251
|
Wagner AR, Weindel CG, West KO, Scott HM, Watson RO, Patrick KL. SRSF6 balances mitochondrial-driven innate immune outcomes through alternative splicing of BAX. eLife 2022; 11:e82244. [PMID: 36409059 PMCID: PMC9718523 DOI: 10.7554/elife.82244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
To mount a protective response to infection while preventing hyperinflammation, gene expression in innate immune cells must be tightly regulated. Despite the importance of pre-mRNA splicing in shaping the proteome, its role in balancing immune outcomes remains understudied. Transcriptomic analysis of murine macrophage cell lines identified Serine/Arginine Rich Splicing factor 6 (SRSF6) as a gatekeeper of mitochondrial homeostasis. SRSF6-dependent orchestration of mitochondrial health is directed in large part by alternative splicing of the pro-apoptosis pore-forming protein BAX. Loss of SRSF6 promotes accumulation of BAX-κ, a variant that sensitizes macrophages to undergo cell death and triggers upregulation of interferon stimulated genes through cGAS sensing of cytosolic mitochondrial DNA. Upon pathogen sensing, macrophages regulate SRSF6 expression to control the liberation of immunogenic mtDNA and adjust the threshold for entry into programmed cell death. This work defines BAX alternative splicing by SRSF6 as a critical node not only in mitochondrial homeostasis but also in the macrophage's response to pathogens.
Collapse
Affiliation(s)
- Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Chi G Weindel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of MedicineBryanUnited States
| |
Collapse
|
252
|
Peng S, Gao J, Stojkov D, Yousefi S, Simon H. Established and emerging roles for mitochondria in neutrophils. Immunol Rev 2022; 314:413-426. [PMID: 36331270 DOI: 10.1111/imr.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neutrophils are the most abundant innate immune cells in human blood, emerging as important players in a variety of diseases. Mitochondria are bioenergetic, biosynthetic, and signaling organelles critical for cell fate and function. Mitochondria have been overlooked in neutrophil research owing to the conventional view that neutrophils contain few, if any, competent mitochondria and do not rely on these organelles for adenosine triphosphate production. A growing body of evidence suggests that mitochondria participate in neutrophil biology at many levels, ranging from neutrophil development to chemotaxis, effector function, and cell death. Moreover, mitochondria and mitochondrial components, such as mitochondrial deoxyribonucleic acid, can be released by neutrophils to eliminate infection and/or shape immune response, depending on the specific context. In this review, we provide an update on the functional role of mitochondria in neutrophils, highlight mitochondria as key players in modulating the neutrophil phenotype and function during infection and inflammation, and discuss the possibilities and challenges to exploit the unique aspects of mitochondria in neutrophils for disease treatment.
Collapse
Affiliation(s)
- Shuang Peng
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Jian Gao
- Department of Molecular and Cellular Oncology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Darko Stojkov
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Shida Yousefi
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Hans‐Uwe Simon
- Institute of Pharmacology University of Bern Bern Switzerland
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology Kazan Federal University Kazan Russia
- Institute of Biochemistry, Brandenburg Medical School Neuruppin Germany
| |
Collapse
|
253
|
Riley JS, Bock FJ. Voices from beyond the grave: The impact of apoptosis on the microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119341. [PMID: 35987283 DOI: 10.1016/j.bbamcr.2022.119341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Programmed cell death, in particular apoptosis, has vital functions in every healthy organism. In a highly regulated manner cells which are no longer needed or are harmful to the organism undergo suicide. More than just the mere elimination of a cell, apoptosis is increasingly being recognized performing important roles in cellular communication with the microenvironment. These interactions with surrounding cells can have various, and sometimes competing outcomes. Apoptotic cells can promote survival, proliferation and inflammation, but depending on the context also prevent survival and inflammation. In this review, we will summarize the emerging literature on how dying cells can transfer information to their neighbours, and which outcomes this communication has for the whole tissue.
Collapse
Affiliation(s)
- Joel S Riley
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Florian J Bock
- Department of Radiotherapy (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
254
|
Wang W, Wu S, Cen Z, Zhang Y, Chen Y, Huang Y, Cillo AR, Prokopec JS, Quarato G, Vignali DAA, Stewart-Ornstein J, Li S, Lu B, Gong YN. Mobilizing phospholipids on tumor plasma membrane implicates phosphatidylserine externalization blockade for cancer immunotherapy. Cell Rep 2022; 41:111582. [PMID: 36323258 PMCID: PMC9671066 DOI: 10.1016/j.celrep.2022.111582] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
In "healthy" tumor cells, phosphatidylserine (PS) is predominately localized in the inner plasma membrane leaflet. During apoptosis, PS relocates to the outer leaflet. Herein, we established PSout tumor models with tumor cells lacking PS flippase component CDC50A, constantly exposing PS but alive. PSout tumors developed bigger than wild-type (WT) tumors, featuring M2 polarized tumor-associated macrophages (TAMs) and fewer tumor-antigen-specific T cells. The PS receptor TIM-3 is responsible for PS recognition. Employing an opposite tumor model, PSin, with tumor cells lacking the PS scramblase Xkr8 and unable to expose PS during otherwise normal apoptosis, we find that the accumulated apoptotic tumor cells produce and release cyclic GAMP (cGAMP) to immune cells to activate the STING pathway, leading to TAM M1 polarization, suppressed interleukin (IL)-10 secretion, and natural killer (NK) cell cytotoxicity. Silencing Xkr8 in vivo by either short hairpin RNA (shRNA) or small interfering RNA (siRNA) to achieve a PS externalization blockade provides robust therapeutic anti-tumor efficiency.
Collapse
Affiliation(s)
- Weihong Wang
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Shaoxian Wu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanpeng Cen
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Yixin Zhang
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Anthony R Cillo
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Joshua S Prokopec
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dario A A Vignali
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, Hillman Cancer Center and University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| | - Yi-Nan Gong
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, 5115 Center Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
255
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
256
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
257
|
Endocytosis triggers V-ATPase-SYK-mediated priming of cGAS activation and innate immune response. Proc Natl Acad Sci U S A 2022; 119:e2207280119. [PMID: 36252040 PMCID: PMC9618142 DOI: 10.1073/pnas.2207280119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current view of nucleic acid-mediated innate immunity is that binding of intracellular sensors to nucleic acids is sufficient for their activation. Here, we report that endocytosis of virus or foreign DNA initiates a priming signal for the DNA sensor cyclic GMP-AMP synthase (cGAS)-mediated innate immune response. Mechanistically, viral infection or foreign DNA transfection triggers recruitment of the spleen tyrosine kinase (SYK) and cGAS to the endosomal vacuolar H+ pump (V-ATPase), where SYK is activated and then phosphorylates human cGASY214/215 (mouse cGasY200/201) to prime its activation. Upon binding to DNA, the primed cGAS initiates robust cGAMP production and mediator of IRF3 activation/stimulator of interferon genes-dependent innate immune response. Consistently, blocking the V-ATPase-SYK axis impairs DNA virus- and transfected DNA-induced cGAMP production and expression of antiviral genes. Our findings reveal that V-ATPase-SYK-mediated tyrosine phosphorylation of cGAS following endocytosis of virus or other cargos serves as a priming signal for cGAS activation and innate immune response.
Collapse
|
258
|
Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci 2022; 23:ijms232112732. [PMID: 36361521 PMCID: PMC9653759 DOI: 10.3390/ijms232112732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.
Collapse
|
259
|
cGAS-STING activation contributes to podocyte injury in diabetic kidney disease. iScience 2022; 25:105145. [PMID: 36176590 PMCID: PMC9513272 DOI: 10.1016/j.isci.2022.105145] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal diseases. DKD does not have efficacious treatment. The cGAS-STING pathway is activated in podocytes at the early stage of kidney dysfunction, which is associated with the activation of STING downstream effectors TBK1 and NF-κB but not IRF3. Lipotoxicity induces mitochondrial damage and mtDNA leakage to the cytosol through Bcl-2 associated X protein (BAX) in podocytes. BAX-mediated mtDNA cytosolic leakage can activate the cGAS-STING pathway in the absence of lipotoxicity and is sufficient to cause podocyte injury. Depletion of cytosolic mtDNA, genetic STING knockdown, or pharmacological inhibition of STING or TBK1 alleviates podocyte injury and improves renal functions in cultured podocytes or mouse models of diabetes and obesity. These results suggest that the mtDNA-cGAS-STING pathway promotes podocyte injury and is a potential therapeutic target for DKD or other obesity-related kidney diseases.
Collapse
|
260
|
Fang R, Jiang Q, Yu X, Zhao Z, Jiang Z. Recent advances in the activation and regulation of the cGAS-STING pathway. Adv Immunol 2022; 156:55-102. [PMID: 36410875 DOI: 10.1016/bs.ai.2022.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cGAS-STING pathway is responsible for cytoplasmic double-stranded DNA (dsDNA) -triggered innate immunity and involved in the pathology of various diseases including infection, autoimmune diseases, neurodegeneration and cancer. Understanding the activation and regulatory mechanisms of this pathway is critical to develop therapeutic strategies toward these diseases. Here, we review the signal transduction, cellular functions and regulations of cGAS and STING, particularly highlighting the latest understandings on the activation of cGAS by dsDNA and/or Manganese (Mn2+), STING trafficking, sulfated glycosaminoglycans (sGAGs)-induced STING polymerization and activation, and also regulation of the cGAS-STING pathway by different biocondensates formed via phase separation of proteins from host cells and viruses.
Collapse
Affiliation(s)
- Run Fang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Qifei Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Yu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
261
|
Patricio DDO, Dias GBM, Granella LW, Trigg B, Teague HC, Bittencourt D, Báfica A, Zanotto-Filho A, Ferguson B, Mansur DS. DNA-PKcs restricts Zika virus spreading and is required for effective antiviral response. Front Immunol 2022; 13:1042463. [PMID: 36311766 PMCID: PMC9606669 DOI: 10.3389/fimmu.2022.1042463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 04/23/2024] Open
Abstract
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with significant public health impact. ZIKV infection induces double-strand DNA breaks (DSBs) in human neural progenitor cells that may contribute to severe neuronal manifestations in newborns. The DNA-PK complex plays a critical role in repairing DSBs and in the innate immune response to infection. It is unknown, however, whether DNA-PK regulates ZIKV infection. Here we investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV infection in human epithelial cells. Increased ZIKV replication and spread in DNA-PKcs deficient cells is related to a notable decrease in transcription of type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be independent of IRF1, IRF3, or p65, canonical transcription factors necessary for activation of both type I and III interferon promoters. The mechanism of DNA-PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest a non-canonical role for DNA-PK during Zika virus infection, acting downstream of IFNs transcription factors for an efficient antiviral immune response.
Collapse
Affiliation(s)
- Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Greicy Brisa Malaquias Dias
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ben Trigg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Dina Bittencourt
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Alfeu Zanotto-Filho
- Laboratório de Farmacologia e Bioquímica do Câncer, Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Brian Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
262
|
Xiong TC, Wei MC, Li FX, Shi M, Gan H, Tang Z, Dong HP, Liuyu T, Gao P, Zhong B, Zhang ZD, Lin D. The E3 ubiquitin ligase ARIH1 promotes antiviral immunity and autoimmunity by inducing mono-ISGylation and oligomerization of cGAS. Nat Commun 2022; 13:5973. [PMID: 36217001 PMCID: PMC9551088 DOI: 10.1038/s41467-022-33671-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) plays a critical role in antiviral immunity and autoimmunity. The activity and stability of cGAS are fine-tuned by post-translational modifications. Here, we show that ariadne RBR E3 ubiquitin protein ligase 1 (ARIH1) catalyzes the mono-ISGylation and induces the oligomerization of cGAS, thereby promoting antiviral immunity and autoimmunity. Knockdown or knockout of ARIH1 significantly inhibits herpes simplex virus 1 (HSV-1)- or cytoplasmic DNA-induced expression of type I interferons (IFNs) and proinflammatory cytokines. Consistently, tamoxifen-treated ER-Cre;Arih1fl/fl mice and Lyz2-Cre; Arih1fl/fl mice are hypersensitive to HSV-1 infection compared with the controls. In addition, deletion of ARIH1 in myeloid cells alleviates the autoimmune phenotypes and completely rescues the autoimmune lethality caused by TREX1 deficiency. Mechanistically, HSV-1- or cytosolic DNA-induced oligomerization and activation of cGAS are potentiated by ISGylation at its K187 residue, which is catalyzed by ARIH1. Our findings thus reveal an important role of ARIH1 in innate antiviral and autoimmune responses and provide insight into the post-translational regulation of cGAS.
Collapse
Affiliation(s)
- Tian-Chen Xiong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Chongqing International Institute for Immunology, Chongqing, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Cong Wei
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fang-Xu Li
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Miao Shi
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hu Gan
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Tang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong-Peng Dong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Tianzi Liuyu
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Department of Virology, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
263
|
Liu J, Zhang X, Wang H. The cGAS-STING-mediated NLRP3 inflammasome is involved in the neurotoxicity induced by manganese exposure. Biomed Pharmacother 2022; 154:113680. [PMID: 36942606 DOI: 10.1016/j.biopha.2022.113680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Heavy metal pollution has become a global health challenge. Exposure to heavy metals represents a major health risk. Manganese (Mn) is an essential trace element but also an environmental pollutant. Mn exposure can induce neurotoxicity and lead to neurodegenerative disease. Inflammation and Tau hyperphosphorylation are prominent hallmarks of neurodegenerative diseases induced by Mn exposure. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway can induce powerful innate immune defense programmes and has emerged as a key mediator of inflammation. In recent years, Mn2+ has been found to be the second activator of the cGAS-STING pathway in addition to double-stranded DNA (dsDNA). NLRP3 activation is upstream of Tau pathology, and NLRP3 activation induces Tau hyperphosphorylation and aggregation. Mn exposure-induced neurotoxicity may be associated with excessive activation of the cGAS-STING signaling pathway, leading to inflammation. The cGAS-STING/NLRP3 axis may be a promising option for revealing the mechanisms of neurotoxicity of Mn exposure in the future.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
264
|
Wang Y, Karki R, Mall R, Sharma BR, Kalathur RC, Lee S, Kancharana B, So M, Combs KL, Kanneganti TD. Molecular mechanism of RIPK1 and caspase-8 in homeostatic type I interferon production and regulation. Cell Rep 2022; 41:111434. [PMID: 36198273 PMCID: PMC9630927 DOI: 10.1016/j.celrep.2022.111434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Type I interferons (IFNs) are essential innate immune proteins that maintain tissue homeostasis through tonic expression and can be upregulated to drive antiviral resistance and inflammation upon stimulation. However, the mechanisms that inhibit aberrant IFN upregulation in homeostasis and the impacts of tonic IFN production on health and disease remain enigmatic. Here, we report that caspase-8 negatively regulates type I IFN production by inhibiting the RIPK1-TBK1 axis during homeostasis across multiple cell types and tissues. When caspase-8 is deleted or inhibited, RIPK1 interacts with TBK1 to drive elevated IFN production, leading to heightened resistance to norovirus infection in macrophages but also early onset lymphadenopathy in mice. Combined deletion of caspase-8 and RIPK1 reduces the type I IFN signaling and lymphadenopathy, highlighting the critical role of RIPK1 in this process. Overall, our study identifies a mechanism to constrain tonic type I IFN during homeostasis which could be targeted for infectious and inflammatory diseases. Wang et al. report the mechanistic regulation of homeostatic type I IFN production by caspase-8 through the RIPK1-TBK1 axis. Hyper-activation of this pathway due to loss of caspase-8 has profound physiological impacts on natural resistance to viral infection and the pathogenesis of lymphadenopathy.
Collapse
|
265
|
Pattern Recognition Receptors of Nucleic Acids Can Cause Sublethal Activation of the Mitochondrial Apoptosis Pathway during Viral Infection. J Virol 2022; 96:e0121222. [PMID: 36069553 PMCID: PMC9517702 DOI: 10.1128/jvi.01212-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial apoptosis pathway has the function to kill the cell, but recent work shows that this pathway can also be activated to a sublethal level, where signal transduction can be observed but the cell survives. Intriguingly, this signaling has been shown to contribute to inflammatory activity of epithelial cells upon infection with numerous agents. This suggests that microbial recognition can generate sublethal activity in the mitochondrial apoptosis pathway. Because this recognition is achieved by pattern recognition receptors (PRRs), it also implies that PRR signals are linked to the mitochondrial apoptosis apparatus. We here test this hypothesis during infection of epithelial cells with modified vaccinia virus Ankara (MVA). MVA recognition is achieved through receptors specific for nucleic acids, and we present evidence that the three receptors, Toll-like receptor 3 (TLR3), RIG-I/MDA5, and cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING), are involved in this signaling. When stimulated directly by specific ligands, all three receptors could trigger sublethal apoptosis signals. During infection with MVA, sublethal apoptosis signals were unmasked in X-linked IAP (XIAP)-deficient cells, where apoptosis induction was observed. Deletion of any of the three signaling adapters, TRIF, MAVS, and STING, reduced the DNA damage response, a sensitive measure of sublethal apoptosis signals. Our results suggest that PRRs signal via mitochondria, where they generate sublethal signals through the BCL-2-family, which may contribute to the response to infectious agents. IMPORTANCE A contribution of the mitochondrial apoptosis apparatus, in the absence of cell death, to the reaction of nonprofessional immune cells to viruses is suggested to play a role as a broad alert system of an infected cell: the apoptosis system can be activated by many upstream signals and could therefore act as a central coordinator of viral recognition. The proapoptotic activity of PRRs has been documented in multiple situations, but this activity seems too low to be meaningful, and a physiological significance of such activity is not immediately obvious. This work suggests the alternative interpretation that PRRs do not have the primary function to induce apoptosis but to trigger sublethal signals in the apoptosis system. A number of lines of recent research suggest that mitochondria contribute to cellular reactions, and this pathway may be a way of triggering an early host response.
Collapse
|
266
|
Post-Translational Modifications of cGAS-STING: A Critical Switch for Immune Regulation. Cells 2022; 11:cells11193043. [PMID: 36231006 PMCID: PMC9563579 DOI: 10.3390/cells11193043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Innate immune mechanisms initiate immune responses via pattern-recognition receptors (PRRs). Cyclic GMP-AMP synthase (cGAS), a member of the PRRs, senses diverse pathogenic or endogenous DNA and activates innate immune signaling pathways, including the expression of stimulator of interferon genes (STING), type I interferon, and other inflammatory cytokines, which, in turn, instructs the adaptive immune response development. This groundbreaking discovery has rapidly advanced research on host defense, cancer biology, and autoimmune disorders. Since cGAS/STING has enormous potential in eliciting an innate immune response, understanding its functional regulation is critical. As the most widespread and efficient regulatory mode of the cGAS-STING pathway, post-translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are generally considered a regulatory mechanism for protein destruction or renewal. In this review, we discuss cGAS-STING signaling transduction and its mechanism in related diseases and focus on the current different regulatory modalities of PTMs in the control of the cGAS-STING-triggered innate immune and inflammatory responses.
Collapse
|
267
|
Faizan MI, Chaudhuri R, Sagar S, Albogami S, Chaudhary N, Azmi I, Akhtar A, Ali SM, Kumar R, Iqbal J, Joshi MC, Kharya G, Seth P, Roy SS, Ahmad T. NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles. Cells 2022; 11:cells11192969. [PMID: 36230930 PMCID: PMC9561960 DOI: 10.3390/cells11192969] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Md Imam Faizan
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Rituparna Chaudhuri
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Gurugram 122052, India
| | - Shakti Sagar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nisha Chaudhary
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Iqbal Azmi
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Areej Akhtar
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Rohit Kumar
- Department of Pulmonary Medicine and Sleep Disorders, Vardhman Mahavir Medical College, Safdarjung Hospital, New Delhi 10029, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Mohan C. Joshi
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
| | - Gaurav Kharya
- Center for Bone Marrow Transplantation & Cellular Therapy Indraprastha Apollo Hospital, New Delhi 110076, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Gurugram 122052, India
| | - Soumya Sinha Roy
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110007, India
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India
- Correspondence: ; Tel.: +91-9971525411
| |
Collapse
|
268
|
Tian X, Xu F, Zhu Q, Feng Z, Dai W, Zhou Y, You QD, Xu X. Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. Eur J Med Chem 2022; 244:114791. [DOI: 10.1016/j.ejmech.2022.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
|
269
|
Apoptotic caspase inhibits innate immune signaling by cleaving NF-κBs in both Mammals and Flies. Cell Death Dis 2022; 13:731. [PMID: 36002459 PMCID: PMC9402571 DOI: 10.1038/s41419-022-05156-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Host organisms use different innate immune mechanisms to defend against pathogenic infections, while tight control of innate immunity is essential for proper immune induction and balance. Here, we reported that apoptotic induction or caspase-3 overexpression caused dramatic reduction of differently triggered cytokine signalings in human cells, murine primary cells and mouse model, while the loss of caspase-3 or inhibiting apoptosis markedly enhances these immune signalings. Furthermore, caspase-3 can mediate the cleavage of NF-κB members p65/RelA, RelB, and c-Rel via its protease activity. And the caspase-3-resistant p65/RelA, RelB, or c-Rel mutant mostly restored the caspase-3-induced suppression of cytokine production. Interestingly, we further uncovered that apoptotic induction also dramatically inhibited Toll immune signaling in Drosophila, and the Drosophila effector caspases, drICE and DCP-1, also mediated the degradation of DIF, the NF-κB of Toll signaling. Together, our findings demonstrate apoptotic effector caspases, including mammalian caspase-3 and fly drICE/DCP-1, can function as repressors of NF-κB-mediated innate immune signalings.
Collapse
|
270
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
271
|
Cell death in skin function, inflammation, and disease. Biochem J 2022; 479:1621-1651. [PMID: 35929827 PMCID: PMC9444075 DOI: 10.1042/bcj20210606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Cell death is an essential process that plays a vital role in restoring and maintaining skin homeostasis. It supports recovery from acute injury and infection and regulates barrier function and immunity. Cell death can also provoke inflammatory responses. Loss of cell membrane integrity with lytic forms of cell death can incite inflammation due to the uncontrolled release of cell contents. Excessive or poorly regulated cell death is increasingly recognised as contributing to cutaneous inflammation. Therefore, drugs that inhibit cell death could be used therapeutically to treat certain inflammatory skin diseases. Programmes to develop such inhibitors are already underway. In this review, we outline the mechanisms of skin-associated cell death programmes; apoptosis, necroptosis, pyroptosis, NETosis, and the epidermal terminal differentiation programme, cornification. We discuss the evidence for their role in skin inflammation and disease and discuss therapeutic opportunities for targeting the cell death machinery.
Collapse
|
272
|
Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, Ying W, Hoffman HM, Shadel GS, Karin M. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022; 55:1370-1385.e8. [PMID: 35835107 PMCID: PMC9378606 DOI: 10.1016/j.immuni.2022.06.007] [Citation(s) in RCA: 349] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022]
Abstract
Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1β (IL-1β) production and mtDNA release in mice.
Collapse
Affiliation(s)
- Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Elsa Sanchez-Lopez
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA; Department of Orthopedic Surgery, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Joseph Offenberger
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA
| | - Janset Onyuru
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, San Diego, CA, USA
| | - Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wei Ying
- Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hal M Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, Rady Children's Hospital of San Diego, University of California, San Diego, San Diego, CA, USA
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
273
|
Babu G, Nobel FA. Identification of differentially expressed genes and their major pathways among the patient with COVID-19, cystic fibrosis, and chronic kidney disease. INFORMATICS IN MEDICINE UNLOCKED 2022; 32:101038. [PMID: 35966126 PMCID: PMC9357445 DOI: 10.1016/j.imu.2022.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus causes Coronavirus disease, an infectious disease. The majority of people who are infected with this virus will have mild to moderate respiratory symptoms. Multiple studies have proved that there is a substantial pathophysiological link between COVID-19 disease and patients having comorbidities such as cystic fibrosis and chronic kidney disease. In this study, we attempted to identify differentially expressed genes as well as genes that intersected among them in order to comprehend their compatibility. Gene expression profiling indicated that 849 genes were mutually exclusive and functional analysis was done within the context of gene ontology and key pathways involvement. Three genes (PRPF31, FOXN2, and RIOK3) were commonly upregulated in the analysed datasets of three disease categories. These genes could be potential biomarkers for patients with COVID-19 and cystic fibrosis, and COVID-19 and chronic kidney disease. Further extensive analyses have been performed to describe how these genes are regulated by various transcription factors and microRNAs. Then, our analyses revealed six hub genes (PRPF31, FOXN2, RIOK3, UBC, HNF4A, and ELAVL). As they were involved in the interaction between COVID-19 and the patient with CF and CKD, they could help researchers identify potential therapeutic molecules. Some drugs have been predicted based on the upregulated genes, which may have a significant impact on reducing the burden of these diseases in the future.
Collapse
Affiliation(s)
- Golap Babu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Fahim Alam Nobel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
274
|
Zhu Y, Yang Z, Pan Z, Hao Y, Wang C, Dong Z, Li Q, Han Y, Tian L, Feng L, Liu Z. Metallo-alginate hydrogel can potentiate microwave tumor ablation for synergistic cancer treatment. SCIENCE ADVANCES 2022; 8:eabo5285. [PMID: 35921425 PMCID: PMC9348787 DOI: 10.1126/sciadv.abo5285] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microwave ablation (MWA) as a local tumor ablation strategy suffers from posttreatment tumor recurrence. Development of adjuvant biomaterials to potentiate MWA is therefore of practical significance. Here, the high concentration of Ca2+ fixed by alginate as Ca2+-surplus alginate hydrogel shows enhanced heating efficiency and restricted heating zone under microwave exposure. The high concentration of extracellular Ca2+ synergizes with mild hyperthermia to induce immunogenic cell death by disrupting intracellular Ca2+ homeostasis. Resultantly, Ca2+-surplus alginate hydrogel plus MWA can ablate different tumors on both mice and rabbits at reduced operation powers. This treatment can also elicit antitumor immunity, especially if synergized with Mn2+, an activator of the stimulation of interferon genes pathway, to suppress the growth of both untreated distant tumors and rechallenged tumors. This work highlights that in situ-formed metallo-alginate hydrogel could act as microwave-susceptible and immunostimulatory biomaterial to reinforce the MWA therapy, promising for clinical translation.
Collapse
|
275
|
Zhang Q, Wei J, Liu Z, Huang X, Sun M, Lai W, Chen Z, Wu J, Chen Y, Guo X, Huang Q. STING signaling sensing of DRP1-dependent mtDNA release in kupffer cells contributes to lipopolysaccharide-induced liver injury in mice. Redox Biol 2022; 54:102367. [PMID: 35724543 PMCID: PMC9218162 DOI: 10.1016/j.redox.2022.102367] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Aberrant pro-inflammatory activation of Kupffer cells (KCs) is strongly involved in the pathogenesis of septic liver injury. Recent evidence indicates the crucial roles of excessive stimulator of interferon genes (STING) signaling activation during sepsis. However, the role of STING signaling in septic liver injury remains unclear. In this study, we demonstrated that STING signaling was markedly activated in KCs isolated from wild type mice after lipopolysaccharide (LPS) treatment. STING deficiency effectively protected liver function, attenuated systemic inflammatory response and decreased mortality in LPS-treated mice, which were aggravated by STING agonist (DMXAA). Importantly, STING signaling activation in KCs contributed to LPS-induced liver injury through promoting hepatocyte death. Mechanistically, STING signaling could be activated by release of mitochondrial DNA (mtDNA) through dynamin-related protein 1 (DRP1)-dependent mitochondrial fission in LPS-treated KCs. Additionally, LPS stimulation enhanced DRP1-dependent mitochondrial ROS production, which promoted the leak of mtDNA into the cytosol and subsequent STING signaling activation in KCs. The in vivo experiments showed that pharmacological inhibition of DRP1 with Mdivi-1 partially prevented the activation of STING signaling in KCs isolated from LPS-challenged mice, as well as alleviated liver injury and inhibited systemic inflammatory response. In summary, our study comprehensively confirmed that STING signaling senses the DRP1-dependent release of mtDNA in KCs and its activation might play a key role in LPS-induced liver injury, which offers new sights and therapeutic targets for management of septic liver injury.
Collapse
Affiliation(s)
- Qin Zhang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Wei
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Maomao Sun
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wujiang Lai
- Department of Gynecology, Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenfeng Chen
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanjia Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaohua Guo
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
276
|
Apoptotic caspases suppress an MDA5-driven IFN response during productive replication of human papillomavirus type 31. Proc Natl Acad Sci U S A 2022; 119:e2200206119. [PMID: 35858339 PMCID: PMC9303994 DOI: 10.1073/pnas.2200206119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human papillomaviruses (HPVs) infect the basal proliferating cells of the stratified epithelium, but the productive phase of the life cycle (consisting of viral genome amplification, late gene expression, and virion assembly) is restricted to the highly differentiated suprabasal cells. While much is known regarding the mechanisms that HPVs use to block activation of an innate immune response in undifferentiated cells, little is known concerning how HPV prevents an interferon (IFN) response upon differentiation. Here, we demonstrate that high-risk HPVs hijack a natural function of apoptotic caspases to suppress an IFN response in differentiating epithelial cells. We show that caspase inhibition results in the secretion of type I and type III IFNs that can act in a paracrine manner to induce expression of interferon-stimulated genes (ISGs) and block productive replication of HPV31. Importantly, we demonstrate that the expression of IFNs is triggered by the melanoma differentiation-associated gene 5 (MDA5)-mitochondrial antiviral-signaling protein (MAVS)-TBK1 (TANK-binding kinase 1) pathway, signifying a response to double-stranded RNA (dsRNA). Additionally, we identify a role for MDA5 and MAVS in restricting productive viral replication during the normal HPV life cycle. This study identifies a mechanism by which HPV reprograms the cellular environment of differentiating cells through caspase activation, co-opting a nondeath function of proteins normally involved in apoptosis to block antiviral signaling and promote viral replication.
Collapse
|
277
|
Abstract
Cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING, also known as TMEM173) constitute the major signaling pathway in vertebrates that senses non-self DNA and elicits potent immune responses. At the core of this pathway, cGAS senses double-stranded DNA (dsDNA) and synthesizes cyclic GMP-AMP (cGAMP). cGAMP serves as a second messenger that relays its signal to downstream innate immune responses through STING. One of the major consequences triggered by the cGAS-STING pathway is the production of antiviral cytokines of the type I interferon family, which in turn induce expression of hundreds of interferon-stimulated genes (ISGs) with diverse antiviral functions. Recent studies have also revealed functional homologs across phylogenetic kingdoms with innate defense functions, suggesting an ancient evolutionary origin of cGAS-STING signaling. Aberrant activation of the cGAS-STING pathway by host DNA can lead to sterile inflammation associated with tissue damage, degeneration as well as premature aging. In this primer, we will introduce the basic principles of cGAS-STING signaling in the vertebrate system and highlight recent discoveries regarding its connection to other fundamental cellular processes in the context of human diseases.
Collapse
Affiliation(s)
- Zhiqi Sun
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
278
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
279
|
Oliva A, Meroño C, Traba J. Mitochondrial function and dysfunction in innate immunity. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
280
|
Mosallanejad K, Kagan JC. Control of innate immunity by the cGAS-STING pathway. Immunol Cell Biol 2022; 100:409-423. [PMID: 35485309 PMCID: PMC9250635 DOI: 10.1111/imcb.12555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Within the cytoplasm of mammalian cells is a protein called cyclic GMP-AMP synthase (cGAS), which acts to defend against infection and other threats to the host. cGAS operates in this manner through its ability to detect a molecular occurrence that should not exist in healthy cells - the existence of DNA in the cytosol. Upon DNA binding, cGAS synthesizes cyclic GMP-AMP (cGAMP), a cyclic dinucleotide that activates the endoplasmic reticulum-localized protein stimulator of interferon genes (STING). STING-mediated signaling culminates in host defensive responses typified by inflammatory cytokine and interferon expression, and the induction of autophagy. Studies over the past several years have established a consensus in the field of the enzymatic activities of cGAS in vitro, as it relates to DNA-induced production of cGAMP. However, much additional work is needed to understand the regulation of cGAS functions within cells, where multiple sources of DNA can create a problem of self and non-self discrimination. In this review, we provide an overview of how the cGAS-STING pathway mediates innate immune responses during infection and other cellular stresses. We then highlight recent progress in the understanding of the increasingly diverse ways in which this DNA-sensing machinery is regulated inside cells, including how cGAS remains inactive to host-derived DNA under conditions of homeostasis.
Collapse
Affiliation(s)
- Kenta Mosallanejad
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital Boston, MA 02115, USA
| |
Collapse
|
281
|
Yu X, Wang X, Sun L, Yamazaki A, Li X. Tumor microenvironment regulation - enhanced radio - immunotherapy. BIOMATERIALS ADVANCES 2022; 138:212867. [PMID: 35913249 DOI: 10.1016/j.bioadv.2022.212867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Radiotherapy (RT) is frequently utilized for cancer treatment in clinical practice and has been proved to have immune stimulation potency in recent years. However, its inhibitory effect on tumor growth, especially on tumor metastasis, is still limited by many factors, including the complex tumor microenvironment (TME). Therefore, the TME - regulating SiO2@MnO2 nanoparticles (SM NPs) were prepared and applied to the combination of RT and immunotherapy. In a bilateral animal model, SM NPs not only enhanced the inhibitory effect of RT on primary tumor growth, but also strengthened the abscopal effect to inhibit the growth of distant untreated tumors. As for the distant untreated tumor, 40% of mice showed complete inhibition of tumor growth and 40% showed a suppressed tumor growth. Moreover, SM NPs showed modulation functions for TME through inducing the increase in intracellular levels of oxygen and reactive oxygen species after their reaction with hydrogen peroxide and the main antioxidative agent glutathione in TME. Lastly, SM NPs also effectively induced the increase in the amounts of cytokines secreted by macrophage - like cells, indicating modulation functions for immune responses. This work highlighted a potential strategy of simultaneously inhibiting tumor growth and metastasis through the regulation of TME and immune responses by SM NPs - enhanced radio - immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Lue Sun
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
282
|
Zhou Y, Li FY, Lu LF, Hu YZ, Zhang YA. Conserved function of crucian carp cGAS in the MITA-mediated interferon signaling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104402. [PMID: 35351471 DOI: 10.1016/j.dci.2022.104402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Mammalian cyclic GMP-AMP synthase (cGAS) is pivotal for cytosolic DNA-triggered interferon (IFN) response. However, the function of cGAS in fish IFN response remains unclear. Our recent study has reported that cGAS from crucian and grass carps downregulates the IFN response by attenuating the K63-linked ubiquitination of retinoic acid-inducible gene-I (RIG-I) and its interaction with mitochondrial antiviral signaling protein (MAVS). Here, the function of crucian carp cGAS was further investigated. We found that crucian carp cGAS directly binds to poly deoxyadenylic-deoxythymidylic acid (poly (dA:dT)) and exhibits mediator of IFN regulatory factor 3 (IRF3) activation (MITA)-dependent activation of the IFN response, indicating a conserved function of crucian carp cGAS in the MITA-mediated IFN signaling. However, crucian carp cGAS could suppress the IFN activation stimulated by polyinosinic: polycytidylic acid (poly (I:C)) in time- and dose-dependent manners. These data collectively suggest complicated functions of crucian carp cGAS in the IFN antiviral response.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Feng-Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
283
|
Miwa S, Kashyap S, Chini E, von Zglinicki T. Mitochondrial dysfunction in cell senescence and aging. J Clin Invest 2022; 132:158447. [PMID: 35775483 PMCID: PMC9246372 DOI: 10.1172/jci158447] [Citation(s) in RCA: 451] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.
Collapse
Affiliation(s)
- Satomi Miwa
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, United Kingdom
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Eduardo Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Thomas von Zglinicki
- Newcastle University Biosciences Institute, Ageing Biology Laboratories, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
284
|
TFAM downregulation promotes autophagy and ESCC survival through mtDNA stress-mediated STING pathway. Oncogene 2022; 41:3735-3746. [PMID: 35750756 DOI: 10.1038/s41388-022-02365-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/15/2022] [Accepted: 05/26/2022] [Indexed: 11/08/2022]
Abstract
The dynamics of mitochondrial biogenesis regulation is critical in maintaining cellular homeostasis for immune regulation and tumor prevention. Here, we report that mitochondrial biogenesis disruption through TFAM reduction significantly impairs mitochondrial function, induces autophagy, and promotes esophageal squamous cell carcinoma (ESCC) growth. We found that TFAM protein reduction promotes mitochondrial DNA (mtDNA) release into the cytosol, induces cytosolic mtDNA stress, subsequently activates the cGAS-STING signaling pathway, thereby stimulating autophagy and ESCC growth. STING depletion or mtDNA degradation by DNase I abrogates mtDNA stress response, attenuates autophagy, and decreases the growth of TFAM depleted cells. In addition, autophagy inhibitor also ameliorates mitochondrial dysfunction-induced activation of the cGAS-STING signaling pathway and ESCC growth. In conclusion, our results indicate that mtDNA stress induced by mitochondria biogenesis perturbation activates the cGAS-STING pathway and autophagy to promote ESCC growth, revealing an underappreciated therapeutic strategy for ESCC.
Collapse
|
285
|
Shi X, Wang S, Wu Y, Li Q, Zhang T, Min K, Feng D, Liu M, Wei J, Zhu L, Mo W, Xiao Z, Yang H, Chen Y, Lv X. A Bibliometric Analysis of the Innate Immune DNA Sensing cGAS-STING Pathway from 2013 to 2021. Front Immunol 2022; 13:916383. [PMID: 35720348 PMCID: PMC9204223 DOI: 10.3389/fimmu.2022.916383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) are key components of the innate immune system. This study aims to evaluate the research of cGAS-STING pathway and predict the hotspots and developing trends in this field using bibliometric analysis. Methods We retrieved publications from Science Citation Index Expanded (SCI-expanded) of Web of Science Core Collection (WoSCC) in 1975-2021 on 16 March 2022. We examined the retrieved data by bibliometrix package in R software, VOSviewer and CiteSpace were used for visualizing the trends and hotspots of research on the cGAS-STING pathway. Results We identified 1047 original articles and reviews on the cGAS-STING pathway published between 1975 and 2021. Before 2016, the publication trend was increasing steadily, but there was a significant increase after 2016. The United States of America (USA) produced the highest number of papers (Np) and took the highest number of citations (Nc), followed by China and Germany. The University of Texas System and Frontiers in Immunology were the most prolific affiliation and journal respectively. In addition, collaboration network analysis showed that there were tight collaborations among the USA, China and some European countries, so the top 10 affiliations were all from these countries and regions. The paper published by Sun LJ in 2013 reached the highest local citation score (LCS). Keywords co-occurrence and co-citation cluster analysis revealed that inflammation, senescence, and tumor were popular terms related to the cGAS-STING pathway recently. Keywords burst detection suggested that STING-dependent innate immunity and NF-κB-dependent broad antiviral response were newly-emerged hotspots in this area. Conclusions This bibliometric analysis shows that publications related to the cGAS-STING pathway tend to increase continuously. The research focus has shifted from the mechanism how cGAS senses dsDNA and cGAMP binds to STING to the roles of the cGAS-STING pathway in different pathological state.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng Wang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yutong Wu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keting Min
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Di Feng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Mo
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Xiao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
286
|
Ouyang K, Oparaugo N, Nelson AM, Agak GW. T Cell Extracellular Traps: Tipping the Balance Between Skin Health and Disease. Front Immunol 2022; 13:900634. [PMID: 35795664 PMCID: PMC9250990 DOI: 10.3389/fimmu.2022.900634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
The role of extracellular traps (ETs) in the innate immune response against pathogens is well established. ETs were first identified in neutrophils and have since been identified in several other immune cells. Although the mechanistic details are not yet fully understood, recent reports have described antigen-specific T cells producing T cell extracellular traps (TETs). Depending on their location within the cutaneous environment, TETs may be beneficial to the host by their ability to limit the spread of pathogens and provide protection against damage to body tissues, and promote early wound healing and degradation of inflammatory mediators, leading to the resolution of inflammatory responses within the skin. However, ETs have also been associated with worse disease outcomes. Here, we consider host-microbe ET interactions by highlighting how cutaneous T cell-derived ETs aid in orchestrating host immune responses against Cutibacterium acnes (C. acnes), a commensal skin bacterium that contributes to skin health, but is also associated with acne vulgaris and surgical infections following joint-replacement procedures. Insights on the role of the skin microbes in regulating T cell ET formation have broad implications not only in novel probiotic design for acne treatment, but also in the treatment for other chronic inflammatory skin disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Nicole Oparaugo
- David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA, United States
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- *Correspondence: George W. Agak,
| |
Collapse
|
287
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
288
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
289
|
Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat Microbiol 2022; 7:1041-1053. [DOI: 10.1038/s41564-022-01136-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
|
290
|
Baxevanis CN, Gritzapis AD, Voutsas IF, Batsaki P, Goulielmaki M, Adamaki M, Zoumpourlis V, Fortis SP. T-Cell Repertoire in Tumor Radiation: The Emerging Frontier as a Radiotherapy Biomarker. Cancers (Basel) 2022; 14:cancers14112674. [PMID: 35681654 PMCID: PMC9179913 DOI: 10.3390/cancers14112674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Radiotherapy constitutes an essential component of the treatment for malignant disease. Besides its direct effect on cancer cells, namely, DNA damage and cell death, ionizing irradiation also mediates indirect antitumor effects that are mostly mediated by the immune system. Investigations into the processes underlying the interaction between radiotherapy and the immune system have uncovered mechanisms that can be exploited to promote the antitumor efficacy of radiotherapy both locally in the irradiated primary tumor and also at distant lesions in non-irradiated tumors. Because of its capacity to stimulate antitumor immunity, radiotherapy is also applied in combination with immune-checkpoint-inhibition-based immunotherapy. This review discusses the important pathways that govern the synergistic interactions between ionizing radiation and antitumor immune reactivity. Unravelling these involved mechanisms is mandatory for the successful application of anticancer radiotherapy and immunotherapy. We also place emphasis on the need for biomarkers that will aid in the selection of patients most likely to benefit from such combined treatments. Abstract Radiotherapy (RT) is a therapeutic modality that aims to eliminate malignant cells through the induction of DNA damage in the irradiated tumor site. In addition to its cytotoxic properties, RT also induces mechanisms that result in the promotion of antitumor immunity both locally within the irradiation field but also at distant tumor lesions, a phenomenon that is known as the “abscopal” effect. Because the immune system is capable of sensing the effects of RT, several treatment protocols have been assessing the synergistic role of radiotherapy combined with immunotherapy, collectively referred to as radioimmunotherapy. Herein, we discuss mechanistic insights underlying RT-based immunomodulation, which also enhance our understanding of how RT regulates antitumor T-cell-mediated immunity. Such knowledge is essential for the discovery of predictive biomarkers and for the improvement of clinical trials investigating the efficacy of radio-immunotherapeutic modalities in cancer patients.
Collapse
Affiliation(s)
- Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Angelos D. Gritzapis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (M.A.); (V.Z.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (C.N.B.); (A.D.G.); (I.F.V.); (P.B.); (M.G.)
- Correspondence: ; Tel.: +30-2106409462
| |
Collapse
|
291
|
Tu Y, Li HM, Wang MM, Su Y, Liu HK, Su Z. Dual Mitochondria‐ and DNA‐Targeting Coumarin‐Pt(IV) Prodrug for the enhancement of Anticancer Performance. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Tu
- Nanjing Normal University Chemistry CHINA
| | | | | | - Yan Su
- Nanjing Normal University Chemistry CHINA
| | | | - Zhi Su
- Nanjing Normal University Chemistry Wenyuan Rd. #1 210093 Nanjing CHINA
| |
Collapse
|
292
|
Gomes MT, Palasiewicz K, Gadiyar V, Lahey K, Calianese D, Birge RB, Ucker DS. Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses. J Biol Chem 2022; 298:102034. [PMID: 35588784 PMCID: PMC9234239 DOI: 10.1016/j.jbc.2022.102034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as “innate apoptotic immunity (IAI)” have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.
Collapse
Affiliation(s)
- Marta T Gomes
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Karol Palasiewicz
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kevin Lahey
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - David S Ucker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
293
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
294
|
Abstract
Inflammation plays indispensable roles in building the immune responses such as acquired immunity against harmful pathogens. Furthermore, it is essential for maintaining biological homeostasis in ever-changing conditions. Pattern-recognition receptors (PRRs) reside in cell membranes, endosomes or cytoplasm, and function as triggers for inflammatory responses. Binding of pathogen- or self-derived components, such as DNA, to PRRs activates downstream signaling cascades, resulting in the production of a series of pro-inflammatory cytokines and type I interferons (IFNs). While these series of responses are essential for host defense, the unexpected release of DNA from the nucleus or mitochondria of host cells can lead to autoimmune and autoinflammatory diseases. In this review, we focus on DNA-sensing mechanisms via PRRs and the disorders and extraordinary conditions caused by self-derived DNA.
Collapse
Affiliation(s)
- Daisuke Ori
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Division of Biological Science, Graduate School of Science and Technology, Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
295
|
Abstract
Significance: Aging is a natural process that affects most living organisms, resulting in increased mortality. As the world population ages, the prevalence of age-associated diseases, and their associated health care costs, has increased sharply. A better understanding of the molecular mechanisms that lead to cellular dysfunction may provide important targets for interventions to prevent or treat these diseases. Recent Advances: Although the mitochondrial theory of aging had been proposed more than 40 years ago, recent new data have given stronger support for a central role for mitochondrial dysfunction in several pathways that are deregulated during normal aging and age-associated disease. Critical Issues: Several of the experimental evidence linking mitochondrial alterations to age-associated loss of function are correlative and mechanistic insights are still elusive. Here, we review how mitochondrial dysfunction may be involved in many of the known hallmarks of aging, and how these pathways interact in an intricate net of molecular relationships. Future Directions: As it has become clear that mitochondrial dysfunction plays causative roles in normal aging and age-associated diseases, it is necessary to better define the molecular interactions and the temporal and causal relationship between these changes and the relevant phenotypes seen during the aging process. Antioxid. Redox Signal. 36, 824-843.
Collapse
Affiliation(s)
- Caio M P F Batalha
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anibal Eugênio Vercesi
- Departamento de Patologia Clínica, Faculdade de Medicina, Universidade de Campinas, Campinas, Brazil
| | - Nadja C Souza-Pinto
- Lab. Genética Mitocondrial, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
296
|
Circulating cell-free mtDNA release is associated with the activation of cGAS-STING pathway and inflammation in mitochondrial diseases. J Neurol 2022; 269:4985-4996. [PMID: 35486214 DOI: 10.1007/s00415-022-11146-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There is increasing evidence for the role of inflammation in the pathogenesis of mitochondrial diseases (MDs). However, the mechanisms underlying mutation-induced inflammation in MD remain elusive. Our previous study suggested that mitophagy is impaired in the skeletal muscle of those with MD, likely causing mitochondrial DNA (mtDNA) release and thereby triggering inflammation. We here aimed to decipher the role of the cGAS-STING pathway in inflammatory process in MDs. METHODS We investigated the levels of circulating cell-free mtDNA (ccf-mtDNA) in the serum of 104 patients with MDs. Immunofluorescence was performed in skeletal muscles in MDs and control. Biochemical analysis of muscle biopsies was conducted with western blot to detect cGAS, STING, TBK1, IRF3 and phosphorylated IRF3 (p-IRF3). RT-qPCR was performed to detect the downstream genes of type I interferon in skeletal muscles. Furthermore, a protein microarray was used to examine the cytokine levels in the serum of patients with MDs. RESULTS We found that ccf-mtDNA levels were significantly increased in those with MDs compared to the controls. Consistently, the immunofluorescent results showed that cytosolic dsDNA levels were increased in the muscle samples of MD patients. Biochemical analysis of muscle biopsies showed that cGAS, IRF3, and TBK1 protein levels were significantly increased in those with MDs, indicating that there was activation of the cGAS-STING pathway. RT-qPCR showed that downstream genes of type I interferon were upregulated in muscle samples of MDs. Protein microarray results showed that a total of six cytokines associated with the cGAS-STING pathway were significantly increased in MD patients (fold change > 1.2, p value < 0.05). CONCLUSIONS These findings suggest that increases in ccf-mtDNA levels is associated with the activation of the cGAS-STING pathway, thereby triggering inflammation in MDs.
Collapse
|
297
|
Steiner A, Hrovat-Schaale K, Prigione I, Yu CH, Laohamonthonkul P, Harapas CR, Low RRJ, De Nardo D, Dagley LF, Mlodzianoski MJ, Rogers KL, Zillinger T, Hartmann G, Gantier MP, Gattorno M, Geyer M, Volpi S, Davidson S, Masters SL. Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nat Commun 2022; 13:2321. [PMID: 35484149 PMCID: PMC9051092 DOI: 10.1038/s41467-022-29946-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coatomer complex I (COPI) mediates retrograde vesicular trafficking from Golgi to the endoplasmic reticulum (ER) and within Golgi compartments. Deficiency in subunit alpha causes COPA syndrome and is associated with type I IFN signalling, although the upstream innate immune sensor involved was unknown. Using in vitro models we find aberrant activation of the STING pathway due to deficient retrograde but probably not intra-Golgi transport. Further we find the upstream cytosolic DNA sensor cGAS as essentially required to drive type I IFN signalling. Genetic deletion of COPI subunits COPG1 or COPD similarly induces type I IFN activation in vitro, which suggests that inflammatory diseases associated with mutations in other COPI subunit genes may exist. Finally, we demonstrate that inflammation in COPA syndrome patient peripheral blood mononuclear cells and COPI-deficient cell lines is ameliorated by treatment with the small molecule STING inhibitor H-151, suggesting targeted inhibition of the cGAS/STING pathway as a promising therapeutic approach.
Collapse
Affiliation(s)
- Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ignazia Prigione
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ronnie Ren Jie Low
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Laura F Dagley
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Advanced Technology and Biology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Michael J Mlodzianoski
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Kelly L Rogers
- Center for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- Institute of Immunology, Philipps-University Marburg, BMFZ, 35043, Marburg, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 53127, Bonn, Germany
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Primary Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
- University of Genoa, 16126, Genoa, Italy
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
298
|
Liu TW, Chen CM, Chang KH. Biomarker of Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23084148. [PMID: 35456966 PMCID: PMC9028544 DOI: 10.3390/ijms23084148] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson's disease (PD) is caused by abnormal accumulation of α-synuclein in dopaminergic neurons of the substantia nigra, which subsequently causes motor symptoms. Neuroinflammation plays a vital role in the pathogenesis of neurodegeneration in PD. This neuroinflammatory neurodegeneration involves the activation of microglia, upregulation of proinflammatory factors, and gut microbiota. In this review, we summarized the recent findings on detection of PD by using inflammatory biomarkers, such as interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor (TNF)-α; regulated upon activation, normal T cell expressed and presumably secreted (RANTES) and high-sensitivity c-reactive protein (hsCRP); and radiotracers such as [11C]PK11195 and [18F]-FEPPA, as well as by monitoring disease progression and the treatment response. Many PD-causing mutations in SNCA, LRRK2, PRKN, PINK1, and DJ-1 are also associated with neuroinflammation. Several anti-inflammatory medications, including nonsteroidal anti-inflammatory drugs (NSAID), inhibitors of TNF-α and NLR family pyrin domain containing 3 (NLRP3), agonists of nuclear factor erythroid 2-related factor 2 (NRF2), peroxisome proliferator-activated receptor gamma (PPAR-γ), and steroids, have demonstrated neuroprotective effects in in vivo or in vitro PD models. Clinical trials applying objective biomarkers are required to investigate the therapeutic potential of anti-inflammatory medications for PD.
Collapse
Affiliation(s)
- Tsai-Wei Liu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
| | - Chiung-Mei Chen
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Kuo-Hsuan Chang
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, Tauoyan 333, Taiwan; (T.-W.L.); (C.-M.C.)
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8729); Fax: +886-3-3288849
| |
Collapse
|
299
|
Wu Q, Tsai HI, Zhu H, Wang D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers (Basel) 2022; 14:cancers14081862. [PMID: 35454769 PMCID: PMC9028275 DOI: 10.3390/cancers14081862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Mitochondrial dysfunction is one of the main features of cancer cells. As genetic material in mitochondria, mitochondrial DNA (mtDNA) variations and dysregulation of mitochondria-encoded genes have been shown to correlate with survival outcomes in cancer patients. Cancer metastasis is often a major cause of treatment failure, which is a multi-step cascade process. With the development of gene sequencing and in vivo modeling technology, the role of mtDNA in cancer metastasis has been continuously explored. Our review systematically provides a summary of the multiple roles of mtDNA in cancer metastasis and presents the broad prospects for mtDNA in cancer prediction and therapy. Abstract Mitochondrial DNA, the genetic material in mitochondria, encodes essential oxidative phosphorylation proteins and plays an important role in mitochondrial respiration and energy transfer. With the development of genome sequencing and the emergence of novel in vivo modeling techniques, the role of mtDNA in cancer biology is gaining more attention. Abnormalities of mtDNA result in not only mitochondrial dysfunction of the the cancer cells and malignant behaviors, but regulation of the tumor microenvironment, which becomes more aggressive. Here, we review the recent progress in the regulation of cancer metastasis using mtDNA and the underlying mechanisms, which may identify opportunities for finding novel cancer prediction and therapeutic targets.
Collapse
Affiliation(s)
- Qiwei Wu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Hsiang-i Tsai
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
| | - Haitao Zhu
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Laboratory of Radiology, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| | - Dongqing Wang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Correspondence: (H.Z.); (D.W.); Tel.: +86-138-6139-0259 (D.W.)
| |
Collapse
|
300
|
Spontaneous activity of the mitochondrial apoptosis pathway drives chromosomal defects, the appearance of micronuclei and cancer metastasis through the Caspase-Activated DNAse. Cell Death Dis 2022; 13:315. [PMID: 35393399 PMCID: PMC8990075 DOI: 10.1038/s41419-022-04768-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/15/2023]
Abstract
Micronuclei are DNA-containing structures separate from the nucleus found in cancer cells. Micronuclei are recognized by the immune sensor axis cGAS/STING, driving cancer metastasis. The mitochondrial apoptosis apparatus can be experimentally triggered to a non-apoptotic level, and this can drive the appearance of micronuclei through the Caspase-activated DNAse (CAD). We tested whether spontaneously appearing micronuclei in cancer cells are linked to sub-lethal apoptotic signals. Inhibition of mitochondrial apoptosis or of CAD reduced the number of micronuclei in tumor cell lines as well as the number of chromosomal misalignments in tumor cells and intestinal organoids. Blockade of mitochondrial apoptosis or deletion of CAD reduced, while experimental activation CAD, STING-dependently, enhanced aggressive growth of tumor cells in vitro. Deletion of CAD from human cancer cells reduced metastasis in xenograft models. CAD-deficient cells displayed a substantially altered gene-expression profile, and a CAD-associated gene expression ‘signature’ strongly predicted survival in cancer patients. Thus, low-level activity in the mitochondrial apoptosis apparatus operates through CAD-dependent gene-induction and STING-activation and has substantial impact on metastasis in cancer.
Collapse
|