143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 11/12/2022]
Abstract
MYC and RUNX oncogenes each trigger p53‐mediated failsafe responses when overexpressed in vitro and collaborate with p53 deficiency in vivo. However, together they drive rapid onset lymphoma without mutational loss of p53. This phenomenon was investigated further by transcriptomic analysis of premalignant thymus from RUNX2/MYC transgenic mice. The distinctive contributions of MYC and RUNX to transcriptional control were illustrated by differential enrichment of canonical binding sites and gene ontology analyses. Pathway analysis revealed signatures of MYC, CD3, and CD28 regulation indicative of activation and proliferation, but also strong inhibition of cell death pathways. In silico analysis of discordantly expressed genes revealed Tnfsrf8/CD30, Cish, and Il13 among relevant targets for sustained proliferation and survival. Although TP53 mRNA and protein levels were upregulated, its downstream targets in growth suppression and apoptosis were largely unperturbed. Analysis of genes encoding p53 posttranslational modifiers showed significant upregulation of three genes, Smyd2, Set, and Prmt5. Overexpression of SMYD2 was validated in vivo but the functional analysis was constrained by in vitro loss of p53 in RUNX2/MYC lymphoma cell lines. However, an early role is suggested by the ability of SMYD2 to block senescence‐like growth arrest induced by RUNX overexpression in primary fibroblasts.
Collapse
Affiliation(s)
- Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Camille Huser
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alma Mcdonald
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amanda MacCallum
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ailsa Holroyd
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
288
|
Brzezinka K, Nevedomskaya E, Lesche R, Steckel M, Eheim AL, Haegebarth A, Stresemann C. Functional diversity of inhibitors tackling the differentiation blockage of MLL-rearranged leukemia. J Hematol Oncol 2019; 12:66. [PMID: 31253180 PMCID: PMC6599250 DOI: 10.1186/s13045-019-0749-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction The chromosomal rearrangements of the mixed-lineage leukemia gene MLL (KMT2A) have been extensively characterized as a potent oncogenic driver in leukemia. For its oncogenic function, most MLL-fusion proteins exploit the multienzyme super elongation complex leading to elevated expression of MLL target genes. High expression of MLL target genes overwrites the normal hematopoietic differentiation program, resulting in undifferentiated blasts characterized by the capacity to self-renew. Although extensive resources devoted to increased understanding of therapeutic targets to overcome de-differentiation in ALL/AML, the inter-dependencies of targets are still not well described. The majority of inhibitors potentially interfering with MLL-fusion protein driven transformation have been characterized in individual studies, which so far hindered their direct cross-comparison. Methods In our study, we characterized head-to-head clinical stage inhibitors for BET, DHODH, DOT1L as well as two novel inhibitors for CDK9 and the Menin-MLL interaction with a focus on differentiation induction. We profiled those inhibitors for global gene expression effects in a large cell line panel and examined cellular responses such as inhibition of proliferation, apoptosis induction, cell cycle arrest, surface marker expression, morphological phenotype changes, and phagocytosis as functional differentiation readout. We also verified the combination potential of those inhibitors on proliferation and differentiation level. Results Our analysis revealed significant differences in differentiation induction and in modulating MLL-fusion target gene expression. We observed Menin-MLL and DOT1L inhibitors act very specifically on MLL-fused leukemia cell lines, whereas inhibitors of BET, DHODH and P-TEFb have strong effects beyond MLL-fusions. Significant differentiation effects were detected for Menin-MLL, DOT1L, and DHODH inhibitors, whereas BET and CDK9 inhibitors primarily induced apoptosis in AML/ALL cancer models. For the first time, we explored combination potential of the abovementioned inhibitors with regards to overcoming the differentiation blockage. Conclusion Our findings show substantial diversity in the molecular activities of those inhibitors and provide valuable insights into the further developmental potential as single agents or in combinations in MLL-fused leukemia. Electronic supplementary material The online version of this article (10.1186/s13045-019-0749-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krzysztof Brzezinka
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Ekaterina Nevedomskaya
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Ralf Lesche
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Michael Steckel
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Ashley L Eheim
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Andrea Haegebarth
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Carlo Stresemann
- Pharmaceuticals, Research & Development, Bayer AG, Muellerstrasse 178, 13353, Berlin, Germany.
| |
Collapse
|
289
|
Godfrey L, Crump NT, Thorne R, Lau IJ, Repapi E, Dimou D, Smith AL, Harman JR, Telenius JM, Oudelaar AM, Downes DJ, Vyas P, Hughes JR, Milne TA. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat Commun 2019; 10:2803. [PMID: 31243293 PMCID: PMC6594956 DOI: 10.1038/s41467-019-10844-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/05/2019] [Indexed: 12/26/2022] Open
Abstract
Enhancer elements are a key regulatory feature of many important genes. Several general features including the presence of specific histone modifications are used to demarcate potentially active enhancers. Here we reveal that putative enhancers marked with H3 lysine 79 (H3K79) di or trimethylation (me2/3) (which we name H3K79me2/3 enhancer elements or KEEs) can be found in multiple cell types. Mixed lineage leukemia gene (MLL) rearrangements (MLL-r) such as MLL-AF4 are a major cause of incurable acute lymphoblastic leukemias (ALL). Using the DOT1L inhibitor EPZ-5676 in MLL-AF4 leukemia cells, we show that H3K79me2/3 is required for maintaining chromatin accessibility, histone acetylation and transcription factor binding specifically at KEEs but not non-KEE enhancers. We go on to show that H3K79me2/3 is essential for maintaining enhancer-promoter interactions at a subset of KEEs. Together, these data implicate H3K79me2/3 as having a functional role at a subset of active enhancers in MLL-AF4 leukemia cells.
Collapse
Affiliation(s)
- Laura Godfrey
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ross Thorne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - I-Jun Lau
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dimitra Dimou
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alastair L Smith
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jelena M Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - A Marieke Oudelaar
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Jim R Hughes
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
290
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
291
|
Li Y, Li Z, Zhu WG. Molecular Mechanisms of Epigenetic Regulators as Activatable Targets in Cancer Theranostics. Curr Med Chem 2019; 26:1328-1350. [PMID: 28933282 DOI: 10.2174/0929867324666170921101947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Epigenetics is defined as somatically inheritable changes that are not accompanied by alterations in DNA sequence. Epigenetics encompasses DNA methylation, covalent histone modifications, non-coding RNA as well as nucleosome remodeling. Notably, abnormal epigenetic changes play a critical role in cancer development including malignant transformation, metastasis, prognosis, drug resistance and tumor recurrence, which can provide effective targets for cancer prognosis, diagnosis and therapy. Understanding these changes provide effective means for cancer diagnosis and druggable targets for better clinical applications. Histone modifications and related enzymes have been found to correlate well with cancer incidence and prognosis in recent years. Dysregulated expression or mutation of histone modification enzymes and histone modification status abnormalities have been considered to play essential roles in tumorigenesis and clinical outcomes of cancer treatment. Some of the histone modification inhibitors have been extensively employed in clinical practice and many others are still under laboratory research or pre-clinical assessment. Here we summarize the important roles of epigenetics, especially histone modifications in cancer diagnostics and therapeutics, and also discuss the developmental implications of activatable epigenetic targets in cancer theranostics.
Collapse
Affiliation(s)
- Yinglu Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Zhiming Li
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Shenzhen University School of Medicine, Shenzhen 518060, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
292
|
Bishop TR, Zhang Y, Erb MA. Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends Pharmacol Sci 2019; 40:388-402. [PMID: 31078321 PMCID: PMC6746237 DOI: 10.1016/j.tips.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
Upon binding of transcription factors to cis-regulatory DNA sequences, transcriptional coregulators are required for the activation or suppression of chromatin-dependent transcriptional signaling. These coregulators are frequently implicated in oncogenesis via causal roles in dysregulated, malignant transcriptional control and represent one of the fastest-growing target classes in small-molecule drug discovery. However, challenges in targeting coregulators include identifying evidence of cancer-specific genetic dependency, matching the pharmacologically addressable protein fold to a functional role in disease pathology, and achieving the necessary selectivity to exploit a given genetic dependency. We discuss here how recent trends in cancer pharmacology have confronted these challenges, positioning coregulators as tractable targets in the development of new cancer therapies.
Collapse
Affiliation(s)
- Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
293
|
Guo HZ, Niu LT, Qiang WT, Chen J, Wang J, Yang H, Zhang W, Zhu J, Yu SH. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance. FASEB J 2019; 33:9565-9576. [PMID: 31136196 DOI: 10.1096/fj.201900099r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Secreted proteins provide crucial signals that have been implicated in the development of acute myeloid leukemia (AML) in the bone marrow microenvironment. Here we identify aberrant expressions of inflammatory IL-17B and its receptor (IL-17RB) in human and mouse mixed lineage leukemia-rearranged AML cells, which were further increased after exposure to chemotherapy. Interestingly, silencing of IL-17B or IL-17RB led to significant suppression of leukemic cell survival and disease progression in vivo. Moreover, the IL-17B-IL-17RB axis protected leukemic cells from chemotherapeutic agent-induced apoptotic effects. Mechanistic studies revealed that IL-17B promoted AML cell survival by enhancing ERK, NF-κB phosphorylation, and the expression of antiapoptotic protein B-cell lymphoma 2, which were reversed by small-molecule inhibitors. Thus, the inhibition of the IL-17B-IL-17RB axis may be a valid strategy to enhance sensitivity and therapeutic benefit of AML chemotherapy.-Guo, H.-Z., Niu, L.-T., Qiang, W.-T., Chen, J., Wang, J., Yang, H., Zhang, W., Zhu, J., Yu, S.-H. Leukemic IL-17RB signaling regulates leukemic survival and chemoresistance.
Collapse
Affiliation(s)
- He-Zhou Guo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Li-Ting Niu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wan-Ting Qiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Juan Wang
- Bioinformatics and Genomics Program, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hui Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Wu Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Jiang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Shan-He Yu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| |
Collapse
|
294
|
Dhall A, Zee BM, Yan F, Blanco MA. Intersection of Epigenetic and Metabolic Regulation of Histone Modifications in Acute Myeloid Leukemia. Front Oncol 2019; 9:432. [PMID: 31192132 PMCID: PMC6540842 DOI: 10.3389/fonc.2019.00432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/07/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most lethal blood cancers, accounting for close to a quarter of a million annual deaths worldwide. Even though genetically heterogeneous, all AMLs are characterized by two interrelated features—blocked differentiation and high proliferative capacity. Despite significant progress in our understanding of the molecular and genetic basis of AML, the treatment of AMLs with chemotherapeutic regimens has remained largely unchanged in the past 30 years. In this review, we will consider the role of two cellular processes, metabolism and epigenetics, in the development and progression of AML and highlight the studies that suggest an interconnection of therapeutic importance between the two. Large-scale whole-exome sequencing of AML patients has revealed the presence of mutations, translocations or duplications in several epigenetic effectors such as DNMT3, MLL, ASXL1, and TET2, often times co-occuring with mutations in metabolic enzymes such as IDH1 and IDH2. These mutations often result in impaired enzymatic activity which leads to an altered epigenetic landscape through dysregulation of chromatin modifications such as DNA methylation, histone acetylation and methylation. We will discuss the role of enzymes that are responsible for establishing these modifications, namely histone acetyl transferases (HAT), histone methyl transferases (HMT), demethylases (KDMs), and deacetylases (HDAC), and also highlight the merits and demerits of using inhibitors that target these enzymes. Furthermore, we will tie in the metabolic regulation of co-factors such as acetyl-CoA, SAM, and α-ketoglutarate that are utilized by these enzymes and examine the role of metabolic inhibitors as a treatment option for AML. In doing so, we hope to stimulate interest in this topic and help generate a rationale for the consideration of the combinatorial use of metabolic and epigenetic inhibitors for the treatment of AML.
Collapse
Affiliation(s)
- Abhinav Dhall
- Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Barry M Zee
- Newborn Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Fangxue Yan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - M Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
295
|
Chen J, Park HJ. Computer-Aided Discovery of Massonianoside B as a Novel Selective DOT1L Inhibitor. ACS Chem Biol 2019; 14:873-881. [PMID: 30951287 DOI: 10.1021/acschembio.8b00933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein methyltransferases (PMTs) are involved in numerous biological processes and have been studied as a promising target class in the field of oncology and other diseases. Disruptor of telomeric silencing 1-like (DOT1L), a histone H3 lysine 79 (H3K79) methyltransferase, plays an important role in the progressions of mixed-lineage leukemia (MLL)-rearranged leukemias and has been validated as a potential therapeutic target. Here we report the discovery and characterization of a novel DOT1L inhibitor, massonianoside B (MA), by pharmacophore-based in silico screening and biological studies. MA is a structurally unique natural product inhibitor of DOT1L with an IC50 value of 399 nM. The compound displays high selectivity for DOT1L over other S-adenosylmethionine (SAM)-dependent PMTs. Treatment of MLL-rearranged leukemia cells with MA gives a dose-dependent reduction in cellular levels of histone lysine 79 mono- and dimethylation without affecting the methylation of other histone sites. Moreover, MA selectively inhibits proliferation and causes apoptosis in MLL-rearranged leukemia cells and downregulates the expression of MLL fusion target genes, including HOXA9 and MEIS1. Molecular docking analysis revealed that MA may bind to the SAM-binding site of DOT1L. We identified MA as not only a novel DOT1L inhibitor with antileukemic activity but also a DOT1L-targeted molecular probe that may serve as a useful chemical tool for investigating the role of DOT1L in biological processes.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| |
Collapse
|
296
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
297
|
Izaguirre-Carbonell J, Christiansen L, Burns R, Schmitz J, Li C, Mokry RL, Bluemn T, Zheng Y, Shen J, Carlson KS, Rao S, Wang D, Zhu N. Critical role of Jumonji domain of JMJD1C in MLL-rearranged leukemia. Blood Adv 2019; 3:1499-1511. [PMID: 31076406 PMCID: PMC6517669 DOI: 10.1182/bloodadvances.2018026054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/31/2019] [Indexed: 12/30/2022] Open
Abstract
JMJD1C, a member of the lysine demethylase 3 family, is aberrantly expressed in mixed lineage leukemia (MLL) gene-rearranged (MLLr) leukemias. We have shown previously that JMJD1C is required for self-renewal of acute myeloid leukemia (AML) leukemia stem cells (LSCs) but not normal hematopoietic stem cells. However, the domains within JMJD1C that promote LSC self-renewal are unknown. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) negative-selection screening and identified a requirement for the catalytic Jumonji (JmjC) domain and zinc finger domain for leukemia cell survival in vitro and in vivo. In addition, we found that histone H3 lysine 36 methylation (H3K36me) is a marker for JMJD1C activity at gene loci. Moreover, we performed single cell transcriptome analysis of mouse leukemia cells harboring a single guide RNA (sgRNA) against the JmjC domain and identified increased activation of RAS/MAPK and the JAK-STAT pathway in cells harboring the JmjC sgRNA. We discovered that upregulation of interleukin 3 (IL-3) receptor genes mediates increased activation of IL-3 signaling upon JMJD1C loss or mutation. Along these lines, we observed resistance to JMJD1C loss in MLLr AML bearing activating RAS mutations, suggesting that RAS pathway activation confers resistance to JMJD1C loss. Overall, we discovered the functional importance of the JMJD1C JmjC domain in AML leukemogenesis and a novel interplay between JMJD1C and the IL-3 signaling pathway as a potential resistance mechanism to targeting JMJD1C catalytic activity.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems/genetics
- Cell Line, Tumor
- Gene Editing
- Histone-Lysine N-Methyltransferase/genetics
- Histones/metabolism
- Humans
- Interleukin-3/metabolism
- Jumonji Domain-Containing Histone Demethylases/chemistry
- Jumonji Domain-Containing Histone Demethylases/genetics
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oxidoreductases, N-Demethylating/chemistry
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Protein Domains
- RNA, Guide, CRISPR-Cas Systems/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Zinc Fingers/genetics
Collapse
Affiliation(s)
| | - Luke Christiansen
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Cell Biology, Neurobiology, and Anatomy
| | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Jesse Schmitz
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Chenxuan Li
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | | | - Theresa Bluemn
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Cell Biology, Neurobiology, and Anatomy
| | - Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Jian Shen
- Department of Microbiology and Immunology
| | - Karen-Sue Carlson
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Internal Medicine, and
| | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Cell Biology, Neurobiology, and Anatomy
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Microbiology and Immunology
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI; and
- Department of Cell Biology, Neurobiology, and Anatomy
| |
Collapse
|
298
|
Wang WT, Han C, Sun YM, Chen ZH, Fang K, Huang W, Sun LY, Zeng ZC, Luo XQ, Chen YQ. Activation of the Lysosome-Associated Membrane Protein LAMP5 by DOT1L Serves as a Bodyguard for MLL Fusion Oncoproteins to Evade Degradation in Leukemia. Clin Cancer Res 2019; 25:2795-2808. [PMID: 30651276 DOI: 10.1158/1078-0432.ccr-18-1474] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/11/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite many attempts to understand mixed-lineage leukemia (MLL leukemia), effective therapies for this disease remain limited. We identified a lysosome-associated membrane protein (LAMP) family member, LAMP5, that is specifically and highly expressed in patients with MLL leukemia. The purpose of the study was to demonstrate the functional relevance and clinical value of LAMP5 in the disease. EXPERIMENTAL DESIGN We first recruited a large cohort of leukemia patients to validate LAMP5 expression and evaluate its clinical value. We then performed in vitro and in vivo experiments to investigate the functional relevance of LAMP5 in MLL leukemia progression or maintenance. RESULTS LAMP5 was validated as being specifically and highly expressed in patients with MLL leukemia and was associated with a poor outcome. Functional studies showed that LAMP5 is a novel autophagic suppressor and protects MLL fusion proteins from autophagic degradation. Specifically targeting LAMP5 significantly promoted degradation of MLL fusion proteins and inhibited MLL leukemia progression in both an animal model and primary cells. We further revealed that LAMP5 is a direct target of the H3K79 histone methyltransferase DOT1L. Downregulating LAMP5 with a DOT1L inhibitor enhanced the selective autophagic degradation of MLL oncoproteins and extended survival in vivo; this observation was especially significant when combining DOT1L inhibitors with LAMP5 knockdown. CONCLUSIONS This study demonstrates that LAMP5 serves as a "bodyguard" for MLL fusions to evade degradation and is the first to link H3K79 methylation to autophagy regulation, highlighting the potential of LAMP5 as a therapeutic target for MLL leukemia.
Collapse
Affiliation(s)
- Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
299
|
Fu JF, Yen TH, Huang YJ, Shih LY. Ets1 Plays a Critical Role in MLL/EB1-Mediated Leukemic Transformation in a Mouse Bone Marrow Transplantation Model. Neoplasia 2019; 21:469-481. [PMID: 30974389 PMCID: PMC6458341 DOI: 10.1016/j.neo.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022]
Abstract
Leukemogenic potential of MLL fusion with the coiled-coil domain-containing partner genes and the downstream target genes of this type of MLL fusion have not been clearly investigated. In this study, we demonstrated that the coiled-coil-four-helix bundle structure of EB1 that participated in the MLL/EB1 was required for immortalizing mouse bone marrow (BM) cells and producing myeloid, but not lymphoid, cell lines. Compared to MLL/AF10, MLL/EB1 had low leukemogenic ability. The MLL/EB1 cells grew more slowly owing to increased apoptosis in vitro and induced acute monocytic leukemia with an incomplete penetrance and longer survival in vivo. A comparative analysis of transcriptome profiling between MLL/EB1 and MLL/AF10 cell lines revealed that there was an at least two-fold difference in the induction of 318 genes; overall, 51.3% (163/318) of the genes were known to be bound by MLL, while 15.4% (49/318) were bound by both MLL and MLL/AF9. Analysis of the 318 genes using Gene Ontology-PANTHER overrepresentation test revealed significant differences in several biological processes, including cell differentiation, proliferation/programmed cell death, and cell homing/recruitment. The Ets1 gene, bound by MLL and MLL/AF9, was involved in several biological processes. We demonstrated that Ets1 was selectively upregulated by MLL/EB1. Short hairpin RNA knockdown of Ets1 in MLL/EB1 cells reduced the expression of CD115, apoptosis rate, competitive engraftment to BM and spleen, and incidence of leukemia and prolonged the survival of the diseased mice. Our results demonstrated that MLL/EB1 upregulated Ets1, which controlled the balance of leukemia cells between apoptosis and BM engraftment/clonal expansion. Novelty and impact of this study The leukemogenic potential of MLL fusion with cytoplasmic proteins containing coiled-coil dimerization domains and the downstream target genes of this type of MLL fusion remain largely unknown. Using a retroviral transduction/transplantation mouse model, we demonstrated that MLL fusion with the coiled-coil-four-helix bundle structure of EB1 has low leukemogenic ability; Ets1, which is upregulated by MLL/EB1, plays a critical role in leukemic transformation by balance between apoptosis and BM engraftment/clonal expansion.
Collapse
Key Words
- aa, amino acid
- all, acute lymphoblastic leukemia
- aml, acute myeloid leukemia
- amol, acute monocytic leukemia
- apc, allophycocyanin
- bd, dna-binding domain
- bm, bone marrow
- cbc, complete blood cell
- cc, coiled-coil
- cdna, complementary dna
- cfc, colony forming capacity
- ctd, c-terminal domain
- dapi, 4′,6-diamidino-2-phenylindole
- fhb, four-helix bundle
- gm-csf, granulocyte-monocyte colony stimulating factor
- h&e, hematoxylin and eosin
- il, interleukin
- ip, intraperitoneally
- pb, peripheral blood
- pbs, phosphate-buffered saline
- pcr, polymerase chain reaction
- pe, phycoerythrin
- pi, propidium iodide
- rt, reverse transcription
- scf, stem cell factor
- shrna, short hairpin rna
- wbc, white blood cell
- 5-fu, 5-florouracil
Collapse
MESH Headings
- Animals
- Apoptosis
- Bone Marrow Transplantation
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Mice
- Mice, Inbred C57BL
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- NIH 3T3 Cells
- Oncogene Proteins, Fusion
- Proto-Oncogene Protein c-ets-1/genetics
- Proto-Oncogene Protein c-ets-1/metabolism
Collapse
Affiliation(s)
- Jen-Fen Fu
- Department of Medical Research, Chang Gung Memorial Hospital, and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| | - Tzung-Hai Yen
- Department of Nephrology and Poison Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
300
|
Abstract
Recurrent chromosomal rearrangements leading to the generation of oncogenic fusion proteins are a common feature of many cancers. These aberrations are particularly prevalent in sarcomas and haematopoietic malignancies and frequently involve genes required for chromatin regulation and transcriptional control. In many cases, these fusion proteins are thought to be the primary driver of cancer development, altering chromatin dynamics to initiate oncogenic gene expression programmes. In recent years, mechanistic insights into the underlying molecular functions of a number of these oncogenic fusion proteins have been discovered. These insights have allowed the design of mechanistically anchored therapeutic approaches promising substantial treatment advances. In this Review, we discuss how our understanding of fusion protein function is informing therapeutic innovations and illuminating mechanisms of chromatin and transcriptional regulation in cancer and normal cells.
Collapse
Affiliation(s)
- Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|