251
|
Martínez YA, Guo X, Portales-Pérez DP, Rivera G, Castañeda-Delgado JE, García-Pérez CA, Enciso-Moreno JA, Lara-Ramírez EE. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus. PLoS One 2021; 16:e0246901. [PMID: 33596252 PMCID: PMC7888644 DOI: 10.1371/journal.pone.0246901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.
Collapse
Affiliation(s)
- Yamelie A. Martínez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Diana P. Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
- Cátedras-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Carlos A. García-Pérez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A. Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano Del Seguro Social, Zacatecas, México
| |
Collapse
|
252
|
Gebresilase T, Finan C, Suveges D, Tessema TS, Aseffa A, Davey G, Hatzikotoulas K, Zeggini E, Newport MJ, Tekola-Ayele F. Replication of HLA class II locus association with susceptibility to podoconiosis in three Ethiopian ethnic groups. Sci Rep 2021; 11:3285. [PMID: 33558538 PMCID: PMC7870958 DOI: 10.1038/s41598-021-81836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022] Open
Abstract
Podoconiosis, a debilitating lymphoedema of the leg, results from barefoot exposure to volcanic clay soil in genetically susceptible individuals. A previous genome-wide association study (GWAS) conducted in the Wolaita ethnic group from Ethiopia showed association between single nucleotide polymorphisms (SNPs) in the HLA class II region and podoconiosis. We aimed to conduct a second GWAS in a new sample (N = 1892) collected from the Wolaita and two other Ethiopian populations, the Amhara and the Oromo, also affected by podoconiosis. Fourteen SNPs in the HLA class II region showed significant genome-wide association (P < 5.0 × 10−8) with podoconiosis. The lead SNP was rs9270911 (P = 5.51 × 10−10; OR 1.53; 95% CI 1.34–1.74), located near HLA-DRB1. Inclusion of data from the first GWAS (combined N = 2289) identified 47 SNPs in the class II HLA region that were significantly associated with podoconiosis (lead SNP also rs9270911 (P = 2.25 × 10−12). No new loci outside of the HLA class II region were identified in this more highly-powered second GWAS. Our findings confirm the HLA class II association with podoconiosis suggesting HLA-mediated abnormal induction and regulation of immune responses may have a direct role in its pathogenesis.
Collapse
Affiliation(s)
- Tewodros Gebresilase
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia.,Unit of Health Biotechnology, Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, UK
| | - Daniel Suveges
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Tesfaye Sisay Tessema
- Unit of Health Biotechnology, Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Gail Davey
- Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UK
| | - Konstantinos Hatzikotoulas
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,TUM School of Medicine, Technical University of Munich and Klinikum Rechts Der Isar, Munich, Germany
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK.,Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,TUM School of Medicine, Technical University of Munich and Klinikum Rechts Der Isar, Munich, Germany
| | - Melanie J Newport
- Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UK.
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
253
|
Singh D, Oudit O, Hajtovic S, Sarbaugh D, Salis R, Adebowale T, James J, Spatz LA. Antibodies to an Epstein Barr Virus protein that cross-react with dsDNA have pathogenic potential. Mol Immunol 2021; 132:41-52. [PMID: 33545624 DOI: 10.1016/j.molimm.2021.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 01/02/2023]
Abstract
Pathogens such as the Epstein Barr virus (EBV) have long been implicated in the etiology of systemic lupus erythematosus (SLE). The Epstein Barr virus nuclear antigen I (EBNA-1) has been shown to play a role in the development of anti-nuclear antibodies characteristic of SLE. One mechanism by which EBV may play a role in SLE is molecular mimicry. We previously generated two monoclonal antibodies (mAbs) to EBNA-1 and demonstrated that they cross-react with double-stranded DNA (dsDNA). In the present study, we demonstrate that these mAbs have pathogenic potential. We show that they can bind to isolated rat glomeruli and that binding can be greatly diminished by pretreatment of glomeruli with DNase I, suggesting that these mAbs bind dsDNA in the kidney. We also demonstrate that these antibodies can deposit in the kidney when injected into mice and can induce proteinuria and elicit histopathological alterations consistent with glomerulonephritis. Finally, we show that these antibodies can cross-react with laminin and collagen IV in the extracellular matrix suggesting that direct binding to the glomerular basement membrane or mesangial matrix may also contribute to the antibody deposition in the kidney. In summary, our results indicate that EBNA-1 can elicit antibodies that cross-react with dsDNA, that can deposit in the kidney, and induce kidney damage. These results are significant because they support the role of a viral protein in SLE and lupus nephritis.
Collapse
Affiliation(s)
- Divya Singh
- The Molecular, Cellular, and Biomedical Sciences Department, The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Omar Oudit
- The Department of Chemistry & Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Sabastian Hajtovic
- The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Dylan Sarbaugh
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Rafatu Salis
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Temitayo Adebowale
- The Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Justin James
- The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Linda A Spatz
- The Molecular, Cellular, and Biomedical Sciences Department, The CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
254
|
Boziki M, Grigoriadis N, Papaefthymiou A, Doulberis M, Polyzos SA, Gavalas E, Deretzi G, Karafoulidou E, Kesidou E, Taloumtzis C, Theotokis P, Sofou E, Katsinelos P, Vardaka E, Fludaras I, Touloumtzi M, Koukoufiki A, Simeonidou C, Liatsos C, Kountouras J. The trimebutine effect on Helicobacter pylori-related gastrointestinal tract and brain disorders: A hypothesis. Neurochem Int 2021; 144:104938. [PMID: 33535070 DOI: 10.1016/j.neuint.2020.104938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
The localization of bacterial components and/or metabolites in the central nervous system may elicit neuroinflammation and/or neurodegeneration. Helicobacter pylori (a non-commensal symbiotic gastrointestinal pathogen) infection and its related metabolic syndrome have been implicated in the pathogenesis of gastrointestinal tract and central nervous system disorders, thus medications affecting the nervous system - gastrointestinal tract may shape the potential of Helicobacter pylori infection to trigger these pathologies. Helicobacter pylori associated metabolic syndrome, by impairing gut motility and promoting bacterial overgrowth and translocation, might lead to brain pathologies. Trimebutine maleate is a prokinetic drug that hastens gastric emptying, by inducing the release of gastrointestinal agents such as motilin and gastrin. Likewise, it appears to protect against inflammatory signal pathways, involved in inflammatory disorders including brain pathologies. Trimebutine maleate also acts as an antimicrobial agent and exerts opioid agonist effect. This study aimed to investigate a hypothesis regarding the recent advances in exploring the potential role of gastrointestinal tract microbiota dysbiosis-related metabolic syndrome and Helicobacter pylori in the pathogenesis of gastrointestinal tract and brain diseases. We hereby proposed a possible neuroprotective role for trimebutine maleate by altering the dynamics of the gut-brain axis interaction, thus suggesting an additional effect of trimebutine maleate on Helicobacter pylori eradication regimens against these pathologies.
Collapse
Affiliation(s)
- Marina Boziki
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa, 41110, Greece; Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Michael Doulberis
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece; Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau, 5001, Switzerland
| | - Stergios A Polyzos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Emmanuel Gavalas
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloniki, 56429, Macedonia, Greece
| | - Eleni Karafoulidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Evangelia Kesidou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Charilaos Taloumtzis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece; 424 General Military Hospital of Thessaloniki, Department of Gastroenterology, Thessaloniki, 56429, Macedonia, Greece
| | - Paschalis Theotokis
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Electra Sofou
- Second Neurological Department, Aristotle University of Thessaloniki, AHEPA University General Hospital of Thessaloniki, Thessaloniki, 54636, Macedonia, Greece
| | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Elisabeth Vardaka
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, Alexander Campus, 574 00, Thessaloniki, Macedonia, Greece
| | - Ioannis Fludaras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Maria Touloumtzi
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Argiro Koukoufiki
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54124, Macedonia, Greece
| | - Christos Liatsos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece; Department of Gastroenterology, 401 Army General Hospital of Athens, Athens, 115 25, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, 546 42, Macedonia, Greece.
| |
Collapse
|
255
|
Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021; 10:47. [PMID: 35602671 PMCID: PMC9099154 DOI: 10.12688/f1000research.28225.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/06/2023] Open
Abstract
Background: In autoimmune vasculitis, autoantibodies to Human Proteinase 3 (PR3), a human serine protease, seems to have a role on the inception of c-ANCA associated vasculitis. The origin of this autoreactive response remains unclear. However, for several autoreactive responses, molecular mimicry between environmental antigens and human proteins is key to trigger autoantibodies and finally autoimmunity manifestations. Considering that PR3 is a serine protease and house dust mite (HDM) group 3 allergens share this biochemical activity, the aim of this study was to identify cross-reactive epitopes between serine proteases from human and mites using an in silico approach. Methods: Multi alignment among amino acid sequences of PR3 and HDM group 3 allergens was performed to explore identity and structural homology. ElliPro and BepiPred in silico tools were used to predict B and T cell epitopes. Consurf tool was used to conduct identification of conserved regions in serine proteases family. Results: PR3 and HDM group 3 allergens shared moderate identity and structural homology (root mean square deviation < 1). One B cell cross reactive epitope among serine proteases was identified (29I, 30V, 31G, 32G, 34E, 36K, 37A, 38L, 39A and 54C) and two T cell epitopes. Conclusions: PR3 have structural homology and share cross reactive epitopes with HDM group 3 allergens.
Collapse
Affiliation(s)
- Emiro Buendía
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Faculty of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Múnera Marlon
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Orlando Parra
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Cundinamarca, 110111, Colombia
| | - María Sánchez
- Departement of Pediatrics, Universidad de Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Andrés Sánchez
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, Universidad de Antioquia, Medellín, Antioquia, 050001, Colombia
| | - Diego Viasus
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
| |
Collapse
|
256
|
Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021; 10:47. [PMID: 35602671 PMCID: PMC9099154 DOI: 10.12688/f1000research.28225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background: In autoimmune vasculitis, autoantibodies to Human Proteinase 3 (PR3), a human serine protease, seems to have a role on the inception of c-ANCA associated vasculitis. The origin of this autoreactive response remains unclear. However, for several autoreactive responses, molecular mimicry between environmental antigens and human proteins is key to trigger autoantibodies and finally autoimmunity manifestations. Considering that PR3 is a serine protease and house dust mite (HDM) group 3 allergens share this biochemical activity, the aim of this study was to identify cross-reactive epitopes between serine proteases from human and mites using an in silico approach. Methods: Multi alignment among amino acid sequences of PR3 and HDM group 3 allergens was performed to explore identity and structural homology. ElliPro and BepiPred in silico tools were used to predict B and T cell epitopes. Consurf tool was used to conduct identification of conserved regions in serine proteases family. Results: PR3 and HDM group 3 allergens shared moderate identity and structural homology (root mean square deviation < 1). One B cell cross reactive epitope among serine proteases was identified (29I, 30V, 31G, 32G, 34E, 36K, 37A, 38L, 39A and 54C) and two T cell epitopes. Conclusions: PR3 have structural homology and share cross reactive epitopes with HDM group 3 allergens.
Collapse
Affiliation(s)
- Emiro Buendía
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Faculty of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Múnera Marlon
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Orlando Parra
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Cundinamarca, 110111, Colombia
| | - María Sánchez
- Departement of Pediatrics, Universidad de Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Andrés Sánchez
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, Universidad de Antioquia, Medellín, Antioquia, 050001, Colombia
| | - Diego Viasus
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
| |
Collapse
|
257
|
Niborski LL, Potenza M, Chirivi RGS, Simonetti L, Ossowski MS, Grippo V, May M, Staquicini DI, Parodi-Talice A, Robello C, Comini MA, Alonso GD, Raats JMH, Gómez KA. Recombinant antibody against Trypanosoma cruzi from patients with chronic Chagas heart disease recognizes mammalian nervous system. EBioMedicine 2021; 63:103206. [PMID: 33429173 PMCID: PMC7809174 DOI: 10.1016/j.ebiom.2020.103206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To deeply understand the role of antibodies in the context of Trypanosoma cruzi infection, we decided to characterize A2R1, a parasite antibody selected from single-chain variable fragment (scFv) phage display libraries constructed from B cells of chronic Chagas heart disease patients. METHODS Immunoblot, ELISA, cytometry, immunofluorescence and immunohistochemical assays were used to characterize A2R1 reactivity. To identify the antibody target, we performed an immunoprecipitation and two-dimensional electrophoresis coupled to mass spectrometry and confirmed A2R1 specific interaction by producing the antigen in different expression systems. Based on these data, we carried out a comparative in silico analysis of the protein target´s orthologues, focusing mainly on post-translational modifications. FINDINGS A2R1 recognizes a parasite protein of ~50 kDa present in all life cycle stages of T. cruzi, as well as in other members of the kinetoplastid family, showing a defined immunofluorescence labeling pattern consistent with the cytoskeleton. A2R1 binds to tubulin, but this interaction relies on its post-translational modifications. Interestingly, this antibody also targets mammalian tubulin only present in brain, staining in and around cell bodies of the human peripheral and central nervous system. INTERPRETATION Our findings demonstrate for the first time the existence of a human antibody against T. cruzi tubulin capable of cross-reacting with a human neural protein. This work re-emphasizes the role of molecular mimicry between host and parasitic antigens in the development of pathological manifestations of T. cruzi infection.
Collapse
Affiliation(s)
- Leticia L Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | | | | - Micaela S Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Vanina Grippo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Maria May
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Daniela I Staquicini
- Departamento de Microbiología, Inmunología e Parasitología, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Adriana Parodi-Talice
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay; Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | | | - Karina A Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
258
|
TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int J Mol Sci 2020; 22:ijms22010068. [PMID: 33374673 PMCID: PMC7793522 DOI: 10.3390/ijms22010068] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
T cells are a critical part of the adaptive immune system that are able to distinguish between healthy and unhealthy cells. Upon recognition of protein fragments (peptides), activated T cells will contribute to the immune response and help clear infection. The major histocompatibility complex (MHC) molecules, or human leukocyte antigens (HLA) in humans, bind these peptides to present them to T cells that recognise them with their surface T cell receptors (TCR). This recognition event is the first step that leads to T cell activation, and in turn can dictate disease outcomes. The visualisation of TCR interaction with pMHC using structural biology has been crucial in understanding this key event, unravelling the parameters that drive this interaction and their impact on the immune response. The last five years has been the most productive within the field, wherein half of current unique TCR-pMHC-I structures to date were determined within this time. Here, we review the new insights learned from these recent TCR-pMHC-I structures and their impact on T cell activation.
Collapse
|
259
|
Bonaventura A, Vecchié A, Mauro AG, Brucato AL, Imazio M, Abbate A. An update on the pathophysiology of acute and recurrent pericarditis. Panminerva Med 2020; 63:249-260. [PMID: 33337127 DOI: 10.23736/s0031-0808.20.04205-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pericarditis is an inflammatory disease of the pericardium. Progress has been done in recent years in the understanding of its pathophysiology. In particular, pre-clinical and clinical studies have contributed to increasing our knowledge on the role of interleukin (IL)-1 and NLRP3 (NACHT, leucine- rich repeat, and pyrin domain- containing protein 3) inflammasome. Based on current evidence, pericarditis should be considered as an inflammatory reaction to various stimuli, including chemical/physical, infectious, or ischemic ones, with a viral infection being a common etiology. Interaction of pathogens or irritants with toll-like receptor (TLRs) and stimulation of IL-1 receptor by IL-1α and IL-1β lead to an increased transcription of pro-inflammatory genes, including those needed for NLRP3 inflammasome assembly. This pathway is confirmed indirectly by the beneficial effect of colchicine (an indirect NLRP3 inflammasome inhibitor) and IL-1 blockers in patients with recurrent pericarditis. More recently, a direct evidence of the NLRP3 inflammasome within the inflamed pericardium has been provided as well. It may, however, occur that selfantigens on the surface of mesothelial cells or microbial peptides may stimulate autoreactive T cells along with B cells producing anti-heart antibodies, although less evidence is available on this. Some uncertainties still remain about the role of neutrophils, neutrophil extracellular traps (NETs), and pericardial interstitial cells in recurrent and constrictive pericarditis. Unraveling these aspects might have a direct impact on the development of novel targeted therapies, especially considering the increasing number of drugs targeting NETs.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA - .,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy - .,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy -
| | - Alessandra Vecchié
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA.,Internal Medicine Unit, Department of Medicine and Surgery, University of Insubria-Ospedale Di Circolo di Varese, ASST Dei Sette Laghi, Varese, Italy
| | - Adolfo G Mauro
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| | - Antonio L Brucato
- Department of Biomedical and Clinical Sciences, Fatebenefratelli Hospital, Università di Milano, Milan, Italy
| | - Massimo Imazio
- University Cardiology, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio Abbate
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Richmond, VA, USA
| |
Collapse
|
260
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
261
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
262
|
Suárez LJ, Garzón H, Arboleda S, Rodríguez A. Oral Dysbiosis and Autoimmunity: From Local Periodontal Responses to an Imbalanced Systemic Immunity. A Review. Front Immunol 2020; 11:591255. [PMID: 33363538 PMCID: PMC7754713 DOI: 10.3389/fimmu.2020.591255] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The current paradigm of onset and progression of periodontitis includes oral dysbiosis directed by inflammophilic bacteria, leading to altered resolution of inflammation and lack of regulation of the inflammatory responses. In the construction of explanatory models of the etiopathogenesis of periodontal disease, autoimmune mechanisms were among the first to be explored and historically, for more than five decades, they have been described in an isolated manner as part of the tissue damage process observed in periodontitis, however direct participation of these mechanisms in the tissue damage is still controversial. Autoimmunity is affected by genetic and environmental factors, leading to an imbalance between the effector and regulatory responses, mostly associated with failed resolution mechanisms. However, dysbiosis/infection and chronic inflammation could trigger autoimmunity by several mechanisms including bystander activation, dysregulation of toll-like receptors, amplification of autoimmunity by cytokines, epitope spreading, autoantigens complementarity, autoantigens overproduction, microbial translocation, molecular mimicry, superantigens, and activation or inhibition of receptors related to autoimmunity by microorganisms. Even though autoreactivity in periodontitis is biologically plausible, the associated mechanisms could be related to non-pathologic responses which could even explain non-recognized physiological functions. In this review we shall discuss from a descriptive point of view, the autoimmune mechanisms related to periodontitis physio-pathogenesis and the participation of oral dysbiosis on local periodontal autoimmune responses as well as on different systemic inflammatory diseases.
Collapse
Affiliation(s)
- Lina J. Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hernan Garzón
- Grupo de Investigación en Salud Oral, Universidad Antonio Nariño, Bogotá, Colombia
| | - Silie Arboleda
- Unidad de Investigación en Epidemiologia Clínica Oral (UNIECLO), Universidad El Bosque, Bogotá, Colombia
| | - Adriana Rodríguez
- Centro de Investigaciones Odontológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
263
|
Extraparenchymal human neurocysticercosis induces autoantibodies against brain tubulin and MOG35–55 in cerebral spinal fluid. J Neuroimmunol 2020; 349:577389. [DOI: 10.1016/j.jneuroim.2020.577389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
|
264
|
das Neves SP, Sousa JC, Sousa N, Cerqueira JJ, Marques F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2020; 69:1341-1368. [PMID: 33247866 DOI: 10.1002/glia.23940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that affects about 2.5 million people worldwide. In MS, the patients' immune system starts to attack the myelin sheath, leading to demyelination, neurodegeneration, and, ultimately, loss of vital neurological functions such as walking. There is currently no cure for MS and the available treatments only slow the initial phases of the disease. The later-disease mechanisms are poorly understood and do not directly correlate with the activity of immune system cells, the main target of the available treatments. Instead, evidence suggests that disease progression and disability are better correlated with the maintenance of a persistent low-grade inflammation inside the CNS, driven by local glial cells, like astrocytes and microglia. Depending on the context, astrocytes can (a) exacerbate inflammation or (b) promote immunosuppression and tissue repair. In this review, we will address the present knowledge that exists regarding the role of astrocytes in MS and experimental animal models of the disease.
Collapse
Affiliation(s)
- Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center, Braga, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
265
|
Zhao XC, Sun XY, Ju B, Meng FJ, Zhao HG. Acquired aplastic anemia: Is bystander insult to autologous hematopoiesis driven by immune surveillance against malignant cells? World J Stem Cells 2020; 12:1429-1438. [PMID: 33312408 PMCID: PMC7705466 DOI: 10.4252/wjsc.v12.i11.1429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported a serendipitous finding from a patient with refractory severe aplastic anemia who had gotten an unexpected hematological response to treatment with gut-cleansing preparations (GCPs). This patient experienced three recurrences over the ensuing one year of intermittent GCP treatments, with each recurrence occurring 7-8 wk from a GCP. After his third recurrence, he was prescribed successive treatment with rifampicin, berberine, and monthly administered GCP for 4 mo, and he developed an erythroid proliferative neoplasma and an overwhelming enteropathy, and eventually died of septic shock. Laboratory investigations had validated the resolution of myelosuppression and the appearance of malignant clonal hematopoiesis. From the treatment process and laboratory investigations, it is reasonably inferred that the engagement of gut inflammation is critically required in sustaining the overall pathophysiology of acquired aplastic anemia probably by creating a chronic inflammatory state. Incorporation of rifampicin, berberine, and monthly GCP into cyclosporine can enhance the immunosuppressive effect. In a subgroup of acquired aplastic anemia patients whose pathogenesis is associated with genotoxic exposure, the suppressed normal hematopoiesis may result from the bystander insult that is mediated by the soluble inflammatory cytokines generated in response to the immunogenic products of damaged hematopoietic cells in the context of chronic inflammatory state and may offer a protective antineoplastic mechanism against malignant proliferation.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao 266555, Shandong Province, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hong-Guo Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
266
|
Severe Pharyngodynia Followed by Migratory Polyarthritis and High Fever in Young Immigrants: Remember That Rheumatic Fever Is Still Relevant in 2020! Case Rep Infect Dis 2020; 2020:8854868. [PMID: 33204550 PMCID: PMC7657701 DOI: 10.1155/2020/8854868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022] Open
Abstract
Acute rheumatic fever (ARF) is the immune-mediated sequelae of untreated group-A streptococcal infection. In this regard, rheumatic heart disease is the most prominent manifestation with devastating long-term complications. In the postantibiotic era, ARF is extremely rare in high-income countries; thus, its diagnosis might escape the clinicians' notice. However, its incidence remains high not only in certain low- and middle-income regions with poor public health systems but also in socioeconomically vulnerable populations residing in high-income countries. Herein, we report two cases of ARF in young immigrant adults in order to highlight the need for increased clinical suspicion to establish a prompt and timely diagnosis of ARF and describe in detail its differential diagnosis and approach to treatment.
Collapse
|
267
|
Salaman MR, Gould KG. Breakdown of T-cell ignorance: The tolerance failure responsible for mainstream autoimmune diseases? J Transl Autoimmun 2020; 3:100070. [PMID: 33294833 PMCID: PMC7695872 DOI: 10.1016/j.jtauto.2020.100070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
This article explores the possibility that the major autoimmune diseases come about because of the breakdown of T lymphocyte ignorance – that state in which antigen and lymphocyte have never come together in such a way as to induce tolerance or an immune response. By use of transgenic technique to place a foreign antigen/peptide in various mouse tissues the widespread occurrence of ignorance has been observed and information obtained on when it is likely to occur. Now, with the advent of tetramer technique to enrich specific T cells and the recognition of lymphocyte markers indicating whether or not antigen interaction has taken place, ignorance of genuine self-antigens is being examined in mouse and man. In the absence of thymic deletion it seems that tolerance to self-antigens is brought about either by T cell ignorance or T cell regulatory control. The initiating factor in these major diseases is likely to be a change in the condition of the antigen leading to tolerance failure. There is evidence that it is ignorance that breaks down in Type 1 diabetes and systemic lupus erythematosus. If this proves a general rule, it may be because ignorance is the tolerance mechanism most vulnerable to subversion. T cell ignorance or regulation maintain self-tolerance when thymic deletion is absent. Increased antigen availability is the likely initiator of major autoimmune diseases. Altered antigen availability may result in breakdown of T cell ignorance. Loss of ignorance will lead to autoimmune disease unless T cell regulation steps in.
Collapse
Affiliation(s)
- Myer R. Salaman
- Corresponding author. Department of Infectious Disease, St Mary’s Campus, Imperial College, London, W2 1PG, UK.
| | | |
Collapse
|
268
|
Rodríguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramírez-Santana C, Costanzo A, Ridgway WM, Ansari AA, Gershwin ME, Selmi C, Anaya JM. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun 2020; 114:102506. [PMID: 32563547 PMCID: PMC7296326 DOI: 10.1016/j.jaut.2020.102506] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been categorized as evolving in overlapping phases. First, there is a viral phase that may well be asymptomatic or mild in the majority, perhaps 80% of patients. The pathophysiological mechanisms resulting in minimal disease in this initial phase are not well known. In the remaining 20% of cases, the disease may become severe and/or critical. In most patients of this latter group, there is a phase characterized by the hyperresponsiveness of the immune system. A third phase corresponds to a state of hypercoagulability. Finally, in the fourth stage organ injury and failure occur. Appearance of autoinflammatory/autoimmune phenomena in patients with COVID-19 calls attention for the development of new strategies for the management of life-threatening conditions in critically ill patients. Antiphospholipid syndrome, autoimmune cytopenia, Guillain-Barré syndrome and Kawasaki disease have each been reported in patients with COVID-19. Here we present a scoping review of the relevant immunological findings in COVID-19 as well as the current reports about autoinflammatory/autoimmune conditions associated with the disease. These observations have crucial therapeutic implications since immunomodulatory drugs are at present the most likely best candidates for COVID-19 therapy. Clinicians should be aware of these conditions in patients with COVID-19, and these observations should be considered in the current development of vaccines.
Collapse
Affiliation(s)
- Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Lucia Novelli
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
| | - Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Maria De Santis
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Antonio Costanzo
- Dermatology, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA.
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center (IRCCS), Rozzano, Milan, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Milan, Italy.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| |
Collapse
|
269
|
The Role of Molecular Chaperones in Virus Infection and Implications for Understanding and Treating COVID-19. J Clin Med 2020; 9:jcm9113518. [PMID: 33143379 PMCID: PMC7693988 DOI: 10.3390/jcm9113518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic made imperative the search for means to end it, which requires a knowledge of the mechanisms underpinning the multiplication and spread of its cause, the coronavirus SARS-CoV-2. Many viruses use members of the hosts’ chaperoning system to infect the target cells, replicate, and spread, and here we present illustrative examples. Unfortunately, the role of chaperones in the SARS-CoV-2 cycle is still poorly understood. In this review, we examine the interactions of various coronaviruses during their infectious cycle with chaperones in search of information useful for future research on SARS-CoV-2. We also call attention to the possible role of molecular mimicry in the development of autoimmunity and its widespread pathogenic impact in COVID-19 patients. Viral proteins share highly antigenic epitopes with human chaperones, eliciting anti-viral antibodies that crossreact with the chaperones. Both, the critical functions of chaperones in the infectious cycle of viruses and the possible role of these molecules in COVID-19 autoimmune phenomena, make clear that molecular chaperones are promising candidates for the development of antiviral strategies. These could consist of inhibiting-blocking those chaperones that are necessary for the infectious viral cycle, or those that act as autoantigens in the autoimmune reactions causing generalized destructive effects on human tissues.
Collapse
|
270
|
The contribution of thymic tolerance to central nervous system autoimmunity. Semin Immunopathol 2020; 43:135-157. [PMID: 33108502 PMCID: PMC7925481 DOI: 10.1007/s00281-020-00822-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases of the central nervous system (CNS) are associated with high levels of morbidity and economic cost. Research efforts have previously focused on the contribution of the peripheral adaptive and innate immune systems to CNS autoimmunity. However, a failure of thymic negative selection is a necessary step in CNS-reactive T cells escaping into the periphery. Even with defective thymic or peripheral tolerance, the development of CNS inflammation is rare. The reasons underlying this are currently poorly understood. In this review, we examine evidence implicating thymic selection in the pathogenesis of CNS autoimmunity. Animal models suggest that thymic negative selection is an important factor in determining susceptibility to and severity of CNS inflammation. There are indirect clinical data that suggest thymic function is also important in human CNS autoimmune diseases. Specifically, the association between thymoma and paraneoplastic encephalitis and changes in T cell receptor excision circles in multiple sclerosis implicate thymic tolerance in these diseases. We identify potential associations between CNS autoimmunity susceptibility factors and thymic tolerance. The therapeutic manipulation of thymopoiesis has the potential to open up new treatment modalities, but a better understanding of thymic tolerance in CNS autoimmunity is required before this can be realised.
Collapse
|
271
|
Liu SP, Bian ZH, Zhao ZB, Wang J, Zhang W, Leung PSC, Li L, Lian ZX. Animal Models of Autoimmune Liver Diseases: a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:252-271. [PMID: 32076943 DOI: 10.1007/s12016-020-08778-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune liver diseases (AILDs) are potentially life-threatening chronic liver diseases which include autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and recently characterized IgG4-related sclerosing cholangitis. They are caused by immune attack on hepatocytes or bile ducts, with different mechanisms and clinical manifestations. The etiologies of AILDs include a susceptible genetic background, environment insults, infections, and changes of commensal microbiota, but remain complicated. Understanding of the underlying mechanisms of AILDs is mandatory for early diagnosis and intervention, which is of great importance for better prognosis. Thus, animal models are developed to mimic the pathogenesis, find biomarkers for early diagnosis, and for therapeutic attempts of AILDs. However, no animal models can fully recapitulate features of certain AILD, especially the late stages of diseases. Certain limitations include different living condition, cell composition, and time frame of disease development and resolution. Moreover, there is no IgG4 in rodents which exists in human. Nevertheless, the understanding and therapy of AILDs have been greatly advanced by the development and mechanistic investigation of animal models. This review will provide a comprehensive overview of traditional and new animal models that recapitulate different features and etiologies of distinct AILDs.
Collapse
Affiliation(s)
- Shou-Pei Liu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhen-Hua Bian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi-Bin Zhao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jinjun Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Weici Zhang
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Liang Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Zhe-Xiong Lian
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China. .,Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
272
|
Schiaffino MT, Di Natale M, García-Martínez E, Navarro J, Muñoz-Blanco JL, Demelo-Rodríguez P, Sánchez-Mateos P. Immunoserologic Detection and Diagnostic Relevance of Cross-Reactive Autoantibodies in Coronavirus Disease 2019 Patients. J Infect Dis 2020; 222:1439-1443. [PMID: 32738141 PMCID: PMC7454719 DOI: 10.1093/infdis/jiaa485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, we detected a new immunofluorescence (IF) pattern in serum autoantibody (autoAb) screening of laboratory-confirmed COVID-19 patients. Methods The IF pattern was composed of liver and gastric mucosa staining on rat kidney/liver/stomach sections. Results We describe 12 patients positive for the cross-reactive antibody, compared with a negative group of 43 hospitalized COVID-19 patients, finding association with either neurologic or thrombotic complications. In sequential pre- and post-COVID-19 serum samples, we confirmed autoAb seroconversion. Conclusions Our data indicate that autoAb screening in COVID-19 patients may be easily performed by IF and alert for autoreactive-mediated complications such as thrombotic or neurologic events.
Collapse
Affiliation(s)
- María Teresa Schiaffino
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marisa Di Natale
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elena García-Martínez
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Joaquín Navarro
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Pablo Demelo-Rodríguez
- Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
273
|
Beijer E, Bakker A, Kraaijvanger R, Meek B, Post M, Grutters J, Veltkamp M. Latent tuberculosis infection associates with cardiac involvement in patients with sarcoidosis. SARCOIDOSIS, VASCULITIS, AND DIFFUSE LUNG DISEASES : OFFICIAL JOURNAL OF WASOG 2020; 37:e2020005. [PMID: 33264382 PMCID: PMC7690062 DOI: 10.36141/svdld.v37i3.9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 11/02/2022]
Abstract
BACKGROUND Sarcoidosis is a systemic disease characterized by formation of non-caseating granulomas. About 5% of patients have symptoms of cardiac sarcoidosis. Identification of cardiac involvement is important since it is a major cause of death. Mycobacterial antigens have been linked to sarcoidosis pathogenesis. Previous findings suggest that a latent tuberculosis infection (LTBI) might associate with development of cardiac involvement in patients with sarcoidosis. The aim of the present study was to further evaluate these findings in another cohort of cardiac sarcoidosis patients. METHODS Interferon release assays (IGRAs) or tuberculin skin tests (TST) were analysed in a cohort of cardiac sarcoidosis patients (n=103) and compared to non-cardiac sarcoidosis patients (n=153). RESULTS In the cohort of patients with cardiac sarcoidosis, 7 could be diagnosed with a LTBI (6.8%) compared to only one of the non-cardiac patients (0.7%), p = 0.008. CONCLUSIONS To conclude, we were able to show an association between a LTBI and cardiac involvement in patients with sarcoidosis. Future research is however required to unravel the mechanism involved in this association. (Sarcoidosis Vasc Diffuse Lung Dis 2020; 37 (3): e2020005).
Collapse
Affiliation(s)
- Els Beijer
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Annelies Bakker
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Raisa Kraaijvanger
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Bob Meek
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Marco Post
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan Grutters
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Pulmonology, University Medical Center, Utrecht, The Netherlands
| | - Marcel Veltkamp
- Interstitial Lung Diseases Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
- Department of Pulmonology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
274
|
Song J, Li Y, Bowlus CL, Yang G, Leung PSC, Gershwin ME. Cholangiocarcinoma in Patients with Primary Sclerosing Cholangitis (PSC): a Comprehensive Review. Clin Rev Allergy Immunol 2020; 58:134-149. [PMID: 31463807 DOI: 10.1007/s12016-019-08764-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC) and carries a high rate of mortality. Although the pathogenesis of CCA in PSC is largely unknown, inflammation-driven carcinogenesis concomitant with various genetic and epigenetic abnormalities are underlying factors. The majority of CCA cases develop from a dominant stricture (DS), which is defined as a stricture with a diameter < 1.5 mm in the common bile duct or < 1.0 mm in the hepatic duct. In PSC patients presenting with an abrupt aggravation of jaundice, pain, fatigue, pruritus, weight loss, or worsening liver biochemistries, CCA should be suspected and evaluated utilizing a variety of diagnostic modalities. However, early recognition of CCA in PSC remains a major challenge. Importantly, 30-50% of CCA in PSC patients are observed within the first year following the diagnosis of PSC followed by an annual incidence ranging from 0.5 to 1.5 per 100 persons, which is nearly 10 to 1000 times higher than that in the general population. Cumulative 5-year, 10-year, and lifetime incidences are 7%, 8-11%, and 9-20%, respectively. When PSC-associated CCA is diagnosed, most tumors are unresectable, and no effective medications are available. Given the poor therapeutic outcome, the surveillance and management of PSC patients who are at an increased risk of developing CCA are of importance. Such patients include older males with large-duct PSC and possibly concurrent ulcerative colitis. Thus, more attention should be paid to patients with these clinical features, in particular within the first year after PSC diagnosis. In contrast, CCA is less frequently observed in pediatric or female PSC patients or in those with small-duct PSC or concurrent Crohn's disease. Recently, new biomarkers such as antibodies to glycoprotein 2 have been found to be associated with an increased risk of developing CCA in PSC. Herein, we review the literature on the pathogenesis, incidence, clinical features, and risk factors, with a focus on various diagnostic modalities of PSC-associated CCA.
Collapse
Affiliation(s)
- Junmin Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.,Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA
| | - Yang Li
- Department of Intensive Care Unit (ICU), Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, People's Republic of China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, University of California, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - GuoXiang Yang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, 451 Health Science Drive, Suite 6510, Davis, CA, 95616, USA.
| |
Collapse
|
275
|
Chen W, Wei Y, Xiong A, Li Y, Guan H, Wang Q, Miao Q, Bian Z, Xiao X, Lian M, Zhang J, Li B, Cao Q, Fan Z, Zhang W, Qiu D, Fang J, Gershwin ME, Yang L, Tang R, Ma X. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin Rev Allergy Immunol 2020; 58:25-38. [PMID: 30900136 DOI: 10.1007/s12016-019-08731-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accumulation of bile acids (BAs) contributes significantly to the pathogenesis of primary biliary cholangitis (PBC). Here, we sought to systematically characterize the serum and fecal BA profiles and the linkage between BAs and gut microbiota in PBC. The serum and fecal BAs were compared between 65 UDCA treatment-naive PBC and 109 healthy controls using UPLC-MS in cross-sectional study. In a prospective study, a subgroup of patients was enrolled for BA and microbiota analysis before and after UDCA therapy. BA compositions in serum and feces significantly differed between treatment-naive PBC and controls. Particularly, PBC was associated with decreased conversions of conjugated to unconjugated, and primary to secondary BAs, indicating impaired microbial metabolism of BAs. PBC patients at advanced stage exhibited a more abnormal BA profile compared with early-stage patients. UDCA treatment led to a decreased level of taurine-conjugated BAs, thereby reversing the conjugated/unconjugated ratio in PBC. Moreover, the level of secondary BAs such as DCA and conjugated DCA inversely correlated with PBC-enriched gut microbes (e.g., Veillonella, Klebsiella), while positively correlated with control-enriched microbes (e.g., Faecalibacterium, Oscillospira). Microbiota analysis also revealed a significant increase of taurine-metabolizing bacteria Bilophila spp. in patients after UDCA, which was strongly correlated with decreased taurine-conjugated BAs. In addition, serum FGF19 was remarkably increased in treatment-naïve PBC and decreased after UDCA. Our study established specific alterations of BA compositions in serum and feces of PBC, suggesting the potential for using BAs for diagnosis, and highlighting the possibility of modulating BA profile by altering gut microbiota. Graphical Abstract.
Collapse
Affiliation(s)
- Weihua Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yiran Wei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Aizhen Xiong
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanmei Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Huida Guan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhaolian Bian
- Nantong Institute of Liver Disease, Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Nantong University, 60 Middle Qingnian Road, Nantong, Jiangsu, China
| | - Xiao Xiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Qin Cao
- Department of Health Manage Center, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuping Fan
- Department of Health Manage Center, School of Medicine, RenJi Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weici Zhang
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Dekai Qiu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - M Eric Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
276
|
Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms 2020; 8:microorganisms8101459. [PMID: 32977590 PMCID: PMC7598258 DOI: 10.3390/microorganisms8101459] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by chronic erosive polyarthritis. A complex interaction between a favorable genetic background, and the presence of a specific immune response against a broad-spectrum of environmental factors seems to play a role in determining susceptibility to RA. Among different pathogens, mycobacteria (including Mycobacterium avium subspecies paratuberculosis, MAP), and Epstein–Barr virus (EBV), have extensively been proposed to promote specific cellular and humoral response in susceptible individuals, by activating pathways linked to RA development. In this review, we discuss the available experimental and clinical evidence on the interplay between mycobacterial and EBV infections, and the development of the immune dysregulation in RA.
Collapse
|
277
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
278
|
Prediction of molecular mimicry between antigens from Leishmania sp. and human: Implications for autoimmune response in systemic lupus erythematosus. Microb Pathog 2020; 148:104444. [PMID: 32827635 DOI: 10.1016/j.micpath.2020.104444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Pathogens and humans share an intrinsic relation related to molecular mimicry in their antigens. Interactions between immune system and pathogenic antigens result in a production of antibodies that could protect against infection, but develop autoreactive responses mediated by autoantibodies that react to pathogenic and human antigens because they share epitopes. In this study, a pipeline of bioinformatic tools was used to explore the repertory of autoantigens implicated in the develop of Systemic Lupus Erythematosus and their homologous in Leishmania sp. With this, we screened and selected 33 molecular mimicry candidates. In 17 autoantigens from lupus was possible to perform epitope prediction and was found that, at least one potential cross epitope. Some of autoantigens with molecular mimicry were Aquaporin 4, nuclear autoantigens such as: Ubiquitin-related modifier 1 and Small nuclear ribonucleoprotein Sm. Also, mitochondrial, and ribosomal autoantigens were found to share molecular mimicry with antigens from Leishmania sp. In conclusion, this is the first study that provide evidence of molecular mimicry between antigens from Leishmania sp. and human. Implications for the develop of SLE and clinical manifestation deserve more study.
Collapse
|
279
|
Immune-Driven Pathogenesis of Neurotoxicity after Exposure of Cancer Patients to Immune Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21165774. [PMID: 32796758 PMCID: PMC7461114 DOI: 10.3390/ijms21165774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
Over the last decade, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of several cancer types. ICIs work through the blockage of immune inhibitory signals, while increasing the T-cell specific immune antitumoral response. However, due to the fact that ICIs’ mechanism of action is not tissue antigen-specific and not limited to the tumor microenvironment, the use of cancer immunotherapy can produce a broad range of immune-related adverse events (irAEs). Neurological immune-related adverse events (NirAEs) are rare (the overall incidence varies between 1% to 6%), and these adverse events mainly concern the peripheral nervous system, rather than the central nervous system. Due to their potential severity, which could cause interruptions to cancer treatment, NirAEs are of particular clinical importance. Currently, the pathogenesis of these complications is not completely understood, although T-cells seem to play a principal role. Nevertheless, the development of NirAEs is likely to be a multifactorial and complex process. This conclusion can be extracted from the wide range of neurological auto-inflammatory and autoimmune disorders triggered or exacerbated by ICIs, and the extensive variability of the limited histological findings reported. The aim of this review is to summarize the potential immune-driven pathological mechanisms of NirAEs.
Collapse
|
280
|
|
281
|
Brown J, Robusto B, Morel L. Intestinal Dysbiosis and Tryptophan Metabolism in Autoimmunity. Front Immunol 2020; 11:1741. [PMID: 32849620 PMCID: PMC7417361 DOI: 10.3389/fimmu.2020.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
The development of autoimmunity involves complex interactions between genetics and environmental triggers. The gut microbiota is an important environmental constituent that can heavily influence both local and systemic immune reactivity through distinct mechanisms. It is therefore a relevant environmental trigger or amplifier to consider in autoimmunity. This review will examine recent evidence for an association between intestinal dysbiosis and autoimmune diseases, and the mechanisms by which the gut microbiota may contribute to autoimmune activation. We will specifically focus on recent studies connecting tryptophan metabolism to autoimmune disease pathogenesis and discuss evidence for a microbial origin. This will be discussed in the context of our current understanding of how tryptophan metabolites regulate immune responses, and how it may, or may not, be applicable to autoimmunity.
Collapse
Affiliation(s)
- Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brian Robusto
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
282
|
Badloe FMS, De Vriese S, Coolens K, Schmidt-Weber CB, Ring J, Gutermuth J, Kortekaas Krohn I. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy 2020; 10:34. [PMID: 32774842 PMCID: PMC7398196 DOI: 10.1186/s13601-020-00338-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of atopic dermatitis (AD) is highly complex and understanding of disease endotypes may improve disease management. Immunoglobulins E (IgE) against human skin epitopes (IgE autoantibodies) are thought to play a role in disease progression and prolongation. These antibodies have been described in patients with severe and chronic AD, suggesting a progression from allergic inflammation to severe autoimmune processes against the skin. This review provides a summary of the current knowledge and gaps on IgE autoreactivity and self-reactive T cells in children and adults with AD based on a systematic search. Currently, the clinical relevance and the pathomechanism of IgE autoantibodies in AD needs to be further investigated. Additionally, it is unknown whether the presence of IgE autoantibodies in patients with AD is an epiphenomenon or a disease endotype. However, increased knowledge on the clinical relevance and the pathophysiologic role of IgE autoantibodies and self-reactive T cells in AD can have consequences for diagnosis and treatment. Responses to the current available treatments can be used for better understanding of the pathways and may shed new lights on the treatment options for patients with AD and autoreactivity against skin epitopes. To conclude, IgE autoantibodies and self-reactive T cells can contribute to the pathophysiology of AD based on the body of evidence in literature. However, many questions remain open. Future studies on autoreactivity in AD should especially focus on the clinical relevance, the contribution to the disease progression and chronicity on cellular level, the onset and therapeutic strategies.
Collapse
Affiliation(s)
- Fariza Mishaal Saiema Badloe
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Shauni De Vriese
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Katarina Coolens
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL) and the Helmholtz Initiative for Inflammation and Immunology (I&I), Munich, Germany
| | - Johannes Ring
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium.,Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Jan Gutermuth
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Inge Kortekaas Krohn
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| |
Collapse
|
283
|
Henze L, Schwinge D, Schramm C. The Effects of Androgens on T Cells: Clues to Female Predominance in Autoimmune Liver Diseases? Front Immunol 2020; 11:1567. [PMID: 32849531 PMCID: PMC7403493 DOI: 10.3389/fimmu.2020.01567] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The immune system responds differently in women and in men. Generally speaking, adult females show stronger innate and adaptive immune responses than males. This results in lower risk of developing most of the infectious diseases and a better ability to clear viral infection in women (1–5). On the other hand, women are at increased risk of developing autoimmune diseases (AID) such as rheumatoid arthritis, multiple sclerosis (MS), systemic lupus erythematosus (SLE), Sjögren's syndrome, and the autoimmune liver diseases autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) (6). Factors contributing to the female sex bias in autoimmune diseases include environmental exposure, e.g., microbiome, behavior, and genetics including X chromosomal inactivation of genes. Several lines of evidence and clinical observations clearly indicate that sex hormones contribute significantly to disease pathogenesis, and the role of estrogen in autoimmune diseases has been extensively studied. In many of these diseases, including the autoimmune liver diseases, T cells are thought to play an important pathogenetic role. We will use this mini-review to focus on the effects of androgens on T cells and how the two major androgens, testosterone and dihydrotestosterone, potentially contribute to the pathogenesis of autoimmune liver diseases (AILD).
Collapse
Affiliation(s)
- Lara Henze
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorothee Schwinge
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
284
|
Fu X, Chen Y, Chen D. The Role of Gut Microbiome in Autoimmune Uveitis. Ophthalmic Res 2020; 64:168-177. [PMID: 32674100 DOI: 10.1159/000510212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023]
Abstract
The gut microbiome has important physiological functions and plays an indispensable role in the human body. Currently, there are an increasing number of studies revealing the close correlation between dysbiosis of the gut microbiome and a variety of autoimmune diseases, including autoimmune uveitis. This brief review summarizes recent literature regarding the relationship between dysbiosis and the occurrence and development of autoimmune uveitis. Dysbiosis participates in the pathogenesis of autoimmune uveitis largely by 4 mechanisms: antigenic mimicry, disturbance of intestinal immune homeostasis, destruction of the intestinal barrier, and reduction of beneficial anti-inflammatory metabolites. Further elucidation of these mechanisms will facilitate the treatment of the gut-microbiome-relevant autoimmune diseases by potential therapeutic strategies, such as antibiotics, probiotics, diet modifications, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xiangyu Fu
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, .,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
285
|
Parkhouse RME, Carpio A, Cortez MM, von Kriegsheim A, Fesel C. Anti-brain protein autoantibodies are detectable in extraparenchymal but not parenchymal neurocysticercosis. J Neuroimmunol 2020; 344:577234. [DOI: 10.1016/j.jneuroim.2020.577234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022]
|
286
|
Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020; 146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are driven by either T cells or antibodies reacting specifically to 1 or more self-antigens. Although a number of self-antigens associated with skin diseases have been identified, the causative antigen(s) remains unknown in the great majority of skin diseases suspected to be autoimmune driven. Model diseases such as pemphigus, dermatitis herpetiformis, and more recently psoriasis have added greatly to our understanding of skin autoimmunity. Depending on the dominant T- or B-cell phenotype, skin autoimmune diseases usually follow 1 of 6 immune response patterns: lichenoid, eczematous, bullous, psoriatic, fibrogenic, or granulomatous. Usually, skin autoimmunity develops as a consequence of several events-an altered microbiome, inherited dysfunctional immunity, antigens activating innate immunity, epigenetic modifications, sex predisposition, and impact of antigens either as neoantigen or through molecular mimicry. This review summarizes currently known antigens of skin autoimmune diseases and discusses mechanisms of skin autoimmunity.
Collapse
Affiliation(s)
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Department of Dermatology and Venereology, Stockholm, Sweden; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
| |
Collapse
|
287
|
Abstract
Sarcoidosis is a multisystem granulomatous disease that may affect any body organ. Sarcoidosis is associated with many environmental and occupational exposures. Because the exact immunopathogenesis of sarcoidosis is unknown, it is not known whether these exposures are truly causing sarcoidosis, rendering the immune system more susceptible to the development of sarcoidosis, exacerbating subclinical cases of sarcoidosis, or causing a granulomatous condition distinct from sarcoidosis. This manuscript outlines what is known about the immunopathogenesis of sarcoidosis and postulates mechanisms whereby these exposures could cause or exacerbate the disease. We also describe the varied environmental and occupational exposures that have been associated with sarcoidosis. This includes potential infectious exposures such as mycobacteria and Propionibacterium acnes, a skin commensal bacterium, as well as non-infectious environmental exposures including inhaled bioaerosols, metal dusts and products of combustion. Further insights concerning the relationship of environmental exposures to the development of sarcoidosis may have a major impact on the prevention and treatment of this enigmatic disease.
Collapse
|
288
|
Kumar V. Innate lymphoid cell and adaptive immune cell cross-talk: A talk meant not to forget. J Leukoc Biol 2020; 108:397-417. [PMID: 32557732 DOI: 10.1002/jlb.4mir0420-500rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a relatively new class of innate immune cells with phenotypical characters of lymphocytes but genotypically or functionally behave as typical innate immune cells. They have been classically divided into 3 groups (group 1 ILCs or ILC1s, group 2 ILCs or ILC2s, and group 3 ILCs or ILC3s). They serve as the first line of defense against invading pathogens and allergens at mucosal surfaces. The adaptive immune response works effectively in association with innate immunity as innate immune cells serve as APCs to directly stimulate the adaptive immune cells (various sets of T and B cells). Additionally, innate immune cells also secrete various effector molecules, including cytokines or chemokines impacting the function, differentiation, proliferation, and reprogramming among adaptive immune cells to maintain immune homeostasis. Only superantigens do not require their processing by innate immune cells as they are recognized directly by T cells and B cells. Thus, a major emphasis of the current article is to describe the cross-talk between different ILCs and adaptive immune cells during different conditions varying from normal physiological situations to different infectious diseases to allergic asthma.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
289
|
Vergouwen DPC, Rothova A, Berge JCT, Verdijk RM, van Laar JAM, Vingerling JR, Schreurs MWJ. Current insights in the pathogenesis of scleritis. Exp Eye Res 2020; 197:108078. [PMID: 32504648 DOI: 10.1016/j.exer.2020.108078] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Scleritis is a sight-threatening inflammation characterized by severe pain and redness of the eye. It can cause blindness by severe complications like scleral and corneal necrosis, keratitis, and uveitis. The pathogenesis of scleritis is largely unknown due to a combination of the rarity of the disease, the little available human tissue-based research material, and the lack of animal models. The immune system is assumed to play a crucial role in the pathogenesis of scleritis. Multiple clues indicate probable antigenic stimuli in scleritis, and the involvement of matrix metalloproteinases in the destruction of scleral tissue. In this article we review the current insights into the pathogenesis of scleritis, and we suggest new hypotheses by implementing knowledge of systemic autoimmune disease pathogenesis. Understanding the pathogenesis of scleritis is crucial to improve the clinical management, as well as to find novel treatment modalities.
Collapse
Affiliation(s)
- D P C Vergouwen
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - A Rothova
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J C Ten Berge
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - R M Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J A M van Laar
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Section Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J R Vingerling
- Department of Ophthalmology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - M W J Schreurs
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
290
|
Abstract
PURPOSE OF REVIEW To summarize the recent data regarding Guillain-Barré syndrome (GBS) as an autoimmune disorder following infection with Zika virus (ZIKV) infection, including the proposed pathogenic mechanisms and the role of autoantibodies. RECENT FINDINGS The loss of self-tolerance that leads to autoimmune diseases is a multifactorial process that may be illustrated as 'the mosaic of autoimmunity'. Infectious agents may contribute to the development of autoimmunity by several proposed mechanisms. One of the central mechanisms is molecular mimicry, which is also the most plausible mechanism in the case of ZIKV-induced autoimmune disorders.A recent meta-analysis found a low prevalence of GBS associated with ZIKV infection. Nevertheless, the estimated cost of illness for patients with GBS associated with ZIKV are tremendous and exceed 4.7 million dollars per year in Brazil alone. SUMMARY Currently, there is sufficient data to indicate that ZIKV infection is one of many triggers and factors that may contribute to the development GBS. Thus, it is advised to evaluate and determine ZIKV exposure and infection in the management of potential GBS patients.
Collapse
|
291
|
Wölfel A, Sättele M, Zechmeister C, Nikolaev VO, Lohse MJ, Boege F, Jahns R, Boivin-Jahns V. Unmasking features of the auto-epitope essential for β 1 -adrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Fail 2020; 7:1830-1841. [PMID: 32436653 PMCID: PMC7373925 DOI: 10.1002/ehf2.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Aims Chronic heart failure (CHF) can be caused by autoantibodies stimulating the heart via binding to first and/or second extracellular loops of cardiac β1‐adrenoceptors. Allosteric receptor activation depends on conformational features of the autoantibody binding site. Elucidating these features will pave the way for the development of specific diagnostics and therapeutics. Our aim was (i) to fine‐map the conformational epitope within the second extracellular loop of the human β1‐adrenoceptor (β1ECII) that is targeted by stimulating β1‐receptor (auto)antibodies and (ii) to generate competitive cyclopeptide inhibitors of allosteric receptor activation, which faithfully conserve the conformational auto‐epitope. Methods and results Non‐conserved amino acids within the β1ECII loop (compared with the amino acids constituting the ECII loop of the β2‐adrenoceptor) were one by one replaced with alanine; potential intra‐loop disulfide bridges were probed by cysteine–serine exchanges. Effects on antibody binding and allosteric receptor activation were assessed (i) by (auto)antibody neutralization using cyclopeptides mimicking β1ECII ± the above replacements, and (ii) by (auto)antibody stimulation of human β1‐adrenoceptors bearing corresponding point mutations. With the use of stimulating β1‐receptor (auto)antibodies raised in mice, rats, or rabbits and isolated from exemplary dilated cardiomyopathy patients, our series of experiments unmasked two features of the β1ECII loop essential for (auto)antibody binding and allosteric receptor activation: (i) the NDPK211–214 motif and (ii) the intra‐loop disulfide bond C209↔C215. Of note, aberrant intra‐loop disulfide bond C209↔C216 almost fully disrupted the functional auto‐epitope in cyclopeptides. Conclusions The conformational auto‐epitope targeted by cardio‐pathogenic β1‐receptor autoantibodies is faithfully conserved in cyclopeptide homologues of the β1ECII loop bearing the NDPK211–214 motif and the C209↔C215 bridge while lacking cysteine C216. Such molecules provide promising tools for novel diagnostic and therapeutic approaches in β1‐autoantibody‐positive CHF.
Collapse
Affiliation(s)
- Angela Wölfel
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Rudolf-Virchow-Centre, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Rudolf-Virchow-Centre, Pierre Fabre Dermo-Kosmetik GmbH, Jechtinger Straße 13, 79111, Freiburg, Germany
| | - Mathias Sättele
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany
| | - Christina Zechmeister
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Interdisciplinary Bank of Biomaterials and Data (ibdw), University Hospital of Würzburg, Straubmühlweg 2A, D-97078, Würzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Institute for Molecular Cardiology, Department of Cardiology and Pneumology, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Martin J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Rudolf-Virchow-Centre, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Institute Max Delbrück Center for Molecular Research, Berlin-Buch, Robert-Koch-Str. 40, 1000, Berlin, Germany
| | - Fritz Boege
- Rudolf-Virchow-Centre, Institute of Clinical Chemistry and Laboratory Diagnostics, University Hospital, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Roland Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Interdisciplinary Bank of Biomaterials and Data (ibdw), University Hospital of Würzburg, Straubmühlweg 2A, D-97078, Würzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| | - Valérie Boivin-Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, D-97078, Wuerzburg, Germany.,Comprehensive Heart Failure Centre (CFHC), Am Schwarzenberg 11, 978078, Würzburg, Germany
| |
Collapse
|
292
|
Bagaev DV, Vroomans RMA, Samir J, Stervbo U, Rius C, Dolton G, Greenshields-Watson A, Attaf M, Egorov ES, Zvyagin IV, Babel N, Cole DK, Godkin AJ, Sewell AK, Kesmir C, Chudakov DM, Luciani F, Shugay M. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. Nucleic Acids Res 2020; 48:D1057-D1062. [PMID: 31588507 PMCID: PMC6943061 DOI: 10.1093/nar/gkz874] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/29/2019] [Indexed: 01/11/2023] Open
Abstract
Here, we report an update of the VDJdb database with a substantial increase in the number of T-cell receptor (TCR) sequences and their cognate antigens. The update further provides a new database infrastructure featuring two additional analysis modes that facilitate database querying and real-world data analysis. The increased yield of TCR specificity identification methods and the overall increase in the number of studies in the field has allowed us to expand the database more than 5-fold. Furthermore, several new analysis methods are included. For example, batch annotation of TCR repertoire sequencing samples allows for annotating large datasets on-line. Using recently developed bioinformatic methods for TCR motif mining, we have built a reduced set of high-quality TCR motifs that can be used for both training TCR specificity predictors and matching against TCRs of interest. These additions enhance the versatility of the VDJdb in the task of exploring T-cell antigen specificities. The database is available at https://vdjdb.cdr3.net.
Collapse
Affiliation(s)
- Dmitry V Bagaev
- Pirogov Russian Medical State University, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Renske M A Vroomans
- Origins Center, Groningen, The Netherlands.,Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | - Jerome Samir
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Ulrik Stervbo
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Cristina Rius
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Garry Dolton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | - Meriem Attaf
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Evgeny S Egorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Nina Babel
- Center for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Immunocore Ltd., Abingdon, OX14 4RY, UK
| | - Andrew J Godkin
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Can Kesmir
- Theoretical Biology and Bioinformatics Department, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Dmitriy M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Fabio Luciani
- Kirby Institute for Infection and Immunity, UNSW Sydney, Sydney, Australia.,School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
293
|
Smiljanovic B, Grützkau A, Sörensen T, Grün JR, Vogl T, Bonin M, Schendel P, Stuhlmüller B, Claussnitzer A, Hermann S, Ohrndorf S, Aupperle K, Backhaus M, Radbruch A, Burmester GR, Häupl T. Synovial tissue transcriptomes of long-standing rheumatoid arthritis are dominated by activated macrophages that reflect microbial stimulation. Sci Rep 2020; 10:7907. [PMID: 32404914 PMCID: PMC7220941 DOI: 10.1038/s41598-020-64431-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Advances in microbiome research suggest involvement in chronic inflammatory diseases such as rheumatoid arthritis (RA). Searching for initial trigger(s) in RA, we compared transcriptome profiles of highly inflamed RA synovial tissue (RA-ST) and osteoarthritis (OA)-ST with 182 selected reference transcriptomes of defined cell types and their activation by exogenous (microbial) and endogenous inflammatory stimuli. Screening for dominant changes in RA-ST demonstrated activation of monocytes/macrophages with gene-patterns induced by bacterial and fungal triggers. Gene-patterns of activated B- or T-cells in RA-ST reflected a response to activated monocytes/macrophages rather than inducing their activation. In contrast, OA-ST was dominated by gene-patterns of non-activated macrophages and fibroblasts. The difference between RA and OA was more prominent in transcripts of secreted proteins and was confirmed by protein quantification in synovial fluid (SF) and serum. In total, 24 proteins of activated cells were confirmed in RA-SF compared to OA-SF and some like CXCL13, CCL18, S100A8/A9, sCD14, LBP reflected this increase even in RA serum. Consequently, pathogen-like response patterns in RA suggest that direct microbial influences exist. This challenges the current concept of autoimmunity and immunosuppressive treatment and advocates new diagnostic and therapeutic strategies that consider microbial persistence as important trigger(s) in the etiopathogenesis of RA.
Collapse
Affiliation(s)
- Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Joachim R Grün
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Pascal Schendel
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Anne Claussnitzer
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sandra Hermann
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Karlfried Aupperle
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marina Backhaus
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
294
|
Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020. [PMID: 32380316 DOI: 10.1016/j.autrev.2020.102554.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.
Collapse
Affiliation(s)
- Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Bernardo Camacho
- Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia
| | | | | | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Rubén Manrique
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | - Ruben D Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Tel Aviv, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia.
| |
Collapse
|
295
|
Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19:102554. [PMID: 32380316 PMCID: PMC7198427 DOI: 10.1016/j.autrev.2020.102554] [Citation(s) in RCA: 309] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality. Coronavirus disease 19 (COVID-19) is an emerging viral threat with major repercussions for public health. There is not specific treatment for COVID-19. Convalescent plasma (CP) emerges as the first option of management for hospitalized patients with COVID-19. Transference of neutralizing antibodies helps to control COVID-19 infection and modulates inflammatory response. Other plasma components may enhance the antiviral and anti-inflammatory properties of CP.
Collapse
Affiliation(s)
- Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Bernardo Camacho
- Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia
| | | | | | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Rubén Manrique
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | - Ruben D Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Tel Aviv, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia.
| |
Collapse
|
296
|
SARS-CoV-2 infection associated with diplopia and anti-acetylcholine receptor antibodies. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7200324 DOI: 10.1016/j.nrleng.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
297
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
298
|
SARS-CoV-2 infection associated with diplopia and anti-acetylcholine receptor antibodies. Neurologia 2020; 35:264-265. [PMID: 32364121 PMCID: PMC7165292 DOI: 10.1016/j.nrl.2020.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
|
299
|
Abstract
Uveitis is a heterogeneous collection of inflammatory diseases of the intraocular uveal tissues and adjacent structures, and they collectively are a significant cause of visual morbidity. In recent years, investigating the contribution of the gut microbiota to autoimmunity, including the development of uveitis, has gained interest. Decreased disease severity has been observed in both the induced experimental autoimmune model of uveitis and the spontaneous RI61H model of uveitis in mice treated with oral broad-spectrum antibiotics and raised in germ-free conditions, implicating a role for the gut microbiota in the development of disease in these models. Also, in support of these findings are the differences in the composition of the microbiota that have been reported in uveitis patients. Proposed mechanisms accounting for the microbiota triggering uveitis include antigenic mimicry and dysbiosis leading to dysregulation of the immune system. An improved understanding of these mechanisms will facilitate potential therapeutic approaches including alteration of the microbiota with probiotic treatment and fecal microbiota transplants.
Collapse
Affiliation(s)
- Shilpa Kodati
- National Eye Institute, National Institutes of Health, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, USA.
| |
Collapse
|
300
|
Negrini R, Villanacci V, Poiesi C, Savio A. Anti-Glycan Autoantibodies Induced by Helicobacter pylori as a Potential Risk Factor for Myocardial Infarction. Front Immunol 2020; 11:597. [PMID: 32322255 PMCID: PMC7158853 DOI: 10.3389/fimmu.2020.00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
A number of epidemiological studies have evaluated the potential association between H. pylori and cardiovascular disease, but with contrasting results. We have previously shown that Helicobacter pylori infection is able to induce in mice and humans autoantibodies cross-reacting with histo–blood group Lewis antigens, expressed in different organs and in plasma glycoproteins and glycolipids. The aim of this study was to assess whether immunization of animals with H. pylori might induce myocardial histopathological changes. We have retrospectively examined, in detail, the histology of archived organs from mice and rabbits immunized with H. pylori in our previous studies. Human sera and cross-reacting monoclonal antibodies were also tested against bacterial preparations and tissue sections. Areas of myocardial necrosis, associated with coronary thrombotic occlusion, were found in 5 of 20 mice and 2 of 5 rabbits previously immunized with suspensions of H. pylori. No similar lesions were found in control animals, suggesting a causal link with H. pylori immunization. The animals bearing myocardial lesions had not been infected but only immunized months earlier with parenteral injections of dead H. pylori cells. This strongly suggests that immunization, by itself, might play a causative role. We propose that the cross-reactive autoimmune response induced by H. pylori could promote thrombotic occlusion through direct endothelial damage or by perturbing the coagulation process.
Collapse
Affiliation(s)
- Riccardo Negrini
- Department of Laboratory Medicine, Presidio di Gardone VT-ASST Spedali Civili, Brescia, Italy
| | | | - Claudio Poiesi
- Institute of Microbiology and Virology, ASST Spedali Civili, Brescia, Italy
| | - Antonella Savio
- Histopathology and Cytology Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|