251
|
Debska-Vielhaber G, Miller I, Peeva V, Zuschratter W, Walczak J, Schreiber S, Petri S, Machts J, Vogt S, Szczepanowska J, Gellerich FN, Hermann A, Vielhaber S, Kunz WS. Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Exp Neurol 2021; 339:113620. [PMID: 33497646 DOI: 10.1016/j.expneurol.2021.113620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive, neurodegenerative disorder affecting upper and lower motor neurons. Approximately 10% of patients suffer from familial ALS (FALS) with mutations in different ubiquitously expressed genes including SOD1, C9ORF72, TARDBP, and FUS. There is compelling evidence for mitochondrial involvement in the pathogenic mechanisms of FALS and sporadic ALS (SALS), which is believed to be relevant for disease. Owing to the ubiquitous expression of relevant disease-associated genes, mitochondrial dysfunction is also detectable in peripheral patient tissue. We here report results of a detailed investigation of the functional impairment of mitochondrial oxidative phosphorylation (OXPHOS) in cultured skin fibroblasts from 23 SALS and 17 FALS patients, harboring pathogenic mutations in SOD1, C9ORF72, TARDBP and FUS. A considerable functional and structural mitochondrial impairment was detectable in fibroblasts from patients with SALS. Similarly, fibroblasts from patients with FALS, harboring pathogenic mutations in TARDBP, FUS and SOD1, showed mitochondrial defects, while fibroblasts from C9ORF72 associated FALS showed a very mild impairment detectable in mitochondrial ATP production rates only. While we could not detect alterations in the mtDNA copy number in the SALS or FALS fibroblast cultures, the impairment of OXPHOS in SALS fibroblasts and SOD1 or TARDBP FALS could be rescued by in vitro treatments with CoQ10 (5 μM for 3 weeks) or Trolox (300 μM for 5 days). This underlines the role of elevated oxidative stress as a potential cause for the observed functional effects on mitochondria, which might be relevant disease modifying factors.
Collapse
Affiliation(s)
- Grazyna Debska-Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Irina Miller
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Neurosurgery, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Werner Zuschratter
- Leibniz Institute for Neurobiology, Laboratory for Electron- and Laserscanning- Microscopy, Brenneckestr.6, 39118 Magdeburg, Germany
| | - Jaroslaw Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland; Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego St, 02-106 Warsaw, Poland
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Judith Machts
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany
| | - Susanne Vogt
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St, 02-993 Warsaw, Poland
| | - Frank N Gellerich
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neurosciences Rostock (CTNR), University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; German Centre for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str.44, 39120 Magdeburg, Germany.
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
252
|
Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E, Elinav E, Barker LA, Shaw PJ, McDermott CJ. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 2021; 19:13. [PMID: 33468103 PMCID: PMC7816375 DOI: 10.1186/s12916-020-01885-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome in health and disease with a number of studies linking abnormalities to ALS. MAIN BODY The microbiome refers to the genes belonging to the myriad different microorganisms that live within and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial communities of these groups. The current body of knowledge will be summarised in this review. Advances in microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation and indirect effects on bioavailability of nutrients and even medications. CONCLUSION Profiling of the gut microbiome has the potential to add an environmental component to rapidly advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease. Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial importance.
Collapse
Affiliation(s)
- Sarah L Boddy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, USA
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Sheffield Hallam University, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
253
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
254
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
255
|
Madruga E, Maestro I, Martínez A. Mitophagy Modulation, a New Player in the Race against ALS. Int J Mol Sci 2021; 22:ijms22020740. [PMID: 33450997 PMCID: PMC7828440 DOI: 10.3390/ijms22020740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that usually results in respiratory paralysis in an interval of 2 to 4 years. ALS shows a multifactorial pathogenesis with an unknown etiology, and currently lacks an effective treatment. The vast majority of patients exhibit protein aggregation and a dysfunctional mitochondrial accumulation in their motoneurons. As a result, autophagy and mitophagy modulators may be interesting drug candidates that mitigate key pathological hallmarks of the disease. This work reviews the most relevant evidence that correlate mitophagy defects and ALS, and discusses the possibility of considering mitophagy as an interesting target in the search for an effective treatment for ALS.
Collapse
Affiliation(s)
- Enrique Madruga
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Inés Maestro
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.M.); (I.M.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: ; Tel.: +34-918373112
| |
Collapse
|
256
|
Mitochondrial Dysfunction in Alzheimer's Disease: A Biomarker of the Future? Biomedicines 2021; 9:biomedicines9010063. [PMID: 33440662 PMCID: PMC7827030 DOI: 10.3390/biomedicines9010063] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and is characterised pathologically by the accumulation of amyloid beta and tau protein aggregates. Currently, there are no approved disease modifying therapies for clearance of either of these proteins from the brain of people with AD. As well as abnormalities in protein aggregation, other pathological changes are seen in this condition. The function of mitochondria in both the nervous system and rest of the body is altered early in this disease, and both amyloid and tau have detrimental effects on mitochondrial function. In this review article, we describe how the function and structure of mitochondria change in AD. This review summarises current imaging techniques that use surrogate markers of mitochondrial function in both research and clinical practice, but also how mitochondrial functions such as ATP production, calcium homeostasis, mitophagy and reactive oxygen species production are affected in AD mitochondria. The evidence reviewed suggests that the measurement of mitochondrial function may be developed into a future biomarker for early AD. Further work with larger cohorts of patients is needed before mitochondrial functional biomarkers are ready for clinical use.
Collapse
|
257
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
258
|
Santana-Codina N, Gikandi A, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:41-57. [PMID: 34370287 DOI: 10.1007/978-3-030-62026-4_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor coactivator 4 (NCOA4) is a selective cargo receptor that mediates the autophagic degradation of ferritin, the cytosolic iron storage complex, in a process known as ferritinophagy. NCOA4-mediated ferritinophagy is required to maintain intracellular and systemic iron homeostasis and thereby iron-dependent physiologic processes such as erythropoiesis. Given this role of ferritinophagy in regulating iron homeostasis, modulating NCOA4-mediated ferritinophagic flux alters sensitivity to ferroptosis, a non-apoptotic iron-dependent form of cell death triggered by peroxidation of polyunsaturated fatty acids (PUFAs). A role for ferroptosis has been established in the pathophysiology of cancer and neurodegeneration; however, the importance of ferritinophagy in these pathologies remains largely unknown. Here, we review the available evidence on biochemical regulation of NCOA4-mediated ferritinophagy and its role in modulating sensitivity to innate and induced ferroptosis in neurodegenerative diseases and cancer. Finally, we evaluate the potential of modulating ferritinophagy in combination with ferroptosis inducers as a therapeutic strategy.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
259
|
Altman T, Perlson E. Neuromuscular junction mitochondrial enrichment: a "double-edged sword" underlying the selective motor neuron vulnerability in amyotrophic lateral sclerosis. Neural Regen Res 2021; 16:115-116. [PMID: 32788460 PMCID: PMC7818885 DOI: 10.4103/1673-5374.286964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
260
|
Swerdlow NS, Wilkins HM. Mitophagy and the Brain. Int J Mol Sci 2020; 21:ijms21249661. [PMID: 33352896 PMCID: PMC7765816 DOI: 10.3390/ijms21249661] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Stress mechanisms have long been associated with neuronal loss and neurodegenerative diseases. The origin of cell stress and neuronal loss likely stems from multiple pathways. These include (but are not limited to) bioenergetic failure, neuroinflammation, and loss of proteostasis. Cells have adapted compensatory mechanisms to overcome stress and circumvent death. One mechanism is mitophagy. Mitophagy is a form of macroautophagy, were mitochondria and their contents are ubiquitinated, engulfed, and removed through lysosome degradation. Recent studies have implicated mitophagy dysregulation in several neurodegenerative diseases and clinical trials are underway which target mitophagy pathways. Here we review mitophagy pathways, the role of mitophagy in neurodegeneration, potential therapeutics, and the need for further study.
Collapse
Affiliation(s)
- Natalie S. Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Center, University of Kansas, Kansas City, KS 66160, USA;
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence:
| |
Collapse
|
261
|
c-Jun N-terminal Kinase Mediates Ligand-independent p75 NTR Signaling in Mesencephalic Cells Subjected to Oxidative Stress. Neuroscience 2020; 453:222-236. [PMID: 33253821 DOI: 10.1016/j.neuroscience.2020.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/01/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) is a multifunctional protein that regulates cellular responses to pathological conditions in specific regions of the nervous system. Activation of p75NTR in certain neuronal populations induces proteolytic processing of the receptor, thereby generating p75NTR fragments that facilitate downstream signaling. Expression of p75NTR has been reported in neurons of the ventral midbrain, but p75NTR signaling mechanisms in such cells are poorly understood. Here, we used Lund Human Mesencephalic cells, a population of neuronal cells derived from the ventral mesencephalon, to evaluate the effects of oxidative stress on p75NTR signaling. Subjection of the cells to oxidative stress resulted in decreased cell-surface localization of p75NTR and intracellular accumulation of p75NTR fragments. Oxidative stress-induced p75NTR processing was reduced by pharmacological inhibition of metalloproteases or γ-secretase, but was unaltered by blockade of the ligand-binding domain of p75NTR. Furthermore, inhibition of c-Jun N-terminal Kinase (JNK) decreased p75NTR cleavage induced by oxidative damage. Altogether, these results support a mechanism of p75NTR activation in which oxidative stress stimulates JNK signaling, thereby facilitating p75NTR processing via a ligand-independent mechanism involving induction of metalloprotease and γ-secretase activity. These findings reveal a novel role for JNK in ligand-independent p75NTR signaling, and, considering the susceptibility of mesencephalic neurons to oxidative damage associated with Parkinson's disease (PD), merit further investigation into the effects of p75NTR on PD-related neurodegeneration.
Collapse
|
262
|
Xu Z, Jiang J, Xu S, Xie Z, He P, Jiang S, Xu R. Nerve Growth Factor is a Potential Treated Target in Tg(SOD1*G93A)1Gur Mice. Cell Mol Neurobiol 2020; 42:1035-1046. [PMID: 33236288 DOI: 10.1007/s10571-020-00993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Nerve growth factor (NGF) is a protective factor of neural cells; the possible relationship between the NGF and the pathogenesis of amyotrophic lateral sclerosis (ALS) hasn't been completely known. In this study, we observed and analyzed the expression and distribution of NGF, as well as the possible relationship between the NGF expression and distribution and the neural cell death in both SOD1 wild-type (WT) and Tg(SOD1*G93A)1Gur (TG) mice applying the fluorescence immunohistochemistry method. The results showed that the expression and distribution of NGF in the anterior horn (AH), the lateral horn (LH), and the surrounding central canal (CC) significantly increased at the supper early stage of ALS (Pre-onset stage) and the early stage (Onset stage), but the NGF expression and distribution in the AH, the LH, and the surrounding CC significantly reduced at the progression stage. The astrocyte, neuron, and oligodendrocyte produced the NGF and the neural precursor cells (NPCs) produced the NGF. The neural cell death gradually increased accompanying with the reduction of NGF expression and distribution. Our data suggested that the NGF was a protective factor of neural cells, because the neural cells in the AH, the LH, and the surrounding CC produced more NGF at the supper early and early stage of ALS; moreover, the NPCs produced the NGF. It implied that the NGF exerted the protective effect of neural cells, prevented from the neural cell death and aroused the potential of self-repair in the development of ALS.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianxiang Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengyuan Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zunchun Xie
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Pei He
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
263
|
Nakagawa Y, Yamada S. A novel hypothesis on metal dyshomeostasis and mitochondrial dysfunction in amyotrophic lateral sclerosis: Potential pathogenetic mechanism and therapeutic implications. Eur J Pharmacol 2020; 892:173737. [PMID: 33220280 DOI: 10.1016/j.ejphar.2020.173737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by motor dysfunctions resulting from the loss of upper (UMNs) and lower (LMNs) motor neurons. While ALS symptoms are coincidental with pathological changes in LMNs and UMNs, the causal relationship between the two is unclear. For example, research on the extra-motor symptoms associated with this condition suggests that an imbalance of metals, including copper, zinc, iron, and manganese, is initially induced in the sensory ganglia due to a malfunction of metal binding proteins and transporters. It is proposed that the resultant metal dyshomeostasis may promote mitochondrial dysfunction in the satellite glial cells of these sensory ganglia, causing sensory neuron disturbances and sensory symptoms. Sensory neuron hyperactivation can result in LMN impairments, while metal dyshomeostasis in spinal cord and brain stem parenchyma induces mitochondrial dysfunction in LMNs and UMNs. These events could prompt intracellular calcium dyshomeostasis, pathological TDP-43 formation, and reactive microglia with neuroinflammation, which in turn activate the apoptosis signaling pathways within the LMNs and UMNs. Our model suggests that the degeneration of LMNs and UMNs is incidental to the metal-induced changes in the spinal cord and brain stem. Over time psychiatric symptoms may appear as the metal dyshomeostasis and mitochondrial dysfunction affect other brain regions, including the reticular formation, hippocampus, and prefrontal cortex. It is proposed that metal dyshomeostasis in combination with mitochondrial dysfunction could be the underlying mechanism responsible for the initiation and progression of the pathological changes associated with both the motor and extra-motor symptoms of ALS.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
264
|
Dudman J, Qi X. Stress Granule Dysregulation in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2020; 14:598517. [PMID: 33281563 PMCID: PMC7705167 DOI: 10.3389/fncel.2020.598517] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with no current cure. ALS causes degeneration of both upper and lower motor neurons leading to atrophy of the innervating muscles and progressive paralysis. The exact mechanism of the pathology of ALS is unknown. However, 147 genes have been identified that are causative, associated with, or modify disease progression. While the causative mechanism is unknown, a number of pathological processes have been associated with ALS. These include mitochondrial dysfunction, protein accumulation, and defects in RNA metabolism. RNA metabolism is a complicated process that is regulated by many different RNA-binding proteins (RBPs). A small defect in RNA metabolism can produce results as dramatic as determining cell survival. Stress granules (SGs) control RNA translation during stressed conditions. This is a protective reaction, but in conditions of chronic stress can become pathogenic. SGs are even hypothesized to act as a seeding mechanism for the pathological aggregation of proteins seen in many neurodegenerative diseases, including TAR DNA-binding protein 43 (TDP-43) in ALS. In this review, we will be summarizing the current findings of SG pathology in ALS. We also focus on the role of SG dysregulation in protein aggregate formation and mitochondrial dysfunction. In addition, we outline therapeutic strategies that target SG components in ALS.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
265
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
266
|
Castellanos-Montiel MJ, Chaineau M, Durcan TM. The Neglected Genes of ALS: Cytoskeletal Dynamics Impact Synaptic Degeneration in ALS. Front Cell Neurosci 2020; 14:594975. [PMID: 33281562 PMCID: PMC7691654 DOI: 10.3389/fncel.2020.594975] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons (MNs) of the cortex, brainstem, and spinal cord. Several genes have been linked to both familial (fALS) and sporadic (sALS) cases of ALS. Among all the ALS-related genes, a group of genes known to directly affect cytoskeletal dynamics (ALS2, DCTN1, PFN1, KIF5A, NF-L, NF-H, PRPH, SPAST, and TUBA4A) is of high importance for MN health and survival, considering that MNs are large polarized cells with axons that can reach up to 1 m in length. In particular, cytoskeletal dynamics facilitate the transport of organelles and molecules across the long axonal distances within the cell, playing a key role in synapse maintenance. The majority of ALS-related genes affecting cytoskeletal dynamics were identified within the past two decades, making it a new area to explore for ALS. The purpose of this review is to provide insights into ALS-associated cytoskeletal genes and outline how recent studies have pointed towards novel pathways that might be impacted in ALS. Further studies making use of extensive analysis models to look for true hits, the newest technologies such as CRIPSR/Cas9, human induced pluripotent stem cells (iPSCs) and axon sequencing, as well as the development of more transgenic animal models could potentially help to: differentiate the variants that truly act as a primary cause of the disease from the ones that act as risk factors or disease modifiers, identify potential interactions between two or more ALS-related genes in disease onset and progression and increase our understanding of the molecular mechanisms leading to cytoskeletal defects. Altogether, this information will give us a hint on the real contribution of the cytoskeletal ALS-related genes during this lethal disease.
Collapse
Affiliation(s)
| | - Mathilde Chaineau
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
267
|
Haigh JL, New LE, Filippi BM. Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and Whole-Body Metabolism. Front Endocrinol (Lausanne) 2020; 11:580879. [PMID: 33240218 PMCID: PMC7680879 DOI: 10.3389/fendo.2020.580879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The brain is responsible for maintaining whole-body energy homeostasis by changing energy input and availability. The hypothalamus and dorsal vagal complex (DVC) are the primary sites of metabolic control, able to sense both hormones and nutrients and adapt metabolism accordingly. The mitochondria respond to the level of nutrient availability by fusion or fission to maintain energy homeostasis; however, these processes can be disrupted by metabolic diseases including obesity and type II diabetes (T2D). Mitochondrial dynamics are crucial in the development and maintenance of obesity and T2D, playing a role in the control of glucose homeostasis and whole-body metabolism across neurons and glia in the hypothalamus and DVC.
Collapse
Affiliation(s)
| | | | - Beatrice M. Filippi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
268
|
Amin A, Perera ND, Beart PM, Turner BJ, Shabanpoor F. Amyotrophic Lateral Sclerosis and Autophagy: Dysfunction and Therapeutic Targeting. Cells 2020; 9:E2413. [PMID: 33158177 PMCID: PMC7694295 DOI: 10.3390/cells9112413] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 20 years, there has been a drastically increased understanding of the genetic basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved intracellular "clearance" system delivering misfolded proteins, aggregates, and damaged organelles to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been examined or are being developed as potential treatments for ALS to date, and discuss potential therapeutic strategies for targeting autophagy in ALS.
Collapse
Affiliation(s)
| | | | | | | | - Fazel Shabanpoor
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia; (A.A.); (N.D.P.); (P.M.B.); (B.J.T.)
| |
Collapse
|
269
|
Choi SY, Lee JH, Chung AY, Jo Y, Shin JH, Park HC, Kim H, Lopez-Gonzalez R, Ryu JR, Sun W. Prevention of mitochondrial impairment by inhibition of protein phosphatase 1 activity in amyotrophic lateral sclerosis. Cell Death Dis 2020; 11:888. [PMID: 33087694 PMCID: PMC7578657 DOI: 10.1038/s41419-020-03102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by progressive loss of motor neurons (MNs) and subsequent muscle weakness. These pathological features are associated with numerous cellular changes, including alteration in mitochondrial morphology and function. However, the molecular mechanisms associating mitochondrial structure with ALS pathology are poorly understood. In this study, we found that Dynamin-related protein 1 (Drp1) was dephosphorylated in several ALS models, including those with SOD1 and TDP-43 mutations, and the dephosphorylation was mediated by the pathological induction of protein phosphatase 1 (PP1) activity in these models. Suppression of the PP1-Drp1 cascade effectively prevented ALS-related symptoms, including mitochondrial fragmentation, mitochondrial complex I impairment, axonal degeneration, and cell death, in primary neuronal culture models, iPSC-derived human MNs, and zebrafish models in vivo. These results suggest that modulation of PP1-Drp1 activity may be a therapeutic target for multiple pathological features of ALS.
Collapse
Affiliation(s)
- So Yoen Choi
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
- Department of Neurology, University of Massachusetts Medical school, Worcester, MA, USA
| | - Ju-Hyun Lee
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Ah-Young Chung
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Youhwa Jo
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Joo-Ho Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido, Republic of Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | | | - Jae Ryun Ryu
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21 plus, Seoul, 02841, Republic of Korea.
| |
Collapse
|
270
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
271
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
272
|
Polverino A, Rucco R, Stillitano I, Bonavita S, Grimaldi M, Minino R, Pesoli M, Trojsi F, D'Ursi AM, Sorrentino G, Sorrentino P. In Amyotrophic Lateral Sclerosis Blood Cytokines Are Altered, but Do Not Correlate with Changes in Brain Topology. Brain Connect 2020; 10:411-421. [PMID: 32731760 DOI: 10.1089/brain.2020.0741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: The present study aims at investigating the possible correlation between peripheral markers of inflammation and brain networks. Introduction: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease dominated by progressive motor impairment. Among the complex mechanisms contributing to the pathogenesis of the disease, neuroinflammation, which is associated with altered circulating cytokine levels, is suggested to play a prominent role. Methods: Based on magnetoencephalography data, we estimated topological properties of the brain networks in ALS patients and healthy controls. Subsequently, the blood levels of a subset of cytokines were assayed. Finally, we modeled the brain topological features in the function of the cytokine levels. Results: Significant differences were found in the levels of the cytokines interleukin (IL)-4, IL-1β, and interferon-gamma (IFN-γ) between patients and controls. In particular, IL-4 and IL-1β levels increased in ALS patients, while the IFN-γ level was higher in healthy controls. We also detected modifications in brain global topological parameters in terms of hyperconnectedness. Despite both blood cytokines and brain topology being altered in ALS patients, such changes do not appear to be in a direct relationship. Conclusion: Our results would be in line with the idea that topological changes relate to neurodegenerative processes. However, the absence of correlation between blood cytokines and topological parameters of brain networks does not preclude that inflammatory processes contribute to the alterations of the brain networks. Impact statement The progression of amyotrophic lateral sclerosis entails both neurodegenerative and inflammatory processes. Furthermore, disease progression induces global modifications of the brain networks, with advanced stages showing a more compact, hyperconnected network topology. The pathophysiological processes underlying topological changes are unknown. In this article, we hypothesized that the global inflammatory profile would relate to the topological alterations. Our results showed that this is not the case, as modeling the topological properties as a function of the inflammatory state did not yield good predictions. Hence, our results suggest that topological changes might directly relate to neurodegenerative processes instead.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Rosaria Rucco
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy.,Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | | | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Roberta Minino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | | - Giuseppe Sorrentino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy.,Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy.,Department of Engineering, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
273
|
Pakravan D, Orlando G, Bercier V, Van Den Bosch L. Role and therapeutic potential of liquid-liquid phase separation in amyotrophic lateral sclerosis. J Mol Cell Biol 2020; 13:15-28. [PMID: 32976566 PMCID: PMC8036000 DOI: 10.1093/jmcb/mjaa049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease selectively affecting motor neurons, leading to progressive paralysis. Although most cases are sporadic, ∼10% are familial. Similar proteins are found in aggregates in sporadic and familial ALS, and over the last decade, research has been focused on the underlying nature of this common pathology. Notably, TDP-43 inclusions are found in almost all ALS patients, while FUS inclusions have been reported in some familial ALS patients. Both TDP-43 and FUS possess ‘low-complexity domains’ (LCDs) and are considered as ‘intrinsically disordered proteins’, which form liquid droplets in vitro due to the weak interactions caused by the LCDs. Dysfunctional ‘liquid–liquid phase separation’ (LLPS) emerged as a new mechanism linking ALS-related proteins to pathogenesis. Here, we review the current state of knowledge on ALS-related gene products associated with a proteinopathy and discuss their status as LLPS proteins. In addition, we highlight the therapeutic potential of targeting LLPS for treating ALS.
Collapse
Affiliation(s)
- Donya Pakravan
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Gabriele Orlando
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- Correspondence to: Ludo Van Den Bosch, E-mail:
| |
Collapse
|
274
|
Obrador E, Salvador R, López-Blanch R, Jihad-Jebbar A, Vallés SL, Estrela JM. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2020; 9:E901. [PMID: 32971909 PMCID: PMC7555310 DOI: 10.3390/antiox9090901] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron (MN) disease. Its primary cause remains elusive, although a combination of different causal factors cannot be ruled out. There is no cure, and prognosis is poor. Most patients with ALS die due to disease-related complications, such as respiratory failure, within three years of diagnosis. While the underlying mechanisms are unclear, different cell types (microglia, astrocytes, macrophages and T cell subsets) appear to play key roles in the pathophysiology of the disease. Neuroinflammation and oxidative stress pave the way leading to neurodegeneration and MN death. ALS-associated mitochondrial dysfunction occurs at different levels, and these organelles are involved in the mechanism of MN death. Molecular and cellular interactions are presented here as a sequential cascade of events. Based on our present knowledge, the discussion leads to the idea that feasible therapeutic strategies should focus in interfering with the pathophysiology of the disease at different steps.
Collapse
Affiliation(s)
| | | | | | | | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 4601016 Valencia, Spain; (E.O.); (R.S.); (R.L.-B.); (A.J.-J.); (S.L.V.)
| |
Collapse
|
275
|
Tracey TJ, Kirk SE, Steyn FJ, Ngo ST. The role of lipids in the central nervous system and their pathological implications in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2020; 112:69-81. [PMID: 32962914 DOI: 10.1016/j.semcdb.2020.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Lipids play an important role in the central nervous system (CNS). They contribute to the structural integrity and physical characteristics of cell and organelle membranes, act as bioactive signalling molecules, and are utilised as fuel sources for mitochondrial metabolism. The intricate homeostatic mechanisms underpinning lipid handling and metabolism across two major CNS cell types; neurons and astrocytes, are integral for cellular health and maintenance. Here, we explore the various roles of lipids in these two cell types. Given that changes in lipid metabolism have been identified in a number of neurodegenerative diseases, we also discuss changes in lipid handling and utilisation in the context of amyotrophic lateral sclerosis (ALS), in order to identify key cellular processes affected by the disease, and inform future areas of research.
Collapse
Affiliation(s)
- T J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
| | - S E Kirk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - S T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia; Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
276
|
Floare ML, Allen SP. Why TDP-43? Why Not? Mechanisms of Metabolic Dysfunction in Amyotrophic Lateral Sclerosis. Neurosci Insights 2020; 15:2633105520957302. [PMID: 32995749 PMCID: PMC7503004 DOI: 10.1177/2633105520957302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder for which there is no effective curative treatment available and minimal palliative care. Mutations in the gene encoding the TAR DNA-binding protein 43 (TDP-43) are a well-recognized genetic cause of ALS, and an imbalance in energy homeostasis correlates closely to disease susceptibility and progression. Considering previous research supporting a plethora of downstream cellular impairments originating in the histopathological signature of TDP-43, and the solid evidence around metabolic dysfunction in ALS, a causal association between TDP-43 pathology and metabolic dysfunction cannot be ruled out. Here we discuss how TDP-43 contributes on a molecular level to these impairments in energy homeostasis, and whether the protein's pathological effects on cellular metabolism differ from those of other genetic risk factors associated with ALS such as superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9orf72) and fused in sarcoma (FUS).
Collapse
Affiliation(s)
- Mara-Luciana Floare
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P. Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
277
|
PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9090861. [PMID: 32937849 PMCID: PMC7554831 DOI: 10.3390/antiox9090861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress based on mitochondrial dysfunction is assumed to be the principal molecular mechanism for the pathogenesis of many neurodegenerative disorders. However, the effects of oxidative stress on the neurodegeneration process in living patients remain to be elucidated. Molecular imaging with positron emission tomography (PET) can directly evaluate subtle biological changes, including the redox status. The present review focuses on recent advances in PET imaging for oxidative stress, in particular the use of the Cu-ATSM radioligand, in neurodegenerative disorders associated with mitochondrial dysfunction. Since reactive oxygen species are mostly generated by leakage of excess electrons from an over-reductive state due to mitochondrial respiratory chain impairment, PET with 62Cu-ATSM, the accumulation of which depends on an over-reductive state, is able to image oxidative stress. 62Cu-ATSM PET studies demonstrated enhanced oxidative stress in the disease-related brain regions of patients with mitochondrial disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the magnitude of oxidative stress increased with disease severity, indicating that oxidative stress based on mitochondrial dysfunction contributes to promoting neurodegeneration in these diseases. Oxidative stress imaging has improved our insights into the pathological mechanisms of neurodegenerative disorders, and is a promising tool for monitoring further antioxidant therapies.
Collapse
|
278
|
Stoccoro A, Smith AR, Mosca L, Marocchi A, Gerardi F, Lunetta C, Cereda C, Gagliardi S, Lunnon K, Migliore L, Coppedè F. Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis. Clin Epigenetics 2020; 12:137. [PMID: 32917270 PMCID: PMC7488473 DOI: 10.1186/s13148-020-00933-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial dysregulation and aberrant epigenetic mechanisms have been frequently reported in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and several researchers suggested that epigenetic dysregulation in mitochondrial DNA (mtDNA) could contribute to the neurodegenerative process. We recently screened families with mutations in the major ALS causative genes, namely C9orf72, SOD1, FUS, and TARDBP, observing reduced methylation levels of the mtDNA regulatory region (D-loop) only in peripheral lymphocytes of SOD1 carriers. However, until now no studies investigated the potential role of mtDNA methylation impairment in the sporadic form of ALS, which accounts for the majority of disease cases. The aim of the current study was to investigate the D-loop methylation levels and the mtDNA copy number in sporadic ALS patients and compare them to those observed in healthy controls and in familial ALS patients. Pyrosequencing analysis of D-loop methylation levels and quantitative analysis of mtDNA copy number were performed in peripheral white blood cells from 36 sporadic ALS patients, 51 age- and sex-matched controls, and 27 familial ALS patients with germinal mutations in SOD1 or C9orf72 that represent the major familial ALS forms. Results In the total sample, D-loop methylation levels were significantly lower in ALS patients compared to controls, and a significant inverse correlation between D-loop methylation levels and the mtDNA copy number was observed. Stratification of ALS patients into different subtypes revealed that both SOD1-mutant and sporadic ALS patients showed lower D-loop methylation levels compared to controls, while C9orf72-ALS patients showed similar D-loop methylation levels than controls. In healthy controls, but not in ALS patients, D-loop methylation levels decreased with increasing age at sampling and were higher in males compared to females. Conclusions Present data reveal altered D-loop methylation levels in sporadic ALS and confirm previous evidence of an inverse correlation between D-loop methylation levels and the mtDNA copy number, as well as differences among the major familial ALS subtypes. Overall, present results suggest that D-loop methylation and mitochondrial replication are strictly related to each other and could represent compensatory mechanisms to counteract mitochondrial impairment in sporadic and SOD1-related ALS forms.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Adam R Smith
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Marocchi
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Katie Lunnon
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
279
|
Decreased Mitochondrial Function, Biogenesis, and Degradation in Peripheral Blood Mononuclear Cells from Amyotrophic Lateral Sclerosis Patients as a Potential Tool for Biomarker Research. Mol Neurobiol 2020; 57:5084-5102. [PMID: 32840822 PMCID: PMC7541388 DOI: 10.1007/s12035-020-02059-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a multifactorial and progressive neurodegenerative disease of unknown etiology. Due to ALS’s unpredictable onset and progression rate, the search for biomarkers that allow the detection and tracking of its development and therapeutic efficacy would be of significant medical value. Considering that alterations of energy supply are one of ALS’s main hallmarks and that a correlation has been established between gene expression in human brain tissue and peripheral blood mononuclear cells (PBMCs), the present work investigates whether changes in mitochondrial function could be used to monitor ALS. To achieve this goal, PBMCs from ALS patients and control subjects were used; blood sampling is a quite non-invasive method and is cost-effective. Different parameters were evaluated, namely cytosolic calcium levels, mitochondrial membrane potential, oxidative stress, and metabolic compounds levels, as well as mitochondrial dynamics and degradation. Altogether, we observed lower mitochondrial calcium uptake/retention, mitochondria depolarization, and redox homeostasis deregulation, in addition to a decrease in critical metabolic genes, a diminishment in mitochondrial biogenesis, and an augmentation in mitochondrial fission and autophagy-related gene expression. All of these changes can contribute to the decreased ATP and pyruvate levels observed in ALS PBMCs. Our data indicate that PBMCs from ALS patients show a significant mitochondrial dysfunction, resembling several findings from ALS’ neural cells/models, which could be exploited as a powerful tool in ALS research. Our findings can also guide future studies on new pharmacological interventions for ALS since assessments of brain samples are challenging and represent a relevant limited strategy. Graphical abstract ![]()
Collapse
|
280
|
Yalgin C, Rovenko B, Andjelković A, Neefjes M, Oymak B, Dufour E, Hietakangas V, Jacobs HT. Effects on Dopaminergic Neurons Are Secondary in COX-Deficient Locomotor Dysfunction in Drosophila. iScience 2020; 23:101362. [PMID: 32738610 PMCID: PMC7394922 DOI: 10.1016/j.isci.2020.101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic (DA) neurons have been implicated as key targets in neurological disorders, notably those involving locomotor impairment, and are considered to be highly vulnerable to mitochondrial dysfunction, a common feature of such diseases. Here we investigated a Drosophila model of locomotor disorders in which functional impairment is brought about by pan-neuronal RNAi knockdown of subunit COX7A of cytochrome oxidase (COX). Despite minimal neuronal loss by apoptosis, the expression and activity of tyrosine hydroxylase was decreased by half. Surprisingly, COX7A knockdown specifically targeted to DA neurons did not produce locomotor defect. Instead, using various drivers, we found that COX7A knockdown in specific groups of cholinergic and glutamatergic neurons underlay the phenotype. Based on our main finding, the vulnerability of DA neurons to mitochondrial dysfunction as a cause of impaired locomotion in other organisms, including mammals, warrants detailed investigation.
Collapse
Affiliation(s)
- Cagri Yalgin
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bohdana Rovenko
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Ana Andjelković
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Margot Neefjes
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Burak Oymak
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland.
| |
Collapse
|
281
|
Calió ML, Henriques E, Siena A, Bertoncini CRA, Gil-Mohapel J, Rosenstock TR. Mitochondrial Dysfunction, Neurogenesis, and Epigenetics: Putative Implications for Amyotrophic Lateral Sclerosis Neurodegeneration and Treatment. Front Neurosci 2020; 14:679. [PMID: 32760239 PMCID: PMC7373761 DOI: 10.3389/fnins.2020.00679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.
Collapse
Affiliation(s)
| | - Elisandra Henriques
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Amanda Siena
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Clélia Rejane Antonio Bertoncini
- CEDEME, Center of Development of Experimental Models for Medicine and Biology, Federal University of São Paulo, São Paulo, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, Faculty of Medicine, University of Victoria and Island Medical Program, University of British Columbia, Victoria, BC, Canada
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| |
Collapse
|
282
|
Wobst HJ, Mack KL, Brown DG, Brandon NJ, Shorter J. The clinical trial landscape in amyotrophic lateral sclerosis-Past, present, and future. Med Res Rev 2020; 40:1352-1384. [PMID: 32043626 PMCID: PMC7417284 DOI: 10.1002/med.21661] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by progressive loss of muscle function. It is the most common adult-onset form of motor neuron disease, affecting about 16 000 people in the United States alone. The average survival is about 3 years. Only two interventional drugs, the antiglutamatergic small-molecule riluzole and the more recent antioxidant edaravone, have been approved for the treatment of ALS to date. Therapeutic strategies under investigation in clinical trials cover a range of different modalities and targets, and more than 70 different drugs have been tested in the clinic to date. Here, we summarize and classify interventional therapeutic strategies based on their molecular targets and phenotypic effects. We also discuss possible reasons for the failure of clinical trials in ALS and highlight emerging preclinical strategies that could provide a breakthrough in the battle against this relentless disease.
Collapse
Affiliation(s)
- Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Korrie L Mack
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Merck & Co, Inc, Kenilworth, New Jersey
| | - Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
283
|
Bean DM, Al-Chalabi A, Dobson RJB, Iacoangeli A. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Genes (Basel) 2020; 11:E668. [PMID: 32575372 PMCID: PMC7349022 DOI: 10.3390/genes11060668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease of the upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two to five years of first symptoms. Several rare disruptive gene variants have been associated with ALS and are responsible for about 15% of all cases. Although our knowledge of the genetic landscape of this disease is improving, it remains limited. Machine learning models trained on the available protein-protein interaction and phenotype-genotype association data can use our current knowledge of the disease genetics for the prediction of novel candidate genes. Here, we describe a knowledge-based machine learning method for this purpose. We trained our model on protein-protein interaction data from IntAct, gene function annotation from Gene Ontology, and known disease-gene associations from DisGeNet. Using several sets of known ALS genes from public databases and a manual review as input, we generated a list of new candidate genes for each input set. We investigated the relevance of the predicted genes in ALS by using the available summary statistics from the largest ALS genome-wide association study and by performing functional and phenotype enrichment analysis. The predicted sets were enriched for genes associated with other neurodegenerative diseases known to overlap with ALS genetically and phenotypically, as well as for biological processes associated with the disease. Moreover, using ALS genes from ClinVar and our manual review as input, the predicted sets were enriched for ALS-associated genes (ClinVar p = 0.038 and manual review p = 0.060) when used for gene prioritisation in a genome-wide association study.
Collapse
Affiliation(s)
- Daniel M. Bean
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Ammar Al-Chalabi
- King′s College Hospital, Bessemer Road, Denmark Hill, Brixton, London SE5 9RS, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| | - Richard J. B. Dobson
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Health Data Research UK London, University College London, 16 De Crespigny Park, London SE5 8AF, UK
- Institute of Health Informatics, University College London, 222 Euston Rd, London NW1 2DA, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics & Health Informatics, King′s College London, 16 De Crespigny Park, London SE5 8AF, UK;
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King′s College London, London, 5 Cutcombe Rd, Brixton, London SE5 9RT, UK
| |
Collapse
|
284
|
Ruiz-Ruiz C, Calzaferri F, García AG. P2X7 Receptor Antagonism as a Potential Therapy in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:93. [PMID: 32595451 PMCID: PMC7303288 DOI: 10.3389/fnmol.2020.00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the purinergic ionotropic receptor P2X7 (P2X7R) as a potential target for developing drugs that delay the onset and/or disease progression in patients with amyotrophic lateral sclerosis (ALS). Description of clinical and genetic ALS features is followed by an analysis of advantages and drawbacks of transgenic mouse models of disease based on mutations in a bunch of proteins, particularly Cu/Zn superoxide dismutase (SOD1), TAR-DNA binding protein-43 (TDP-43), Fused in Sarcoma/Translocated in Sarcoma (FUS), and Chromosome 9 open reading frame 72 (C9orf72). Though of limited value, these models are however critical to study the proof of concept of new compounds, before reaching clinical trials. The authors also provide a description of ALS pathogenesis including protein aggregation, calcium-dependent excitotoxicity, dysfunction of calcium-binding proteins, ultrastructural mitochondrial alterations, disruption of mitochondrial calcium handling, and overproduction of reactive oxygen species (ROS). Understanding disease pathogenic pathways may ease the identification of new drug targets. Subsequently, neuroinflammation linked with P2X7Rs in ALS pathogenesis is described in order to understand the rationale of placing the use of P2X7R antagonists as a new therapeutic pharmacological approach to ALS. This is the basis for the hypothesis that a P2X7R blocker could mitigate the neuroinflammatory state, indirectly leading to neuroprotection and higher motoneuron survival in ALS patients.
Collapse
Affiliation(s)
- Cristina Ruiz-Ruiz
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesco Calzaferri
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
285
|
Mehrpour S, Rodrigues CR, Ferreira RC, Briones MRDS, Oliveira ASB. Hardy-Weinberg Equilibrium in different mitochondrial haplogroups of four genes associated with neuroprotection and neurodegeneration. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:269-276. [PMID: 32490968 DOI: 10.1590/0004-282x20200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Malfunctioning or damaged mitochondria result in altered energy metabolism, redox equilibrium, and cellular dynamics and is a central point in the pathogenesis of neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis. Therefore, it is of utmost importance to identify mitochondrial genetic susceptibility markers for neurodegenerative diseases. Potential markers include the respiratory chain enzymes Riboflavin kinase (RFK), Flavin adenine dinucleotide synthetase (FAD), Succinate dehydrogenase B subunit (SDHB), and Cytochrome C1 (CYC1). These enzymes are associated with neuroprotection and neurodegeneration. OBJECTIVE To test if variants in genes RFK, FAD, SDHB and CYC1 deviate from Hardy-Weinberg Equilibrium (HWE) in different human mitochondrial haplogroups. METHODS Sequence variants in genes RFK, FAD, SDHB and CYC1 of 2,504 non-affected individuals of the 1,000 genomes project were used for mitochondrial haplogroup assessment and HWE calculations in different mitochondrial haplogroups. RESULTS We show that RFK variants deviate from HWE in haplogroups G, H, L, V and W, variants of FAD in haplogroups B, J, L, U, and C, variants of SDHB in relation to the C, W, and A and CYC1 variants in B, L, U, D, and T. HWE deviation indicates action of selective pressures and genetic drift. CONCLUSIONS HWE deviation of particular variants in relation to global populational HWE, could be, at least in part, associated with the differential susceptibility of specific populations and ethnicities to neurodegenerative diseases. Our data might contribute to the epidemiology and diagnostic/prognostic methods for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheida Mehrpour
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Camila Ronqui Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Renata Carmona Ferreira
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Bridges Genomics, São Paulo SP, Brazil
| | | | | |
Collapse
|
286
|
Liu T, Woo JAA, Bukhari MZ, LePochat P, Chacko A, Selenica MLB, Yan Y, Kotsiviras P, Buosi SC, Zhao X, Kang DE. CHCHD10-regulated OPA1-mitofilin complex mediates TDP-43-induced mitochondrial phenotypes associated with frontotemporal dementia. FASEB J 2020; 34:8493-8509. [PMID: 32369233 PMCID: PMC7482311 DOI: 10.1096/fj.201903133rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022]
Abstract
Mutations in CHCHD10, a gene coding for a mitochondrial protein, are implicated in ALS-FTD spectrum disorders, which are pathologically characterized by transactive response DNA binding protein 43 kDa (TDP-43) accumulation. While both TDP-43 and CHCHD10 mutations drive mitochondrial pathogenesis, mechanisms underlying such phenotypes are unclear. Moreover, despite the disruption of the mitochondrial mitofilin protein complex at cristae junctions in patient fibroblasts bearing the CHCHD10S59L mutation, the role of CHCHD10 variants in mitofilin-associated protein complexes in brain has not been examined. Here, we utilized novel CHCHD10 transgenic mouse variants (WT, R15L, & S59L), TDP-43 transgenic mice, FTLD-TDP patient brains, and transfected cells to assess the interplay between CHCHD10 and TDP-43 on mitochondrial phenotypes. We show that CHCHD10 mutations disrupt mitochondrial OPA1-mitofilin complexes in brain, associated with impaired mitochondrial fusion and respiration. Likewise, CHCHD10 levels and OPA1-mitofilin complexes are significantly reduced in brains of FTLD-TDP patients and TDP-43 transgenic mice. In cultured cells, CHCHD10 knockdown results in OPA1-mitofilin complex disassembly, while TDP-43 overexpression also reduces CHCHD10, promotes OPA1-mitofilin complex disassembly via CHCHD10, and impairs mitochondrial fusion and respiration, phenotypes that are rescued by wild type (WT) CHCHD10. These results indicate that disruption of CHCHD10-regulated OPA1-mitofilin complex contributes to mitochondrial abnormalities in FTLD-TDP and suggest that CHCHD10 restoration could ameliorate mitochondrial dysfunction in FTLD-TDP.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Jung-A A. Woo
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular Pharmacology and Physiology, USF
Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Patrick LePochat
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Ann Chacko
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | | | - Yan Yan
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Peter Kotsiviras
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Sara Cazzaro Buosi
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - Xingyu Zhao
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
| | - David E. Kang
- Byrd Alzheimer’s Center & Research Institute,
USF Health Morsani College of Medicine, Tampa, FL 33613, USA
- Department of Molecular of Medicine, USF Health Morsani
College of Medicine, Tampa, FL 33613, USA
- James A. Haley Veterans Administration Hospital, Tampa, FL
33612, USA
| |
Collapse
|
287
|
Mitochondrial Dysfunctions: A Red Thread across Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21103719. [PMID: 32466216 PMCID: PMC7279270 DOI: 10.3390/ijms21103719] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a central role in a plethora of processes related to the maintenance of cellular homeostasis and genomic integrity. They contribute to preserving the optimal functioning of cells and protecting them from potential DNA damage which could result in mutations and disease. However, perturbations of the system due to senescence or environmental factors induce alterations of the physiological balance and lead to the impairment of mitochondrial functions. After the description of the crucial roles of mitochondria for cell survival and activity, the core of this review focuses on the "mitochondrial switch" which occurs at the onset of neuronal degeneration. We dissect the pathways related to mitochondrial dysfunctions which are shared among the most frequent or disabling neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's, Amyotrophic Lateral Sclerosis, and Spinal Muscular Atrophy. Can mitochondrial dysfunctions (affecting their morphology and activities) represent the early event eliciting the shift towards pathological neurobiological processes? Can mitochondria represent a common target against neurodegeneration? We also review here the drugs that target mitochondria in neurodegenerative diseases.
Collapse
|
288
|
Peroxisome Proliferator Activator Receptor Gamma Coactivator-1α Overexpression in Amyotrophic Lateral Sclerosis: A Tale of Two Transgenics. Biomolecules 2020; 10:biom10050760. [PMID: 32414179 PMCID: PMC7277592 DOI: 10.3390/biom10050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder manifesting with upper and lower neuron loss, leading to impairments in voluntary muscle function and atrophy. Mitochondrial dysfunction in metabolism and morphology have been implicated in the pathogenesis of ALS, including atypical oxidative metabolism, reduced mitochondrial respiration in muscle, and protein aggregates in the mitochondrial outer membrane. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays an essential role in the regulation of mitochondrial biogenesis, the process by which existing mitochondria grow and divide. PGC-1α has been previously reported to be downregulated in the spinal cord of individuals with ALS. Towards targeting PGC-1α as a therapeutic mechanism, we have previously reported improved motor function and survival in the SOD1G93A mouse model of ALS by neuron-specific over-expression of PGC-1α under a neuron-specific enolase (NSE) promoter. As pharmacological intervention targeting PGC-1α would result in whole-body upregulation of this transcriptional co-activator, in the current study we investigated whether global expression of PGC-1α is beneficial in a SOD1G93A mouse model, by generating transgenic mice with PGC-1α transgene expression driven by an actin promoter. Actin-PGC-1α expression levels were assayed and confirmed in spinal cord, brain, muscle, liver, kidney, and spleen. To determine the therapeutic effects of global expression of PGC-1α, wild-type, actin-PGC-1α, SOD1G93A, and actin-PGC-1α/SOD1G93A animals were monitored for weight loss, motor performance by accelerating rotarod test, and survival. Overexpression of actin-PGC-1α did not confer significant improvement in these assessed outcomes. A potential explanation for this difference is that the actin promoter may not induce levels of PGC-1α relevant to disease pathophysiology in the cells that are specifically relevant to the pathogenesis of ALS. This evidence strongly supports future therapeutic approaches that target PGC-1α primarily in neurons.
Collapse
|
289
|
Tsai YL, Coady TH, Lu L, Zheng D, Alland I, Tian B, Shneider NA, Manley JL. ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev 2020; 34:785-805. [PMID: 32381627 PMCID: PMC7263147 DOI: 10.1101/gad.335836.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Dysregulation of the DNA/RNA-binding protein FUS causes certain subtypes of ALS/FTD by largely unknown mechanisms. Recent evidence has shown that FUS toxic gain of function due either to mutations or to increased expression can disrupt critical cellular processes, including mitochondrial functions. Here, we demonstrate that in human cells overexpressing wild-type FUS or expressing mutant derivatives, the protein associates with multiple mRNAs, and these are enriched in mRNAs encoding mitochondrial respiratory chain components. Notably, this sequestration leads to reduced levels of the encoded proteins, which is sufficient to bring about disorganized mitochondrial networks, reduced aerobic respiration and increased reactive oxygen species. We further show that mutant FUS associates with mitochondria and with mRNAs encoded by the mitochondrial genome. Importantly, similar results were also observed in fibroblasts derived from ALS patients with FUS mutations. Finally, we demonstrate that FUS loss of function does not underlie the observed mitochondrial dysfunction, and also provides a mechanism for the preferential sequestration of the respiratory chain complex mRNAs by FUS that does not involve sequence-specific binding. Together, our data reveal that respiratory chain complex mRNA sequestration underlies the mitochondrial defects characteristic of ALS/FTD and contributes to the FUS toxic gain of function linked to this disease spectrum.
Collapse
Affiliation(s)
- Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Tristan H Coady
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Lei Lu
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10027, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Isabel Alland
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
290
|
Oxidative Stress and Mitochondrial Damage in Neurodegenerative Diseases: From Molecular Mechanisms to Targeted Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1270256. [PMID: 32454930 PMCID: PMC7222558 DOI: 10.1155/2020/1270256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/23/2022]
|
291
|
Kodavati M, Wang H, Hegde ML. Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 2020; 9:cells9041065. [PMID: 32344665 PMCID: PMC7226538 DOI: 10.3390/cells9041065] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
- Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
292
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kanara I, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG, Zamboni RJ, Kodukula K, Chen X. Klotho Pathways, Myelination Disorders, Neurodegenerative Diseases, and Epigenetic Drugs. Biores Open Access 2020; 9:94-105. [PMID: 32257625 PMCID: PMC7133426 DOI: 10.1089/biores.2020.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we outline a rationale for identifying neuroprotectants aimed at inducing endogenous Klotho activity and expression, which is epigenetic action, by definition. Such an approach should promote remyelination and/or stimulate myelin repair by acting on mitochondrial function, thereby heralding a life-saving path forward for patients suffering from neuroinflammatory diseases. Disorders of myelin in the nervous system damage the transmission of signals, resulting in loss of vision, motion, sensation, and other functions depending on the affected nerves, currently with no effective treatment. Klotho genes and their single-pass transmembrane Klotho proteins are powerful governors of the threads of life and death, true to the origin of their name, Fates, in Greek mythology. Among its many important functions, Klotho is an obligatory co-receptor that binds, activates, and/or potentiates critical fibroblast growth factor activity. Since the discovery of Klotho a little over two decades ago, it has become ever more apparent that when Klotho pathways go awry, oxidative stress and mitochondrial dysfunction take over, and age-related chronic disorders are likely to follow. The physiological consequences can be wide ranging, potentially wreaking havoc on the brain, eye, kidney, muscle, and more. Central nervous system disorders, neurodegenerative in nature, and especially those affecting the myelin sheath, represent worthy targets for advancing therapies that act upon Klotho pathways. Current drugs for these diseases, even therapeutics that are disease modifying rather than treating only the symptoms, leave much room for improvement. It is thus no wonder that this topic has caught the attention of biomedical researchers around the world.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | | | - Anastasios N. Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Carl A. Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantina Sampani
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| | | | | | - Xiaohong Chen
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
| |
Collapse
|
293
|
Fabbrizio P, Apolloni S, Bianchi A, Salvatori I, Valle C, Lanzuolo C, Bendotti C, Nardo G, Volonté C. P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2020; 30:272-282. [PMID: 31376190 PMCID: PMC7065186 DOI: 10.1111/bpa.12774] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Muscle weakness plays an important role in neuromuscular disorders comprising amyotrophic lateral sclerosis (ALS). However, it is not established whether muscle denervation originates from the motor neurons, the muscles or more likely both. Previous studies have shown that the expression of the SOD1G93A mutation in skeletal muscles causes denervation of the neuromuscular junctions, inability to regenerate and consequent atrophy, all clear symptoms of ALS. In this work, we used SOD1G93A mice, a model that best mimics some pathological features of both familial and sporadic ALS, and we investigated some biological effects induced by the activation of the P2X7 receptor in the skeletal muscles. The P2X7, belonging to the ionotropic family of purinergic receptors for extracellular ATP, is abundantly expressed in the healthy skeletal muscles, where it controls cell duplication, differentiation, regeneration or death. In particular, we evaluated whether an in vivo treatment in SOD1G93A mice with the P2X7 specific agonist 2'(3')-O-(4-Benzoylbenzoyl) adenosine5'-triphosphate (BzATP) just before the onset of a pathological neuromuscular phenotype could exert beneficial effects in the skeletal muscles. Our findings indicate that stimulation of P2X7 improves the innervation and metabolism of myofibers, moreover elicits the proliferation/differentiation of satellite cells, thus preventing the denervation atrophy of skeletal muscles in SOD1G93A mice. Overall, this study suggests that a P2X7-targeted and site-specific modulation might be a strategy to interfere with the complex multifactorial and multisystem nature of ALS.
Collapse
Affiliation(s)
- Paola Fabbrizio
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | | | | | | | - Cristiana Valle
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute of Translational PharmacologyRomeItaly
| | - Chiara Lanzuolo
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute of Biomedical TechnologiesMilanItaly
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Cinzia Volonté
- IRCCS Fondazione Santa LuciaRomeItaly
- National Research Council, Institute for Systems Analysis and Computer ScienceRomeItaly
| |
Collapse
|
294
|
ALSUntangled 53: Carnitine supplements. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:477-483. [PMID: 32046513 DOI: 10.1080/21678421.2020.1726565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
295
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
296
|
Zilocchi M, Moutaoufik MT, Jessulat M, Phanse S, Aly KA, Babu M. Misconnecting the dots: altered mitochondrial protein-protein interactions and their role in neurodegenerative disorders. Expert Rev Proteomics 2020; 17:119-136. [PMID: 31986926 DOI: 10.1080/14789450.2020.1723419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Mitochondria (mt) are protein-protein interaction (PPI) hubs in the cell where mt-localized and associated proteins interact in a fashion critical for cell fitness. Altered mtPPIs are linked to neurodegenerative disorders (NDs) and drivers of pathological associations to mediate ND progression. Mapping altered mtPPIs will reveal how mt dysfunction is linked to NDs.Areas covered: This review discusses how database sources reflect on the number of mt protein or interaction predictions, and serves as an update on mtPPIs in mt dynamics and homeostasis. Emphasis is given to mRNA expression profiles for mt proteins in human tissues, cellular models relevant to NDs, and altered mtPPIs in NDs such as Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD).Expert opinion: We highlight the scarcity of biomarkers to improve diagnostic accuracy and tracking of ND progression, obstacles in recapitulating NDs using human cellular models to underpin the pathophysiological mechanisms of disease, and the shortage of mt protein interactome reference database(s) of neuronal cells. These bottlenecks are addressed by improvements in induced pluripotent stem cell creation and culturing, patient-derived 3D brain organoids to recapitulate structural arrangements of the brain, and cell sorting to elucidate mt proteome disparities between cell types.
Collapse
Affiliation(s)
- Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | | | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
297
|
Krokidis MG. Transcriptomics and Metabolomics in Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:205-212. [PMID: 32468479 DOI: 10.1007/978-3-030-32633-3_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving progressive and selective loss of motor neurons, muscle weakness, paralysis and death. The pathogenesis of ALS is not clearly understood, while reliable prognostic markers have not been identified to detect symptoms at earlier time points. The rapid development of microarray technology offers great potential for simultaneous analysis of the transcriptional expression of thousands of genes, aiming to determine novel candidate targets for efficient treatment. Additionally, metabolomics, as a high-throughput approach, is gaining significant attention in ALS research providing an opportunity to develop predictive biomarkers that may be utilized as indicators of clinical symptoms of ALS. In this review, recent evidences from gene expression profiling studies in ALS are illustrated in order to examine molecular signatures related to the disease's pathogenesis and potential discovery of therapeutic targets. Moreover, potent challenges are presented regarding the utilization of the metabolomics approach as a diagnostic tool in context with distinctive biomarkers' identification.
Collapse
Affiliation(s)
- Marios G Krokidis
- National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Patriarchou Grigoriou & Neapoleos, Athens, Greece.
| |
Collapse
|
298
|
White MA, Lin Z, Kim E, Henstridge CM, Pena Altamira E, Hunt CK, Burchill E, Callaghan I, Loreto A, Brown-Wright H, Mead R, Simmons C, Cash D, Coleman MP, Sreedharan J. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol Commun 2019; 7:166. [PMID: 31661035 PMCID: PMC6819591 DOI: 10.1186/s40478-019-0800-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition that primarily affects the motor system and shares many features with frontotemporal dementia (FTD). Evidence suggests that ALS is a 'dying-back' disease, with peripheral denervation and axonal degeneration occurring before loss of motor neuron cell bodies. Distal to a nerve injury, a similar pattern of axonal degeneration can be seen, which is mediated by an active axon destruction mechanism called Wallerian degeneration. Sterile alpha and TIR motif-containing 1 (Sarm1) is a key gene in the Wallerian pathway and its deletion provides long-term protection against both Wallerian degeneration and Wallerian-like, non-injury induced axonopathy, a retrograde degenerative process that occurs in many neurodegenerative diseases where axonal transport is impaired. Here, we explored whether Sarm1 signalling could be a therapeutic target for ALS by deleting Sarm1 from a mouse model of ALS-FTD, a TDP-43Q331K, YFP-H double transgenic mouse. Sarm1 deletion attenuated motor axon degeneration and neuromuscular junction denervation. Motor neuron cell bodies were also significantly protected. Deletion of Sarm1 also attenuated loss of layer V pyramidal neuronal dendritic spines in the primary motor cortex. Structural MRI identified the entorhinal cortex as the most significantly atrophic region, and histological studies confirmed a greater loss of neurons in the entorhinal cortex than in the motor cortex, suggesting a prominent FTD-like pattern of neurodegeneration in this transgenic mouse model. Despite the reduction in neuronal degeneration, Sarm1 deletion did not attenuate age-related behavioural deficits caused by TDP-43Q331K. However, Sarm1 deletion was associated with a significant increase in the viability of male TDP-43Q331K mice, suggesting a detrimental role of Wallerian-like pathways in the earliest stages of TDP-43Q331K-mediated neurodegeneration. Collectively, these results indicate that anti-SARM1 strategies have therapeutic potential in ALS-FTD.
Collapse
Affiliation(s)
- Matthew A White
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
| | - Ziqiang Lin
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Eugene Kim
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King's College London, London, UK
| | | | - Emiliano Pena Altamira
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
| | - Camille K Hunt
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
| | - Ella Burchill
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
| | - Isobel Callaghan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK
| | - Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Heledd Brown-Wright
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Richard Mead
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Camilla Simmons
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King's College London, London, UK
| | - Diana Cash
- BRAIN Centre (Biomarker Research And Imaging for Neuroscience), Department of Neuroimaging, IoPPN, King's College London, London, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Jemeen Sreedharan
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE5 9RT, UK.
| |
Collapse
|
299
|
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis. Cells 2019; 8:cells8101232. [PMID: 31658749 PMCID: PMC6829861 DOI: 10.3390/cells8101232] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
By influencing Ca2+ homeostasis in spatially and architecturally distinct neuronal compartments, the endoplasmic reticulum (ER) illustrates the notion that form and function are intimately related. The contribution of ER to neuronal Ca2+ homeostasis is attributed to the organelle being the largest reservoir of intracellular Ca2+ and having a high density of Ca2+ channels and transporters. As such, ER Ca2+ has incontrovertible roles in the regulation of axodendritic growth and morphology, synaptic vesicle release, and neural activity dependent gene expression, synaptic plasticity, and mitochondrial bioenergetics. Not surprisingly, many neurological diseases arise from ER Ca2+ dyshomeostasis, either directly due to alterations in ER resident proteins, or indirectly via processes that are coupled to the regulators of ER Ca2+ dynamics. In this review, we describe the mechanisms involved in the establishment of ER Ca2+ homeostasis in neurons. We elaborate upon how changes in the spatiotemporal dynamics of Ca2+ exchange between the ER and other organelles sculpt neuronal function and provide examples that demonstrate the involvement of ER Ca2+ dyshomeostasis in a range of neurological and neurodegenerative diseases.
Collapse
|
300
|
Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, Fazal R, Germeys C, Quaegebeur A, Fendt SM, Carmeliet P, Verfaillie C, Van Damme P, Ghesquière B, De Bock K, Van Den Bosch L. Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun 2019; 10:4147. [PMID: 31515480 PMCID: PMC6742665 DOI: 10.1038/s41467-019-12099-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Koen Veys
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Wenting Guo
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Katlijn Vints
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ann Swijsen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Guy Eelen
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Natalia V Gounko
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah-Maria Fendt
- VIB, VIB-KU Leuven Center for Cancer Biology, Laboratory of Cellular Metabolism and Metabolic Regulation, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Oncology, Metabolomics Core Facility, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Department of Oncology, Metabolomics Core Facility, Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, Laboratory of Exercise and Health, Zürich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium.
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|