251
|
Akasaka-Manya K, Manya H, Kizuka Y, Oka S, Endo T. α-Klotho mice demonstrate increased expression of the non-sulfated N-glycan form of the HNK-1 glyco-epitope in kidney tissue. J Biochem 2014; 156:107-13. [DOI: 10.1093/jb/mvu024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
252
|
Schindler JF. Structure and function of placental exchange surfaces in goodeid fishes (Teleostei: Atheriniformes). J Morphol 2014; 276:991-1003. [DOI: 10.1002/jmor.20292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/03/2014] [Accepted: 04/06/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Joachim F. Schindler
- Institut für Anatomie, Universität Regensburg, Universitätsstraße 31; 93053 Regensburg Germany
| |
Collapse
|
253
|
Hitzerd SM, Verbrugge SE, Ossenkoppele G, Jansen G, Peters GJ. Positioning of aminopeptidase inhibitors in next generation cancer therapy. Amino Acids 2014; 46:793-808. [PMID: 24385243 DOI: 10.1007/s00726-013-1648-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
Aminopeptidases represent a class of (zinc) metalloenzymes that catalyze the cleavage of amino acids nearby the N-terminus of polypeptides, resulting in hydrolysis of peptide bonds. Aminopeptidases operate downstream of the ubiquitin-proteasome pathway and are implicated in the final step of intracellular protein degradation either by trimming proteasome-generated peptides for antigen presentation or full hydrolysis into free amino acids for recycling in renewed protein synthesis. This review focuses on the function and subcellular location of five key aminopeptidases (aminopeptidase N, leucine aminopeptidase, puromycin-sensitive aminopeptidase, leukotriene A4 hydrolase and endoplasmic reticulum aminopeptidase 1/2) and their association with different diseases, in particular cancer and their current position as target for therapeutic intervention by aminopeptidase inhibitors. Historically, bestatin was the first prototypical aminopeptidase inhibitor that entered the clinic 35 years ago and is still used for the treatment of lung cancer. More recently, new generation aminopeptidase inhibitors became available, including the aminopeptidase inhibitor prodrug tosedostat, which is currently tested in phase II clinical trials for acute myeloid leukemia. Beyond bestatin and tosedostat, medicinal chemistry has emerged with additional series of potential aminopeptidases inhibitors which are still in an early phase of (pre)clinical investigations. The expanded knowledge of the unique mechanism of action of aminopeptidases has revived interest in aminopeptidase inhibitors for drug combination regimens in anti-cancer treatment. In this context, this review will discuss relevant features and mechanisms of action of aminopeptidases and will also elaborate on factors contributing to aminopeptidase inhibitor efficacy and/or loss of efficacy due to drug resistance-related phenomena. Together, a growing body of data point to aminopeptidase inhibitors as attractive tools for combination chemotherapy, hence their implementation may be a step forward in a new era of personalized treatment of cancer patients.
Collapse
Affiliation(s)
- Sarina M Hitzerd
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Rm 1.42, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
254
|
Nikolaou A, Stijlemans B, Laoui D, Schouppe E, Tran HTT, Tourwé D, Chai SY, Vanderheyden PML, Van Ginderachter JA. Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. J Renin Angiotensin Aldosterone Syst 2014; 15:466-79. [DOI: 10.1177/1470320313507621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Alexandros Nikolaou
- Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Benoit Stijlemans
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Elio Schouppe
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Huyen TT Tran
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| | - Dirk Tourwé
- Laboratory of Organic Chemistry, Vrije Universiteit Brussel, Belgium
| | - Siew Y Chai
- Department of Physiology, Monash University, Australia
| | | | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory, VIB, Belgium
- Cellular and Molecular Immunology Unit, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
255
|
Dondossola E, Corti A, Sidman RL, Arap W, Pasqualini R. Bone marrow-derived CD13 + cells sustain tumor progression: A potential non-malignant target for anticancer therapy. Oncoimmunology 2014; 3:e27716. [PMID: 25339996 PMCID: PMC4203577 DOI: 10.4161/onci.27716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/31/2022] Open
Abstract
Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b+CD13+ myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b+CD13+ myeloid cells could become a non-malignant target for the development of novel anticancer regimens.
Collapse
Affiliation(s)
- Eleonora Dondossola
- David H. Koch Center; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Angelo Corti
- Division of Molecular Oncology; San Raffaele Scientific Institute; Milan, Italy
| | - Richard L Sidman
- Harvard Medical School; Boston, MA USA ; Department of Neurology; Beth Israel-Deaconess Medical Center; Boston, MA USA
| | - Wadih Arap
- University of New Mexico Cancer Center; Albuquerque, NM USA ; Division of Hematology/Oncology and Division of Molecular Medicine; Department of Internal Medicine; University of New Mexico School of Medicine; Albuquerque, NM USA
| | - Renata Pasqualini
- University of New Mexico Cancer Center; Albuquerque, NM USA ; Division of Hematology/Oncology and Division of Molecular Medicine; Department of Internal Medicine; University of New Mexico School of Medicine; Albuquerque, NM USA
| |
Collapse
|
256
|
Rahman MM, Subramani J, Ghosh M, Denninger JK, Takeda K, Fong GH, Carlson ME, Shapiro LH. CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front Physiol 2014; 4:402. [PMID: 24409152 PMCID: PMC3885827 DOI: 10.3389/fphys.2013.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/21/2013] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus, show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT) and CD13KO mice. Characterization of these cells demonstrated that both WT and CD13KO MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1), showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13KO MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13KO MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus, contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal stem cell therapies.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jaganathan Subramani
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA ; Department of Anesthesiology, Texas Tech University Health Sciences Center Lubbock, TX, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Jiyeon K Denninger
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Kotaro Takeda
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Guo-Hua Fong
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| | - Morgan E Carlson
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA ; Drug Discovery, Genomics Institute of the Novartis Research Foundation San Diego, CA, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
257
|
Larrinaga G, Perez I, Blanco L, Sanz B, Errarte P, Beitia M, Etxezarraga MC, Loizate A, Gil J, Irazusta J, López JI. Prolyl endopeptidase activity is correlated with colorectal cancer prognosis. Int J Med Sci 2014; 11:199-208. [PMID: 24465166 PMCID: PMC3894405 DOI: 10.7150/ijms.7178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/23/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Prolyl endopeptidase (PEP) (EC 3.4.21.26) is a serine peptidase involved in differentiation, development and proliferation processes of several tissues. Recent studies have demonstrated the increased expression and activity of this cytosolic enzyme in colorectal cancer (CRC). However, there are no available data about the impact of this peptidase in the biological aggressiveness of this tumor in patient survival. METHODS The activity of PEP in tissue (n=80) and plasma (n=40) of patients with CRC was prospectively analyzed by fluorimetric methods. Results were correlated with the most important classic pathological data related to aggressiveness, with 5-year survival rates and other clinical variables. RESULTS 1) PEP is more active in early phases of CRC; 2) Lower levels of the enzyme in tumors were located in the rectum and this decrease could be related with preoperative chemo-radiotherapy; 3) PEP activity in tissue was higher in patients with better overall and disease-free survival (log-rank p<0.01, Cox analysis p<0.01); 4) Plasmatic PEP activity was significantly higher in CRC patients than in healthy individuals and this was associated with distant metastases and with worse overall and disease-free survivals (log-rank p<0.05, Cox analysis p<0.05). CONCLUSIONS PEP activity in tissue and plasma from CRC patients is an independent prognostic factor in survival. The determination of PEP activity in the plasma may be a safe, minimally invasive and inexpensive way to define the aggressiveness of CRC in daily practice.
Collapse
Affiliation(s)
- Gorka Larrinaga
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Itxaro Perez
- 1. Department of Nursing I, School of Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Lorena Blanco
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Begoña Sanz
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Peio Errarte
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Maider Beitia
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María C Etxezarraga
- 3. Department of Anatomic Pathology, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Alberto Loizate
- 4. Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Javier Gil
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jon Irazusta
- 2. Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - José I López
- 5. Department of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain; ; 6. BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain
| |
Collapse
|
258
|
CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A 2013; 110:20717-22. [PMID: 24297924 DOI: 10.1073/pnas.1321139110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Collapse
|
259
|
Corti A, Curnis F, Rossoni G, Marcucci F, Gregorc V. Peptide-mediated targeting of cytokines to tumor vasculature: the NGR-hTNF example. BioDrugs 2013; 27:591-603. [PMID: 23743670 PMCID: PMC3832761 DOI: 10.1007/s40259-013-0048-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A growing body of evidence suggests that the efficacy of cytokines in cancer therapy can be increased by targeting strategies based on conjugation with ligands that recognize receptors expressed by tumor cells or elements of the tumor microenvironment, including the tumor vasculature. The targeting approach is generally conceived to permit administration of low, yet pharmacologically active, doses of drugs, thereby avoiding toxic reactions. However, it is becoming clear that, in the case of cytokines, this strategy has another inherent advantage, i.e. the possibility of administering extremely low doses that do not activate systemic counter-regulatory mechanisms, which may limit their potential therapeutic effects. This review is focused on the use of tumor vasculature-homing peptides as vehicles for targeted delivery of cytokines to tumor blood vessel. In particular, we provide an overview of peptide-cytokine conjugates made with peptides containing the NGR, RGD, isoDGR or RGR sequences and describe, in more details, the biological and pharmacological properties of NGR-hTNF, a peptide-tumor necrosis factor-α conjugate that is currently being tested in phase II and III clinical studies. The results of preclinical and clinical studies performed with these products suggest that peptide-mediated vascular-targeting is indeed a viable strategy for delivering bioactive amounts of cytokines to tumor endothelial cells without causing the activation of counter-regulatory mechanisms and toxic reactions.
Collapse
Affiliation(s)
- Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Molecular Oncology, San Raffaele Scientific Institute, via Olgettina 58, 20132, Milan, Italy,
| | | | | | | | | |
Collapse
|
260
|
Aalberts M, Stout TAE, Stoorvogel W. Prostasomes: extracellular vesicles from the prostate. Reproduction 2013; 147:R1-14. [PMID: 24149515 DOI: 10.1530/rep-13-0358] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The term 'prostasomes' is generally used to classify the extracellular vesicles (EVs) released into prostatic fluid by prostate epithelial cells. However, other epithelia within the male reproductive tract also release EVs that mix with 'true' prostasomes during semen emission or ejaculation. Prostasomes have been proposed to regulate the timing of sperm cell capacitation and induction of the acrosome reaction, as well as to stimulate sperm motility where all three are prerequisite processes for spermatozoa to attain fertilising capacity. Other proposed functions of prostasomes include interfering with the destruction of spermatozoa by immune cells within the female reproductive tract. On the other hand, it is unclear whether the distinct presumed functions are performed collectively by a single type of prostasome or by separate distinct sub-populations of EVs. Moreover, the exact molecular mechanisms through which prostasomes exert their functions have not been fully resolved. Besides their physiological functions, prostasomes produced by prostate tumour cells have been suggested to support prostate cancer spread development, and prostasomes in peripheral blood plasma may prove to be valuable biomarkers for prostate cancer.
Collapse
|
261
|
Al-Lakkis-Wehbe M, Chaillou B, Defoin A, Albrecht S, Tarnus C. Synthesis of amino-hydroxy-benzocycloheptenones as potent, selective, non-peptidic dinuclear zinc metalloaminopeptidase inhibitors. Bioorg Med Chem 2013; 21:6447-55. [DOI: 10.1016/j.bmc.2013.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 11/26/2022]
|
262
|
Aminopeptidase N (CD13) is involved in phagocytic processes in human dendritic cells and macrophages. BIOMED RESEARCH INTERNATIONAL 2013; 2013:562984. [PMID: 24063007 PMCID: PMC3766993 DOI: 10.1155/2013/562984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/04/2013] [Accepted: 07/07/2013] [Indexed: 01/18/2023]
Abstract
Aminopeptidase N (APN or CD13) is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs). In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages.
Collapse
|
263
|
Strese S, Wickström M, Fuchs PF, Fryknäs M, Gerwins P, Dale T, Larsson R, Gullbo J. The novel alkylating prodrug melflufen (J1) inhibits angiogenesis in vitro and in vivo. Biochem Pharmacol 2013; 86:888-95. [PMID: 23933387 DOI: 10.1016/j.bcp.2013.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Aminopeptidase N (APN) has been reported to have a functional role in tumor angiogenesis and repeatedly reported to be over-expressed in human tumors. The melphalan-derived prodrug melphalan-flufenamide (melflufen, previously designated J1) can be activated by APN. This suggests that this alkylating prodrug may exert anti-angiogenic properties, which will possibly contribute to the anti-tumoral activity in vivo. This work presents a series of experiments designed to investigate this effect of melflufen. In a cytotoxicity assay we show that bovine endothelial cells were more than 200 times more sensitive to melflufen than to melphalan, in HUVEC cells the difference was more than 30-fold and accompanied by aminopetidase-mediated accumulation of intracellular melphalan. In the chicken embryo chorioallantoic membrane (CAM) assay it is indicated that both melflufen and melphalan inhibit vessel ingrowth. Two commercially available assays with human endothelial cells co-cultured with fibroblasts (TCS Cellworks AngioKit, and Essen GFP-AngioKit) also illustrate the superior anti-angiogenic effect of melflufen compared to melphalan. Finally, in a commercially available in vivo assay in mice (Cultrex DIVAA angio-reactor assay) melflufen displayed an anti-angiogenic effect, comparable to bevacizumab. In conclusion, this study demonstrates through all methods used, that melphalan-flufenamide besides being an alkylating agent also reveals anti-angiogenic effects in different preclinical models in vitro and in vivo.
Collapse
Affiliation(s)
- Sara Strese
- Clinical Pharmacology, Institution of Medical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Pathuri G, Hedrick AF, Awasthi V, Ihnat MA, Gali H. Evaluation of 99mTc-probestin for imaging APN expressing tumors by SPECT. Bioorg Med Chem Lett 2013; 23:5049-52. [PMID: 23937983 DOI: 10.1016/j.bmcl.2013.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 02/04/2023]
Abstract
Aminopeptidase N (APN) is known to play important roles in tumor angiogenesis, tumor cell invasion, and metastasis. Thus, APN is an attractive biomarker for imaging tumor angiogenesis. Here we report results obtained from biodistribution and single photon emission computed tomography (SPECT) imaging studies of a technetium-99m labeled probestin (a potent APN inhibitor) conjugate containing a tripeptide, Asp-DAP-Cys (DAP=2,3-diaminopropionic acid), chelator and a 8-amino-3,6-dioxaoctanoic acid (PEG2) linker conducted in nude mice xenografted with HT-1080 human fibrosarcoma tumors (APN-positive tumors). These results collectively demonstrate that (99m)Tc-probestin uptake by tumors and other APN expressing tissues in vivo is specific and validate the use of probestin as a vector for targeting APN in vivo.
Collapse
Affiliation(s)
- Gopal Pathuri
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | | | | | | | | |
Collapse
|
265
|
Dalal S, Ragheb DRT, Schubot FD, Klemba M. A naturally variable residue in the S1 subsite of M1 family aminopeptidases modulates catalytic properties and promotes functional specialization. J Biol Chem 2013; 288:26004-26012. [PMID: 23897806 DOI: 10.1074/jbc.m113.465625] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
M1 family metallo-aminopeptidases fulfill a wide range of critical and in some cases medically relevant roles in humans and human pathogens. The specificity of M1-aminopeptidases is dominated by the interaction of the well defined S1 subsite with the side chain of the first (P1) residue of the substrate and can vary widely. Extensive natural variation occurs at one of the residues that contributes to formation of the cylindrical S1 subsite. We investigated whether this natural variation contributes to diversity in S1 subsite specificity. Effects of 11 substitutions of the S1 subsite residue valine 459 in the Plasmodium falciparum aminopeptidase PfA-M1 and of three substitutions of the homologous residue methionine 260 in Escherichia coli aminopeptidase N were characterized. Many of these substitutions altered steady-state kinetic parameters for dipeptide hydrolysis and remodeled S1 subsite specificity. The most dramatic change in specificity resulted from substitution with proline, which collapsed S1 subsite specificity such that only substrates with P1-Arg, -Lys, or -Met were appreciably hydrolyzed. The structure of PfA-M1 V459P revealed that the proline substitution induced a local conformational change in the polypeptide backbone that resulted in a narrowed S1 subsite. The restricted specificity and active site backbone conformation of PfA-M1 V459P mirrored those of endoplasmic reticulum aminopeptidase 2, a human enzyme with proline in the variable S1 subsite position. Our results provide compelling evidence that changes in the variable residue in the S1 subsite of M1-aminopeptidases have facilitated the evolution of new specificities and ultimately novel functions for this important class of enzymes.
Collapse
|
266
|
Arampatzidou M, Schütte A, Hansson GC, Saftig P, Brix K. Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 2013; 393:1391-403. [PMID: 23152408 DOI: 10.1515/hsz-2012-0204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022]
Abstract
Cathepsin K has been shown to exhibit antimicrobial and anti-inflammatory activities in the mouse colon. To further elucidate its role, we used Ctsk-/- mice and demonstrated that the absence of cathepsin K was accompanied by elevated protein levels of related cysteine cathepsins (cathepsins B, L, and X) in the colon. In principle, such changes could result in altered subcellular localization; however, the trafficking of cysteine cathepsins was not affected in the colon of Ctsk-/- mice. However, cathepsin K deficiency affected the extracellular matrix constituents, as higher amounts of collagen IV and laminin were observed. Moreover, the localization pattern of the intercellular junction proteins E-cadherin and occludin was altered in the colon of Ctsk-/- mice, suggesting potential impairment of the barrier function. Thus, we used an ex vivo method for assessing the mucus layers and showed that the absence of cathepsin K had no influence on mucus organization and growth. The data of this study support the notion that cathepsin K contributes to intestinal homeostasis and tissue architecture, but the lack of cathepsin K activity is not expected to affect the mucus-depending barrier functions of the mouse colon. These results are important with regard to oral administration of cathepsin K inhibitors that are currently under investigation in clinical trials.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, ResearchCenter MOLIFE – Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen , Germany
| | | | | | | | | |
Collapse
|
267
|
Craddock KJ, Chen Y, Brandwein JM, Chang H. CD13 expression is an independent adverse prognostic factor in adults with Philadelphia chromosome negative B cell acute lymphoblastic leukemia. Leuk Res 2013; 37:759-64. [DOI: 10.1016/j.leukres.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/29/2013] [Accepted: 04/03/2013] [Indexed: 01/21/2023]
|
268
|
Dijkgraaf I, Van de Vijver P, Dirksen A, Hackeng TM. Synthesis and application of cNGR-containing imaging agents for detection of angiogenesis. Bioorg Med Chem 2013; 21:3555-64. [PMID: 23643902 PMCID: PMC7125914 DOI: 10.1016/j.bmc.2013.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multi-step process regulated by pro- and anti-angiogenic factors. Inhibition of angiogenesis is a potential anti cancer treatment strategy that is now investigated clinically. In addition, advances in the understanding of the angiogenic process have led to the development of new angiogenesis therapies for ischemic heart disease. Currently, researchers search for objective measures that indicate pharmacological responses to pro- and anti-angiogenic drugs and therefore, there is a great interest in techniques to visualize angiogenesis noninvasively. As CD13 is selectively expressed in angiogenic blood vessels, it can serve as a target for molecular imaging tracers to noninvasively visualize angiogenic processes in animal models and patients. Here, an overview on the currently used CD13 targeted molecular imaging probes for noninvasive visualization of angiogenesis is given.
Collapse
Affiliation(s)
- Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
269
|
Iaffaldano L, Nardelli C, Raia M, Mariotti E, Ferrigno M, Quaglia F, Labruna G, Capobianco V, Capone A, Maruotti GM, Pastore L, Di Noto R, Martinelli P, Sacchetti L, Del Vecchio L. High aminopeptidase N/CD13 levels characterize human amniotic mesenchymal stem cells and drive their increased adipogenic potential in obese women. Stem Cells Dev 2013; 22:2287-97. [PMID: 23488598 DOI: 10.1089/scd.2012.0499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human amniotic mesenchymal stem cells (hA-MSCs) have not been characterized in obese women. The aim of this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal weight control (Co-) women, to identify alterations possibly predisposing the fetus to obesity. We enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM prepregnancy body mass index: 40.3/1.8 and 22.4/1.0 kg/m2, respectively), and 32 not pregnant women. hA-MSCs were phenotyped by flow cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P = 0.005). Also, serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated with CD13 antigen expression on Ob-hA-MSCs (r2 = 0.84, P < 0.0001). Adipogenesis induction experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as witnessed by higher peroxisome proliferator-activated receptor gamma and aP2 mRNA levels (P = 0.05 and P = 0.05, respectively), at postinduction day 14 associated with increased CD13 mRNA levels from baseline to day 4 postinduction (P < 0.05). Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by influencing the adipogenic potential of hA-MSCs, could be an in utero risk factor for obesity. Our data strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers.
Collapse
|
270
|
Schmitt C, Voegelin M, Marin A, Schmitt M, Schegg F, Hénon P, Guenot D, Tarnus C. Selective aminopeptidase-N (CD13) inhibitors with relevance to cancer chemotherapy. Bioorg Med Chem 2013; 21:2135-44. [PMID: 23428964 DOI: 10.1016/j.bmc.2012.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 11/29/2022]
Abstract
Aminopeptidase-N (APN/CD13) is highly expressed on the surface of numerous types of cancer cells and particularly on the endothelial cells of neoangiogenic vessels during tumourigenesis. This metallo-aminopeptidase has been identified as a potential target for cancer chemotherapy. In this work, we evaluated the efficacy of a novel series of benzosuberone analogues, which were previously reported to be highly potent, selective APN inhibitors with Ki values in the micromolar to sub-nanomolar range. Endothelial cell morphogenesis as well as cell motility were inhibited in vitro in a dose-dependent manner at concentrations that correlated with the potency of the compounds, thus confirming the key role of APN in these established models of angiogenesis. We report toxicity studies in mice showing that these compounds are well tolerated. We report the effects of the compounds, used alone or in combination with rapamycin, on the growth of a select panel of tumours that were subcutaneously xenografted onto Swiss nude mice. Our data indicate that the in vivo efficacy of these new APN inhibitors during the initial phase of tumour growth can be ascribed to their anti-angiogenic activities. However, we also provide evidence that these compounds are effective against established solid tumours. For colonic tumours, the anti-tumour effect depends on the level of APN expression in epithelial cells, and APN expression is associated with down-regulation of the transcription factor HIF-1α. These effects seem to be distinct from those of rapamycin. Our finding that the anti-tumour effect of the inhibitors in the colon requires APN expression strongly suggests that APN plays a crucial function in tumour cells that is distinct from its known role in neovascularisation.
Collapse
Affiliation(s)
- Céline Schmitt
- Université de Haute-Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Chimie Organique et Bioorganique EA4566, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Thiel P, Röglin L, Meissner N, Hennig S, Kohlbacher O, Ottmann C. Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein–protein interactions. Chem Commun (Camb) 2013; 49:8468-70. [DOI: 10.1039/c3cc44612c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
272
|
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 850 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 79 is Aminopeptidase N. Keywords Actinonin, amastatin, angiogenesis, angiotensin, bestatin, brush border, cancer, CD13, coronavirus, cysteinyl-glycinase, dipeptidyl peptidase IV, enkephalin, glutathione, neprilysin, puromycin, stem cells.
Collapse
|
273
|
Soudy R, Ahmed S, Kaur K. NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. ACS COMBINATORIAL SCIENCE 2012; 14:590-9. [PMID: 23030271 DOI: 10.1021/co300055s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptides containing the Asn-Gly-Arg (NGR) motif are known to bind CD13 isoforms expressed in tumor vessels and have been widely used for tumor targeting. Residues flanking the NGR sequence play an important role in modulating the binding affinity and specificity of NGR for the CD13 receptor. Herein, we have used a rapid, easy, and reliable peptide array-whole cell binding assay for screening a library of NGR peptides with different flanking residues. A peptide array consisting of forty-five NGR containing peptides was synthesized on a cellulose membrane, followed by screening against CD13 positive (HUVEC and HT-1080) and CD13 negative cell lines (MDA-MB-435 and MDA-MB-231). The library screening led to the identification of five cyclic and acyclic NGR peptides that display higher binding (up to 5-fold) to CD13 positive cells with negligible binding to CD13 negative cell lines when compared to the lead sequence cyclic CVLNGRMEC. Peptides with high binding affinity for the CD13 positive cells also showed improved in vitro cellular uptake and specificity using flow cytometry and fluorescence microscopy. Interestingly, the identified peptides resemble the NGR sequences present in the human fibronectin protein. These NGR peptides are promising new ligands for developing tumor vasculature targeted drugs, delivery systems and imaging agents with reduced systemic toxicity.
Collapse
Affiliation(s)
- Rania Soudy
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| | - Sahar Ahmed
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| | - Kamaljit Kaur
- Faculty of
Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G
2E1
| |
Collapse
|
274
|
Węglarz-Tomczak E, Poręba M, Byzia A, Berlicki Ł, Nocek B, Mulligan R, Joachimiak A, Drąg M, Mucha A. An integrated approach to the ligand binding specificity of Neisseria meningitidis M1 alanine aminopeptidase by fluorogenic substrate profiling, inhibitory studies and molecular modeling. Biochimie 2012; 95:419-28. [PMID: 23131591 DOI: 10.1016/j.biochi.2012.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/15/2012] [Indexed: 12/11/2022]
Abstract
Neisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among all the kingdoms of life. NmAPN is suggested to be mostly responsible for proteolysis and nutrition delivery, similar to the orthologs from other bacteria. To explore the possibility of NmAPN being a potential drug target for inhibition and development of novel therapeutic agents, the specificity of the S1 and S1' binding sites was explored using an integrated approach. Initially, an extensive library consisting of almost 100 fluorogenic substrates derived from both natural and unnatural amino acids, were used to obtain a detailed substrate fingerprint of the S1 pocket of NmAPN. A broad substrate tolerance of NmAPN was revealed, with bulky basic and hydrophobic ligands being the most favored substrates. Additionally, the potency of a set of organophosphorus inhibitors of neutral aminopeptidases, amino acid and dipeptide analogs was determined. Inhibition constants in the nanomolar range, determined for phosphinic dipeptides, proves the positive increase in inhibition impact of the P1' ligand elongation. The results were further verified via molecular modeling and docking of canonical aminopeptidase phosphinic dipeptide inhibitors in the NmAPN active site. These studies present comprehensive characterization of interactions responsible for specific ligand binding. This knowledge provides invaluable insight into understanding of the enzyme and development of novel NmAPN inhibitors.
Collapse
Affiliation(s)
- Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Structural basis for multifunctional roles of mammalian aminopeptidase N. Proc Natl Acad Sci U S A 2012; 109:17966-71. [PMID: 23071329 DOI: 10.1073/pnas.1210123109] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian aminopeptidase N (APN) plays multifunctional roles in many physiological processes, including peptide metabolism, cell motility and adhesion, and coronavirus entry. Here we determined crystal structures of porcine APN at 1.85 Å resolution and its complexes with a peptide substrate and a variety of inhibitors. APN is a cell surface-anchored and seahorse-shaped zinc-aminopeptidase that forms head-to-head dimers. Captured in a catalytically active state, these structures of APN illustrate a detailed catalytic mechanism for its aminopeptidase activity. The active site and peptide-binding channel of APN reside in cavities with wide openings, allowing easy access to peptides. The cavities can potentially open up further to bind the exposed N terminus of proteins. The active site anchors the N-terminal neutral residue of peptides/proteins, and the peptide-binding channel binds the remainder of the peptides/proteins in a sequence-independent fashion. APN also provides an exposed outer surface for coronavirus binding, without its physiological functions being affected. These structural features enable APN to function ubiquitously in peptide metabolism, interact with other proteins to mediate cell motility and adhesion, and serve as a coronavirus receptor. This study elucidates multifunctional roles of APN and can guide therapeutic efforts to treat APN-related diseases.
Collapse
|
276
|
Domingues PH, Teodósio C, Ortiz J, Sousa P, Otero A, Maillo A, Bárcena P, García-Macias MC, Lopes MC, de Oliveira C, Orfao A, Tabernero MD. Immunophenotypic identification and characterization of tumor cells and infiltrating cell populations in meningiomas. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1749-61. [PMID: 22982440 DOI: 10.1016/j.ajpath.2012.07.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/12/2012] [Accepted: 07/06/2012] [Indexed: 11/27/2022]
Abstract
Meningiomas are primary tumors of the central nervous system composed of both neoplastic and other infiltrating cells. We determined the cellular composition of 51 meningioma samples by multiparameter flow cytometric (MFC) immunophenotyping and investigated the potential relationship between mRNA and protein expression levels of neoplastic cells. For immunophenotypic, morphologic, and cytogenetic characterization of individual cell populations, a large panel of markers was used together with phagocytic/endocytic functional assays and MFC sorting. Overall, our results revealed coexistence of CD45(-) neoplastic cells and CD45(+) immune infiltrating cells in all meningiomas. Infiltrating cells included tissue macrophages, with an HLA-DR(+)CD14(+)CD45(+)CD68(+)CD16(-/+)CD33(-/+) phenotype and high phagocytic/endocytic activity, and a small proportion of cytotoxic lymphocytes (mostly T CD8(+) and natural killer cells). Tumor cells expressed multiple cell adhesion proteins, tetraspanins, HLA-I/HLA-DR molecules, complement regulatory proteins, cell surface ectoenzymes, and growth factor receptors. Noteworthy, the relationship between mRNA and protein levels was variable, depending on the proteins evaluated and the level of infiltration by immune cells. In summary, our results indicate that MFC immunophenotyping provides a reliable tool for the characterization of the patterns of protein expression of different cell populations coexisting in meningioma samples, with a more accurate measure of gene expression profiles of tumor cells at the functional/protein level than conventional mRNA microarray, independently of the degree of infiltration of the tumor by immune cells.
Collapse
Affiliation(s)
- Patrícia H Domingues
- Centre for Neurosciences and Cell Biology, Faculty of Pharmacy, University of Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Wong AHM, Zhou D, Rini JM. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. J Biol Chem 2012; 287:36804-13. [PMID: 22932899 DOI: 10.1074/jbc.m112.398842] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human aminopeptidase N (hAPN/hCD13) is a dimeric membrane protein and a member of the M1 family of zinc metallopeptidases. Within the rennin-angiotensin system, its enzymatic activity is responsible for processing peptide hormones angiotensin III and IV. In addition, hAPN is also involved in cell adhesion, endocytosis, and signal transduction and it is an important target for cancer therapy. Reported here are the high resolution x-ray crystal structures of the dimeric ectodomain of hAPN and its complexes with angiotensin IV and the peptidomimetic inhibitors, amastatin and bestatin. Each monomer of the dimer is found in what has been termed the closed form in other M1 enzymes and each monomer is characterized by an internal cavity surrounding the catalytic site as well as a unique substrate/inhibitor-dependent loop ordering, which in the case of the bestatin complex suggests a new route to inhibitor design. The hAPN structure provides the first example of a dimeric M1 family member and the observed structural features, in conjunction with a model for the open form, provide novel insights into the mechanism of peptide processing and signal transduction.
Collapse
Affiliation(s)
- Alan H M Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
278
|
Aalberts M, Sostaric E, Wubbolts R, Wauben MWM, Nolte-'t Hoen ENM, Gadella BM, Stout TAE, Stoorvogel W. Spermatozoa recruit prostasomes in response to capacitation induction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2326-35. [PMID: 22940639 DOI: 10.1016/j.bbapap.2012.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Seminal plasma contains various types of extracellular vesicles, including 'prostasomes'. Prostasomes are small vesicles secreted by prostatic epithelial cells that can be recruited by and fuse with sperm cells in response of progesterone that is released by oocyte surrounding cumulus cells. This delivers Ca(2+) signaling tools that allow the sperm cell to gain hypermotility and undergo the acrosome reaction. Conditions for binding of prostasomes to sperm cells are however unclear. We found that classically used prostasome markers are in fact heterogeneously expressed on distinct populations of small and large vesicles in seminal plasma. To study interactions between prostasomes and spermatozoa we used the stallion as a model organism. A homogeneous population of ~60nm prostasomes was first separated from larger vesicles and labeled with biotin. Binding of biotinylated prostasomes to individual live spermatozoa was then monitored by flow cytometry. Contrary to assumptions in the literature, we found that such highly purified prostasomes bound to live sperm only after capacitation had been initiated, and specifically at pH ≥7.5. Using fluorescence microscopy, we observed that prostasomes bound primarily to the head of live sperm. We propose that in vivo, prostasomes may bind to sperm cells in the uterus, to be carried in association with sperm cells into oviduct and to fuse with the sperm cell only during the final approach of the oocyte. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Marian Aalberts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.176, NL-3508 TD Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.176, NL-3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Fairweather S, Bröer A, O'Mara M, Bröer S. Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1. Biochem J 2012; 446:135-48. [PMID: 22677001 PMCID: PMC3408045 DOI: 10.1042/bj20120307] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/23/2012] [Accepted: 06/07/2012] [Indexed: 01/01/2023]
Abstract
The brush-border membrane of the small intestine and kidney proximal tubule are the major sites for the absorption and re-absorption of nutrients in the body respectively. Transport of amino acids is mediated through the action of numerous secondary active transporters. In the mouse, neutral amino acids are transported by B(0)AT1 [broad neutral ((0)) amino acid transporter 1; SLC6A19 (solute carrier family 6 member 19)] in the intestine and by B(0)AT1 and B(0)AT3 (SLC6A18) in the kidney. Immunoprecipitation and Blue native electrophoresis of intestinal brush-border membrane proteins revealed that B(0)AT1 forms complexes with two peptidases, APN (aminopeptidase N/CD13) and ACE2 (angiotensin-converting enzyme 2). Physiological characterization of B(0)AT1 expressed together with these peptidases in Xenopus laevis oocytes revealed that APN increased the substrate affinity of the transporter up to 2.5-fold and also increased its surface expression (V(max)). Peptide competition experiments, in silico modelling and site-directed mutagenesis of APN suggest that the catalytic site of the peptidase is involved in the observed changes of B(0)AT1 apparent substrate affinity, possibly by increasing the local substrate concentration. These results provide evidence for the existence of B(0)AT1-containing digestive complexes in the brush-border membrane, interacting differentially with various peptidases, and responding to the dynamic needs of nutrient absorption in the intestine and kidney.
Collapse
Key Words
- aminopeptidase n
- angiotensin-converting enzyme 2 (ace2)
- broad neutral (0) amino acid transporter 1 (b0at1)
- brush-border membrane
- nutrient absorption
- protein complex
- ace2, angiotensin-converting enzyme 2
- apn, aminopeptidase n
- b0at, broad neutral (0) amino acid transporter
- bbmv, brush-border membrane vesicle
- dtt, dithiothreitol
- egfp, enhanced green fluorescent protein
- fbs, fetal bovine serum
- gfp, green fluorescent protein
- hek, human embryonic kidney
- lap, leucine aminopeptidase
- ncbi, national centre for biotechnology information
- rmsd, root mean square deviation
- slc, solute carrier
- sulfo-nhs-lc-biotin, sulfosuccinimidyl 6′-(biotinamido) hexanoate
Collapse
Affiliation(s)
- Stephen J. Fairweather
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Angelika Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Megan L. O'Mara
- †School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefan Bröer
- *Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
280
|
Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 2012; 8:e1002859. [PMID: 22876187 PMCID: PMC3410853 DOI: 10.1371/journal.ppat.1002859] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/28/2012] [Indexed: 12/31/2022] Open
Abstract
The coronaviruses (CoVs) are enveloped viruses of animals and humans associated mostly with enteric and respiratory diseases, such as the severe acute respiratory syndrome and 10–20% of all common colds. A subset of CoVs uses the cell surface aminopeptidase N (APN), a membrane-bound metalloprotease, as a cell entry receptor. In these viruses, the envelope spike glycoprotein (S) mediates the attachment of the virus particles to APN and subsequent cell entry, which can be blocked by neutralizing antibodies. Here we describe the crystal structures of the receptor-binding domains (RBDs) of two closely related CoV strains, transmissible gastroenteritis virus (TGEV) and porcine respiratory CoV (PRCV), in complex with their receptor, porcine APN (pAPN), or with a neutralizing antibody. The data provide detailed information on the architecture of the dimeric pAPN ectodomain and its interaction with the CoV S. We show that a protruding receptor-binding edge in the S determines virus-binding specificity for recessed glycan-containing surfaces in the membrane-distal region of the pAPN ectodomain. Comparison of the RBDs of TGEV and PRCV to those of other related CoVs, suggests that the conformation of the S receptor-binding region determines cell entry receptor specificity. Moreover, the receptor-binding edge is a major antigenic determinant in the TGEV envelope S that is targeted by neutralizing antibodies. Our results provide a compelling view on CoV cell entry and immune neutralization, and may aid the design of antivirals or CoV vaccines. APN is also considered a target for cancer therapy and its structure, reported here, could facilitate the development of anti-cancer drugs. The cell surface aminopeptidase N (APN), a membranebound metalloprotease target for cancer therapy, is a major cell entry receptor for coronaviruses (CoVs), agents that cause important respiratory and enteric diseases. In some CoVs, the virus envelope spike glycoprotein (S) mediates attachment of the virus particles to the host APN protein and cell entry, which is blocked by antibodies that prevent CoV infections. The crystal structures of the S proteins of two porcine CoV in complex with the pig APN (pAPN) or with a neutralizing antibody shown here, reveal how some CoV bind to its cell surface APN receptor and how antibodies prevent receptor binding and infection. The report uncovers a unique virus-receptor recognition mode that engages a glycan N-linked to the pAPN ectodomain, revealing structural determinants of the receptor-binding specificity in CoVs. Neutralizing antibodies target viral residues used for binding to the APN receptor and entry into host cells, showing that efficient CoV neutralization requires immune responses focused toward key receptor binding motifs in the virus envelope. These structural insights, together with the structure of the APN ectodomain, provide a compelling view of relevant cell membrane processes related to infectious diseases and cancer.
Collapse
|
281
|
Albrecht S, Salomon E, Defoin A, Tarnus C. Rapid and efficient synthesis of a novel series of substituted aminobenzosuberone derivatives as potent, selective, non-peptidic neutral aminopeptidase inhibitors. Bioorg Med Chem 2012; 20:4942-53. [DOI: 10.1016/j.bmc.2012.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/30/2012] [Accepted: 06/22/2012] [Indexed: 01/21/2023]
|
282
|
Regioselective synthesis of the 1-bromo-4-phenyl-tetrahydro-7-amino-benzocyclohepten-6-one, a subnanomolar aminopeptidase-N/CD13 inhibitor. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
283
|
Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov 2012; 11:292-310. [DOI: 10.1038/nrd3673] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
284
|
Gumpena R, Kishor C, Ganji RJ, Jain N, Addlagatta A. Glu121-Lys319 salt bridge between catalytic and N-terminal domains is pivotal for the activity and stability of Escherichia coli aminopeptidase N. Protein Sci 2012; 21:727-36. [PMID: 22411732 DOI: 10.1002/pro.2060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 11/11/2022]
Abstract
Escherichia coli aminopeptidase N (ePepN) belongs to the gluzincin family of M1 class metalloproteases that share a common primary structure with consensus zinc binding motif (HEXXH-(X18)-E) and an exopeptidase motif (GXMEN) in the active site. There is one amino acid, E121 in Domain I that blocks the extended active site grove of the thermolysin like catalytic domain (Domain II) limiting the substrate to S1 pocket. E121 forms a part of the S1 pocket, while making critical contact with the amino-terminus of the substrate. In addition, the carboxylate of E121 forms a salt bridge with K319 in Domain II. Both these residues are absolutely conserved in ePepN homologs. Analogous Glu-Asn pair in tricon interacting factor F3 (F3) and Gln-Asn pair in human leukotriene A(4) hydrolase (LTA(4) H) are also conserved in respective homologs. Mutation of either of these residues individually or together substantially reduced or entirely eliminated enzymatic activity. In addition, thermal denaturation studies suggest that the mutation at K319 destabilizes the protein as much as by 3.7 °C, while E121 mutants were insensitive. Crystal structure of E121Q mutant reveals that the enzyme is inactive due to the reduced S1 subsite volume. Together, data presented here suggests that ePepN, F3, and LTA(4) H homologs adopted a divergent evolution that includes E121-K319 or its analogous pairs, and these cannot be interchanged.
Collapse
Affiliation(s)
- Rajesh Gumpena
- Center for Chemical Biology, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
285
|
Luo M, Mengos AE, Stubblefield TM, Mandarino LJ. High Fat Diet-Induced Changes in Hepatic Protein Abundance in Mice. ACTA ACUST UNITED AC 2012; 5:60-66. [PMID: 33907358 PMCID: PMC8074682 DOI: 10.4172/jpb.1000214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes, and dyslipidemia. The purpose of this study was to identify novel proteins and pathways that contribute to the pathogenesis and complications of NAFLD. C57BL/6J male mice were fed a 60% (HFD) or 10% (LFD) high or low fat diet. HFD induced obesity, hepatic steatosis and insulin resistance (euglycemic clamps, glucose infusion rate: LFD 50.5 ± 6.4 vs. HFD 14.2 ± 9.5 μg/ (g·min); n = 12). Liver proteins were analyzed by mass spectrometry-based proteomics analysis. Numerous hepatic proteins were altered in abundance after 60% HFD feeding. Nine down-regulated and nine up-regulated proteins were selected from this list for detailed analysis based on the criteria of 1.5-fold difference, consistency across replicates, and having at least 2 spectra assigned. Proteins that decreased in abundance were acyl-coA desaturase-I (SCD-1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), pyruvate kinase isozymes R/L (PKLR), NADP-dependent malic enzyme (ME-1), ATP-citrate synthase (ACL), ketohexokinase (KHK), long-chain-fatty acid-CoA ligase-5 (ACSL-5) and carbamoyl-phosphate synthase-I (CPS-1). Those that increased were KIAA0564, apolipoprotein A-I (apoA-1), ornithine aminotransferase (OAT), multidrug resistance protein 2 (MRP-2), liver carboxylesterase-I (CES-1), aminopeptidase N (APN), fatty aldehyde dehydrogenase (FALDH), major urinary protein 2 (MUP-2) and KIAA0664. KIAA0564 and KIAA0664 proteins are uncharacterized and are novel proteins associated with NAFLD. The decreased abundance of normally highly abundant proteins like FAS and CPS-1 was confirmed by Coomassie Blue staining after bands were identified by MS/MS, and immunoblot analysis confirmed the increased abundance of KIAA0664 after 60% HFD feeding. In conclusion, this study shows NAFLD is characterized by changes in abundance of proteins related to cell injury, inflammation, and lipid metabolism. Two novel and uncharacterized proteins, KIAA0564 and KIAA0664, may provide insight into the pathogenesis of NAFLD induced by lipid oversupply.
Collapse
Affiliation(s)
- Moulun Luo
- Center for Metabolic and Vascular Biology, Mayo Clinic Arizona, Scottsdale, Arizona; Arizona State University, Tempe, Arizona, USA
| | - April E Mengos
- Center for Metabolic and Vascular Biology, Mayo Clinic Arizona, Scottsdale, Arizona; Arizona State University, Tempe, Arizona, USA
| | - Tianna M Stubblefield
- Center for Metabolic and Vascular Biology, Mayo Clinic Arizona, Scottsdale, Arizona; Arizona State University, Tempe, Arizona, USA
| | - Lawrence J Mandarino
- Center for Metabolic and Vascular Biology, Mayo Clinic Arizona, Scottsdale, Arizona; Arizona State University, Tempe, Arizona, USA.,Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
286
|
Zhu J, He J, Liu Y, Simeone DM, Lubman DM. Identification of glycoprotein markers for pancreatic cancer CD24+CD44+ stem-like cells using nano-LC-MS/MS and tissue microarray. J Proteome Res 2012; 11:2272-81. [PMID: 22335271 DOI: 10.1021/pr201059g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic adenocarcinoma is characterized by late diagnosis due to lack of early symptoms, extensive metastasis, and high resistance to chemo/radiation therapy. Recently, a subpopulation of cells within pancreatic cancers, termed cancer stem cells (CSCs), has been characterized and postulated to be the drivers for pancreatic cancer and responsible for metastatic spread. Further studies on pancreatic CSCs are therefore of particular importance to identify novel diagnosis markers and therapeutic targets for this dismal disease. Herein, the malignant phenotype of pancreatic cancer stem-like CD24+CD44+ cells was isolated from a human pancreatic carcinoma cell line (PANC-1) and demonstrated 4-fold increased invasion ability compared to CD24-CD44+ cells. Using lectin microarray and nano LC-MS/MS, we identified a differentially expressed set of glycoproteins between these two subpopulations. Lectin microarray analysis revealed that fucose- and galactose-specific lectins, UEA-1 and DBA, respectively, exhibit distinctly strong binding to CD24+CD44+ cells. The glycoproteins extracted by multilectin affinity chromatography were consequently analyzed by LC-MS/MS. Seventeen differentially expressed glycoproteins were identified, including up-regulated Cytokeratin 8/CK8, Integrin β1/CD29, ICAM1/CD54, and Ribophorin 2/RPN2 and down-regulated Aminopeptidase N/CD13. Immunohistochemical analysis of tissue microarrays showed that CD24 was significantly associated with late-stage pancreatic adenocarcinomas, and RPN2 was exclusively coexpressed with CD24 in a small population of CD24-positive cells. However, CD13 expression was dramatically decreased along with tumor progression, preferentially present on the apical membrane of ductal cells and vessels in early stage tumors. Our findings suggest that these glycoproteins may provide potential therapeutic targets and promising prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0656, United States
| | | | | | | | | |
Collapse
|
287
|
Wulfänger J, Schneider H, Wild P, Ikenberg K, Rodolfo M, Rivoltini L, Meyer S, Riemann D, Seliger B. Promoter methylation of aminopeptidase N/CD13 in malignant melanoma. Carcinogenesis 2012; 33:781-90. [DOI: 10.1093/carcin/bgs091] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
288
|
Lai A, Ghaffari A, Li Y, Ghahary A. Microarray-based identification of aminopeptidase N target genes in keratinocyte conditioned medium-stimulated dermal fibroblasts. J Cell Biochem 2012; 113:1061-8. [DOI: 10.1002/jcb.23438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
289
|
Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci U S A 2012; 109:1637-42. [PMID: 22307623 DOI: 10.1073/pnas.1120790109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Processes that promote cancer progression such as angiogenesis require a functional interplay between malignant and nonmalignant cells in the tumor microenvironment. The metalloprotease aminopeptidase N (APN; CD13) is often overexpressed in tumor cells and has been implicated in angiogenesis and cancer progression. Our previous studies of APN-null mice revealed impaired neoangiogenesis in model systems without cancer cells and suggested the hypothesis that APN expressed by nonmalignant cells might promote tumor growth. We tested this hypothesis by comparing the effects of APN deficiency in allografted malignant (tumor) and nonmalignant (host) cells on tumor growth and metastasis in APN-null mice. In two independent tumor graft models, APN activity in both the tumors and the host cells cooperate to promote tumor vascularization and growth. Loss of APN expression by the host and/or the malignant cells also impaired lung metastasis in experimental mouse models. Thus, cooperation in APN expression by both cancer cells and nonmalignant stromal cells within the tumor microenvironment promotes angiogenesis, tumor growth, and metastasis.
Collapse
|
290
|
Zoidakis J, Makridakis M, Zerefos PG, Bitsika V, Esteban S, Frantzi M, Stravodimos K, Anagnou NP, Roubelakis MG, Sanchez-Carbayo M, Vlahou A. Profilin 1 is a potential biomarker for bladder cancer aggressiveness. Mol Cell Proteomics 2011; 11:M111.009449. [PMID: 22159600 DOI: 10.1074/mcp.m111.009449] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Of the most important clinical needs for bladder cancer (BC) management is the identification of biomarkers for disease aggressiveness. Urine is a "gold mine" for biomarker discovery, nevertheless, with multiple proteins being in low amounts, urine proteomics becomes challenging. In the present study we applied a fractionation strategy of urinary proteins based on the use of immobilized metal affinity chromatography for the discovery of biomarkers for aggressive BC. Urine samples from patients with non invasive (two pools) and invasive (two pools) BC were subjected to immobilized metal affinity chromatography fractionation and eluted proteins analyzed by 1D-SDS-PAGE, band excision and liquid chromatography tandem MS. Among the identified proteins, multiple corresponded to proteins with affinity for metals and/or reported to be phosphorylated and included proteins with demonstrated association with BC such as MMP9, fibrinogen forms, and clusterin. In agreement to the immobilized metal affinity chromatography results, aminopeptidase N, profilin 1, and myeloblastin were further found to be differentially expressed in urine from patients with invasive compared with non invasive BC and benign controls, by Western blot or Elisa analysis, nevertheless exhibiting high interindividual variability. By tissue microarray analysis, profilin 1 was found to have a marked decrease of expression in the epithelial cells of the invasive (T2+) versus high risk non invasive (T1G3) tumors with occasional expression in stroma; importantly, this pattern strongly correlated with poor prognosis and increased mortality. The functional relevance of profilin 1 was investigated in the T24 BC cells where blockage of the protein by the use of antibodies resulted in decreased cell motility with concomitant decrease in actin polymerization. Collectively, our study involves the application of a fractionation method of urinary proteins and as one main result of this analysis reveals the association of profilin 1 with BC paving the way for its further investigation in BC stratification.
Collapse
Affiliation(s)
- Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Lai A, Ghaffari A, Li Y, Ghahary A. Paracrine regulation of fibroblast aminopeptidase N/CD13 expression by keratinocyte-releasable stratifin. J Cell Physiol 2011; 226:3114-20. [PMID: 21302309 DOI: 10.1002/jcp.22666] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As wound healing proceeds into the tissue remodeling phase, cellular interactions become dominated by the interplay of keratinocytes with fibroblasts in the skin, which is largely mediated through paracrine signaling and greatly affects the molecular constitution of the extracellular matrix. We have recently identified aminopeptidase N (APN)/CD13 as a potential fibroblast receptor for 14-3-3 sigma (also known as stratifin), a keratinocyte-releasable protein with potent matrix metalloproteinase 1 (MMP1) stimulatory activity. The present study demonstrates that the expression of APN on dermal fibroblasts is regulated through paracrine signaling by keratinocyte-derived soluble factors. By using an in vitro keratinocyte-fibroblast co-culture system, we showed that APN expression in dermal fibroblasts is induced in the presence of keratinocytes or in response to keratinocyte-conditioned medium. Conditioned medium collected from differentiated keratinocytes further increases APN protein production, suggesting an amplified stimulatory effect by keratinocyte differentiation. Recombinant stratifin potently induces APN synthesis in a dose-dependent manner. A consistent correlation between the protein expression levels of APN and MMP1 was also observed. These results confirm paracrine regulation of APN expression in dermal fibroblasts by keratinocyte-derived stimuli, in particular stratifin, and provide evidence that APN may serve as a target in the regulation of MMP1 expression in epidermal-mesenchymal communication.
Collapse
Affiliation(s)
- Amy Lai
- BC Professional Fire Fighters' Burn and Wound Healing Laboratory, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
292
|
Wang L, Wang L, Gu Y, Shu Y, Shen Y, Xu Q. Integrin α6(high) cell population functions as an initiator in tumorigenesis and relapse of human liposarcoma. Mol Cancer Ther 2011; 10:2276-86. [PMID: 21980129 DOI: 10.1158/1535-7163.mct-11-0487] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relapse and resistance to chemo- and radiotherapy are main problems in the treatment of human liposarcoma. It is important to find a functional marker existing in the liposarcoma cells for targeting. In this article, we established a new sub-cell line SW872-S cells with high tumorigenicity from human liposarcoma SW872 cells by repeated inoculation approach. The characteristic of the sub-cell line is linked to the high levels of integrin α6 on the surface. The integrin α6(high) cells show much higher tumor initiation and self-renewal potential in vivo than integrin α6(low) cells do. Targeting integrin α6 with its specific short interfering RNA and antibody significantly inhibits the cell adhesion to laminin and the tumor growth in vitro and in vivo, respectively. Interestingly, integrin α6 marks almost all of the surgical biopsy specimens of patients with liposarcoma relapse. Moreover, integrin α6 is found to coexpress with CD13, which might contribute to the antiapoptosis ability of integrin α6(high) cells. Consistently, integrin α6(high) cells are more sensitive to the CD13 inhibitor bestatin, and 61% of 23 other human tumor cell lines also contain integrin α6(high) CD13(high) subgroup. These results provide evidence, for the first time, to our knowledge, that integrin α6 and CD13 can serve as functional markers of the tumor-initiation subcell population in human liposarcoma as well as other cancers for therapeutic targeting.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
293
|
Design, synthesis and biological evaluation of novel 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as aminopeptidase N/CD13 inhibitors. Bioorg Med Chem 2011; 19:6015-25. [DOI: 10.1016/j.bmc.2011.08.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
|
294
|
Maiereanu C, Schmitt C, Schifano-Faux N, Le Nouën D, Defoin A, Tarnus C. A novel amino-benzosuberone derivative is a picomolar inhibitor of mammalian aminopeptidase N/CD13. Bioorg Med Chem 2011; 19:5716-33. [DOI: 10.1016/j.bmc.2011.06.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/27/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
|
295
|
Arampatzidou M, Mayer K, Iolyeva ME, Asrat SG, Ravichandran M, Günther T, Schüle R, Reinheckel T, Brix K. Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biol Chem 2011; 392:983-93. [PMID: 21871011 DOI: 10.1515/bc.2011.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cathepsin B has been shown to not only reside within endo-lysosomes of intestinal epithelial cells, but it was also secreted into the extracellular space of intestinal mucosa in physiological and pathological conditions. In an effort to further investigate the function of this protease in the intestine, we generated a transgenic mouse model that would enable us to visualize the localization of cathepsin B in vivo. Previously we showed that the A33-antigen promoter could be successfully used in vitro in order to express cathepsin B-green fluorescent protein chimeras in cells that co-expressed the intestine-specific transcription factor Cdx1. In this study an analog approach was used to express chimeric cathepsin B specifically in the intestine of transgenic animals. No overt phenotype was observed for the transgenic mice that reproduced normally. Biochemical and morphological studies confirmed that the overall intestinal phenotype including the structure and polarity of this tissue as well as cell numbers and differentiation states were not altered in the A33-CathB-EGFP mice when compared to wild type animals. However, transgenic expression of chimeric cathepsin B could not be visualized because it was not translated in situ although the transgene was maintained over several generations.
Collapse
Affiliation(s)
- Maria Arampatzidou
- School of Engineering and Science, Research Center MOLIFE - Molecular Life Science, Jacobs University Bremen, Campus Ring 6, D-28759 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
LYP, a bestatin dimethylaminoethyl ester, inhibited cancer angiogenesis both in vitro and in vivo. Microvasc Res 2011; 82:122-30. [PMID: 21664364 DOI: 10.1016/j.mvr.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/12/2011] [Accepted: 05/25/2011] [Indexed: 11/22/2022]
Abstract
Our previous study revealed that LYP, a bestatin dimethylaminoethyl ester, inhibited the growth of human ovarian carcinoma ES-2 xenografts in mice and suppressed aminopeptidase N (APN/CD13) activity more potently than bestatin. In this study, we examined the inhibitory effect of LYP on migration and formation of capillary tube of human umbilical vascular endothelial cells (HUVECs) in vitro and anti-angiogenesis in ES-2 xenografts in mice. LYP did not possess cytotoxicity to HUVEC proliferation according to the MTT assay and trypan blue exclusion assay. However, APN/CD13 activity on cell surface of HUVECs was suppressed in the presence of LYP as measured by quantifying the enzymatic cleavage of the substrate l-leucine-p-nitroanilide. The assays of scratch and transwell chamber showed that LYP significantly inhibited HUVEC migration and invasion through Matrigel coated polycarbonate filters. Capillary tube formation assay revealed that the number of branch points formed by HUVECs on 3-D Matrigel was reduced after incubation with LYP. The anti-angiogenesis of LYP was verified in ES-2 xenografts in mice. The mean vascular density (MVD) and mean vascular luminal diameter (MVLD) were markedly reduced by LYP after two weeks of intravenous injection as evaluated by CD34 immunohistochemical staining. LYP suppression of cancer angiogenesis was greater than that of bestatin. The inhibition of angiogenic molecules may involve in anti-angiogenesis of LYP. The levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF-α) were decreased in HUVECs and ES-2 xenografts after treatment with LYP as determined by Western blot analysis. These results indicated that the high efficacy of LYP may partially relate to the inhibition of angiogenesis.
Collapse
|
297
|
Su L, Fang H, Xu W. Aminopeptidase N (EC 3.4.11.2) inhibitors (2006 - 2010): a patent review. Expert Opin Ther Pat 2011; 21:1241-65. [PMID: 21619485 DOI: 10.1517/13543776.2011.587002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aminopeptidase N (APN/CD13) acts as an exopeptidase and has been studied for decades. In recent years, it has been seen not only as a tumor-related target but also as a potential functional protein in various other physiological or pathological processes, such as analgesia, virus infection and inflammation. AREAS COVERED In this review, APN inhibitors in the patents publicized during 2006 - 2010 are introduced. Readers will gain information on the patent inhibitors, including chemical structures, original sources or synthetic methods, biological assays and application potential. EXPERT OPINION It is difficult to identify compounds that interact with the function not relevant with peptide-hydrolysis of APN in the enzyme activity assay, and such compounds have not been reported in the patents during the past 5 years. The progress of protein-small molecule interaction detecting means, such as surface plasmon resonance, will possibly help develop such compounds for the treatment of relevant diseases or new molecular probes in mechanism investigation.
Collapse
Affiliation(s)
- Li Su
- Shandong University, School of Pharmaceutical Sciences, Department of Medicinal Chemistry, Ji’nan, Shandong, PR China
| | | | | |
Collapse
|
298
|
Piedfer M, Dauzonne D, Tang R, N'Guyen J, Billard C, Bauvois B. Aminopeptidase-N/CD13 is a potential proapoptotic target in human myeloid tumor cells. FASEB J 2011; 25:2831-42. [PMID: 21566207 PMCID: PMC7163944 DOI: 10.1096/fj.11-181396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transmembrane metalloprotease aminopeptidase‐N (APN)/CD13 is overexpressed in various solid and hematological malignancies in humans, including acute myeloid leukemia (AML) and is thought to influence tumor progression. Here, we investigated the contribution of APN/CD13 to the regulation of growth and survival processes in AML cells in vitro. Anti‐CD13 monoclonal antibodies MY7 and SJ1D1 (which do not inhibit APN activity) and WM15 (an APN‐blocking antibody) inhibited the growth of the AML cell line U937 and induced apoptosis, as evidenced by cell accumulation in the sub‐G1 phase, DNA fragmentation, and phosphatidylserine externalization. Isotype‐matched IgG1 and the APN/CD13 enzymatic inhibitors bestatin and 2' ,3‐dinitroflavone‐8‐acetic acid, were ineffective. Internalization of CD13‐MY7 complex into cells was followed by mitochondrial membrane depolarization, Bcl‐2 and Mcl‐1 down‐regulation, Bax up‐regulation, caspase‐9, caspase‐8, and caspase‐3 activation, and cleavage of the caspase substrate PARP‐1. The broad‐spectrum caspase inhibitor Z‐VAD‐fmk and the caspase‐9‐ and caspase‐8‐specific inhibitors significantly attenuated apoptosis. CD13 ligation also induced apoptosis and PARP‐1 cleavage in primary AML blasts, whereas normal blood cells were not affected. Overall, these data provide new evidence that CD13 can serve as a target for inducing caspase‐dependent apoptosis in AML (independently of its APN activity). These findings may have implications for tumor biology and treatment.—Piedfer, M., Dauzonne, D., Tang, R., N'Guyen, J., Billard, C., Bauvois, B. Aminopeptidase‐N/CD13 is a potential proapoptotic target in human myeloid tumor cells. FASEB J. 25, 2831‐2842 (2011). http://www.fasebj.org
Collapse
Affiliation(s)
- Marion Piedfer
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM) U872, Paris, France
| | | | | | | | | | | |
Collapse
|
299
|
Roux L, Charrier C, Salomon E, Ilhan M, Bisseret P, Tarnus C. An innovative strategy for the synthesis of a new series of potent aminopeptidase (APN or CD13) inhibitors derived from the oxepin-4-one family. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
300
|
Peer WA. The role of multifunctional M1 metallopeptidases in cell cycle progression. ANNALS OF BOTANY 2011; 107:1171-81. [PMID: 21258033 PMCID: PMC3091800 DOI: 10.1093/aob/mcq265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Metallopeptidases of the M1 family are found in all phyla (except viruses) and are important in the cell cycle and normal growth and development. M1s often have spatiotemporal expression patterns which allow for strict regulation of activity. Mutations in the genes encoding M1s result in disease and are often lethal. This family of zinc metallopeptidases all share the catalytic region containing a signature amino acid exopeptidase (GXMXN) and a zinc binding (HEXXH[18X]E) motif. In addition, M1 aminopeptidases often also contain additional membrane association and/or protein interaction motifs. These protein interaction domains may function independently of M1 enzymatic activity and can contribute to multifunctionality of the proteins. SCOPE A brief review of M1 metalloproteases in plants and animals and their roles in the cell cycle is presented. In animals, human puromycin-sensitive aminopeptidase (PSA) acts during mitosis and perhaps meiosis, while the insect homologue puromycin-sensitive aminopeptidase (PAM-1) is required for meiotic and mitotic exit; the remaining human M1 family members appear to play a direct or indirect role in mitosis/cell proliferation. In plants, meiotic prophase aminopeptidase 1 (MPA1) is essential for the first steps in meiosis, and aminopeptidase M1 (APM1) appears to be important in mitosis and cell division. CONCLUSIONS M1 metalloprotease activity in the cell cycle is conserved across phyla. The activities of the multifunctional M1s, processing small peptides and peptide hormones and contributing to protein trafficking and signal transduction processes, either directly or indirectly impact on the cell cycle. Identification of peptide substrates and interacting protein partners is required to understand M1 function in fertility and normal growth and development in plants.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture and Landscape Architecture, 625 Agriculture Mall Drive, Purdue University, West Lafayette, IN 47907 USA.
| |
Collapse
|