251
|
Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays Biochem 2021; 65:293-307. [PMID: 33956085 DOI: 10.1042/ebc20200138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.
Collapse
|
252
|
Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Nilsson HR, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol 2021; 6:540-548. [PMID: 33903746 PMCID: PMC10116568 DOI: 10.1038/s41564-021-00888-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/05/2021] [Indexed: 02/02/2023]
Abstract
The identification and proper naming of microfungi, in particular plant, animal and human pathogens, remains challenging. Molecular identification is becoming the default approach for many fungal groups, and environmental metabarcoding is contributing an increasing amount of sequence data documenting fungal diversity on a global scale. This includes lineages represented only by sequence data. At present, these taxa cannot be formally described under the current nomenclature rules. By considering approaches used in bacterial taxonomy, we propose solutions for the nomenclature of taxa known only from sequences to facilitate consistent reporting and communication in the literature and public sequence repositories.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Berlin, Germany
- International Commission on the Taxonomy of Fungi (ICTF)
| | - M Catherine Aime
- International Commission on the Taxonomy of Fungi (ICTF)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Andrew N Miller
- International Commission on the Taxonomy of Fungi (ICTF)
- Illinois Natural History Survey, University of Illinois, Champaign, IL, USA
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi (ICTF)
- National Agriculture and Food Research Organization, Genetic Resources Center, Ibaraki, Japan
| | - Hiran A Ariyawansa
- International Commission on the Taxonomy of Fungi (ICTF)
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Pedro W Crous
- International Commission on the Taxonomy of Fungi (ICTF)
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research Centre (WUR), Wageningen, The Netherlands
| | - Irina S Druzhinina
- International Commission on the Taxonomy of Fungi (ICTF)
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Nanjing, China
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
| | - David M Geiser
- International Commission on the Taxonomy of Fungi (ICTF)
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - David L Hawksworth
- International Commission on the Taxonomy of Fungi (ICTF)
- Department of Life Sciences, The Natural History Museum, London, UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, UK
- Geography and Environment, University of Southampton, Southampton, UK
- Jilin Agricultural University, Changchun, China
| | - Kevin D Hyde
- International Commission on the Taxonomy of Fungi (ICTF)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, China
- Mushroom Research Foundation, Chiang Rai, Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital (Research and Education Network), Westmead, New South Wales, Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Peter R Johnston
- International Commission on the Taxonomy of Fungi (ICTF)
- Manaaki Whenua-Landcare Research, Auckland, New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi (ICTF)
- Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Tom W May
- International Commission on the Taxonomy of Fungi (ICTF)
- Royal Botanic Gardens Victoria, Melbourne, Victoria, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital (Research and Education Network), Westmead, New South Wales, Australia
| | - Henrik R Nilsson
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Göteborg, Sweden
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi (ICTF)
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Vincent Robert
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi (ICTF)
- Department Microbial Drugs, Helmholtz Center for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi (ICTF)
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt (Main), Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Andrey M Yurkov
- International Commission on the Taxonomy of Fungi (ICTF)
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi (ICTF)
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Conrad L Schoch
- International Commission on the Taxonomy of Fungi (ICTF), .
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
253
|
Kachalkin AV, Abdullabekova DA, Magomedova ES, Yurkov AM. Zygotorulaspora dagestanica sp. nov., a novel ascomycetous yeast species associated with the Georgian honeysuckle ( Lonicera iberica M. Bieb.). Int J Syst Evol Microbiol 2021; 71. [PMID: 33900906 DOI: 10.1099/ijsem.0.004785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During an investigation of the yeast communities associated with wild fruit shrubs in Dagestan (Caucasus, Russia), four fermenting ascospore-producing yeast strains were isolated from leaves of the Georgian honeysuckle (Lonicera iberica M. Bieb.) and from soil underneath this plant. Phylogenetic analyses based on concatenated sequences of the ITS region and D1/D2 domains of the large subunit rRNA gene and concatenated sequences of the ribosomal DNA cystron, RPB2 and TEF1 genes showed that the isolated strains represented a new species of the genus Zygotorulaspora. The new species was placed in the basal position to other species of the clade and close to Zygotorulaspora mrakii. Based on the results of phylogenetic analyses and the phenotypic characteristics of the four studied strains, a novel species is described, for which the name Zygotorulaspora dagestanica sp. nov. is proposed. The holotype is KBP Y-4591T, three metabolically inactive cryopreserved isotype cultures are DSM 100088, VKM Y-3060 and VKPM Y-4318. The MycoBank number is MB 838285.
Collapse
Affiliation(s)
- Aleksey V Kachalkin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, 142290, Russia.,Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dinakhanum A Abdullabekova
- Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre RAS, Makhachkala, 367025, Russia
| | - Elena S Magomedova
- Precaspian Institute of Biological Resources of the Dagestan Federal Research Centre RAS, Makhachkala, 367025, Russia
| | - Andrey M Yurkov
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Brunswick, 38124, Germany
| |
Collapse
|
254
|
Schikora-Tamarit MÀ, Marcet-Houben M, Nosek J, Gabaldón T. Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biol 2021; 11:200362. [PMID: 33906412 PMCID: PMC8080010 DOI: 10.1098/rsob.200362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative phosphorylation is among the most conserved mitochondrial pathways. However, one of the cornerstones of this pathway, the multi-protein complex NADH : ubiquinone oxidoreductase (complex I) has been lost multiple independent times in diverse eukaryotic lineages. The causes and consequences of these convergent losses remain poorly understood. Here, we used a comparative genomics approach to reconstruct evolutionary paths leading to complex I loss and infer possible evolutionary scenarios. By mining available mitochondrial and nuclear genomes, we identified eight independent events of mitochondrial complex I loss across eukaryotes, of which six occurred in fungal lineages. We focused on three recent loss events that affect closely related fungal species, and inferred genomic changes convergently associated with complex I loss. Based on these results, we predict novel complex I functional partners and relate the loss of complex I with the presence of increased mitochondrial antioxidants, higher fermentative capabilities, duplications of alternative dehydrogenases, loss of alternative oxidases and adaptation to antifungal compounds. To explain these findings, we hypothesize that a combination of previously acquired compensatory mechanisms and exposure to environmental triggers of oxidative stress (such as hypoxia and/or toxic chemicals) induced complex I loss in fungi.
Collapse
Affiliation(s)
- Miquel Àngel Schikora-Tamarit
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
255
|
Heineike BM, El-Samad H. Paralogs in the PKA Regulon Traveled Different Evolutionary Routes to Divergent Expression in Budding Yeast. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:642336. [PMID: 37744115 PMCID: PMC10512328 DOI: 10.3389/ffunb.2021.642336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/24/2021] [Indexed: 09/26/2023]
Abstract
Functional divergence of duplicate genes, or paralogs, is an important driver of novelty in evolution. In the model yeast Saccharomyces cerevisiae, there are 547 paralog gene pairs that survive from an interspecies Whole Genome Hybridization (WGH) that occurred ~100MYA. In this work, we report that ~1/6th (110) of these WGH paralogs pairs (or ohnologs) are differentially expressed with a striking pattern upon Protein Kinase A (PKA) inhibition. One member of each pair in this group has low basal expression that increases upon PKA inhibition, while the other has moderate and unchanging expression. For these genes, expression of orthologs upon PKA inhibition in the non-WGH species Kluyveromyces lactis and for PKA-related stresses in other budding yeasts shows unchanging expression, suggesting that lack of responsiveness to PKA was likely the typical ancestral phenotype prior to duplication. Promoter sequence analysis across related budding yeast species further revealed that the subsequent emergence of PKA-dependence took different evolutionary routes. In some examples, regulation by PKA and differential expression appears to have arisen following the WGH, while in others, regulation by PKA appears to have arisen in one of the two parental lineages prior to the WGH. More broadly, our results illustrate the unique opportunities presented by a WGH event for generating functional divergence by bringing together two parental lineages with separately evolved regulation into one species. We propose that functional divergence of two ohnologs can be facilitated through such regulatory divergence.
Collapse
Affiliation(s)
- Benjamin M. Heineike
- Bioinformatics Graduate Program, University of California, San Francisco, San Francisco, CA, United States
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
256
|
Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M, Dunn CW, Hittinger CT, Shen XX, Rokas A. A genome-scale phylogeny of the kingdom Fungi. Curr Biol 2021; 31:1653-1665.e5. [PMID: 33607033 PMCID: PMC8347878 DOI: 10.1016/j.cub.2021.01.074] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
Phylogenomic studies using genome-scale amounts of data have greatly improved understanding of the tree of life. Despite the diversity, ecological significance, and biomedical and industrial importance of fungi, evolutionary relationships among several major lineages remain poorly resolved, especially those near the base of the fungal phylogeny. To examine poorly resolved relationships and assess progress toward a genome-scale phylogeny of the fungal kingdom, we compiled a phylogenomic data matrix of 290 genes from the genomes of 1,644 species that includes representatives from most major fungal lineages. We also compiled 11 data matrices by subsampling genes or taxa from the full data matrix based on filtering criteria previously shown to improve phylogenomic inference. Analyses of these 12 data matrices using concatenation- and coalescent-based approaches yielded a robust phylogeny of the fungal kingdom, in which ∼85% of internal branches were congruent across data matrices and approaches used. We found support for several historically poorly resolved relationships as well as evidence for polytomies likely stemming from episodes of ancient diversification. By examining the relative evolutionary divergence of taxonomic groups of equivalent rank, we found that fungal taxonomy is broadly aligned with both genome sequence divergence and divergence time but also identified lineages where current taxonomic circumscription does not reflect their levels of evolutionary divergence. Our results provide a robust phylogenomic framework to explore the tempo and mode of fungal evolution and offer directions for future fungal phylogenetic and taxonomic studies.
Collapse
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Ying Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yan Wang
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Department of Biological Sciences, University of Toronto Scarborough and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, 3584 CT, Utrecht 85167, the Netherlands
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
257
|
Valli M, Grillitsch K, Grünwald-Gruber C, Tatto NE, Hrobath B, Klug L, Ivashov V, Hauzmayer S, Koller M, Tir N, Leisch F, Gasser B, Graf AB, Altmann F, Daum G, Mattanovich D. A subcellular proteome atlas of the yeast Komagataella phaffii. FEMS Yeast Res 2021; 20:5700286. [PMID: 31922548 PMCID: PMC6981350 DOI: 10.1093/femsyr/foaa001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
The compartmentalization of metabolic and regulatory pathways is a common pattern of living organisms. Eukaryotic cells are subdivided into several organelles enclosed by lipid membranes. Organelle proteomes define their functions. Yeasts, as simple eukaryotic single cell organisms, are valuable models for higher eukaryotes and frequently used for biotechnological applications. While the subcellular distribution of proteins is well studied in Saccharomyces cerevisiae, this is not the case for other yeasts like Komagataella phaffii (syn. Pichia pastoris). Different to most well-studied yeasts, K. phaffii can grow on methanol, which provides specific features for production of heterologous proteins and as a model for peroxisome biology. We isolated microsomes, very early Golgi, early Golgi, plasma membrane, vacuole, cytosol, peroxisomes and mitochondria of K. phaffii from glucose- and methanol-grown cultures, quantified their proteomes by liquid chromatography-electrospray ionization-mass spectrometry of either unlabeled or tandem mass tag-labeled samples. Classification of the proteins by their relative enrichment, allowed the separation of enriched proteins from potential contaminants in all cellular compartments except the peroxisomes. We discuss differences to S. cerevisiae, outline organelle specific findings and the major metabolic pathways and provide an interactive map of the subcellular localization of proteins in K. phaffii.
Collapse
Affiliation(s)
- Minoska Valli
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Clemens Grünwald-Gruber
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Nadine E Tatto
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Bernhard Hrobath
- Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Lisa Klug
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Vasyl Ivashov
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Sandra Hauzmayer
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Martina Koller
- School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Nora Tir
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Friedrich Leisch
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Statistics, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alexandra B Graf
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,School of Bioengineering, University of Applied Sciences FH-Campus Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
258
|
Nguyen DT, Wu B, Long H, Zhang N, Patterson C, Simpson S, Morris K, Thomas WK, Lynch M, Hao W. Variable Spontaneous Mutation and Loss of Heterozygosity among Heterozygous Genomes in Yeast. Mol Biol Evol 2021; 37:3118-3130. [PMID: 33219379 DOI: 10.1093/molbev/msaa150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65-11.07×10-6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.
Collapse
Affiliation(s)
- Duong T Nguyen
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Baojun Wu
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China
| | - Nan Zhang
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | | | | | | | | | - Michael Lynch
- Center for Mechanisms of Evolution, The Biodesign Institute, Arizona State University, Tempe, AZ
| | - Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
259
|
Improvement of Torulaspora delbrueckii Genome Annotation: Towards the Exploitation of Genomic Features of a Biotechnologically Relevant Yeast. J Fungi (Basel) 2021; 7:jof7040287. [PMID: 33920164 PMCID: PMC8070057 DOI: 10.3390/jof7040287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae is the most commonly used yeast in wine, beer, and bread fermentations. However, Torulaspora delbrueckii has attracted interest in recent years due to its properties, ranging from its ability to produce flavor- and aroma-enhanced wine to its ability to survive longer in frozen dough. In this work, publicly available genomes of T. delbrueckii were explored and their annotation was improved. A total of 32 proteins were additionally annotated for the first time in the type strain CBS1146, in comparison with the previous annotation available. In addition, the annotation of the remaining three T. delbrueckii strains was performed for the first time. eggNOG-mapper was used to perform the functional annotation of the deduced T. delbrueckii coding genes, offering insights into its biological significance, and revealing 24 clusters of orthologous groups (COGs), which were gathered in three main functional categories: information storage and processing (28% of the proteins), cellular processing and signaling (27%), and metabolism (23%). Small intraspecies variability was found when considering the functional annotation of the four available T. delbrueckii genomes. A comparative study was also conducted between the T. delbrueckii genome and those from 386 fungal species, revealing a high number of homologous genes with species from the Zygotorulaspora and Zygosaccharomyces genera, but also with Lachancea and S. cerevisiae. Lastly, the phylogenetic placement of T. delbrueckii was clarified using the core homologs that were found across 204 common protein sequences of 386 fungal species and strains.
Collapse
|
260
|
LaBella AL, Opulente DA, Steenwyk JL, Hittinger CT, Rokas A. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology. PLoS Biol 2021; 19:e3001185. [PMID: 33872297 PMCID: PMC8084343 DOI: 10.1371/journal.pbio.3001185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/29/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Reverse ecology is the inference of ecological information from patterns of genomic variation. One rich, heretofore underutilized, source of ecologically relevant genomic information is codon optimality or adaptation. Bias toward codons that match the tRNA pool is robustly associated with high gene expression in diverse organisms, suggesting that codon optimization could be used in a reverse ecology framework to identify highly expressed, ecologically relevant genes. To test this hypothesis, we examined the relationship between optimal codon usage in the classic galactose metabolism (GAL) pathway and known ecological niches for 329 species of budding yeasts, a diverse subphylum of fungi. We find that optimal codon usage in the GAL pathway is positively correlated with quantitative growth on galactose, suggesting that GAL codon optimization reflects increased capacity to grow on galactose. Optimal codon usage in the GAL pathway is also positively correlated with human-associated ecological niches in yeasts of the CUG-Ser1 clade and with dairy-associated ecological niches in the family Saccharomycetaceae. For example, optimal codon usage of GAL genes is greater than 85% of all genes in the genome of the major human pathogen Candida albicans (CUG-Ser1 clade) and greater than 75% of genes in the genome of the dairy yeast Kluyveromyces lactis (family Saccharomycetaceae). We further find a correlation between optimization in the GALactose pathway genes and several genes associated with nutrient sensing and metabolism. This work suggests that codon optimization harbors information about the metabolic ecology of microbial eukaryotes. This information may be particularly useful for studying fungal dark matter-species that have yet to be cultured in the lab or have only been identified by genomic material.
Collapse
Affiliation(s)
- Abigail Leavitt LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
261
|
Brysch-Herzberg M, Dlauchy D, Seidel M, Péter G. Cyberlindnera sylvatica sp. nov., a yeast species isolated from forest habitats. Int J Syst Evol Microbiol 2021; 71. [PMID: 33507858 DOI: 10.1099/ijsem.0.004477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five yeast strains isolated from forest habitats in Hungary and Germany were characterized phenotypically and by sequencing of the D1/D2 domain of the large subunit rRNA gene and the ITS1-5.8S-ITS2 (ITS) region of the rRNA gene. The strains have identical D1/D2 domain and ITS region sequences. By sequence comparisons, Candida mycetangii and Candida maritima were identified as the closest relatives among the currently recognized yeast species. The DNA sequences of the investigated strains differ by 1.2 % (six substitutions) in the D1/D2 domain and by 3.5 % (12 substitutions and eight indels) in the ITS region from the type strain of C. mycetangii (CBS 8675T) while by 1.2 % (six substitutions and one indel) in the D1/D2 domain and by 7 % (32 substitutions and seven indels) in the ITS region from the type strain of C. maritima (CBS 5107T). Because the intraspecies heterogeneity seems to be very low and the distance to the most closely related species is above the commonly expected level for intraspecies variability Cyberlindnera sylvatica sp. nov. (holotype, CBS 16335T; isotype, NCAIM Y.02233T; MycoBank no., MB 835268) is proposed to accommodate the above-noted five yeast strains. Phenotypically the novel species can be distinguished from C. mycetangii and C. maritima by the formation of ascospores. Cyberlindnera sylvatica forms one or two hat-shaped ascospores per ascus on many different media as well as well-developed pseudohyphae and true hyphae. Additionally, we propose the transfer of three anamorphic members of the Cyberlindnera americana sub-clade to the genus Cyberlindnera as the following new taxonomic combinations Cyberlindnera maritima f.a., comb. nov., Cyberlindnera mycetangii f.a., comb. nov. and Cyberlindnera nakhonratchasimensis f.a., comb. nov.
Collapse
Affiliation(s)
- Michael Brysch-Herzberg
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Martin Seidel
- Laboratory for Wine Microbiology, Department International Business, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary
| |
Collapse
|
262
|
Abstract
Cell cycle checkpoints and DNA repair pathways contribute to maintaining genome integrity and are thought to be evolutionarily ancient and broadly conserved. For example, in the yeast Saccharomyces cerevisiae and humans, DNA damage induces activation of a checkpoint effector kinase, Rad53p (human homolog Chk2), to promote cell cycle arrest and transcription of DNA repair genes. Cell cycle checkpoints and DNA repair pathways contribute to maintaining genome integrity and are thought to be evolutionarily ancient and broadly conserved. For example, in the yeast Saccharomyces cerevisiae and humans, DNA damage induces activation of a checkpoint effector kinase, Rad53p (human homolog Chk2), to promote cell cycle arrest and transcription of DNA repair genes. However, recent studies have revealed variation in the DNA damage response networks of some fungi. For example, Shor et al. (mBio 11:e03044-20, 2020, https://doi.org/10.1128/mBio.03044-20) demonstrate that in comparison to S. cerevisiae, the fungal pathogen Candida glabrata has reduced activation of Rad53p in response to DNA damage. Consequently, some downstream targets that contribute to S. cerevisiae genome maintenance, such as DNA polymerases, are transcriptionally downregulated in C. glabrata. Downregulation of genome maintenance genes likely contributes to higher rates of mitotic failure and cell death in C. glabrata. This and other recent findings highlight evolutionary diversity in eukaryotic DNA damage responses.
Collapse
|
263
|
Liu Z, Wang MM, Wang GS, Li AH, Wangmu, Wang QM. Hanseniaspora terricola sp. nov., an ascomycetous yeast isolated from Tibet. Int J Syst Evol Microbiol 2021; 71. [PMID: 33720007 DOI: 10.1099/ijsem.0.004741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight apiculate strains isolated from Tibet, PR China, were identified as Hanseniaspora taiwanica and a novel species of Hanseniaspora based on the sequence analysis of the ITS region, the D1/D2 domains of the LSU rRNA and the translation elongation factor 1-a (TEF1) gene. Among them, four strains with identical sequences of D1/D2 and ITS formed a separate branch from the known Hanseniaspora species in the phylogenetic trees, and differed from the known species by at least 17 (3 %) nucleotide (nt) substitutions in the D1/D2 domains and more than 6 % substitutions and inserts/deletes in the ITS region. The phylogenetic analysis indicated that those four strains represent a novel species of Hanseniaspora, for which the names Hanseniaspora terricola sp. nov. (holotype CGMCC 2.6175T; MycoBank MB 834591) is proposed. The other four strains belonging to H. taiwanica produce spherical, void or fusiform ascospores, which differ from the original description that ascospores are absent.
Collapse
Affiliation(s)
- Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, PR China
| | - Man-Man Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, PR China
| | - Gui-Shuang Wang
- Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, PR China.,School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, PR China
| | - Ai-Hua Li
- China General Microbiological Culture Collection Center and State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Wangmu
- Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, Tibet, PR China
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, PR China
| |
Collapse
|
264
|
Mahillon M, Decroës A, Caulier S, Tiendrebeogo A, Legrève A, Bragard C. Genomic and biological characterization of a novel partitivirus infecting Fusarium equiseti. Virus Res 2021; 297:198386. [PMID: 33716183 DOI: 10.1016/j.virusres.2021.198386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
This study describes a new mycovirus infecting a strain from the Fusarium incarnatum-equiseti species complex. Based on phylogenetic and genomic analyses, this virus belongs to the recently proposed genus "Zetapartitivirus" in the family Partitiviridae. The name "Fusarium equiseti partitivirus 1″ (FePV1) is therefore suggested for this novel viral species. Similar to other partitiviruses, FePV1 genome is composed by two dsRNA segments that exhibit each one large ORF encoding for an RdRp and a CP, respectively. A smaller dsRNA was also detected in infected mycelium and could be a satellite RNA of FePV1. In addition to characterized zetapartitiviruses, other FePV1-related sequences were retrieved from online databases and their significance is discussed. Following conidial isolation, an FePV1-free isogenic line of the fungal host was obtained. In comparison with the original infected strain, this line showed higher growth, biomass production and pathogenicity on tomato, advocating that FePV1 induces hypovirulence on its host.
Collapse
Affiliation(s)
- Mathieu Mahillon
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alain Decroës
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Simon Caulier
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Assiata Tiendrebeogo
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium; Natural System, Agrosystem and Environmental Engineering, Phytopathology, Nazi Boni University, Bobo-Dioulasso, Burkina-Faso
| | - Anne Legrève
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
265
|
Domenzain I, Li F, Kerkhoven EJ, Siewers V. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species. FEMS Yeast Res 2021; 21:foab002. [PMID: 33428734 PMCID: PMC7943257 DOI: 10.1093/femsyr/foab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic network reconstructions have become an important tool for probing cellular metabolism in the field of systems biology. They are used as tools for quantitative prediction but also as scaffolds for further knowledge contextualization. The yeast Saccharomyces cerevisiae was one of the first organisms for which a genome-scale metabolic model (GEM) was reconstructed, in 2003, and since then 45 metabolic models have been developed for a wide variety of relevant yeasts species. A systematic evaluation of these models revealed that-despite this long modeling history-the sequential process of tracing model files, setting them up for basic simulation purposes and comparing them across species and even different versions, is still not a generalizable task. These findings call the yeast modeling community to comply to standard practices on model development and sharing in order to make GEMs accessible and useful for a wider public.
Collapse
Affiliation(s)
- Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Feiran Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
266
|
Shor E, Perlin DS. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity. Curr Genet 2021; 67:439-445. [PMID: 33620543 DOI: 10.1007/s00294-021-01162-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/02/2023]
Abstract
How cells respond to DNA damage is key to maintaining genome integrity or facilitating genetic change. In fungi, DNA damage responses have been extensively characterized in the model budding yeast Saccharomyces cerevisiae, which is generally not pathogenic. However, it is not clear how closely these responses resemble those in fungal pathogens, in which genetic change plays an important role in the evolutionary arms race between pathogen and host and the evolution of antifungal drug resistance. A close relative of S. cerevisiae, Candida glabrata, is an opportunistic pathogen that displays high variability in chromosome structure among clinical isolates and rapidly evolves antifungal drug resistance. The mechanisms facilitating such genomic flexibility and evolvability in this organism are unknown. Recently we characterized the DNA damage response of C. glabrata and identified several features that distinguish it from the well characterized DNA damage response of S. cerevisiae. First, we discovered that, in contrast to the established paradigm, C. glabrata effector kinase Rad53 is not hyperphosphorylated upon DNA damage. We also uncovered evidence of an attenuated DNA damage checkpoint response, wherein in the presence of DNA damage C. glabrata cells did not accumulate in S-phase and proceeded with cell division, leading to aberrant mitoses and cell death. Finally, we identified evidence of transcriptional rewiring of the DNA damage response of C. glabrata relative to S. cerevisiae, including an upregulation of genes involved in mating and meiosis-processes that have not been reported in C. glabrata. Together, these results open new possibilities and raise tantalizing questions of how this major fungal pathogen facilitates genetic change.
Collapse
Affiliation(s)
- Erika Shor
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA. .,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.
| | - David S Perlin
- Center for Discovery and Innovation, Nutley, NJ, 07110, USA.,Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA.,Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, 20057, USA
| |
Collapse
|
267
|
Shen XX, Steenwyk JL, Rokas A. Dissecting incongruence between concatenation- and quartet-based approaches in phylogenomic data. Syst Biol 2021; 70:997-1014. [PMID: 33616672 DOI: 10.1093/sysbio/syab011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Topological conflict or incongruence is widespread in phylogenomic data. Concatenation- and coalescent-based approaches often result in incongruent topologies, but the causes of this conflict can be difficult to characterize. We examined incongruence stemming from conflict between likelihood-based signal (quantified by the difference in gene-wise log likelihood score or ΔGLS) and quartet-based topological signal (quantified by the difference in gene-wise quartet score or ΔGQS) for every gene in three phylogenomic studies in animals, fungi, and plants, which were chosen because their concatenation-based IQ-TREE (T1) and quartet-based ASTRAL (T2) phylogenies are known to produce eight conflicting internal branches (bipartitions). By comparing the types of phylogenetic signal for all genes in these three data matrices, we found that 30% - 36% of genes in each data matrix are inconsistent, that is, each of these genes has higher log likelihood score for T1 versus T2 (i.e., ΔGLS >0) whereas its T1 topology has lower quartet score than its T2 topology (i.e., ΔGQS <0) or vice versa. Comparison of inconsistent and consistent genes using a variety of metrics (e.g., evolutionary rate, gene tree topology, distribution of branch lengths, hidden paralogy, and gene tree discordance) showed that inconsistent genes are more likely to recover neither T1 nor T2 and have higher levels of gene tree discordance than consistent genes. Simulation analyses demonstrate that removal of inconsistent genes from datasets with low levels of incomplete lineage sorting (ILS) and low and medium levels of gene tree estimation error (GTEE) reduced incongruence and increased accuracy. In contrast, removal of inconsistent genes from datasets with medium and high ILS levels and high GTEE levels eliminated or extensively reduced incongruence, but the resulting congruent species phylogenies were not always topologically identical to the true species trees.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
268
|
Minh BQ, Dang CC, Vinh LS, Lanfear R. QMaker: Fast and accurate method to estimate empirical models of protein evolution. Syst Biol 2021; 70:1046-1060. [PMID: 33616668 PMCID: PMC8357343 DOI: 10.1093/sysbio/syab010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/25/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
Amino acid substitution models play a crucial role in phylogenetic analyses. Maximum likelihood (ML) methods have been proposed to estimate amino acid substitution models; however, they are typically complicated and slow. In this article, we propose QMaker, a new ML method to estimate a general time-reversible \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$Q$\end{document} matrix from a large protein data set consisting of multiple sequence alignments. QMaker combines an efficient ML tree search algorithm, a model selection for handling the model heterogeneity among alignments, and the consideration of rate mixture models among sites. We provide QMaker as a user-friendly function in the IQ-TREE software package (http://www.iqtree.org) supporting the use of multiple CPU cores so that biologists can easily estimate amino acid substitution models from their own protein alignments. We used QMaker to estimate new empirical general amino acid substitution models from the current Pfam database as well as five clade-specific models for mammals, birds, insects, yeasts, and plants. Our results show that the new models considerably improve the fit between model and data and in some cases influence the inference of phylogenetic tree topologies.[Amino acid replacement matrices; amino acid substitution models; maximum likelihood estimation; phylogenetic inferences.]
Collapse
Affiliation(s)
- Bui Quang Minh
- School of Computing, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia
- Department of Ecology and Evolution, Research School of Biology, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia
| | - Cuong Cao Dang
- Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000 Hanoi, Vietnam Bui Quang Minh and Cuong Cao Dang contributed equally to this article
| | - Le Sy Vinh
- Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000 Hanoi, Vietnam Bui Quang Minh and Cuong Cao Dang contributed equally to this article
- Correspondence to be sent to: University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000 Hanoi, Vietnam; E-mail: and Department of Ecology and Evolution, Research School of Biology, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia; E-mail:
| | - Robert Lanfear
- Department of Ecology and Evolution, Research School of Biology, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia
- Correspondence to be sent to: University of Engineering and Technology, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, 10000 Hanoi, Vietnam; E-mail: and Department of Ecology and Evolution, Research School of Biology, Australian National University, 145 Science Road, Acton, ACT 2601, Canberra, Australia; E-mail:
| |
Collapse
|
269
|
Perli T, van der Vorm DNA, Wassink M, van den Broek M, Pronk JT, Daran JM. Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae. Metab Eng 2021; 65:11-29. [PMID: 33617956 DOI: 10.1016/j.ymben.2021.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less than 50 Moco-dependent enzymes covering over 30 catalytic activities have been described to date, introduction of a functional Moco synthesis pathway offers interesting options to further broaden the biocatalytic repertoire of S. cerevisiae. In this study, we identified seven Moco biosynthesis genes in the non-conventional yeast Ogataea parapolymorpha by SpyCas9-mediated mutational analysis and expressed them in S. cerevisiae. Functionality of the heterologously expressed Moco biosynthesis pathway in S. cerevisiae was assessed by co-expressing O. parapolymorpha nitrate-assimilation enzymes, including the Moco-dependent nitrate reductase. Following two-weeks of incubation, growth of the engineered S. cerevisiae strain was observed on nitrate as sole nitrogen source. Relative to the rationally engineered strain, the evolved derivatives showed increased copy numbers of the heterologous genes, increased levels of the encoded proteins and a 5-fold higher nitrate-reductase activity in cell extracts. Growth at nM molybdate concentrations was enabled by co-expression of a Chlamydomonas reinhardtii high-affinity molybdate transporter. In serial batch cultures on nitrate-containing medium, a non-engineered S. cerevisiae strain was rapidly outcompeted by the spoilage yeast Brettanomyces bruxellensis. In contrast, an engineered and evolved nitrate-assimilating S. cerevisiae strain persisted during 35 generations of co-cultivation. This result indicates that the ability of engineered strains to use nitrate may be applicable to improve competitiveness of baker's yeast in industrial processes upon contamination with spoilage yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Daan N A van der Vorm
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Mats Wassink
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
270
|
Martínez-Ávila L, Peidro-Guzmán H, Pérez-Llano Y, Moreno-Perlín T, Sánchez-Reyes A, Aranda E, Ángeles de Paz G, Fernández-Silva A, Folch-Mallol JL, Cabana H, Gunde-Cimerman N, Batista-García RA. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116358. [PMID: 33385892 DOI: 10.1016/j.envpol.2020.116358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
Collapse
Affiliation(s)
- Liliana Martínez-Ávila
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología. Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Arline Fernández-Silva
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
271
|
Steenwyk JL, Buida TJ, Labella AL, Li Y, Shen XX, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics 2021; 37:2325-2331. [PMID: 33560364 PMCID: PMC8388027 DOI: 10.1093/bioinformatics/btab096] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Diverse disciplines in biology process and analyze multiple sequence alignments (MSAs) and phylogenetic trees to evaluate their information content, infer evolutionary events and processes, and predict gene function. However, automated processing of MSAs and trees remains a challenge due to the lack of a unified toolkit. To fill this gap, we introduce PhyKIT, a toolkit for the UNIX shell environment with 30 functions that process MSAs and trees, including but not limited to estimation of mutation rate, evaluation of sequence composition biases, calculation of the degree of violation of a molecular clock, and collapsing bipartitions (internal branches) with low support. RESULTS To demonstrate the utility of PhyKIT, we detail three use cases: (1) summarizing information content in MSAs and phylogenetic trees for diagnosing potential biases in sequence or tree data; (2) evaluating gene-gene covariation of evolutionary rates to identify functional relationships, including novel ones, among genes; and (3) identify lack of resolution events or polytomies in phylogenetic trees, which are suggestive of rapid radiation events or lack of data. We anticipate PhyKIT will be useful for processing, examining, and deriving biological meaning from increasingly large phylogenomic datasets. AVAILABILITY PhyKIT is freely available on GitHub (https://github.com/JLSteenwyk/PhyKIT), PyPi (https://pypi.org/project/phykit/), and the Anaconda Cloud (https://anaconda.org/JLSteenwyk/phykit) under the MIT license with extensive documentation and user tutorials (https://jlsteenwyk.com/PhyKIT). SUPPLEMENTARY INFORMATION Supplementary data are available on figshare (doi: 10.6084/m9.figshare.13118600) and are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Thomas J Buida
- 9 City Place #312, Nashville, TN, 37209, United States of America
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| | - Xing-Xing Shen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B #35-1634, Nashville, TN, 37235, United States of America
| |
Collapse
|
272
|
Lozančić M, Žunar B, Hrestak D, Lopandić K, Teparić R, Mrša V. Systematic Comparison of Cell Wall-Related Proteins of Different Yeasts. J Fungi (Basel) 2021; 7:jof7020128. [PMID: 33572482 PMCID: PMC7916363 DOI: 10.3390/jof7020128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Yeast cell walls have two major roles, to preserve physical integrity of the cell, and to ensure communication with surrounding molecules and cells. While the first function requires evolutionary conserved polysaccharide network synthesis, the second needs to be flexible and provide adaptability to different habitats and lifestyles. In this study, the comparative in silico analysis of proteins required for cell wall biosynthesis and functions containing 187 proteins of 92 different yeasts was performed in order to assess which proteins were broadly conserved among yeasts and which were more species specific. Proteins were divided into several groups according to their role and localization. As expected, many Saccharomyces cerevisiae proteins involved in protein glycosylation, glycosylphosphatidylinositol (GPI) synthesis and the synthesis of wall polysaccharides had orthologues in most other yeasts. Similarly, a group of GPI anchored proteins involved in cell wall biosynthesis (Gas proteins and Dfg5p/Dcw1p) and other non-GPI anchored cell wall proteins involved in the wall synthesis and remodeling were highly conserved. However, GPI anchored proteins involved in flocculation, aggregation, cell separation, and those of still unknown functions were not highly conserved. The proteins localized in the cell walls of various yeast species were also analyzed by protein biotinylation and blotting. Pronounced differences were found both in the patterns, as well as in the overall amounts of different groups of proteins. The amount of GPI-anchored proteins correlated with the mannan to glucan ratio of the wall. Changes of the wall proteome upon temperature shift to 42 °C were detected.
Collapse
Affiliation(s)
- Mateja Lozančić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Bojan Žunar
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Dora Hrestak
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Ksenija Lopandić
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, 1180 Vienna, Austria;
| | - Renata Teparić
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
| | - Vladimir Mrša
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.L.); (B.Ž.); (D.H.); (R.T.)
- Correspondence:
| |
Collapse
|
273
|
Čadež N, Dlauchy D, Tome M, Péter G. Novakomyces olei sp. nov., the First Member of a Novel Taphrinomycotina Lineage. Microorganisms 2021; 9:microorganisms9020301. [PMID: 33540601 PMCID: PMC7912804 DOI: 10.3390/microorganisms9020301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/25/2023] Open
Abstract
Taphrinomycotina is the smallest subphylum of the phylum Ascomycota. It is an assemblage of distantly related early diverging lineages of the phylum, comprising organisms with divergent morphology and ecology; however, phylogenomic analyses support its monophyly. In this study, we report the isolation of a yeast strain, which could not be assigned to any of the currently recognised five classes of Taphrinomycotina. The strain of the novel budding species was recovered from extra virgin olive oil and characterised phenotypically by standard methods. The ultrastructure of the cell wall was investigated by transmission electron microscopy. Comparisons of barcoding DNA sequences indicated that the investigated strain is not closely related to any known organism. Tentative phylogenetic placement was achieved by maximum-likelihood analysis of the D1/D2 domain of the nuclear LSU rRNA gene. The genome of the investigated strain was sequenced, assembled, and annotated. Phylogenomic analyses placed it next to the fission Schizosaccharomyces species. To accommodate the novel species, Novakomyces olei, a novel genus Novakomyces, a novel family Novakomycetaceae, a novel order Novakomycetales, and a novel class Novakomycetes is proposed as well. Functional analysis of genes missing in N. olei in comparison to Schizosaccharomyces pombe revealed that they are biased towards biosynthesis of complex organic molecules, regulation of mRNA, and the electron transport chain. Correlating the genome content and physiology among species of Taphrinomycotina revealed some discordance between pheno- and genotype. N. olei produced ascospores in axenic culture preceded by conjugation between two cells. We confirmed that N. olei is a primary homothallic species lacking genes for different mating types.
Collapse
Affiliation(s)
- Neža Čadež
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
| | - Miha Tome
- Food Science and Technology Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (N.Č.); (M.T.)
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Faculty of Food Science, Szent István University, Somlói út 14-16, H-1118 Budapest, Hungary;
- Correspondence:
| |
Collapse
|
274
|
Álvarez-Pérez S, Dhami MK, Pozo MI, Crauwels S, Verstrepen KJ, Herrera CM, Lievens B, Jacquemyn H. Genetic admixture increases phenotypic diversity in the nectar yeast Metschnikowia reukaufii. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2020.101016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
275
|
Fredericks LR, Lee MD, Crabtree AM, Boyer JM, Kizer EA, Taggart NT, Roslund CR, Hunter SS, Kennedy CB, Willmore CG, Tebbe NM, Harris JS, Brocke SN, Rowley PA. The Species-Specific Acquisition and Diversification of a K1-like Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. PLoS Genet 2021; 17:e1009341. [PMID: 33539346 PMCID: PMC7888664 DOI: 10.1371/journal.pgen.1009341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/17/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.
Collapse
Affiliation(s)
- Lance R. Fredericks
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Mark D. Lee
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Angela M. Crabtree
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Josephine M. Boyer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Emily A. Kizer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan T. Taggart
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cooper R. Roslund
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- iBEST Genomics Core, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney B. Kennedy
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Cody G. Willmore
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Nova M. Tebbe
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jade S. Harris
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Sarah N. Brocke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul A. Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
276
|
Boocock J, Sadhu MJ, Durvasula A, Bloom JS, Kruglyak L. Ancient balancing selection maintains incompatible versions of the galactose pathway in yeast. Science 2021; 371:415-419. [PMID: 33479156 PMCID: PMC8384573 DOI: 10.1126/science.aba0542] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/08/2020] [Accepted: 12/17/2020] [Indexed: 02/02/2023]
Abstract
Metabolic pathways differ across species but are expected to be similar within a species. We discovered two functional, incompatible versions of the galactose pathway in Saccharomyces cerevisiae We identified a three-locus genetic interaction for growth in galactose, and used precisely engineered alleles to show that it arises from variation in the galactose utilization genes GAL2, GAL1/10/7, and phosphoglucomutase (PGM1), and that the reference allele of PGM1 is incompatible with the alternative alleles of the other genes. Multiloci balancing selection has maintained the two incompatible versions of the pathway for millions of years. Strains with alternative alleles are found primarily in galactose-rich dairy environments, and they grow faster in galactose but slower in glucose, revealing a trade-off on which balancing selection may have acted.
Collapse
Affiliation(s)
- James Boocock
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Meru J Sadhu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun Durvasula
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
277
|
Alva TR, Riera M, Chartron JW. Translational landscape and protein biogenesis demands of the early secretory pathway in Komagataella phaffii. Microb Cell Fact 2021; 20:19. [PMID: 33472617 PMCID: PMC7816318 DOI: 10.1186/s12934-020-01489-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii. Results By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. Conclusion A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.
Collapse
Affiliation(s)
- Troy R Alva
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.
| | - Melanie Riera
- Department of Bioengineering, University of California, Riverside, 92521, United States of America
| | - Justin W Chartron
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.,Protabit LLC, 1010 E Union St Suite 110, Pasadena, California, 91106, United States of America
| |
Collapse
|
278
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front Microbiol 2021; 11:607028. [PMID: 33505376 PMCID: PMC7829337 DOI: 10.3389/fmicb.2020.607028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | - Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
- acib—Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
279
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
280
|
Kim J, Coradetti ST, Kim YM, Gao Y, Yaegashi J, Zucker JD, Munoz N, Zink EM, Burnum-Johnson KE, Baker SE, Simmons BA, Skerker JM, Gladden JM, Magnuson JK. Multi-Omics Driven Metabolic Network Reconstruction and Analysis of Lignocellulosic Carbon Utilization in Rhodosporidium toruloides. Front Bioeng Biotechnol 2021; 8:612832. [PMID: 33585414 PMCID: PMC7873862 DOI: 10.3389/fbioe.2020.612832] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
An oleaginous yeast Rhodosporidium toruloides is a promising host for converting lignocellulosic biomass to bioproducts and biofuels. In this work, we performed multi-omics analysis of lignocellulosic carbon utilization in R. toruloides and reconstructed the genome-scale metabolic network of R. toruloides. High-quality metabolic network models for model organisms and orthologous protein mapping were used to build a draft metabolic network reconstruction. The reconstruction was manually curated to build a metabolic model using functional annotation and multi-omics data including transcriptomics, proteomics, metabolomics, and RB-TDNA sequencing. The multi-omics data and metabolic model were used to investigate R. toruloides metabolism including lipid accumulation and lignocellulosic carbon utilization. The developed metabolic model was validated against high-throughput growth phenotyping and gene fitness data, and further refined to resolve the inconsistencies between prediction and data. We believe that this is the most complete and accurate metabolic network model available for R. toruloides to date.
Collapse
Affiliation(s)
- Joonhoon Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Samuel T Coradetti
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Young-Mo Kim
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yuqian Gao
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Junko Yaegashi
- Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jeremy D Zucker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Nathalie Munoz
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erika M Zink
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristin E Burnum-Johnson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Scott E Baker
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| | - Blake A Simmons
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jeffrey M Skerker
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - John M Gladden
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Sandia National Laboratories, Livermore, CA, United States
| | - Jon K Magnuson
- Department of Energy, Agile BioFoundry, Emeryville, CA, United States.,Department of Energy, Joint BioEnergy Institute, Emeryville, CA, United States.,Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
281
|
Venkatesh A, Murray AL, Coughlan AY, Wolfe KH. Giant GAL gene clusters for the melibiose-galactose pathway in Torulaspora. Yeast 2021; 38:117-126. [PMID: 33141945 PMCID: PMC7898345 DOI: 10.1002/yea.3532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
In many yeast species, the three genes at the centre of the galactose catabolism pathway, GAL1, GAL10 and GAL7, are neighbours in the genome and form a metabolic gene cluster. We report here that some yeast strains in the genus Torulaspora have much larger GAL clusters that include genes for melibiase (MEL1), galactose permease (GAL2), glucose transporter (HGT1), phosphoglucomutase (PGM1) and the transcription factor GAL4, in addition to GAL1, GAL10, and GAL7. Together, these eight genes encode almost all the steps in the pathway for catabolism of extracellular melibiose (a disaccharide of galactose and glucose). We show that a progenitor 5-gene cluster containing GAL 7-1-10-4-2 was likely present in the common ancestor of Torulaspora and Zygotorulaspora. It added PGM1 and MEL1 in the ancestor of most Torulaspora species. It underwent further expansion in the T. pretoriensis clade, involving the fusion of three progenitor clusters in tandem and the gain of HGT1. These giant GAL clusters are highly polymorphic in structure, and subject to horizontal transfers, pseudogenization and gene losses. We identify recent horizontal transfers of complete GAL clusters from T. franciscae into one strain of T. delbrueckii, and from a relative of T. maleeae into one strain of T. globosa. The variability and dynamic evolution of GAL clusters in Torulaspora indicates that there is strong natural selection on the GAL pathway in this genus.
Collapse
Affiliation(s)
- Anjan Venkatesh
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Anthony L. Murray
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Aisling Y. Coughlan
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Kenneth H. Wolfe
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
282
|
De-Kayne R, Frei D, Greenway R, Mendes SL, Retel C, Feulner PGD. Sequencing platform shifts provide opportunities but pose challenges for combining genomic data sets. Mol Ecol Resour 2020; 21:653-660. [PMID: 33314612 DOI: 10.1111/1755-0998.13309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Technological advances in DNA sequencing over the last decade now permit the production and curation of large genomic data sets in an increasing number of nonmodel species. Additionally, these new data provide the opportunity for combining data sets, resulting in larger studies with a broader taxonomic range. Whilst the development of new sequencing platforms has been beneficial, resulting in a higher throughput of data at a lower per-base cost, shifts in sequencing technology can also pose challenges for those wishing to combine new sequencing data with data sequenced on older platforms. Here, we outline the types of studies where the use of curated data might be beneficial, and highlight potential biases that might be introduced by combining data from different sequencing platforms. As an example of the challenges associated with combining data across sequencing platforms, we focus on the impact of the shift in Illumina's base calling technology from a four-channel system to a two-channel system. We caution that when data are combined from these two systems, erroneous guanine base calls that result from the two-channel chemistry can make their way through a bioinformatic pipeline, eventually leading to inaccurate and potentially misleading conclusions. We also suggest solutions for dealing with such potential artefacts, which make samples sequenced on different sequencing platforms appear more differentiated from one another than they really are. Finally, we stress the importance of archiving tissue samples and the associated sequences for the continued reproducibility and reusability of sequencing data in the face of ever-changing sequencing platform technology.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David Frei
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ryan Greenway
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Sofia L Mendes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cas Retel
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
283
|
Červenák F, Sepšiová R, Nosek J, Tomáška Ľ. Step-by-Step Evolution of Telomeres: Lessons from Yeasts. Genome Biol Evol 2020; 13:6127219. [PMID: 33537752 PMCID: PMC7857110 DOI: 10.1093/gbe/evaa268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
In virtually every eukaryotic species, the ends of nuclear chromosomes are protected by telomeres, nucleoprotein structures counteracting the end-replication problem and suppressing recombination and undue DNA repair. Although in most cases, the primary structure of telomeric DNA is conserved, there are several exceptions to this rule. One is represented by the telomeric repeats of ascomycetous yeasts, which encompass a great variety of sequences, whose evolutionary origin has been puzzling for several decades. At present, the key questions concerning the driving force behind their rapid evolution and the means of co-evolution of telomeric repeats and telomere-binding proteins remain largely unanswered. Previously published studies addressed mostly the general concepts of the evolutionary origin of telomeres, key properties of telomeric proteins as well as the molecular mechanisms of telomere maintenance; however, the evolutionary process itself has not been analyzed thoroughly. Here, we aimed to inspect the evolution of telomeres in ascomycetous yeasts from the subphyla Saccharomycotina and Taphrinomycotina, with special focus on the evolutionary origin of species-specific telomeric repeats. We analyzed the sequences of telomeric repeats from 204 yeast species classified into 20 families and as a result, we propose a step-by-step model, which integrates the diversity of telomeric repeats, telomerase RNAs, telomere-binding protein complexes and explains a propensity of certain species to generate the repeat heterogeneity within a single telomeric array.
Collapse
Affiliation(s)
- Filip Červenák
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Bratislava, Slovakia
| |
Collapse
|
284
|
Daran JMG. Entering GATTACA: yeast genomes: analysis, insights and applications. FEMS Yeast Res 2020; 20:6041023. [PMID: 33332537 DOI: 10.1093/femsyr/foaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| |
Collapse
|
285
|
Li Y, David KT, Shen XX, Steenwyk JL, Halanych KM, Rokas A. Feature frequency profile-based phylogenies are inaccurate. Proc Natl Acad Sci U S A 2020; 117:31580-31581. [PMID: 33234569 PMCID: PMC7749326 DOI: 10.1073/pnas.2013143117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - Xing-Xing Shen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | | | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235;
| |
Collapse
|
286
|
Abstract
In order to preserve genome integrity, all cells must mount appropriate responses to DNA damage, including slowing down or arresting the cell cycle to give the cells time to repair the damage and changing gene expression, for example to induce genes involved in DNA repair. The Rad53 protein kinase is a conserved central mediator of these responses in eukaryotic cells, and its extensive phosphorylation upon DNA damage is necessary for its activation and subsequent activity. DNA damage checkpoints are key guardians of genome integrity. Eukaryotic cells respond to DNA damage by triggering extensive phosphorylation of Rad53/CHK2 effector kinase, whereupon activated Rad53/CHK2 mediates further aspects of checkpoint activation, including cell cycle arrest and transcriptional changes. Budding yeast Candida glabrata, closely related to model eukaryote Saccharomyces cerevisiae, is an opportunistic pathogen characterized by high genetic diversity and rapid emergence of drug-resistant mutants. However, the mechanisms underlying this genetic variability are unclear. We used Western blotting and mass spectrometry to show that, unlike S. cerevisiae, C. glabrata cells exposed to DNA damage did not induce C. glabrata Rad53 (CgRad53) phosphorylation. Furthermore, flow cytometry analysis showed that, unlike S. cerevisiae, C. glabrata cells did not accumulate in S phase upon DNA damage. Consistent with these observations, time-lapse microscopy showed C. glabrata cells continuing to divide in the presence of DNA damage, resulting in mitotic errors and cell death. Finally, transcriptome sequencing (RNAseq) analysis revealed transcriptional rewiring of the DNA damage response in C. glabrata and identified several key protectors of genome stability upregulated by DNA damage in S. cerevisiae but downregulated in C. glabrata, including proliferating cell nuclear antigen (PCNA). Together, our results reveal a noncanonical fungal DNA damage response in C. glabrata, which may contribute to rapidly generating genetic change and drug resistance.
Collapse
|
287
|
Laureau R, Dyatel A, Dursuk G, Brown S, Adeoye H, Yue JX, De Chiara M, Harris A, Ünal E, Liti G, Adams IR, Berchowitz LE. Meiotic Cells Counteract Programmed Retrotransposon Activation via RNA-Binding Translational Repressor Assemblies. Dev Cell 2020; 56:22-35.e7. [PMID: 33278343 DOI: 10.1016/j.devcel.2020.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.
Collapse
Affiliation(s)
- Raphaelle Laureau
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gizem Dursuk
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samantha Brown
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hannah Adeoye
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | | | - Anthony Harris
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice 06107, France
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
288
|
Horizontal Gene Transfer in Eukaryotes: Not if, but How Much? Trends Genet 2020; 36:915-925. [DOI: 10.1016/j.tig.2020.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
|
289
|
Shen XX, Li Y, Hittinger CT, Chen XX, Rokas A. An investigation of irreproducibility in maximum likelihood phylogenetic inference. Nat Commun 2020; 11:6096. [PMID: 33257660 PMCID: PMC7705714 DOI: 10.1038/s41467-020-20005-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Phylogenetic trees are essential for studying biology, but their reproducibility under identical parameter settings remains unexplored. Here, we find that 3515 (18.11%) IQ-TREE-inferred and 1813 (9.34%) RAxML-NG-inferred maximum likelihood (ML) gene trees are topologically irreproducible when executing two replicates (Run1 and Run2) for each of 19,414 gene alignments in 15 animal, plant, and fungal phylogenomic datasets. Notably, coalescent-based ASTRAL species phylogenies inferred from Run1 and Run2 sets of individual gene trees are topologically irreproducible for 9/15 phylogenomic datasets, whereas concatenation-based phylogenies inferred twice from the same supermatrix are reproducible. Our simulations further show that irreproducible phylogenies are more likely to be incorrect than reproducible phylogenies. These results suggest that a considerable fraction of single-gene ML trees may be irreproducible. Increasing reproducibility in ML inference will benefit from providing analyses’ log files, which contain typically reported parameters (e.g., program, substitution model, number of tree searches) but also typically unreported ones (e.g., random starting seed number, number of threads, processor type). Replicate runs of maximum likelihood phylogenetic analyses can generate different tree topologies due to differences in parameters, such as random seeds. Here, Shen et al. demonstrate that replicate runs can generate substantially different tree topologies even with identical data and parameters.
Collapse
Affiliation(s)
- Xing-Xing Shen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310058, Hangzhou, China. .,Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706, USA.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310058, Hangzhou, China.,Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
290
|
Evolutionary Overview of Molecular Interactions and Enzymatic Activities in the Yeast Cell Walls. Int J Mol Sci 2020; 21:ijms21238996. [PMID: 33256216 PMCID: PMC7730094 DOI: 10.3390/ijms21238996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Collapse
|
291
|
A yeast living ancestor reveals the origin of genomic introgressions. Nature 2020; 587:420-425. [PMID: 33177709 DOI: 10.1038/s41586-020-2889-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/11/2020] [Indexed: 11/08/2022]
Abstract
Genome introgressions drive evolution across the animal1, plant2 and fungal3 kingdoms. Introgressions initiate from archaic admixtures followed by repeated backcrossing to one parental species. However, how introgressions arise in reproductively isolated species, such as yeast4, has remained unclear. Here we identify a clonal descendant of the ancestral yeast hybrid that founded the extant Saccharomyces cerevisiae Alpechin lineage5, which carries abundant Saccharomyces paradoxus introgressions. We show that this clonal descendant, hereafter defined as a 'living ancestor', retained the ancestral genome structure of the first-generation hybrid with contiguous S. cerevisiae and S. paradoxus subgenomes. The ancestral first-generation hybrid underwent catastrophic genomic instability through more than a hundred mitotic recombination events, mainly manifesting as homozygous genome blocks generated by loss of heterozygosity. These homozygous sequence blocks rescue hybrid fertility by restoring meiotic recombination and are the direct origins of the introgressions present in the Alpechin lineage. We suggest a plausible route for introgression evolution through the reconstruction of extinct stages and propose that genome instability allows hybrids to overcome reproductive isolation and enables introgressions to emerge.
Collapse
|
292
|
Steenwyk JL, Mead ME, de Castro PA, Valero C, Damasio A, dos Santos RAC, Labella AL, Li Y, Knowles SL, Raja HA, Oberlies NH, Zhou X, Cornely OA, Fuchs F, Koehler P, Goldman GH, Rokas A. Genomic and phenotypic analysis of COVID-19-associated pulmonary aspergillosis isolates of Aspergillus fumigatus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.06.371971. [PMID: 33173866 PMCID: PMC7654854 DOI: 10.1101/2020.11.06.371971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ongoing global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) first described from Wuhan, China. A subset of COVID-19 patients has been reported to have acquired secondary infections by microbial pathogens, such as fungal opportunistic pathogens from the genus Aspergillus . To gain insight into COVID-19 associated pulmonary aspergillosis (CAPA), we analyzed the genomes and characterized the phenotypic profiles of four CAPA isolates of Aspergillus fumigatus obtained from patients treated in the area of North Rhine-Westphalia, Germany. By examining the mutational spectrum of single nucleotide polymorphisms, insertion-deletion polymorphisms, and copy number variants among 206 genes known to modulate A. fumigatus virulence, we found that CAPA isolate genomes do not exhibit major differences from the genome of the Af293 reference strain. By examining virulence in an invertebrate moth model, growth in the presence of osmotic, cell wall, and oxidative stressors, and the minimum inhibitory concentration of antifungal drugs, we found that CAPA isolates were generally, but not always, similar to A. fumigatus reference strains Af293 and CEA17. Notably, CAPA isolate D had more putative loss of function mutations in genes known to increase virulence when deleted (e.g., in the FLEA gene, which encodes a lectin recognized by macrophages). Moreover, CAPA isolate D was significantly more virulent than the other three CAPA isolates and the A. fumigatus reference strains tested. These findings expand our understanding of the genomic and phenotypic characteristics of isolates that cause CAPA.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - André Damasio
- Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Renato A. C. dos Santos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Abigail L. Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Oliver A. Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- ZKS Köln, Clinical Trials Centre Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn Cologne, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Frieder Fuchs
- Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
293
|
Shen XX, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, Kominek J, Li Y, Groenewald M, Hittinger CT, Rokas A. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. SCIENCE ADVANCES 2020; 6:eabd0079. [PMID: 33148650 PMCID: PMC7673691 DOI: 10.1126/sciadv.abd0079] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 05/14/2023]
Abstract
Ascomycota, the largest and most well-studied phylum of fungi, contains three subphyla: Saccharomycotina (budding yeasts), Pezizomycotina (filamentous fungi), and Taphrinomycotina (fission yeasts). Despite its importance, we lack a comprehensive genome-scale phylogeny or understanding of the similarities and differences in the mode of genome evolution within this phylum. By examining 1107 genomes from Saccharomycotina (332), Pezizomycotina (761), and Taphrinomycotina (14) species, we inferred a robust genome-wide phylogeny that resolves several contentious relationships and estimated that the Ascomycota last common ancestor likely originated in the Ediacaran period. Comparisons of genomic properties revealed that Saccharomycotina and Pezizomycotina differ greatly in their genome properties and enabled inference of the direction of evolutionary change. The Saccharomycotina typically have smaller genomes, lower guanine-cytosine contents, lower numbers of genes, and higher rates of molecular sequence evolution compared with Pezizomycotina. These results provide a robust evolutionary framework for understanding the diversity and ecological lifestyles of the largest fungal phylum.
Collapse
Affiliation(s)
- Xing-Xing Shen
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Dana A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Jacek Kominek
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuanning Li
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Chris T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
294
|
Candida metrosideri pro tempore sp. nov. and Candida ohialehuae pro tempore sp. nov., two antifungal-resistant yeasts associated with Metrosideros polymorpha flowers in Hawaii. PLoS One 2020; 15:e0240093. [PMID: 33031481 PMCID: PMC7544143 DOI: 10.1371/journal.pone.0240093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
Flowers produce an array of nutrient-rich exudates in which microbes can thrive, making them hotspots for microbial abundance and diversity. During a diversity study of yeasts inhabiting the flowers of Metrosideros polymorpha (Myrtaceae) in the Hawai’i Volcanoes National Park (HI, USA), five isolates were found to represent two novel species. Morphological and physiological characterization, and sequence analysis of the small subunit ribosomal RNA (rRNA) genes, the D1/D2 domains of the large subunit rRNA genes, the internal transcribed spacer (ITS) regions, and the genes encoding the largest and second largest subunits of the RNA polymerase II (RPB1 and RPB2, respectively), classified both species in the family Metschnikowiaceae, and we propose the names Candida metrosideri pro tempore sp. nov. (JK22T = CBS 16091 = MUCL 57821) and Candida ohialehuae pro tempore sp. nov. (JK58.2T = CBS 16092 = MUCL 57822) for such new taxa. Both novel Candida species form a well-supported subclade in the Metschnikowiaceae containing species associated with insects, flowers, and a few species of clinical importance. The ascosporic state of the novel species was not observed. The two novel yeast species showed elevated minimum inhibitory concentrations to the antifungal drug amphotericin B (>4 μg/mL). The ecology and phylogenetic relationships of C. metrosideri and C. ohialehuae are also discussed.
Collapse
|
295
|
Wang M, Ruan R. Genome-wide identification and functional analysis of the horizontally transferred genes in Penicillium. Genomics 2020; 112:5037-5043. [PMID: 32941984 DOI: 10.1016/j.ygeno.2020.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Horizontal gene transfer (HGT) is the transmission of genetic material between different evolutionary lineages and is believed to be an important source of genomic innovation in fungi. In this study, we searched for prokaryotic-derived HGTs in 23 fully sequenced genomes using a comprehensive phylogenomic pipeline followed by manual curation. We found strong support for 60 HGT events comprising 190 genes putatively acquired from bacteria. HGT affected all Penicillium species to various degrees. Gene duplication events happened to 3 HGT genes after the transmission. Most HGT events include genes encoding a variety of enzymes, which are associated with sugar, amino acid, and lipid metabolism. Transcriptome data from 6 Penicillium species revealed that 33 of 35 HGT genes showed expression under the conditions tested and 16 genes were differentially expressed. Our results suggest an important role for inter-domain gene transfers in shaping the genome of Penicillium fungi.
Collapse
Affiliation(s)
- Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ruoxin Ruan
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
296
|
Martinson VG. Rediscovering a Forgotten System of Symbiosis: Historical Perspective and Future Potential. Genes (Basel) 2020; 11:E1063. [PMID: 32916942 PMCID: PMC7563122 DOI: 10.3390/genes11091063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/27/2022] Open
Abstract
While the majority of symbiosis research is focused on bacteria, microbial eukaryotes play important roles in the microbiota and as pathogens, especially the incredibly diverse Fungi kingdom. The recent emergence of widespread pathogens in wildlife (bats, amphibians, snakes) and multidrug-resistant opportunists in human populations (Candida auris) has highlighted the importance of better understanding animal-fungus interactions. Regardless of their prominence there are few animal-fungus symbiosis models, but modern technological advances are allowing researchers to utilize novel organisms and systems. Here, I review a forgotten system of animal-fungus interactions: the beetle-fungus symbioses of Drugstore and Cigarette beetles with their symbiont Symbiotaphrina. As pioneering systems for the study of mutualistic symbioses, they were heavily researched between 1920 and 1970, but have received only sporadic attention in the past 40 years. Several features make them unique research organisms, including (1) the symbiont is both extracellular and intracellular during the life cycle of the host, and (2) both beetle and fungus can be cultured in isolation. Specifically, fungal symbionts intracellularly infect cells in the larval and adult beetle gut, while accessory glands in adult females harbor extracellular fungi. In this way, research on the microbiota, pathogenesis/infection, and mutualism can be performed. Furthermore, these beetles are economically important stored-product pests found worldwide. In addition to providing a historical perspective of the research undertaken and an overview of beetle biology and their symbiosis with Symbiotaphrina, I performed two analyses on publicly available genomic data. First, in a preliminary comparative genomic analysis of the fungal symbionts, I found striking differences in the pathways for the biosynthesis of two B vitamins important for the host beetle, thiamine and biotin. Second, I estimated the most recent common ancestor for Drugstore and Cigarette beetles at 8.8-13.5 Mya using sequence divergence (CO1 gene). Together, these analyses demonstrate that modern methods and data (genomics, transcriptomes, etc.) have great potential to transform these beetle-fungus systems into model systems again.
Collapse
Affiliation(s)
- Vincent G Martinson
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
297
|
Landerer C, O'Meara BC, Zaretzki R, Gilchrist MA. Unlocking a signal of introgression from codons in Lachancea kluyveri using a mutation-selection model. BMC Evol Biol 2020; 20:109. [PMID: 32842959 PMCID: PMC7449078 DOI: 10.1186/s12862-020-01649-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/01/2020] [Indexed: 11/18/2022] Open
Abstract
Background For decades, codon usage has been used as a measure of adaptation for translational efficiency and translation accuracy of a gene’s coding sequence. These patterns of codon usage reflect both the selective and mutational environment in which the coding sequences evolved. Over this same period, gene transfer between lineages has become widely recognized as an important biological phenomenon. Nevertheless, most studies of codon usage implicitly assume that all genes within a genome evolved under the same selective and mutational environment, an assumption violated when introgression occurs. In order to better understand the effects of introgression on codon usage patterns and vice versa, we examine the patterns of codon usage in Lachancea kluyveri, a yeast which has experienced a large introgression. We quantify the effects of mutation bias and selection for translation efficiency on the codon usage pattern of the endogenous and introgressed exogenous genes using a Bayesian mixture model, ROC SEMPPR, which is built on mechanistic assumptions about protein synthesis and grounded in population genetics. Results We find substantial differences in codon usage between the endogenous and exogenous genes, and show that these differences can be largely attributed to differences in mutation bias favoring A/T ending codons in the endogenous genes while favoring C/G ending codons in the exogenous genes. Recognizing the two different signatures of mutation bias and selection improves our ability to predict protein synthesis rate by 42% and allowed us to accurately assess the decaying signal of endogenous codon mutation and preferences. In addition, using our estimates of mutation bias and selection, we identify Eremothecium gossypii as the closest relative to the exogenous genes, providing an alternative hypothesis about the origin of the exogenous genes, estimate that the introgression occurred ∼6×108 generation ago, and estimate its historic and current selection against mismatched codon usage. Conclusions Our work illustrates how mechanistic, population genetic models like ROC SEMPPR can separate the effects of mutation and selection on codon usage and provide quantitative estimates from sequence data.
Collapse
Affiliation(s)
- Cedric Landerer
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, 37996, TN, USA. .,National Institute for Mathematical and Biological Synthesis, Knoxville, 37996, TN, USA. .,Max-Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.
| | - Brian C O'Meara
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, 37996, TN, USA.,National Institute for Mathematical and Biological Synthesis, Knoxville, 37996, TN, USA
| | - Russell Zaretzki
- National Institute for Mathematical and Biological Synthesis, Knoxville, 37996, TN, USA.,Department of Business Analytics and Statistics, University of Tennessee, Knoxville, 37996, TN, USA
| | - Michael A Gilchrist
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, 37996, TN, USA.,National Institute for Mathematical and Biological Synthesis, Knoxville, 37996, TN, USA
| |
Collapse
|
298
|
Aguirre-López B, Escalera-Fanjul X, Hersch-González J, Rojas-Ortega E, El-Hafidi M, Lezama M, González J, Bianchi MM, López G, Márquez D, Scazzocchio C, Riego-Ruiz L, González A. In Kluyveromyces lactis a Pair of Paralogous Isozymes Catalyze the First Committed Step of Leucine Biosynthesis in Either the Mitochondria or the Cytosol. Front Microbiol 2020; 11:1843. [PMID: 32849440 PMCID: PMC7418496 DOI: 10.3389/fmicb.2020.01843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Divergence of paralogous pairs, resulting from gene duplication, plays an important role in the evolution of specialized or novel gene functions. Analysis of selected duplicated pairs has elucidated some of the mechanisms underlying the functional diversification of Saccharomyces cerevisiae (S. cerevisiae) paralogous genes. Similar studies of the orthologous pairs extant in pre-whole genome duplication yeast species, such as Kluyveromyces lactis (K. lactis) remain to be addressed. The genome of K. lactis, an aerobic yeast, includes gene pairs generated by sporadic duplications. The genome of this organism comprises the KlLEU4 and KlLEU4BIS paralogous pair, annotated as putative α-isopropylmalate synthases (α-IPMSs), considered to be the orthologs of the S. cerevisiae ScLEU4/ScLEU9 paralogous genes. The enzymes encoded by the latter two genes are mitochondrially located, differing in their sensitivity to leucine allosteric inhibition resulting in ScLeu4-ScLeu4 and ScLeu4-ScLeu9 sensitive dimers and ScLeu9-ScLeu9 relatively resistant homodimers. Previous work has shown that, in a Scleu4Δ mutant, ScLEU9 expression is increased and assembly of ScLeu9-ScLeu9 leucine resistant homodimers results in loss of feedback regulation of leucine biosynthesis, leading to leucine accumulation and decreased growth rate. Here we report that: (i) K. lactis harbors a sporadic gene duplication, comprising the KlLEU4, syntenic with S. cerevisiae ScLEU4 and ScLEU9, and the non-syntenic KlLEU4BIS, arising from a pre-WGD event. (ii) That both, KlLEU4 and KlLEU4BIS encode leucine sensitive α-IPMSs isozymes, located in the mitochondria (KlLeu4) and the cytosol (KlLeu4BIS), respectively. (iii) That both, KlLEU4 or KlLEU4BIS complement the Scleu4Δ Scleu9Δ leucine auxotrophic phenotype and revert the enhanced ScLEU9 transcription observed in a Scleu4Δ ScLEU9 mutant. The Scleu4Δ ScLEU9 growth mutant phenotype is only fully complemented when transformed with the syntenic KlLEU4 mitochondrial isoform. KlLEU4 and KlLEU4BIS underwent a different diversification pathways than that leading to ScLEU4/ScLEU9. KlLEU4 could be considered as the functional ortholog of ScLEU4, since its encoded isozyme can complement both the Scleu4Δ Scleu9Δ leucine auxotrophy and the Scleu4Δ ScLEU9 complex phenotype.
Collapse
Affiliation(s)
- Beatriz Aguirre-López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Jaqueline Hersch-González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eréndira Rojas-Ortega
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mijail Lezama
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Michele Maria Bianchi
- Dipartimento di Biologia e Biotecnologie Charles Darwin, Sapienza Università di Roma, Rome, Italy
| | - Geovani López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dariel Márquez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, United Kingdom.,Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, Mexico
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
299
|
Jadhav R, Tiwari S, Avchar R, Groenewald M, Baghela A. Suhomyces drosophilae sp. nov., isolated from Drosophila flies feeding on a stinkhorn mushroom. Int J Syst Evol Microbiol 2020; 70:4908-4913. [PMID: 32716833 DOI: 10.1099/ijsem.0.004358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of Suhomyces species have been isolated from fungus-feeding insects and particularly from the gut of beetles. In the present study, seven yeast strains were isolated from the gut of Drosophila species feeding on gleba, the spore-bearing inner mass, of a stinkhorn mushroom belonging to the family Phallaceae. Based on phenotypic, biochemical characterization and sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer (ITS) region, two of these yeast strains, DGY3 and DGY4, represented a novel species of the genus Suhomyces. The novel species is closely related to an undescribed species of Candida ST-370 (DQ404513) and with Suhomyces canberraensis, wherein, the novel species differs from S. canberraensis by 40 nucleotide substitutions and three gaps (7.7 % sequence variation) in the D1/D2 region and 50 nucleotide substitutions and seven gaps (13.7 % sequence variation) in the ITS region. Several morphological and physiological differences were also observed between S. canberraensis and the strains obtained during this study. These data support the proposal of Suhomyces drosophilae as a novel species, with DGY3T as the holotype and CBS 16329T and MCC 1871T as ex-type strains.
Collapse
Affiliation(s)
- Reshma Jadhav
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India
| | - Snigdha Tiwari
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.,National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India
| | - Rameshwar Avchar
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.,National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| |
Collapse
|
300
|
Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP, Gonçalves P, Hittinger CT, Lachance MA. Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res 2020; 20:5876348. [DOI: 10.1093/femsyr/foaa042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/23/2020] [Indexed: 01/23/2023] Open
Abstract
ABSTRACT
In recent years, ‘multi-omic’ sciences have affected all aspects of fundamental and applied biological research. Yeast taxonomists, though somewhat timidly, have begun to incorporate complete genomic sequences into the description of novel taxa, taking advantage of these powerful data to calculate more reliable genetic distances, construct more robust phylogenies, correlate genotype with phenotype and even reveal cryptic sexual behaviors. However, the use of genomic data in formal yeast species descriptions is far from widespread. The present review examines published examples of genome-based species descriptions of yeasts, highlights relevant bioinformatic approaches, provides recommendations for new users and discusses some of the challenges facing the genome-based systematics of yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET / Universidad Nacional del Comahue, Bariloche, Argentina
| | - N Čadež
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
| | - C A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270–901, Brazil
| | - J P Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - P Gonçalves
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Lachance
- Department of Biology, University of Western Ontario, London N6A 5B7, Ontario, Canada
| |
Collapse
|