251
|
ApoE4-associated phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after traumatic brain injury. Sci Rep 2017; 7:11372. [PMID: 28900205 PMCID: PMC5595858 DOI: 10.1038/s41598-017-11654-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein E4 (ApoE4) genotype combines with traumatic brain injury (TBI) to increase the risk of developing Alzheimer's Disease (AD). However, the underlying mechanism(s) is not well-understood. We found that after exposure to repetitive blast-induced TBI, phosphoinositol biphosphate (PIP2) levels in hippocampal regions of young ApoE3 mice were elevated and associated with reduction in expression of a PIP2 degrading enzyme, synaptojanin 1 (synj1). In contrast, hippocampal PIP2 levels in ApoE4 mice did not increase after blast TBI. Following blast TBI, phospho-Tau (pTau) levels were unchanged in ApoE3 mice, whereas in ApoE4 mice, levels of pTau were significantly increased. To determine the causal relationship between changes in pTau and PIP2/synj1 levels after TBI, we tested if down-regulation of synj1 prevented blast-induced Tau hyper-phosphorylation. Knockdown of synj1 decreased pTau levels in vitro, and abolished blast-induced elevation of pTau in vivo. Blast TBI increased glycogen synthase kinase (GSK)-3β activities in ApoE4 mice, and synj1 knockdown inhibited GSK3β phosphorylation of Tau. Together, these data suggest that ApoE proteins regulate brain phospholipid homeostasis in response to TBI and that the ApoE4 isoform is dysfunctional in this process. Down-regulation of synj1 rescues blast-induced phospholipid dysregulation and prevents development of Tau hyper-phosphorylation in ApoE4 carriers.
Collapse
|
252
|
Transcriptional Effects of ApoE4: Relevance to Alzheimer's Disease. Mol Neurobiol 2017; 55:5243-5254. [PMID: 28879423 DOI: 10.1007/s12035-017-0757-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The major genetic risk factor for sporadic Alzheimer's disease (AD) is the lipid binding and transporting carrier protein apolipoprotein E, epsilon 4 allele (ApoE4). One of the unsolved mysteries of AD is how the presence of ApoE4 elicits this age-associated, currently incurable neurodegenerative disease. Recently, we showed that ApoE4 acts as a transcription factor and binds to the promoters of genes involved in a range of processes linked to aging and AD disease pathogenesis. These findings point to novel therapeutic strategies for AD and aging, resulting in an extension of human healthspan, the disease-free and functional period of life. Here, we review the effects and implications of the putative transcriptional role of ApoE4 and propose a model of Alzheimer's disease that focuses on the transcriptional nature of ApoE4 and its downstream effects, with the aim that this knowledge will help to define the role ApoE4 plays as a risk factor for AD, aging, and other processes such as inflammation and cardiovascular disease.
Collapse
|
253
|
Differential diagnosis of Alzheimer's disease using spectrochemical analysis of blood. Proc Natl Acad Sci U S A 2017; 114:E7929-E7938. [PMID: 28874525 DOI: 10.1073/pnas.1701517114] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The progressive aging of the world's population makes a higher prevalence of neurodegenerative diseases inevitable. The necessity for an accurate, but at the same time, inexpensive and minimally invasive, diagnostic test is urgently required, not only to confirm the presence of the disease but also to discriminate between different types of dementia to provide the appropriate management and treatment. In this study, attenuated total reflection FTIR (ATR-FTIR) spectroscopy combined with chemometric techniques were used to analyze blood plasma samples from our cohort. Blood samples are easily collected by conventional venepuncture, permitting repeated measurements from the same individuals to monitor their progression throughout the years or evaluate any tested drugs. We included 549 individuals: 347 with various neurodegenerative diseases and 202 age-matched healthy individuals. Alzheimer's disease (AD; n = 164) was identified with 70% sensitivity and specificity, which after the incorporation of apolipoprotein ε4 genotype (APOE ε4) information, increased to 86% when individuals carried one or two alleles of ε4, and to 72% sensitivity and 77% specificity when individuals did not carry ε4 alleles. Early AD cases (n = 14) were identified with 80% sensitivity and 74% specificity. Segregation of AD from dementia with Lewy bodies (DLB; n = 34) was achieved with 90% sensitivity and specificity. Other neurodegenerative diseases, such as frontotemporal dementia (FTD; n = 30), Parkinson's disease (PD; n = 32), and progressive supranuclear palsy (PSP; n = 31), were included in our cohort for diagnostic purposes. Our method allows for both rapid and robust diagnosis of neurodegeneration and segregation between different dementias.
Collapse
|
254
|
Kikis EA. Nature Versus Nurture: Does Proteostasis Imbalance Underlie the Genetic, Environmental, and Age-Related Risk Factors for Alzheimer's Disease? Healthcare (Basel) 2017; 5:healthcare5030046. [PMID: 28829364 PMCID: PMC5618174 DOI: 10.3390/healthcare5030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/27/2017] [Accepted: 08/17/2017] [Indexed: 01/14/2023] Open
Abstract
Aging is a risk factor for a number of “age-related diseases”, including Alzheimer’s disease (AD). AD affects more than a third of all people over the age of 85, and is the leading cause of dementia worldwide. Symptoms include forgetfulness, memory loss, and cognitive decline, ultimately resulting in the need for full-time care. While there is no cure for AD, pharmacological approaches to alleviate symptoms and target underlying causes of the disease have been developed, albeit with limited success. This review presents the age-related, genetic, and environmental risk factors for AD and proposes a hypothesis for the mechanistic link between genetics and the environment. In short, much is known about the genetics of early-onset familial AD (EO-FAD) and the central role played by the Aβ peptide and protein misfolding, but late-onset AD (LOAD) is not thought to have direct genetic causes. Nonetheless, genetic risk factors such as isoforms of the protein ApoE have been identified. Additional findings suggest that air pollution caused by the combustion of fossil fuels may be an important environmental risk factor for AD. A hypothesis suggesting that poor air quality might act by disrupting protein folding homeostasis (proteostasis) is presented.
Collapse
Affiliation(s)
- Elise A Kikis
- Biology Department, The University of the South, Sewanee, TN 37383, USA.
| |
Collapse
|
255
|
Pitt J, Wilcox KC, Tortelli V, Diniz LP, Oliveira MS, Dobbins C, Yu XW, Nandamuri S, Gomes FCA, DiNunno N, Viola KL, De Felice FG, Ferreira ST, Klein WL. Neuroprotective astrocyte-derived insulin/insulin-like growth factor 1 stimulates endocytic processing and extracellular release of neuron-bound Aβ oligomers. Mol Biol Cell 2017; 28:2623-2636. [PMID: 28963439 PMCID: PMC5620371 DOI: 10.1091/mbc.e17-06-0416] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022] Open
Abstract
Synaptopathy underlying memory deficits in Alzheimer's disease (AD) is increasingly thought to be instigated by toxic oligomers of the amyloid beta peptide (AβOs). Given the long latency and incomplete penetrance of AD dementia with respect to Aβ pathology, we hypothesized that factors present in the CNS may physiologically protect neurons from the deleterious impact of AβOs. Here we employed physically separated neuron-astrocyte cocultures to investigate potential non-cell autonomous neuroprotective factors influencing AβO toxicity. Neurons cultivated in the absence of an astrocyte feeder layer showed abundant AβO binding to dendritic processes and associated synapse deterioration. In contrast, neurons in the presence of astrocytes showed markedly reduced AβO binding and synaptopathy. Results identified the protective factors released by astrocytes as insulin and insulin-like growth factor-1 (IGF1). The protective mechanism involved release of newly bound AβOs into the extracellular medium dependent upon trafficking that was sensitive to exosome pathway inhibitors. Delaying insulin treatment led to AβO binding that was no longer releasable. The neuroprotective potential of astrocytes was itself sensitive to chronic AβO exposure, which reduced insulin/IGF1 expression. Our findings support the idea that physiological protection against synaptotoxic AβOs can be mediated by astrocyte-derived insulin/IGF1, but that this protection itself is vulnerable to AβO buildup.
Collapse
Affiliation(s)
- Jason Pitt
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Kyle C Wilcox
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Vanessa Tortelli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Luan Pereira Diniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Maira S Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Cassandra Dobbins
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Xiao-Wen Yu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Sathwik Nandamuri
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Flávia C A Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - Nadia DiNunno
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Kirsten L Viola
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21944-590, Brazil
| | - William L Klein
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
256
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
257
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 and extractvalue(5426,concat(0x5c,0x717a6a6b71,(select (elt(5426=5426,1))),0x71707a7a71))-- ncmy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
258
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
259
|
Bojar I, Pinkas J, Gujski M, Owoc A, Raczkiewicz D, Gustaw-Rothenberg K. Postmenopausal cognitive changes and androgen levels in the context of apolipoprotein E polymorphism. Arch Med Sci 2017; 13:1148-1159. [PMID: 28883857 PMCID: PMC5575214 DOI: 10.5114/aoms.2016.62869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The focus of this study was to assess cognitive functions in relation to androgens and specifically testosterone and dehydroepiandrosterone in postmenopausal women as well as the correlation between cognitive functions and these two androgens according to polymorphism of the apolipoprotein E gene (APOE). MATERIAL AND METHODS A group of 402 women was recruited to the study (minimum 2 years after the last menstruation, follicle-stimulating hormone (FSH) more than 30 U/ml and no dementia signs on Montreal Cognitive Assessment). The computerized battery of the Central Nervous System Vital Signs test was used to diagnose cognitive functions. APOE genotyping was performed by multiplex polymerase chain reaction (PCR). Testosterone (TTE) and dehydroepiandrosterone (DHEA) in the blood serum were assessed for further statistical correlations analysis. RESULTS In the group of postmenopausal women, higher testosterone concentration was associated with lower scores for Neurocognition Index (NCI) (p = 0.028), memory (p = 0.008) and psychomotor speed (p < 0.001). Presence of at least one APOE ε4 allele potentiated testosterone's negative influence on cognitive functions (p < 0.05). Woman with a high normal level of DHEA scored significantly better in verbal (p = 0.027) and visual memory (p < 0.001) than other participants. APOE polymorphism did not modify the relationship between DHEA concentration and scores for cognitive functions. CONCLUSIONS Hormonal balance variations after menopause may influence brain processes concerned with cognition, especially memory and psychomotor speed. The observed effects may be related to androgens' influence on higher cortical functions in the changed hormonal dynamics of the postmenopausal period.
Collapse
Affiliation(s)
- Iwona Bojar
- Department for Women Health, Institute of Rural Health, Lublin, Poland
| | - Jarosław Pinkas
- School of Public Health, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Mariusz Gujski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Alfred Owoc
- Center for Public Health and Health Promotion, Institute of Rural Health, Lublin, Poland
| | - Dorota Raczkiewicz
- Institute of Statistics and Demography, Warsaw School of Economics, Warsaw, Poland
| | - Kasia Gustaw-Rothenberg
- Lou Ruvo Brain Wellness Center, Neurological Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Neurodegenerative Diseases, Institute of Rural Health, Lublin, Poland
| |
Collapse
|
260
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
261
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- hpcc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
262
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
263
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
264
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
265
|
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
266
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017. [DOI: 10.1002/stem.2651 order by 1-- asnk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials.
Collapse
|
267
|
Rasmussen KL, Tybjærg‐Hansen A, Nordestgaard BG, Frikke‐Schmidt R. Plasma apolipoprotein E levels and risk of dementia: A Mendelian randomization study of 106,562 individuals. Alzheimers Dement 2017; 14:71-80. [DOI: 10.1016/j.jalz.2017.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/22/2017] [Accepted: 05/25/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Katrine L. Rasmussen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
- The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark
- Copenhagen University Hospital Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Anne Tybjærg‐Hansen
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
- The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark
- Copenhagen University Hospital Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- The Copenhagen City Heart Study Frederiksberg Hospital Frederiksberg Denmark
| | - Børge G. Nordestgaard
- The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark
- Copenhagen University Hospital Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- The Copenhagen City Heart Study Frederiksberg Hospital Frederiksberg Denmark
- Department of Clinical Biochemistry Herlev and Gentofte Hospital Herlev Denmark
| | - Ruth Frikke‐Schmidt
- Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
- The Copenhagen General Population Study Herlev and Gentofte Hospital Herlev Denmark
- Copenhagen University Hospital Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
268
|
Lee LC, Goh MQL, Koo EH. Transcriptional regulation of APP by apoE: To boldly go where no isoform has gone before: ApoE, APP transcription and AD: Hypothesised mechanisms and existing knowledge gaps. Bioessays 2017; 39. [PMID: 28731260 DOI: 10.1002/bies.201700062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that gradually disrupts the brain network to impair memory, language and cognition. While the amyloid hypothesis remains the leading proposed mechanism to explain AD pathophysiology, anti-amyloid therapeutic strategies have yet to translate into useful therapies, suggesting that amyloid β-protein and its precursor, the amyloid precursor protein (APP) are but a part of the disease cascade. Further, risk of AD can be modulated by a number of factors, the most impactful being the ɛ4 isoform of apolipoprotein E (apoE). A recent study reported a novel isoform-dependent transcriptional regulation of APP by apoE. These interesting new results add to the myriad of mechanisms that have been proposed to explain how apoE4 enhances AD risk, highlighting the complexities of not only apoE and AD pathophysiology, but also of disease itself. Also see the video abstract here: https://youtu.be/yd14MBdPkCY.
Collapse
Affiliation(s)
- Liying Corinne Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Michele Q L Goh
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Edward H Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
269
|
Fatty acid-based lipidomics and membrane remodeling induced by apoE3 and apoE4 in human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1967-1973. [PMID: 28688796 DOI: 10.1016/j.bbamem.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 02/08/2023]
Abstract
Apolipoprotein E (apoE) is a major lipid carrier of the lipoprotein transport system that plays critical roles in various pathologies. Human apoE has three common isoforms, the apoE4 being associated with Alzheimer's disease. This is the first study in the literature investigating the effects of apoE (apoE3 and apoE4 isoforms) on membrane fatty acid profile in neuroblastoma SK-N-SH cells. Fatty acid analyses were carried out by gas chromatography of the corresponding methyl esters (FAME). We observed the occurrence of membrane fatty acid remodeling in the presence of each of the two apoE isoforms. ApoE3 increased the membrane level of stearic acid and dihomo-gamma-linolenic acid (DGLA), whereas apoE4 had opposite effects. Both apoE3 and apoE4 increased saturated and monounsaturated fatty acids (SFA and MUFA), omega-6/omega-3 ratio and decreased total polyunsaturated fatty acid (PUFA) amount, but with various intensities. Moreover, both apoE isoforms decreased membrane homeostasis indexes such as PUFA balance, unsaturation index and peroxidation index. Our results highlight membrane property changes connected to the apoE isoforms suggesting membrane lipidomics to be inserted in further model studies of apolipoproteins in health and disease.
Collapse
|
270
|
Luo X, Jiaerken Y, Yu X, Huang P, Qiu T, Jia Y, Li K, Xu X, Shen Z, Guan X, Zhou J, Zhang M. Associations between APOE genotype and cerebral small-vessel disease: a longitudinal study. Oncotarget 2017; 8:44477-44489. [PMID: 28574812 PMCID: PMC5546495 DOI: 10.18632/oncotarget.17724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE It remains unclear if and how the interactions between APOE genotypes and cerebral small-vessel diseases (CSVD) lead to cognitive decline in the long term. Based on ADNI cohort, this longitudinal study aimed to clarify the potential relationship among APOE genotype, CSVD and cognition by integrating multi-level data. METHOD There were 135 healthy elderly (including ε2, ε4 allele carriers and ε3 homozygotes) who had completed two years' follow-up. MRI markers of CSVD, including white matter hyperintensities (WMH), dilated perivascular space (dPVS), microbleeds and lacune, were assessed. Besides, neuropathological factors including Alzheimer's disease-related pathology measured by CSF and PiB-PET were assessed. Repeated measurements ANOVAs were performed to test impact of different APOE genotypes on CSVD. RESULTS We found that APOE ε4 carriers had significantly more frontal WMH burden and basal ganglia dPVS at baseline and faster progression of frontal WMH burden during follow-up. Furthermore, our results showed that APOE ε4 carriers had significantly decreased Aβ1-42 level, and its level was negatively related with baseline and progressive total WMH burden. Then, general linear modals indicated interaction between basal frontal WMH burden and ε4 allele was related with declining trend of cognition. CONCLUSION Our findings suggested APOE ε4 allele was associated with increased Aβ deposition, which may lead to the formation and progression of WMH, especially in frontal lobe. Besides, interaction between the increased frontal WMH burden and ε4 allele can exert long-term detrimental effects on individual's trajectory of cognition.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yerfan Jiaerken
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tiantian Qiu
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Zhou
- Department of Neurology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
271
|
Huang P, Hsieh SW, Chang YH, Hour AL, Chen HY, Liu CK. Differences in the frequency of Alzheimer's disease-associated genomic variations in populations of different races. Geriatr Gerontol Int 2017; 17:2184-2193. [PMID: 28675603 DOI: 10.1111/ggi.13059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 01/24/2023]
Abstract
AIM The general genetic background is important when studying major common diseases, such as Alzheimer's disease (AD). Determining the underlying genetic factors in populations of different races might allow for the tailored management of such diseases. The aim of the present study was to identify potential single-nucleotide polymorphisms (SNP) and genes associated with racial differences. METHODS We identified AD-associated SNP with different carrier frequencies among races through the National Human Genome Research Institute and 1000 Genome Project databases. We generated heatmaps and carried out principle component analysis and pathway analysis. A total of 99 AD-associated SNP from genome-wide association studies were found to have different frequencies among races. Principle component analysis showed that specific SNP had higher or lower frequencies in specific races, and that similar races were clustered together. RESULTS Pathway analysis showed that a total of 15 pathways involving intracellular endocytosis, inflammation, immune response and lipid metabolism were significant, and that apolipoprotein E was involved in the most significant pathways. A literature review showed that 16 genes were involved in the pathogenesis of AD, and that the identified SNP could be used to cluster different races, suggesting that these SNP represented different genomic backgrounds of races. CONCLUSIONS As disease-associated genes might have several functional variants across different populations, these genes could be candidates for further studies, such as target gene sequencing or functional follow up of putative loci regarding racial differences. Geriatr Gerontol Int 2017; 17: 2184-2193.
Collapse
Affiliation(s)
- Poyin Huang
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Engineering
- , National Taiwan University, Taipei, Taiwan
| | - Ai-Ling Hour
- Department of Life Science, Fu Jen University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Kuan Liu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
272
|
Volkman R, Offen D. Concise Review: Mesenchymal Stem Cells in Neurodegenerative Diseases. Stem Cells 2017; 35:1867-1880. [PMID: 28589621 DOI: 10.1002/stem.2651] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022]
Abstract
Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs) hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differentiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration. Indeed, various advantageous effects were reported following human MSCs transplantation into rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection, enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Per journal style, most nonstandard abbreviations must be used at least two times in the abstract to be retained; NTF was used once and thus has been deleted. Recent studies have also used ex vivo manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advancements in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegeneration as well as in clinical trials. Stem Cells 2017;35:1867-1880.
Collapse
|
273
|
Giri M, Shah A, Upreti B, Rai JC. Unraveling the genes implicated in Alzheimer's disease. Biomed Rep 2017; 7:105-114. [PMID: 28781776 DOI: 10.3892/br.2017.927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and it is the most common form of dementia in the elderly. Early onset AD is caused by mutations in three genes: Amyloid-β precursor protein, presenilin 1 (PSEN1) and PSEN2. Late onset AD (LOAD) is complex and apolipoprotein E is the only unanimously accepted genetic risk factor for its development. Various genes implicated in AD have been identified using advanced genetic technologies, however, there are many additional genes that remain unidentified. The present review highlights the genetics of early and LOAD and summarizes the genes involved in different signaling pathways. This may provide insight into neurodegenerative disease research and will facilitate the development of effective strategies to combat AD.
Collapse
Affiliation(s)
- Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Abhilasha Shah
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Bibhuti Upreti
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | | |
Collapse
|
274
|
Gao C, Wang Q, Chung SK, Shen J. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases. Neurochem Int 2017; 106:24-36. [DOI: 10.1016/j.neuint.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
|
275
|
Boyce G, Button E, Soo S, Wellington C. The pleiotropic vasoprotective functions of high density lipoproteins (HDL). J Biomed Res 2017; 32:164. [PMID: 28550271 PMCID: PMC6265396 DOI: 10.7555/jbr.31.20160103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of β-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.
Collapse
Affiliation(s)
- Guilaine Boyce
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Emily Button
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sonja Soo
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cheryl Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
276
|
Kim YJ, Seo SW, Park SB, Yang JJ, Lee JS, Lee J, Jang YK, Kim ST, Lee KH, Lee JM, Lee JH, Kim JS, Na DL, Kim HJ. Protective effects of APOE e2 against disease progression in subcortical vascular mild cognitive impairment patients: A three-year longitudinal study. Sci Rep 2017; 7:1910. [PMID: 28507298 PMCID: PMC5432504 DOI: 10.1038/s41598-017-02046-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Although the association between apolipoprotein E (APOE) genotype and disease progression is well characterized in patients with Alzheimer's disease, such a relationship is unknown in patients with subcortical vascular cognitive impairment. We evaluated whether APOE genotype is associated with disease progression in subcortical vascular mild cognitive impairment (svMCI) patients. We prospectively recruited 72 svMCI patients (19 APOE4 carriers, 42 APOE3 homozygotes, and 11 APOE2 carriers). Patients were annually followed-up with brain MRI and neuropsychological tests for three years and underwent a second Pittsburgh compound B (PiB)-PET at a mean interval of 32.3 months. Amyloid-ß burden was quantified by PiB standardized uptake value ratio (SUVR), and the amount of small vessel disease was quantified by number of lacune and small vessel disease score on MRI. We also measured cortical thickness. During the three years of follow-up, compared to the APOE3 homozygotes, there was less increase in PiB SUVR among APOE2 carriers (p = 0.023), while the APOE genotype did not show significant effects on small vessel disease progression. APOE2 carriers also showed less cortical thinning (p = 0.023) and a slower rate of cognitive decline (p = 0.009) compared to those with APOE3 homozygotes. Our findings suggest that, in svMCI patients, APOE2 has protective effects against amyloid-ß accumulation, cortical thinning, and cognitive decline.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Seong Beom Park
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jin Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Juyoun Lee
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Chungnam National University Hospital, Daejeon, Korea
| | - Young Kyoung Jang
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Sung Tae Kim
- Department of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Jong Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea.,Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea. .,Neuroscience Center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
277
|
Acosta C, Anderson HD, Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95:2430-2447. [PMID: 28467650 DOI: 10.1002/jnr.24075] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022]
Abstract
Astrocytes are glial cells that are distributed throughout the central nervous system in an arrangement optimal for chemical and physical interaction with neuronal synapses and brain blood supply vessels. Neurotransmission modulates astrocytic excitability by activating an array of cell surface receptors and transporter proteins, resulting in dynamic changes in intracellular Ca2+ or Na+ . Ionic and electrogenic astrocytic changes, in turn, drive vital cell nonautonomous effects supporting brain function, including regulation of synaptic activity, neuronal metabolism, and regional blood supply. Alzheimer disease (AD) is associated with aberrant oligomeric amyloid β generation, which leads to extensive proliferation of astrocytes with a reactive phenotype and abnormal regulation of these processes. Astrocytic morphology, Ca2+ responses, extracellular K+ removal, glutamate transport, amyloid clearance, and energy metabolism are all affected in AD, resulting in a deleterious set of effects that includes glutamate excitotoxicity, impaired synaptic plasticity, reduced carbon delivery to neurons for oxidative phosphorylation, and dysregulated linkages between neuronal energy demand and regional blood supply. This review summarizes how astrocytes are affected in AD and describes how these changes are likely to influence brain function. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Crystal Acosta
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada
| | - Hope D Anderson
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research, Winnipeg, Manitoba, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Christopher M Anderson
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
278
|
McInerney MP, Short JL, Nicolazzo JA. Neurovascular Alterations in Alzheimer's Disease: Transporter Expression Profiles and CNS Drug Access. AAPS JOURNAL 2017; 19:940-956. [PMID: 28462473 DOI: 10.1208/s12248-017-0077-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/15/2017] [Indexed: 01/05/2023]
Abstract
Despite a century of steady and incremental progress toward understanding the underlying biochemical mechanisms, Alzheimer's disease (AD) remains a complicated and enigmatic disease, and greater insight will be necessary before substantive clinical success is realised. Over the last decade in particular, a large body of work has highlighted the cerebral microvasculature as an anatomical region with an increasingly apparent role in the pathogenesis of AD. The causative interplay and temporal cascade that manifest between the brain vasculature and the wider disease progression of AD are not yet fully understood, and further inquiry is required to properly characterise these relationships. The purpose of this review is to highlight the recent advancements in research implicating neurovascular factors in AD, at both the molecular and anatomical levels. We begin with a brief introduction of the biochemical and genetic aspects of AD, before reviewing the essential concepts of the blood-brain barrier (BBB) and the neurovascular unit (NVU). In detail, we then examine the evidence demonstrating involvement of BBB dysfunction in AD pathogenesis, highlighting the importance of neurovascular components in AD. Lastly, we include within this review research that focuses on how altered properties of the BBB in AD impact upon CNS exposure of therapeutic agents and the potential clinical impact that this may have on people with this disease.
Collapse
Affiliation(s)
- Mitchell P McInerney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Jennifer L Short
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
279
|
Yokoyama AS, Rutledge JC, Medici V. DNA methylation alterations in Alzheimer's disease. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx008. [PMID: 29492310 PMCID: PMC5804548 DOI: 10.1093/eep/dvx008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/22/2017] [Indexed: 05/24/2023]
Abstract
The observation that Alzheimer's disease (AD) patients with similar and even identical genetic backgrounds often present with heterogeneous pathologies has prompted the hypothesis that epigenetics may contribute to AD. While the study of epigenetics encompasses a variety of modifications including histone modifications and non-coding RNAs, much of the research on how epigenetics might impact AD pathology has been focused on DNA methylation. To this end, several studies have characterized DNA methylation alterations in various brain regions of individuals with AD, with conflicting results. This review examines the results of studies analyzing both global and gene-specific DNA methylation changes in AD and also assesses the results of studies analyzing DNA hydroxymethylation in patients with AD.
Collapse
Affiliation(s)
- Amy S. Yokoyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - John C. Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
280
|
Navigatore-Fonzo L, Castro A, Pignataro V, Garraza M, Casais M, Anzulovich AC. Daily rhythms of cognition-related factors are modified in an experimental model of Alzheimer’s disease. Brain Res 2017; 1660:27-35. [DOI: 10.1016/j.brainres.2017.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/27/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022]
|
281
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|
282
|
Yamauchi K, Ebihara Y, Kawakami Y. Redox status of serum apolipoprotein E and its impact on HDL cholesterol levels. Clin Biochem 2017; 50:777-783. [PMID: 28366823 DOI: 10.1016/j.clinbiochem.2017.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 02/27/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Apolipoprotein E (apoE) is closely involved in the pathogenesis of apoE-related diseases, such as Alzheimer's disease and cardiovascular disease. The redox modulation of cysteine-thiols in a protein is involved in various pathophysiological regulations; however, that of apoE has not been studied in detail. Herein, we devised an analytical method to determine the redox status of serum apoE and assessed its relation to serum cholesterol levels and apoE phenotype. METHODS The present method was based on a band shift assay, using a photocleavable maleimide-conjugated polyethylene glycol. RESULTS The basic characteristics of the present method were found to be satisfactory to determine the redox status of serum apoE quantitatively. Serum apoE was separated into its reduced-form (r-), non-reduced-form (nr-), apoE-AII complex, and homodimer using this method. R-apoE could be detected as a 40-kDa band, whereas nr-apoE remained as monomeric apoE. R-apoE displayed a preference for VLDL; however, the levels showed the correlation with HDL-cholesterol levels (p<0.005). Redox status of serum apoE was significantly different among apoE phenotypes. The quantitative ratios of nr-apoE to total apoE in serum from subjects with apoE4/E3 were higher than in serum from subjects with apoE3/E3 (p<0.0001) and apoE3/E2 (p<0.001). CONCLUSION The redox status of serum apoE might be related to the synthesis of HDL. The information concerning the redox status of serum apoE provided by the present method may be a potent indicator to evaluate various apoE-related diseases.
Collapse
Affiliation(s)
- Kazuyoshi Yamauchi
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Japan; Department of Medical Sciences, Faculty of Medicine, University of Tsukuba, Japan.
| | - Yuka Ebihara
- Department of Medical Sciences, Faculty of Medicine, University of Tsukuba, Japan
| | - Yasushi Kawakami
- Department of Laboratory Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
283
|
Astrocytic LRP1 Mediates Brain Aβ Clearance and Impacts Amyloid Deposition. J Neurosci 2017; 37:4023-4031. [PMID: 28275161 DOI: 10.1523/jneurosci.3442-16.2017] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 11/21/2022] Open
Abstract
Accumulation and deposition of amyloid-β (Aβ) in the brain represent an early and perhaps necessary step in the pathogenesis of Alzheimer's disease (AD). Aβ accumulation leads to the formation of Aβ aggregates, which may directly and indirectly lead to eventual neurodegeneration. While Aβ production is accelerated in many familial forms of early-onset AD, increasing evidence indicates that impaired clearance of Aβ is more evident in late-onset AD. To uncover the mechanisms underlying impaired Aβ clearance in AD, we examined the role of low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Although LRP1 has been shown to play critical roles in brain Aβ metabolism in neurons and vascular mural cells, its role in astrocytes, the most abundant cell type in the brain responsible for maintaining neuronal homeostasis, remains unclear. Here, we show that astrocytic LRP1 plays a critical role in brain Aβ clearance. LRP1 knockdown in primary astrocytes resulted in decreased cellular Aβ uptake and degradation. In addition, silencing of LRP1 in astrocytes led to downregulation of several major Aβ-degrading enzymes, including matrix metalloproteases MMP2, MMP9, and insulin-degrading enzyme. More important, conditional knock-out of the Lrp1 gene in astrocytes in the background of APP/PS1 mice impaired brain Aβ clearance, exacerbated Aβ accumulation, and accelerated amyloid plaque deposition without affecting its production. Together, our results demonstrate that astrocytic LRP1 plays an important role in Aβ metabolism and that restoring LRP1 expression and function in the brain could be an effective strategy to facilitate Aβ clearance and counter amyloid pathology in AD.SIGNIFICANCE STATEMENT Astrocytes represent a major cell type regulating brain homeostasis; however, their roles in brain clearance of amyloid-β (Aβ) and underlying mechanism are not clear. In this study, we used both cellular models and conditional knock-out mouse models to address the role of a critical Aβ receptor, the low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. We found that LRP1 in astrocytes plays a critical role in brain Aβ clearance by modulating several Aβ-degrading enzymes and cellular degradation pathways. Our results establish a critical role of astrocytic LRP1 in brain Aβ clearance and shed light on specific Aβ clearance pathways that may help to establish new targets for AD prevention and therapy.
Collapse
|
284
|
Moutinho M, Landreth GE. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease. J Lipid Res 2017; 58:1937-1949. [PMID: 28264880 DOI: 10.1194/jlr.r075556] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an extensive accumulation of amyloid-β (Aβ) peptide, which triggers a set of deleterious processes, including synaptic dysfunction, inflammation, and neuronal injury, leading to neuronal loss and cognitive impairment. A large body of evidence supports that nuclear receptor (NR) activation could be a promising therapeutic approach for AD. NRs are ligand-activated transcription factors that regulate gene expression and have cell type-specific effects. In this review, we discuss the mechanisms that underlie the beneficial effects of NRs in AD. Moreover, we summarize studies reported in the last 10-15 years and their major outcomes arising from the pharmacological targeting of NRs in AD animal models. The dissection of the pathways regulated by NRs in the context of AD is of importance in identifying novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Miguel Moutinho
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106 and Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
285
|
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, Nielsen JE, Nielsen TT. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017; 34:103-114. [PMID: 28263872 DOI: 10.1016/j.mito.2017.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/11/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.
Collapse
Affiliation(s)
- Nanna Cornelius
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonathan H Wardman
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Iain P Hargreaves
- Pharmacy and Biomolecular Sciences, James Parsons Building, John Moore's University, Liverpool L3 3AF, United Kingdom
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Anne Sigaard Bie
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Glostrup, University of Copenhagen, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Section of Neurogenetics, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark.
| | - Troels T Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
286
|
Feng CZ, Yin JB, Yang JJ, Cao L. Regulatory factor X1 depresses ApoE-dependent Aβ uptake by miRNA-124 in microglial response to oxidative stress. Neuroscience 2017; 344:217-228. [DOI: 10.1016/j.neuroscience.2016.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 01/12/2023]
|
287
|
Carter AY, Letronne F, Fitz NF, Mounier A, Wolfe CM, Nam KN, Reeves VL, Kamboh H, Lefterov I, Koldamova R. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice. PLoS One 2017; 12:e0172161. [PMID: 28241068 PMCID: PMC5328633 DOI: 10.1371/journal.pone.0172161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors (LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased Aβ deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human APOE isoforms, increased level of Aβ oligomers and worsened memory deficits, preferentially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly ameliorated pathological phenotype of those mice. The goal of this study was to examine the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological phenotype and significantly affected brain transcriptome. We show that in mice expressing either APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, the application of LXR agonist significantly increased ABCA1 protein level accompanied by an increased APOE lipidation, and was associated with restoration of APOE4 cognitive deficits, reduced levels of Aβ oligomers, but unchanged amyloid load. Finally, using Gene set enrichment analysis we show a significant APOE isoform specific response to LXR agonist treatment: Gene Ontology categories “Microtubule Based Process” and “Synapse Organization” were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 ameliorates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers of APOEε4.
Collapse
Affiliation(s)
- Alexis Y. Carter
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Florent Letronne
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas F. Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anais Mounier
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cody M. Wolfe
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kyong Nyon Nam
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie L. Reeves
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hafsa Kamboh
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- * E-mail: (RK); (IL)
| | - Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- * E-mail: (RK); (IL)
| |
Collapse
|
288
|
Huynh TPV, Davis AA, Ulrich JD, Holtzman DM. Apolipoprotein E and Alzheimer's disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 2017; 58:824-836. [PMID: 28246336 DOI: 10.1194/jlr.r075481] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/25/2017] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the fastest-growing causes of death and disability in persons 65 years of age or older, affecting more than 5 million Americans alone. Clinical manifestations of AD include progressive decline in memory, executive function, language, and other cognitive domains. Research efforts within the last three decades have identified APOE as the most significant genetic risk factor for late-onset AD, which accounts for >99% of cases. The apoE protein is hypothesized to affect AD pathogenesis through a variety of mechanisms, from its effects on the blood-brain barrier, the innate immune system, and synaptic function to the accumulation of amyloid-β (Aβ). Here, we discuss the role of apoE on the biophysical properties and metabolism of the Aβ peptide, the principal component of amyloid plaques and cerebral amyloid angiopathy (CAA). CAA is characterized by the deposition of amyloid proteins (including Aβ) in the leptomeningeal medium and small arteries, which is found in most AD cases but sometimes occurs as an independent entity. Accumulation of these pathologies in the brain is one of the pathological hallmarks of AD. Beyond Aβ, we will extend the discussion to the potential role of apoE on other amyloidogenic proteins found in AD, and also a number of diverse neurodegenerative diseases.
Collapse
Affiliation(s)
- Tien-Phat V Huynh
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Albert A Davis
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO 63110
| |
Collapse
|
289
|
Koch M, Furtado JD, Falk K, Leypoldt F, Mukamal KJ, Jensen MK. Apolipoproteins and their subspecies in human cerebrospinal fluid and plasma. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 6:182-187. [PMID: 28289700 PMCID: PMC5338868 DOI: 10.1016/j.dadm.2017.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Subspecies of apolipoproteins can be defined by fractionating apolipoproteins based on the presence and absence of coexisting apolipoproteins. METHODS We determined age- and sex-adjusted correlations of enzyme-linked immunosorbent assay-measured plasma and cerebrospinal fluid (CSF) apolipoproteins (apoA-I, apoC-III, apoE, and apoJ) or apolipoprotein subspecies (apoA-I with and without apoC-III, ApoE, or apoJ; apoE with and without apoC-III or apoJ) in 22 dementia-free participants. RESULTS CSF apoE did not correlate with plasma apolipoproteins or their subspecies. CSF apoJ correlated most strongly with plasma apoA-I without apoJ (r = 0.7). CSF apoA-I correlated similarly strong with plasma total apoA-I and all apoA-I subspecies (r ≥ 0.4) except for apoA-I with apoE (r = 0.3) or apoA-I with apoJ (r = 0.3). CSF apoC-III was most strongly correlated with plasma apoA-I with apoC-III (r = 0.7). DISCUSSION CSF levels of some apolipoproteins implicated in the pathophysiology of dementia might be better approximated by specific plasma apolipoprotein subspecies than total plasma concentrations.
Collapse
Affiliation(s)
- Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kim Falk
- Neuroimmunology Unit, Christian-Albrechts-University Kiel, Kiel, Germany; Department of Neurology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank Leypoldt
- Neuroimmunology Unit, Christian-Albrechts-University Kiel, Kiel, Germany; Department of Neurology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kenneth J Mukamal
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
290
|
Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC. PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev Camb Philos Soc 2017; 92:2046-2069. [PMID: 28220655 DOI: 10.1111/brv.12320] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Over 25 years have passed since peroxisome proliferators-activated receptors (PPARs), were first described. Like other members of the nuclear receptors superfamily, PPARs have been defined as critical sensors and master regulators of cellular metabolism. Recognized as ligand-activated transcription factors, they are involved in lipid, glucose and amino acid metabolism, taking part in different cellular processes, including cellular differentiation and apoptosis, inflammatory modulation and attenuation of acute and chronic neurological damage in vivo and in vitro. Interestingly, PPAR activation can simultaneously reprogram the immune response, stimulate metabolic and mitochondrial functions, promote axonal growth, induce progenitor cells to differentiate into myelinating oligodendrocytes, and improve brain clearance of toxic molecules such as β-amyloid peptide. Although the molecular mechanisms and cross-talk with different molecular pathways are still the focus of intense research, PPARs are considered potential therapeutic targets for several neuropathological conditions, including degenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. This review considers recent advances regarding PPARs, as well as new PPAR agonists. We focus on the mechanisms behind the neuroprotective effects exerted by PPARs and summarise the roles of PPARs in different pathologies of the central nervous system, especially those associated with degenerative and inflammatory mechanisms.
Collapse
Affiliation(s)
- Juan M Zolezzi
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Manuel J Santos
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Sussy Bastías-Candia
- Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Gral. Velásquez 1775, 1000007, Arica, Chile
| | - Claudio Pinto
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile
| | - Juan A Godoy
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), P. Catholic University of Chile, PO Box 114-D, 8331150, Santiago, Chile.,Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Alameda 340, 8331150, Santiago, Chile.,Faculty of Medicine, Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Avoca Street Randwick NSW 2031, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, PO Box 113-D, Avenida Bulnes 01855, 6210427, Punta Arenas, Chile
| |
Collapse
|
291
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|
292
|
Zhang Y, Schmid B, Nikolaisen NK, Rasmussen MA, Aldana BI, Agger M, Calloe K, Stummann TC, Larsen HM, Nielsen TT, Huang J, Xu F, Liu X, Bolund L, Meyer M, Bak LK, Waagepetersen HS, Luo Y, Nielsen JE, Holst B, Clausen C, Hyttel P, Freude KK. Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports 2017; 8:648-658. [PMID: 28216144 PMCID: PMC5355623 DOI: 10.1016/j.stemcr.2017.01.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
The truncated mutant form of the charged multivesicular body protein 2B (CHMP2B) is causative for frontotemporal dementia linked to chromosome 3 (FTD3). CHMP2B is a constituent of the endosomal sorting complex required for transport (ESCRT) and, when mutated, disrupts endosome-to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs) were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3 neurons displayed defective cristae formation, accompanied by deficiencies in mitochondrial respiration and increased levels of reactive oxygen. In addition, we provide evidence for perturbed iron homeostasis, presenting an in vitro patient-specific model to study the effects of iron accumulation in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development. FTD3 neurons show abnormalities in endosomes and mitochondria Parkinson's and Alzheimer's disease core genes are altered in FTD3 neurons Iron homeostasis is perturbed in FTD3 neurons Impairments in FTD3 neurons are rescued in CRISPR/Cas9-edited isogenic controls
Collapse
Affiliation(s)
- Yu Zhang
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| | | | - Nanett K Nikolaisen
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Blanca I Aldana
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mikkel Agger
- Stem Cell and Developmental Neurobiology Group, Department of Neurobiology Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Kirstine Calloe
- The Physiology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Hjalte M Larsen
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jinrong Huang
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Fengping Xu
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Lars Bolund
- Danish Regenerative Engineering Alliance for Medicine (DREAM), Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Morten Meyer
- Stem Cell and Developmental Neurobiology Group, Department of Neurobiology Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Lasse K Bak
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yonglun Luo
- Danish Regenerative Engineering Alliance for Medicine (DREAM), Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | - Poul Hyttel
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Kristine K Freude
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
293
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|
294
|
Viktorsson EÖ, Gabrielsen M, Kumarachandran N, Sylte I, Rongved P, Åstrand OAH, Kase ET. Regulation of liver X receptor target genes by 22-functionalized oxysterols. Synthesis, in silico and in vitro evaluations. Steroids 2017; 118:119-127. [PMID: 28011133 DOI: 10.1016/j.steroids.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
The endogenous oxysterol 22(R)-hydroxycholesterol (22RHC, 1) is an LXR agonist which upregulates genes of critical involvement in human cholesterol- and lipid metabolism. In contrast, its synthetic epimer 22(S)-hydroxycholesterol (22SHC, 8) has shown specific antagonistic effects in recent studies, avoiding unwanted side effects provided by potent LXR agonists. In terms of LXR modulation, the aim of this study was to compare 22SHC (8), 22RHC (1) and synthesized ligands with keto- and amide functionality in the 22nd position of the cholesterol scaffold. 22SHC (8) and 22RHC (1) performed as expected while 22-ketocholesterol (22KC, 10) revealed an attractive in vitro profile for further investigation in terms of anti-atherosclerotic properties as selective upregulation of the ATP-binding cassette transporter ABCA1 was observed. A new synthesized amide derivate, Fernholtz cyclohexylamide (13) was shown to reduce lipogenesis in a dose-responsive manner and abolish the effect of the potent LXR agonist T0901317 when administered simultaneously.
Collapse
Affiliation(s)
- Elvar Örn Viktorsson
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway
| | - Mari Gabrielsen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Nugalya Kumarachandran
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway
| | - Ove Alexander Høgmoen Åstrand
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N0316 Oslo, Norway.
| | - Eili Tranheim Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
295
|
Pate KM, Murphy RM. Cerebrospinal Fluid Proteins as Regulators of Beta-amyloid Aggregation and Toxicity. Isr J Chem 2017; 57:602-612. [PMID: 29129937 DOI: 10.1002/ijch.201600078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amyloid disorders, such as Alzheimer's, are almost invariably late-onset diseases. One defining diagnostic feature of Alzheimer's disease is the deposition of beta-amyloid as extracellular plaques, primarily in the hippocampus. This raises the question: are there natural protective agents that prevent beta-amyloid from depositing, and is it loss of this protection that leads to onset of disease? Proteins in cerebrospinal fluid (CSF) have been suggested to act as just such natural protective agents. Here, we describe some of the early evidence that led to this suggestion, and we discuss, in greater detail, two CSF proteins that have garnered the bulk of the attention.
Collapse
Affiliation(s)
- Kayla M Pate
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison WI 53706 (USA)
| |
Collapse
|
296
|
Li C, Guo XD, Lei M, Wu JY, Jin JZ, Shi XF, Zhu ZY, Rukachaisirikul V, Hu LH, Wen TQ, Shen X. Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Aβ and Tau pathologies. Acta Pharmacol Sin 2017; 38:9-28. [PMID: 27694908 PMCID: PMC5220549 DOI: 10.1038/aps.2016.94] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/24/2016] [Indexed: 12/25/2022] Open
Abstract
Considering the complicated pathogenesis of Alzheimer's disease (AD), multi-targets have become a focus in the discovery of drugs for treatment of this disease. In the current work, we established a multi-target strategy for discovering active reagents capable of suppressing both Aβ level and Tau hyperphosphorylation from natural products, and found that the ethanol extract of Thamnolia vermicularis (THA) was able to improve learning ability in APP/PS1 transgenic mice by inhibiting both Aβ levels and Tau hyperphosphorylation. SH-SY5Y and CHO-APP/BACE1 cells and primary astrocytes were used in cell-based assays. APP/PS1 transgenic mice [B6C3-Tg(APPswe, PS1dE9)] were administered THA (300 mg·kg-1·d-1, ig) for 100 d. After the administration was completed, the learning ability of the mice was detected using a Morris water maze (MWM) assay; immunofluorescence staining, Congo red staining and Thioflavine S staining were used to detect the senile plaques in the brains of the mice. ELISA was used to evaluate Aβ and sAPPβ contents, and Western blotting and RT-PCR were used to investigate the relevant signaling pathway regulation in response to THA treatment. In SH-SY5Y cells, THΑ (1, 10, 20 μg/mL) significantly stimulated PI3K/AKT/mTOR and AMPK/raptor/mTOR signaling-mediated autophagy in the promotion of Aβ clearance as both a PI3K inhibitor and an AMPK indirect activator, and restrained Aβ production as a suppressor against PERK/eIF2α-mediated BACE1 expression. Additionally, THA functioned as a GSK3β inhibitor with an IC50 of 1.32±0.85 μg/mL, repressing Tau hyperphosphorylation. Similar effects on Aβ accumulation and Tau hyperphosphorylation were observed in APP/PS1 transgenic mice treated with THA. Furthermore, administration of THA effectively improved the learning ability of APP/PS1 transgenic mice, and markedly reduced the number of senile plaques in their hippocampus and cortex. The results highlight the potential of the natural product THA for the treatment of AD.
Collapse
Affiliation(s)
- Cong Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-dan Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Lei
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia-yi Wu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia-zhen Jin
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-fan Shi
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhi-yuan Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Vatcharin Rukachaisirikul
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Li-hong Hu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tie-qiao Wen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xu Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
297
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. The "amyloid hypothesis" is one of the predominant hypotheses for the pathogenesis of AD. Besides, tau protein accumulation, calcium homeostasis disruption, and glial cell activation are also remarkable features in AD. Recently, there are some reports showing that TRPC channels may function in AD development, especially TRPC6. In this chapter, we will discuss the evidence for the involvement of TRPC channels in Alzheimer's disease and the potential of therapeutics for AD based on TRPC channels.
Collapse
|
298
|
Solé-Domènech S, Cruz DL, Capetillo-Zarate E, Maxfield FR. The endocytic pathway in microglia during health, aging and Alzheimer's disease. Ageing Res Rev 2016; 32:89-103. [PMID: 27421577 DOI: 10.1016/j.arr.2016.07.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Microglia, the main phagocytes of the central nervous system (CNS), are involved in the surveillance and maintenance of nervous tissue. During normal tissue homeostasis, microglia migrates within the CNS, phagocytose dead cells and tissue debris, and modulate synapse pruning and spine formation via controlled phagocytosis. In the event of an invasion by a foreign body, microglia are able to phagocytose the invading pathogen and process it proteolytically for antigen presentation. Internalized substrates are incorporated and sorted within the endocytic pathway and thereafter transported via complex vesicular routes. When targeted for degradation, substrates are delivered to acidic late endosomes and lysosomes. In these, the enzymatic degradation relies on pH and enzyme content. Endocytosis, sorting, transport, compartment acidification and degradation are regulated by complex signaling mechanisms, and these may be altered during aging and pathology. In this review, we discuss the endocytic pathway in microglia, with insight into the mechanisms controlling lysosomal biogenesis and pH regulation. We also discuss microglial lysosome function associated with Alzheimer's disease (AD) and the mechanisms of amyloid-beta (Aβ) internalization and degradation. Finally, we explore some therapies currently being investigated to treat AD and their effects on microglial response to Aβ, with insight in those involving enhancement of lysosomal function.
Collapse
|
299
|
Van Loon NM, Zelcer N. Idolizing the clearance of Amyloid-β by microglia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:536. [PMID: 28149897 DOI: 10.21037/atm.2016.11.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nienke Marlies Van Loon
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
300
|
Tan Y, Nie S, Zhu W, Liu F, Guo H, Chu J, Cao XB, Jiang X, Zhang Y, Li Y. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice. Front Aging Neurosci 2016; 8:287. [PMID: 27965573 PMCID: PMC5126466 DOI: 10.3389/fnagi.2016.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF), a tyrosine kinase B agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO) mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. Five-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5 mg/kg) or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterward, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP) as well as AEP-derived truncated tau N368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope). These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tau N368.
Collapse
Affiliation(s)
- Yang Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University Wuhan, China
| | - Wende Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Fang Liu
- Department of Medicine, LuoHu Chronic Disease Control and Cure Hospital Shenzhen, China
| | - Hailong Guo
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| | - Jiewen Chu
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| | - Xue B Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yunjian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-sen University Shenzhen, China
| |
Collapse
|