251
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
252
|
Alipour Nosrani E, Tamtaji OR, Alibolandi Z, Sarkar P, Ghazanfari M, Azami Tameh A, Taghizadeh M, Banikazemi Z, Hadavi R, Naderi Taheri M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson's disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J Immunoassay Immunochem 2020; 42:106-120. [PMID: 33078659 DOI: 10.1080/15321819.2020.1833917] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is an age-associated, progressive, and common neurodegenerative disorder. It is characterized by dopaminergic neuron degeneration in the substantia nigra pars compacta. The involvement of oxidative stress, inflammation, and dysbiosis in PD has been confirmed and probiotics also have the ability to regulate the mentioned mechanisms. Here, we assessed probiotics supplementation effects on experimental model of PD. Thirty Male Wistar rats were divided into three groups for a 14-day treatment. It was shown that a mixture of probiotics containing Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus reuteri, and Lactobacillus fermentum could improve rotational behavior, cognitive function, lipid peroxidation, and neuronal damage in the group received probiotic supplementation compared to the other groups (P < 0001, P < .001, and P = .026, respectively). Taken together, these findings revealed that probiotics supplementation could be an appropriate complementary treatment for PD.
Collapse
Affiliation(s)
- Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zahra Alibolandi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Parichehr Sarkar
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Ghazanfari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Razie Hadavi
- Department of Biochemistry and Student Research Committee, Semnan University of Medical School, Semnan, Iran
| | - Mojtaba Naderi Taheri
- Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, I.R. Iran.,Deptartman of Community Health & Geriatric Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
253
|
Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int J Mol Sci 2020; 21:E7551. [PMID: 33066156 PMCID: PMC7589356 DOI: 10.3390/ijms21207551] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| |
Collapse
|
254
|
Activation of BDNF-mediated PKA signaling in the ventral hippocampus by Capsosiphon fulvescens glycoproteins alleviates depressive-like behavior in aged rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
255
|
Zhao Y, Yang G, Zhao Z, Wang C, Duan C, Gao L, Li S. Antidepressant-like effects of Lactobacillus plantarum DP189 in a corticosterone-induced rat model of chronic stress. Behav Brain Res 2020; 395:112853. [DOI: 10.1016/j.bbr.2020.112853] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
|
256
|
Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J Neurogastroenterol Motil 2020; 26:486-495. [PMID: 32989186 PMCID: PMC7547201 DOI: 10.5056/jnm20079] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Aims Psychobiotics are probiotics or prebiotics that, upon ingestion in adequate amounts, yield positive influence on mental health via microbiota-gut-brain axis regulation to modulate the circulating cytokines, chemokines, neurotransmitters, or neurotrophins levels. We have recently shown that a psychobiotic combination (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175; CEREBIOME) significantly improved depression symptoms in patients with depression. Recent animal data suggest the influence of the gut microbiota on brain-derived neurotrophic factor (BDNF), which was shown to correlate with antidepressant response in depressive patients. Therefore, we conducted this exploratory post hoc analysis of BDNF levels to clarify the mechanism of action of this psychobiotic in our cohort. Methods Our study was a double-blind, randomized controlled trial of patients with low-to-moderate depression receiving either a probiotic combination, prebiotic or placebo. From the 110 patients randomized in the trial, 78 were included in this post hoc analysis (probiotic, n = 28; prebiotic and placebo, n = 25). We compared serum BDNF levels from participants at baseline and endpoint, and assessed the Pearson correlation between depression severity and BDNF levels for each intervention. Results We found that post-intervention BDNF levels were significantly different between groups (P < 0.001). Furthermore, BDNF levels increased significantly in the probiotic group compared to both the prebiotic (P < 0.001) and placebo groups (P = 0.021), which inversely correlated with depression severity compared to placebo (ANOVA/ANCOVA, P = 0.012; Pearson, r = -0.79, P < 0.001). In the prebiotic group, BDNF levels reduced but not significantly compared with placebo group (P > 0.05). Conclusion Eight-week supplementation with B. longum and L. helveticus in depressive patients improved depression symptoms, possibly by increasing BDNF levels.
Collapse
Affiliation(s)
- Nazanin Heidarzadeh-Rad
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Almasi
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
257
|
Jang SH, Woo YS, Lee SY, Bahk WM. The Brain-Gut-Microbiome Axis in Psychiatry. Int J Mol Sci 2020; 21:E7122. [PMID: 32992484 PMCID: PMC7583027 DOI: 10.3390/ijms21197122] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Beginning with the concept of the brain-gut axis, the importance of the interaction between the brain and the gastrointestinal tract has been extended to the microbiome with increasing clinical applications. With the recent development of various techniques for microbiome analysis, the number of relevant preclinical and clinical studies on animals and human subjects has rapidly increased. Various psychotic symptoms affect the intestinal microbiome through the hypothalamus-pituitary-adrenal gland axis. Conversely, the intestinal microbiome regulates the gastrointestinal tract environment and affects psychological factors by means of the microorganisms or their metabolites, either acting directly on the brain or through the synthesis of various neurotransmitters. This review discusses the clinical applicability of the brain-gut-microbiome axis and directions for improving psychological symptoms based on the studies published to date.
Collapse
Affiliation(s)
- Seung-Ho Jang
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| | - Sang-Yeol Lee
- Department of Psychiatry, School of Medicine, Wonkwang University, Iksan 54538, Korea; (S.-H.J.); (S.-Y.L.)
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| |
Collapse
|
258
|
Sandes S, Figueiredo N, Pedroso S, Sant'Anna F, Acurcio L, Abatemarco Junior M, Barros P, Oliveira F, Cardoso V, Generoso S, Caliari M, Nicoli J, Neumann E, Nunes Á. Weissella paramesenteroides WpK4 plays an immunobiotic role in gut-brain axis, reducing gut permeability, anxiety-like and depressive-like behaviors in murine models of colitis and chronic stress. Food Res Int 2020; 137:109741. [PMID: 33233306 DOI: 10.1016/j.foodres.2020.109741] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
The relationship between inflammatory bowel disease (IBD) and mood disorders is complex and involves overlapping metabolic pathways, which may determine comorbidity. Several studies have been shown that this comorbidity could worsen IBD clinical course. The treatment of ulcerative colitis is complex, and involves traditional therapy to promote the function of epithelial barrier, reducing exacerbated inflammatory responses. Recently, it has been shown that some probiotic strains could modulate gut-brain axis, reducing depressive and anxiety scores in humans, including IBD patients. Accordingly, this study aimed to evaluate the role of Weissella paramesenteroides WpK4 in murine models of ulcerative colitis and chronic stress. It was observed that bacterium ingestion improved health of colitis mice, reducing intestinal permeability, besides improving colon histopathological appearance. In stressed mice, bacterial consumption was associated with a reduced anxiety-like and depressive-like behaviors. In both assays, the beneficial role of W. paramesenteroides WpK4 was related to its immunomodulatory feature. It is possible to state that W. paramesenteroides WpK4 exerted their beneficial roles in gut-brain axis through their immunomodulatory effects with consequences in several metabolic pathways related to intestinal permeability and hippocampal physiology.
Collapse
Affiliation(s)
- Sávio Sandes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Brazil.
| | - Naiara Figueiredo
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Brazil
| | - Sílvia Pedroso
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Felipe Sant'Anna
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Brazil
| | - Leonardo Acurcio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Mário Abatemarco Junior
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Patrícia Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Fabrício Oliveira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Valbert Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Simone Generoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcelo Caliari
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Jacques Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Campus Pampulha, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Álvaro Nunes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Brazil
| |
Collapse
|
259
|
Kaneda Y, Kawata A, Suzuki K, Matsunaga D, Yasumatsu M, Ishiwata T. Comparison of neurotransmitter levels, physiological conditions, and emotional behavior between isolation-housed rats with group-housed rats. Dev Psychobiol 2020; 63:452-460. [PMID: 32945540 DOI: 10.1002/dev.22036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/17/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Brain monoaminergic neurotransmitters, such as dopamine (DA), serotonin (5-HT), and noradrenaline (NA), play crucial roles in neuronal and physiological functions, including social behaviors. Isolation housing may induce behavioral and neurochemical abnormalities in rats, although its influence on neurotransmitter levels remains obscure. This study investigated the influence of isolation- or group-housing on core body temperature (Tcore ), locomotor activity (ACT), emotional behavior, and neurotransmitter levels in male Wistar rats. Behavioral changes were monitored using the open field test (OFT) and social interaction test (SIT). After 4 weeks, brain tissues were collected to quantify 5-HT, DA, and NA concentrations. Body weight and basal Tcore during both the light and dark phase were higher in isolation-housed than in group-housed rats, although no significant difference was seen in ACT. No significant differences were observed during the OFT. Isolation-housed rats showed increased line crossing and decreased social behavior during the SIT. Isolation-housed rats exhibited decreased levels of 5-HT in the caudate putamen and amygdala, and elevated and decreased NA levels in the paraventricular hypothalamic nucleus and hippocampus, respectively. However, DA levels were unaffected. Thus, housing environments may affect brain areas that regulate various neuronal and physiological functions, such as memory, stress responses, and emotional behavior.
Collapse
Affiliation(s)
- Yuta Kaneda
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Akira Kawata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Kota Suzuki
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Daisuke Matsunaga
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Mikinobu Yasumatsu
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| | - Takayuki Ishiwata
- Graduate School of Community & Human Services, Rikkyo University, Saitama, Japan
| |
Collapse
|
260
|
Hu L, Zhu S, Peng X, Li K, Peng W, Zhong Y, Kang C, Cao X, Liu Z, Zhao B. High Salt Elicits Brain Inflammation and Cognitive Dysfunction, Accompanied by Alternations in the Gut Microbiota and Decreased SCFA Production. J Alzheimers Dis 2020; 77:629-640. [PMID: 32741809 DOI: 10.3233/jad-200035] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Excessive salt intake is considered as an important risk factor for cognitive impairment, which might be the consequence of imbalanced intestinal homeostasis. Objective: To investigate the effects of dietary salt on the gut microbiota and cognitive performance and the underlying mechanisms. Methods: Adult female C57BL/6 mice were maintained on either normal chow (control group, CON) or sodium-rich chow containing 8% NaCl (high-salt diet, HSD) for 8 weeks. Spatial learning and memory ability, short-chain fatty acids (SCFAs) concentrations, gut bacterial flora composition, blood-brain barrier permeability, and proinflammatory cytokine levels and apoptosis in the brain were evaluated. Results: The mice fed a HSD for 8 weeks displayed impaired learning and memory abilities. HSD significantly reduced the proportions of Bacteroidetes (S24-7 and Alloprevotella) and Proteobacteria and increased that of Firmicutes (Lachnospiraceae and Ruminococcaceae). SCFA concentrations decreased in the absolute concentrations of acetate, propionate, and butyrate in the fecal samples from the HSD-fed mice. The HSD induced both BBB dysfunction and microglial activation in the mouse brain, and increased the IL-1β, IL-6, and TNF-α expression levels in the cortex. More importantly, the degree of apoptosis was higher in the cortex and hippocampus region of mice fed the HSD, and this effect was accompanied by significantly higher expression of cleaved caspase-3, caspase-3, and caspase-1. Conclusion: The HSD directly causes cognitive dysfunction in mice by eliciting an inflammatory environment and triggering apoptosis in the brain, and these effects are accompanied by gut dysbiosis, particularly reduced SCFA production.
Collapse
Affiliation(s)
- Li Hu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shaoping Zhu
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaoping Peng
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kanglan Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wanjuan Peng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yu Zhong
- Analysis Center of Guangdong Medical University, Zhanjiang, China
| | - Chenyao Kang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xingxing Cao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
261
|
Zhang Y, Wang P, Xia C, Wu Z, Zhong Z, Xu Y, Zeng Y, Liu H, Liu R, Liao M. Fructooligosaccharides supplementation mitigated chronic stress-induced intestinal barrier impairment and neuroinflammation in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
262
|
Niu Y, Liang S, Wang T, Hu X, Li W, Wu X, Jin F. Pre-Gestational intake of Lactobacillus helveticus NS8 has anxiolytic effects in adolescent Sprague Dawley offspring. Brain Behav 2020; 10:e01714. [PMID: 32681606 PMCID: PMC7507564 DOI: 10.1002/brb3.1714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/18/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Adolescence is a period of heightened susceptibility to anxiety disorders. Probiotic supplementation had a positive impact on reducing anxiety. The maternal microbiome plays an important role in child health outcomes and in the establishment of the offspring microbiome. Few studies have investigated the impact of gestational probiotic supplementation on the offspring's anxiety. METHODS The present study examined the impact of prenatal Lactobacillus helveticus NS8 supplementation (LAC) on Sprague Dawley rat offspring's anxiety-like behavior. The behaviors tested in the present study include the elevated plus maze (EPM), the open field test (OFT), and prepulse inhibition (PPI). Analyses of variance were utilized. RESULTS (a) The performance of LAC adolescent rats in the EPM was similar to that in the OFT, both of which reflect that LAC caused an antianxiety effect in adolescent offspring rats and the antianxiety effect without sex differences; (b) LAC did not change performance in PPI and did not change the sex and age differences in PPI; and c. LAC decreased the body mass of rat offspring. CONCLUSION Lactobacillus helveticus NS8 supplementation during gestation might have a moderate antianxiety effect in both males and females (especially adolescents) and be helpful for avoiding excessive body mass.
Collapse
Affiliation(s)
- Yunxia Niu
- School of Vocational EducationTianjin University of Technology and EducationTianjinChina
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Shan Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Tao Wang
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Xu Hu
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Wei Li
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Xiaoli Wu
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| | - Feng Jin
- CAS Key Laboratory of Mental HealthInstitute of PsychologyBeijingChina
| |
Collapse
|
263
|
Haas GS, Wang W, Saffar M, Mooney-Leber SM, Brummelte S. Probiotic treatment (Bifidobacterium longum subsp. longum 35624™) affects stress responsivity in male rats after chronic corticosterone exposure. Behav Brain Res 2020; 393:112718. [DOI: 10.1016/j.bbr.2020.112718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
264
|
Jiang X, Lu N, Zhao H, Yuan H, Xia D, Lei H. The Microbiome-Metabolome Response in the Colon of Piglets Under the Status of Weaning Stress. Front Microbiol 2020; 11:2055. [PMID: 32983040 PMCID: PMC7483555 DOI: 10.3389/fmicb.2020.02055] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Weaning is stressful for piglets involving nutritional, physiological, and psychological challenges, leading to an increase in the secretion of cortisol, changes in gut microbiome and metabolites, whereas the underlying relationships remain unclear. To elucidate this, 14 Meishan female piglets were divided into the weaning group and the suckling group at the age of 21 days paired by litter and body weight. After 48 h of experiment, weaned piglets had lower body weight, but higher salivary cortisol level than that of their suckling litter mates (P < 0.05). The composition of the colonic bacterial community and metabolites were different between the two groups, and the first predominant genus of the suckling and weaned piglets colonic microbiome were Bacteroides and Prevotellaceae-NK3B31 group respectively. The suckling piglets had higher proportions of phylum Bacteroidetes and Lentisphaerae, and genus Bacteroides and Lactobacillus in the colonic microbial community, but lower abundance of genus Prevotellaceae-NK3B31 group than that of the weaned piglets (P < 0.05). Accordingly, there were 15 colonic metabolites differed between the two groups, in which 2 metabolites (phenylacetic acid and phenol) negatively related to the abundant of Lactobacillus genus (P < 0.05), while 9 metabolites (acetic acid, arabitol, benzoic acid, caprylic acid, cholesterol, dihydrocholesterol, galactinol, glucose phenol, phenylacetic acid, and oxamic acid, glycerol, propionic acid) positively associated with the proportion of Prevotellaceae-NK3B31 group genus (P < 0.05). Furthermore, the salivary cortisol level negatively associated with the abundance of phylum Lentisphaerae, but positively associated with the phylum Bacteroidetes and the genus Prevotellaceae-NK3B31 group (P < 0.05) respectively. These results provide us with new insights into the cause of the gut microbiome and stress, and the contributions of gut microbiome in metabolic and physiological regulation in response to weaning stress.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Naisheng Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haichao Zhao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Pharmaceutical Microbiology, School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China
| | - Hao Yuan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dong Xia
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hulong Lei
- Institute of Animal Husbandry and Veterinary Science, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
265
|
Afzal M, Mazhar SF, Sana S, Naeem M, Rasool MH, Saqalein M, Nisar MA, Rasool M, Bilal M, Khan AA, Khurshid M. Neurological and cognitive significance of probiotics: a holy grail deciding individual personality. Future Microbiol 2020; 15:1059-1074. [PMID: 32755361 DOI: 10.2217/fmb-2019-0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of the human microbiome in the brain and behavioral development is an area of increasing attention. Recent investigations have found that diverse mechanisms and signals including the immune, endocrine and neural associations are responsible for the communication between gut microbiota and the brain. The studies have suggested that alteration of intestinal microbiota using probiotic formulations may offer a significant role in the maturation and organization of the brain and can shape the brain and behavior as well as mood and cognition in human subjects. The understanding of the possible impact of gut microflora on neurological function is a promising phenomenon that can surely transform the neurosciences and may decipher the novel etiologies for neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Sayyeda Farwa Mazhar
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Sadia Sana
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| | | | - Muhammad Saqalein
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Maria Rasool
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan.,Department of Microbiology, Government College University Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science & Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Pakistan
| |
Collapse
|
266
|
Wardziukiewicz W, Stachowska E. The influence of the intestinal microbiota and its
modifications on the well-being of patients with
depression. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.3416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Depression is an increasingly common disease that significantly reduces quality of life. The
number of patients with depression is constantly increasing, especially among younger people.
There are many likely causes of depression related to internal as well as environmental factors.
It is possible that the intestinal microbiota may play an important role in the development
of depressive symptoms. Its diversity is important for the proper development and functioning
of the nervous system, in which an important role is played by the gut brain axis, which is the path-way of communication of intestinal microorganisms with the central nervous
system. Changes in the number and diversity of the intestinal microbiota affect many pathways
potentially related to mood, including hypothalamic-pituitary-adrenal axis, tryptophan
metabolism, as well as the synthesis of neurotransmitters, short-chain fatty acids and brainderived
neurotrophic factor. These changes can also affect the response of the immune system
and inflammatory processes. Therefore, it seems that modulation of the intestinal microbiota
through diet components and probiotic supplementation may be extremely important in
the treatment of depression, also as one of the methods of treating this pharmacotherapyresistant
condition.
This work focuses on the effects of intestinal microbiota and its changes on the well-being of
patients with depression.
Collapse
Affiliation(s)
- Wiktoria Wardziukiewicz
- Katedra i Zakład Żywienia Człowieka i Metabolomiki Pomorskiego Uniwersytetu Medycznego, Szczecin
| | - Ewa Stachowska
- Katedra i Zakład Żywienia Człowieka i Metabolomiki Pomorskiego Uniwersytetu Medycznego, Szczecin
| |
Collapse
|
267
|
Zhang P, Wu X, Liang S, Shao X, Wang Q, Chen R, Zhu W, Shao C, Jin F, Jia C. A dynamic mouse peptidome landscape reveals probiotic modulation of the gut-brain axis. Sci Signal 2020; 13:13/642/eabb0443. [DOI: 10.1126/scisignal.abb0443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Certain probiotics have beneficial effects on the function of the central nervous system through modulation of the gut-brain axis. Here, we describe a dynamic landscape of the peptidome across multiple brain regions, modulated by oral administration of different probiotic species over various times. The spatiotemporal and strain-specific changes of the brain peptidome correlated with the composition of the gut microbiome. The hippocampus exhibited the most sensitive response to probiotic treatment. The administration of heat-killed probiotics altered the hippocampus peptidome but did not substantially change the gut microbiome. We developed a literature-mining algorithm to link the neuropeptides altered by probiotics with potential functional roles. We validated the probiotic-regulated role of corticotropin-releasing hormone by monitoring the hypothalamic-pituitary-adrenal axis, the prenatal stress–induced hyperactivity of which was attenuated by probiotics treatment. Our findings provide evidence for modulation of the brain peptidome by probiotics and provide a resource for further studies of the gut-brain axis and probiotic therapies.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
- School of Life Sciences, Hebei University, Hebei Province, Baoding 071002, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Weimin Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Chen Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| |
Collapse
|
268
|
de Araújo FF, Farias DDP. Psychobiotics: An emerging alternative to ensure mental health amid the COVID-19 outbreak? Trends Food Sci Technol 2020; 103:386-387. [PMID: 32836825 PMCID: PMC7354851 DOI: 10.1016/j.tifs.2020.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862, Campinas, SP, Brazil
| | - David de Paulo Farias
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
269
|
Yan F, Polk DB. Probiotics and Probiotic-Derived Functional Factors-Mechanistic Insights Into Applications for Intestinal Homeostasis. Front Immunol 2020; 11:1428. [PMID: 32719681 PMCID: PMC7348054 DOI: 10.3389/fimmu.2020.01428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Advances in our understanding of the contribution of the gut microbiota to human health and the correlation of dysbiosis with diseases, including chronic intestinal conditions such as inflammatory bowel disease (IBD), have driven mechanistic investigations of probiotics in intestinal homeostasis and potential clinical applications. Probiotics have been shown to promote intestinal health by maintaining and restoring epithelial function, ensuring mucosal immune homeostasis, and inhibiting pathogenic bacteria. Recent findings reveal an approach for defining previously unrecognized probiotic-derived soluble factors as potential mechanisms of probiotic action. This review focuses on the impact of probiotics and probiotic-derived functional factors, including probiotic products and metabolites by probiotics, on the cellular responses and signaling pathways involved in maintaining intestinal homeostasis. Although there is limited information regarding the translation of probiotic treatment outcomes from in vitro and animal studies to clinical applications, potential approaches for increasing the clinical efficacy of probiotics for IBD, such as those based on probiotic-derived factors, are highlighted in this review. In this era of precision medicine and targeted therapies, more basic, preclinical, and clinical evidence is needed to clarify the efficacy of probiotics in maintaining intestinal health and preventing and treating disease.
Collapse
Affiliation(s)
- Fang Yan
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - D Brent Polk
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
270
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
271
|
Thomann AK, Mak JWY, Zhang JW, Wuestenberg T, Ebert MP, Sung JJY, Bernstein ÇN, Reindl W, Ng SC. Review article: bugs, inflammation and mood-a microbiota-based approach to psychiatric symptoms in inflammatory bowel diseases. Aliment Pharmacol Ther 2020; 52:247-266. [PMID: 32525605 DOI: 10.1111/apt.15787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psychiatric co-morbidities including depression and anxiety are common in inflammatory bowel diseases (IBD). Emerging evidence suggests that interactions between the gut microbiota and brain may play a role in the pathogenesis of psychiatric symptoms in IBD. AIM To review the literature on microbiota-brain-gut interactions in gut inflammation, psychosocial stress and mental disorders and to discuss the putative mediating role of gut microbiota in the development of psychiatric symptoms or co-morbidities in IBD. METHODS A literature search was conducted on Ovid and Pubmed to select relevant animal and human studies reporting an association between IBD, mental disorders and gut microbiota. RESULTS Gut microbial alterations are frequently reported in subjects with IBD and with mental disorders. Both have been associated with reduced faecal bacterial diversity, decreased taxa within the phylum Firmicutes and increased Gammaproteobacteria. In animal studies, microbial perturbations induce behavioural changes and modulate inflammation in mice. Anxiety- and depression-like behaviours in animals can be transferred via faecal microbiota. In humans, modulation of the gut microbiota with probiotics is associated with behavioural and mood changes. Recent data show correlations in changes of faecal and mucosal microbiota and psychological distress in patients with IBD independent of disease activity. CONCLUSION Both IBD and mental disorders are associated with gut microbial alterations. Preclinical and preliminary human studies have shown a mediating role of the gut microbiota in intestinal inflammation and anxiety, depression and stress. Targeting the gut microbiota may represent a useful therapeutic approach for the treatment of psychiatric co-morbidities in IBD.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joyce W Y Mak
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Jing Wan Zhang
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | - Torsten Wuestenberg
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, Charite, Berlin, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong
| | | | - Wolfgang Reindl
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, The Chinese University of Hong Kong, Hong Kong.,Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
272
|
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv Nutr 2020; 11:890-907. [PMID: 32149335 PMCID: PMC7360462 DOI: 10.1093/advances/nmaa016] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.
Collapse
Affiliation(s)
- Tracey L K Bear
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Julie E Dalziel
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Pramod K Gopal
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
273
|
Intermingling of gut microbiota with brain: Exploring the role of probiotics in battle against depressive disorders. Food Res Int 2020; 137:109489. [PMID: 33233143 DOI: 10.1016/j.foodres.2020.109489] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Depression is a debilitating psychiatric ailment which exerts disastrous effects on one's mental and physical health. Depression is accountable for augmentation of various life-threatening maladies such as neurodegenerative anomalies, cardiovascular diseases and diabetes. Depressive episodes are recurrent, pose a negative impact on life quality, decline life expectancy and enhance suicidal tendencies. Anti-depression chemotherapy displays marked adverse effects and frequent relapses. Thus, newer therapeutic interventions to prevent or combat depression are desperately required. Discovery of gut microbes as our mutualistic partner was made a long time ago and it is surprising that their functions still continue to expand and as of yet many are still to be uncovered. Experimental studies have revealed astonishing role of gut commensals in gut-brain signaling, immune homeostasis and hormonal regulation. Now, it is a well-established fact that gut microbes can alleviate stress or depression associated symptoms by modulating brain functions. Here in, we provide an overview of physiological alleyways involved in cross-talk between gut and brain, part played by probiotics in regulation of these pathways and use of probiotic bacteria as psychobiotics in various mental or depressive disorders.
Collapse
|
274
|
Identifying mechanisms that predict weight trajectory after bariatric surgery: rationale and design of the biobehavioral trial. Surg Obes Relat Dis 2020; 16:1816-1826. [PMID: 32768295 DOI: 10.1016/j.soard.2020.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is currently the most efficacious and durable intervention for severe obesity. The most commonly performed procedures in the United States are the Roux-en-Y gastric bypass and the sleeve gastrectomy, which involve significant anatomic and physiologic alterations that lead to changes in behavior and biology. Unfortunately, many patients experience suboptimal weight loss and/or substantial weight regain. Eating and physical activity/sedentary behaviors, mood, cognition, and the gut microbiome all change postoperatively and have an association with weight change. The longitudinal relationship between changes in the gut microbiome and postoperative weight trajectory has not been explored thoroughly, and the interactive associations among the gut microbiome and the other variables that impact weight have been similarly understudied. The following is a methods and design description for a prospective, 24-month longitudinal study of 144 bariatric surgery patients, at 2 sites, that aimed to identify predictors of weight loss trajectories over 24 months after Roux-en-Y gastric bypass and the sleeve gastrectomy. Specifically, the study will examine the relationships between empirically supported behavioral and biological variables and their combined impact on postoperative weight trajectories. Novel data collection will include intensive measurement of problematic eating behaviors and diet and physical activity postoperatively, which may be altered in parallel with, or in response to, changes observed in the gut microbiota. Identifying postoperative predictors of weight loss and co-morbidity resolution should inform development of novel interventions that are tailored to individual patients' risk profiles to optimize and sustain more favorable weight trajectories.
Collapse
|
275
|
Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS One 2020; 15:e0234037. [PMID: 32559185 PMCID: PMC7304620 DOI: 10.1371/journal.pone.0234037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Psychobiotics correspond to a class of probiotics, mainly of the genus Lactobacillus and Bifidobacterium, capable of producing neuroactive substances, such as γ-aminobutyric acid (GABA) and serotonin, which exert effects on the brain-gut axis. Evidence suggests that psychobiotics can have a beneficial effect on mood, anxiety and cognition. The present study evaluated the effects of chronic administration of two new strains of Lactobacillus plantarum, L. plantarum 286 (Lp 286) and L. plantarum 81 (Lp 81) isolated from the fermentation of cocoa (Theobroma cacao L.) and cupuaçu (Theobroma grandiflorum), respectively, on cognitive, anxiety- and depressive-like behaviors in male Swiss mice. Different groups of animals were administered (oral gavage) solutions of vehicle (0.85% saline plus 15% skim milk), Lp 286 (109/0.1 ml CFU) or Lp 81 (109/0.1 ml CFU) for 30 days, and animals were tested for general locomotor activity, depressive-like behavior in the forced swim test, and learning/memory and anxiety-like behavior in the plus-maze discriminative avoidance task. Treatment with the strains Lp 286 and Lp 81 did not interfere with locomotor activity or learning and memory. The Lp 286 strain exerted anti-depressant- and anxiolytic-like effects under our experimental conditions. Our findings add to the current body of evidence suggesting that probiotics from the genus Lactobacillus may exert psychobiotic potential and introduce a new strain, Lp 286, as a potential candidate in the prevention or as therapeutic adjuvant in the treatment of mental disorders.
Collapse
|
276
|
Gut microbiota modulates stress-induced hypertension through the HPA axis. Brain Res Bull 2020; 162:49-58. [PMID: 32535221 DOI: 10.1016/j.brainresbull.2020.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022]
Abstract
Stress is associated with an increased risk of hypertension, and the incidence of stress-related hypertension has risen rapidly in recent years; however, the underlying mechanisms remain elusive. Gut dysbiosis has been demonstrated to contribute to hypertension and hyperactivation of the hypothalamus-pituitary-adrenal (HPA) axis. Based on our previous findings showing the altered gut microbiota in the rats of stress-induced hypertension (SIH), the present study aims to investigate whether the stress-induced alteration in gut microbiota can lead to the dysfunction of the HPA axis which contributes to the development of SIH. SIH was developed in rats subjected to electric foot-shock combined with buzzer noise stressors. The gut microbiota of rats were deleted by administering an antibiotic cocktail containing ampicillin (1 g/L), vancomycin (500 mg/L), neomycin (1 g/L), and metronidazole (1 g/L) in drinking water. The serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were tested using enzyme-linked immunosorbent assay (ELISA). The mRNA expression of glucocorticoid receptor (GR) and corticotropin-releasing factor (CRF), CRFR1 and CRFR2 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The cellular protein expressions of corticotropin-releasing hormone (CRH), c-fos, and GR were examined by immunohistochemical staining. In the present study, SIH rats showed a hyperactive HPA axis as indicated by the increased CRH expression in the paraventricular nucleus (PVN) of the hypothalamus, the elevated serum ACTH or CORT concentrations, and increased adrenal gland index. The decreased GR expression and increased CRFR1 in the hypothalamus might underlie the hyperactivation of the HPA axis. The microbial deletion by antibiotics mitigated the hyperactivation of the HPA axis and attenuated the stress-induced elevation of blood pressure, indicating that the causal link of gut microbiota to SIH is mediated, at least in part, by the HPA axis activity. Our findings shed new light on the mechanisms underlying SIH.
Collapse
|
277
|
Du Y, Gao XR, Peng L, Ge JF. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon 2020; 6:e04097. [PMID: 32529075 PMCID: PMC7276434 DOI: 10.1016/j.heliyon.2020.e04097] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nutritional and microbiological psychiatry, especially the contribution of the gut microbiota to depression, has become a promising research field over the past several decades. An imbalance in the "microbiota-gut-brain axis", which reflects the constant bidirectional communication between the central nervous system and the gastrointestinal tract, has been used as a hypothesis to interpret the pathogenesis of depression. Alterations in gut microbiota composition could increase the permeability of the gut barrier, activate systemic inflammation and immune responses, regulate the release and efficacy of monoamine neurotransmitters, alter the activity and function of the hypothalamic-pituitary-adrenal (HPA) axis, and modify the abundance of brain-derived neurotrophic factor (BDNF), eventually leading to depression. In this article, we review changes in gut microbiota in depressive states, the association between these changes and depression-like behavior, the potential mechanism linking gut microbiota disruptions and depression, and preliminary attempts at using gut microbiota intervention for the treatment of depression. In summary, although the link between gut microbiota and depression and the potential mechanism have been discussed, a more detailed mechanistic understanding is needed to fully realize the importance of the microbiota-gut-brain axis in depression. Future efforts should aim to determine the potential causative mechanisms, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
Affiliation(s)
- Yu Du
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Lei Peng
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
278
|
van de Wouw M, Walsh AM, Crispie F, van Leuven L, Lyte JM, Boehme M, Clarke G, Dinan TG, Cotter PD, Cryan JF. Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. MICROBIOME 2020; 8:67. [PMID: 32423436 PMCID: PMC7236220 DOI: 10.1186/s40168-020-00846-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/26/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mounting evidence suggests a role for the gut microbiota in modulating brain physiology and behaviour, through bi-directional communication, along the gut-brain axis. As such, the gut microbiota represents a potential therapeutic target for influencing centrally mediated events and host behaviour. It is thus notable that the fermented milk beverage kefir has recently been shown to modulate the composition of the gut microbiota in mice. It is unclear whether kefirs have differential effects on microbiota-gut-brain axis and whether they can modulate host behaviour per se. METHODS To address this, two distinct kefirs (Fr1 and UK4), or unfermented milk control, were administered to mice that underwent a battery of tests to characterise their behavioural phenotype. In addition, shotgun metagenomic sequencing of ileal, caecal and faecal matter was performed, as was faecal metabolome analysis. Finally, systemic immunity measures and gut serotonin levels were assessed. Statistical analyses were performed by ANOVA followed by Dunnett's post hoc test or Kruskal-Wallis test followed by Mann-Whitney U test. RESULTS Fr1 ameliorated the stress-induced decrease in serotonergic signalling in the colon and reward-seeking behaviour in the saccharin preference test. On the other hand, UK4 decreased repetitive behaviour and ameliorated stress-induced deficits in reward-seeking behaviour. Furthermore, UK4 increased fear-dependent contextual memory, yet decreased milk gavage-induced improvements in long-term spatial learning. In the peripheral immune system, UK4 increased the prevalence of Treg cells and interleukin 10 levels, whereas Fr1 ameliorated the milk gavage stress-induced elevation in neutrophil levels and CXCL1 levels. Analysis of the gut microbiota revealed that both kefirs significantly changed the composition and functional capacity of the host microbiota, where specific bacterial species were changed in a kefir-dependent manner. Furthermore, both kefirs increased the capacity of the gut microbiota to produce GABA, which was linked to an increased prevalence in Lactobacillus reuteri. CONCLUSIONS Altogether, these data show that kefir can signal through the microbiota-gut-immune-brain axis and modulate host behaviour. In addition, different kefirs may direct the microbiota toward distinct immunological and behavioural modulatory effects. These results indicate that kefir can positively modulate specific aspects of the microbiota-gut-brain axis and support the broadening of the definition of psychobiotic to include kefir fermented foods. Video abstract.
Collapse
Affiliation(s)
- Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aaron M Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Microbiology Department, University College Cork, Cork, Ireland
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | | | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland.
| |
Collapse
|
279
|
van der Eijk JAJ, de Vries H, Kjaer JB, Naguib M, Kemp B, Smidt H, Rodenburg TB, Lammers A. Differences in gut microbiota composition of laying hen lines divergently selected on feather pecking. Poult Sci 2020; 98:7009-7021. [PMID: 31226709 PMCID: PMC6869756 DOI: 10.3382/ps/pez336] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Feather pecking (FP), a damaging behavior where laying hens peck and pull at feathers of conspecifics, is multifactorial and has been linked to numerous behavioral and physiological characteristics. The gut microbiota has been shown to influence host behavior and physiology in many species, and could therefore affect the development of damaging behaviors, such as FP. Yet, it is unknown whether FP genotypes (high FP [HFP] and low FP [LFP] lines) or FP phenotypes (i.e., individuals differing in FP, feather peckers and neutrals) differ in their gut microbiota composition. Therefore, we identified mucosa-associated microbiota composition of the ileum and cecum at 10 and 30 wk of age. At 30 wk of age, we further identified luminal microbiota composition from combined content of the ileum, ceca, and colon. FP phenotypes could not be distinguished from each other in mucosa-associated or luminal microbiota composition. However, HFP neutrals were characterized by a higher relative abundance of genera of Clostridiales, but lower relative abundance of Lactobacillus for the luminal microbiota composition compared to LFP phenotypes. Furthermore, HFP neutrals had a higher diversity and evenness for the luminal microbiota compared to LFP phenotypes. FP genotypes could not be distinguished from each other in mucosa-associated microbiota composition. Yet, FP genotypes could be distinguished from each other in luminal microbiota composition. HFP birds were characterized by a higher relative abundance of genera of Clostridiales, but lower relative abundance of Staphylococcus and Lactobacillus compared to LFP birds. Furthermore, HFP birds had a higher diversity and evenness for both cecal mucosa-associated and luminal microbiota compared to LFP birds at adult age. In conclusion, we here show that divergent selection on FP can (in)directly affect luminal microbiota composition. Whether differences in microbiota composition are causal to FP or a consequence of FP remains to be elucidated.
Collapse
Affiliation(s)
- Jerine A J van der Eijk
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - Joergen B Kjaer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Animal Welfare and Animal Husbandry, 29223 Celle, Germany
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, the Netherlands
| | - T Bas Rodenburg
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands.,Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Aart Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
280
|
Zhao J, Li G, Lu W, Huang S, Zhang Z. Dominant and Subordinate Relationship Formed by Repeated Social Encounters Alters Gut Microbiota in Greater Long-Tailed Hamsters. MICROBIAL ECOLOGY 2020; 79:998-1010. [PMID: 31807860 DOI: 10.1007/s00248-019-01462-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
Social stress can dramatically influence the health of animals via communication between gut microbiota and the HPA system. However, this effect has been rarely investigated among different social ranked animals after chronic repeated social encounters. In this study, we evaluated changes and differences in microbiota among control, dominant, and subordinate male greater long-tailed hamsters (Tscherskia triton) over 28 successive days of repeated social encounter. Our results indicated that as compared with the control group, short-term repeated social encounters significantly altered fecal microbiota of subordinate hamsters, while chronic repeated social encounters altered colonic mucosa-associated microbiota of both dominant and subordinate hamsters. Fecal microbiota showed a transition in composition and diversity on day 2 for the subordinate group but on day 4 for the control and dominant groups under repeated encounters. Compared with their baseline, genus Lactobacillus increased in both dominant and subordinate groups, while genus Bifidobacterium increased in the subordinate group and genus Adlercreutzia increased in the dominant group. Our results suggest that chronic repeated social encounter can alter diversity and composition of gut microbiota of hamsters in both feces and colonic mucosa, but the latter performed better in reflecting the effects of chronic stress on microbiota in this species. Future studies should focus on elucidating how these microbiota alterations may affect animal behavior and fitness.
Collapse
Affiliation(s)
- Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
281
|
Mao JH, Kim YM, Zhou YX, Hu D, Zhong C, Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y, Peisl BYL, Celniker SE, Threadgill DW, Wilmes P, Orr G, Metz TO, Jansson JK, Snijders AM. Genetic and metabolic links between the murine microbiome and memory. MICROBIOME 2020; 8:53. [PMID: 32299497 PMCID: PMC7164142 DOI: 10.1186/s40168-020-00817-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Marine College, Shandong University, Weihai, 264209 China
| | - Dehong Hu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Colin J. Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sarah Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sasha Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - B. Y. Loulou Peisl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - David W. Threadgill
- Department of Veterinary Pathobiology, A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine Texas, A&M University, College Station, Texas, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Galya Orr
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
282
|
Zou XH, Sun LH, Yang W, Li BJ, Cui RJ. Potential role of insulin on the pathogenesis of depression. Cell Prolif 2020; 53:e12806. [PMID: 32281722 PMCID: PMC7260070 DOI: 10.1111/cpr.12806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
The regulation of insulin on depression and depression-like behaviour has been widely reported. Insulin and activation of its receptor can promote learning and memory, affect the hypothalamic-pituitary-adrenal axis (HPA) balance, regulate the secretion of neurotrophic factors and neurotransmitters, interact with gastrointestinal microbiome, exert neuroprotective effects and have an impact on depression. However, the role of insulin on depression remains largely unclear. Therefore, in this review, we summarized the potential role of insulin on depression. It may provide new insight for clarifying role of insulin on the pathogenesis of depression.
Collapse
Affiliation(s)
- Xiao Han Zou
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
283
|
Shaikh MF, Lee CY, Chen WN, Shaikh FA. The Gut-Brain-Axis on the Manifestation of Depressive Symptoms in Epilepsy: An Evidence-Driven Hypothesis. Front Pharmacol 2020; 11:465. [PMID: 32322213 PMCID: PMC7156621 DOI: 10.3389/fphar.2020.00465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy is a severe neurological disorder involving 70 million people around the globe. Epilepsy-related neuropsychiatric comorbidities such as depression, which is the most common, is an additional factor that negatively impacts the living quality of epilepsy patients. There are many theories and complexities associated with both epilepsy and associated comorbidities, one of which is the gut-brain-axis influence. The gut microbiome is hypothesized to be linked with many neurological disorders; however, little conclusive evidence is available in this area. Thus, highlighting the role will create interest in researchers to conduct detailed research in comprehending the influence of gut-brain-axis in the manifestation of depressive symptoms in epilepsy. The hypothesis which is explored in this review is that the gut-brain-axis do play an important role in the genesis of epilepsy and associated depression. The correction of this dysbiosis might be beneficial in treating both epilepsy and related depression. This hypothesis is illustrated through extensive literature discussion, proposed experimental models, and its applicability in the field. There is indirect evidence which revealed some specific bacterial strains that might cause depression in epilepsy.
Collapse
Affiliation(s)
- Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Global Asia in 21st Century (GA21) Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform (TMB), Monash University Malaysia, Bandar Sunway, Malaysia
| | - Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Win Ning Chen
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faiz Ahmed Shaikh
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
284
|
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: conceptualization from a new approach. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
285
|
Oh JH, Nam TJ, Choi YH. Capsosiphon fulvescens Glycoproteins Enhance Probiotics-Induced Cognitive Improvement in Aged Rats. Nutrients 2020; 12:E837. [PMID: 32245093 PMCID: PMC7146536 DOI: 10.3390/nu12030837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Aging-induced cognitive dysfunction can be regulated by probiotics through bidirectional communication with the brain. This study aimed to investigate whether Capsosiphon fulvescens glycoproteins (Cf-hGP) enhanced probiotic-induced improvement of memory in aged rats and the underlying mechanism in the dorsal hippocampus. Cf-hGP were isolated using lectin resin. Cf-hGP (15 mg/kg/day) and/or Lactobacillus plantarum (L. plantarum) (109 CFU/rat/day) were orally administered once a day for 4 weeks. Co-treatment with Cf-hGP and L. plantarum synergistically improved spatial memory in aged rats, which was overturned by functional blocks of brain-derived neurotrophic factor (BDNF) signaling. Increases in BDNF expression and nuclear factor erythroid 2-related factor 2 (Nrf2) phosphorylation were accompanied by mono- and/or co-administration in the dorsal hippocampus, while c-Jun N-terminal kinase (JNK) phosphorylation and glucose-regulated protein 78 expression were decreased. These synergistic effects were downregulated by blocks of BDNF/Nrf2-mediated signaling. In particular, co-treatment, not mono-treatment, reduced phosphorylation of eukaryotic elongation factor 2 (eEF2) regulated by eEF2 kinase and protein phosphatase 2A. Additionally, co-treatment downregulated the interaction between eEF2 kinase and JNK. These data demonstrated that cognitive impairment in aged rats was synergistically diminished by co-treatment with Cf-hGP and L. plantarum through BDNF-mediated regulation of Nrf2 and eEF2 signaling pathways in the dorsal hippocampus.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea; (J.H.O.); (T.-J.N.)
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
286
|
Askarova S, Umbayev B, Masoud AR, Kaiyrlykyzy A, Safarova Y, Tsoy A, Olzhayev F, Kushugulova A. The Links Between the Gut Microbiome, Aging, Modern Lifestyle and Alzheimer's Disease. Front Cell Infect Microbiol 2020; 10:104. [PMID: 32257964 PMCID: PMC7093326 DOI: 10.3389/fcimb.2020.00104] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Gut microbiome is a community of microorganisms in the gastrointestinal tract. These bacteria have a tremendous impact on the human physiology in healthy individuals and during an illness. Intestinal microbiome can influence one's health either directly by secreting biologically active substances such as vitamins, essential amino acids, lipids et cetera or indirectly by modulating metabolic processes and the immune system. In recent years considerable information has been accumulated on the relationship between gut microbiome and brain functions. Moreover, significant quantitative and qualitative changes of gut microbiome have been reported in patients with Alzheimer's disease. On the other hand, gut microbiome is highly sensitive to negative external lifestyle aspects, such as diet, sleep deprivation, circadian rhythm disturbance, chronic noise, and sedentary behavior, which are also considered as important risk factors for the development of sporadic Alzheimer's disease. In this regard, this review is focused on analyzing the links between gut microbiome, modern lifestyle, aging, and Alzheimer's disease.
Collapse
Affiliation(s)
- Sholpan Askarova
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020; 18:843-851. [PMID: 32322366 PMCID: PMC7160382 DOI: 10.1016/j.csbj.2020.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.
Collapse
Key Words
- ACTH, adrenocorticotrophic hormone
- Antimicrobial peptides
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- CRH, corticotropin-releasing hormone
- CRLR, calcitonin receptor like receptor
- Gut-brain axis
- HPA axis, hypothalamic–pituitary–adrenal axis
- Hypothalamic–pituitary–adrenal axis
- Immunity
- LPS, lipopolysaccharides
- NPY, neuropeptide Y
- Neuropeptide
- PACAP, pituitary adenylate cyclase-activating polypeptide
- PNX, phoenixin
- RAMP1, receptor activity-modifying protein1
- SP, substance P
- Stress
- TRPV1, transient receptor potential vanilloid receptor-1
- VIP, vasoactive intestinal peptide
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author at: School of Pharmacy & Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
288
|
Sousa MAD, Rama GR, Volken de Souza CF, Granada CE. Acid lactic lactobacilli as a biotechnological toll to improve food quality and human health. Biotechnol Prog 2020; 36:e2937. [DOI: 10.1002/btpr.2937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Márcio A. de Sousa
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| | | | | | - Camille E. Granada
- University of Taquari Valley ‐ Univates Lajeado Rio Grande do Sul Brazil
| |
Collapse
|
289
|
Xie R, Jiang P, Lin L, Jiang J, Yu B, Rao J, Liu H, Wei W, Qiao Y. Oral treatment with Lactobacillus reuteri attenuates depressive-like behaviors and serotonin metabolism alterations induced by chronic social defeat stress. J Psychiatr Res 2020; 122:70-78. [PMID: 31927268 DOI: 10.1016/j.jpsychires.2019.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Alterations in bidirectional gut-brain interactions are believed to be involved in the pathogenesis of neuropsychiatric diseases. Considering the putative connections among gut microbiota, neural function, and behavior, this study investigated the potential of microbe-induced gut-to-brain signaling to modulate the impact of stress on depressive-like behaviors and serotonin metabolism. METHODS Depression-susceptible mice induced by chronic social defeat stress received oral treatment of either Lactobacillus reuteri 3 (L. reuteri 3) or vehicle for 28 days, and alterations in behavior and serotonin metabolism were assessed. 16S rRNA sequencing and gas chromatograph were employed to analyze the gut microbiota community and short-chain fatty acids (SCFAs). RESULTS Treatment with L. reuteri 3 ameliorated depressive-like behaviors, suppressed the increase in the relative abundances of Clostridiales and Adlercreutzia, improved the decrease in abundances of Lactobacillus, Allobaculum, and Sutterella induced by stress, and significantly increased the proportion of Bifidobacterium. L. reuteri 3 reduced the acetate and total SCFAs levels in the depression group. Blood and colon 5-HT were decreased in depressive-like mice but were significantly ameliorated after L. reuteri 3 treatment. Moreover, L. reuteri 3 administration increased the expression of enzymes involved in serotonin biosynthesis but suppressed that of the enzymes involved in tryptophan metabolism along the kynurenine pathway in colon and prefrontal cortex. CONCLUSIONS Despite the complexity of the gut microbiota, exposure to a single microbial strain L. reuteri 3 can protect against depressive-like behaviors induced by chronic social defeat stress. The anti-depressive effects of L. reuteri 3 were associated with improved gut microbiota and serotonin metabolism.
Collapse
Affiliation(s)
- Ruining Xie
- Department of Public Health, Jining Medical University, Jining, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, China
| | - Li Lin
- Department of Public Health, Jining Medical University, Jining, China
| | - Jian Jiang
- Department of Public Health, Jining Medical University, Jining, China
| | - Bin Yu
- College of integrated Chinese and western medicine, Jining Medical University, Jining, China
| | - Jingjing Rao
- Institute of neurobiology, Jining Medical University, Jining, China
| | - Hui Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Wei Wei
- Department of Public Health, Jining Medical University, Jining, China
| | - Yi Qiao
- Department of Public Health, Jining Medical University, Jining, China.
| |
Collapse
|
290
|
Cowan CSM, Dinan TG, Cryan JF. Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. J Child Psychol Psychiatry 2020; 61:353-371. [PMID: 31773737 DOI: 10.1111/jcpp.13156] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a vast, complex, and fascinating ecosystem of microorganisms that resides in the human gastrointestinal tract. As an integral part of the microbiota-gut-brain axis, it is now being recognized that the microbiota is a modulator of brain and behavior, across species. Intriguingly, periods of change in the microbiota coincide with the development of other body systems and particularly the brain. We hypothesize that these times of parallel development are biologically relevant, corresponding to 'sensitive periods' or 'critical windows' in the development of the microbiota-gut-brain axis. Specifically, signals from the microbiota during these periods are hypothesized to be crucial for establishing appropriate communication along the axis throughout the life span. In other words, the microbiota is hypothesized to act like an expected input to calibrate the development of the microbiota-gut-brain axis. The absence or disruption of the microbiota during specific developmental windows would therefore be expected to have a disproportionate effect on specific functions or potentially for regulation of the system as a whole. Evidence for microbial modulation of neurocognitive development and neurodevelopmental risk is discussed in light of this hypothesis, finishing with a focus on the challenges that lay ahead for the future study of the microbiota-gut-brain axis during development.
Collapse
Affiliation(s)
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
291
|
Orlando A, Chimienti G, Lezza AMS, Pesce V, Gigante I, D’Attoma B, Russo F. Lactobacillus Rhamnosus GG Affects the BDNF System in Brain Samples of Wistar Rats with Pepsin-Trypsin-Digested Gliadin (PTG)-Induced Enteropathy. Nutrients 2020; 12:nu12030629. [PMID: 32120967 PMCID: PMC7146293 DOI: 10.3390/nu12030629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Celiac disease (CD) presents as chronic low-grade inflammation of the small intestine often characterized by psychiatric comorbidities. The brain-derived neurotrophic factor (BDNF), which we have shown to be reduced in the serum of CD patients, acts as the bridge between immune activation and the nervous system adaptive response. Since Lactobacillus has been shown to upregulate BDNF, this study aimed to evaluate whether the administration of Lactobacillus rhamnosus GG (L.GG) could positively affect the brain BDNF system in rats mimicking the CD lesions. Data have shown that the administration of pepsin-trypsin digested gliadin (PTG) and L.GG alter the levels of mature BDNF (mBDNF), as evaluated by Western blotting. PTG provoked a reduction of mBDNF compared to controls, and a compensatory increase of its receptor TrkB. L.GG induced a slight positive effect on mBDNF levels under normal conditions, while it was able to rescue the PTG-induced reduced expression of mBDNF. The curative effect of L.GG was finely tuned, accompanied by the reduction of TrkB, probably to avoid the effect of excessive BDNF.
Collapse
Affiliation(s)
- Antonella Orlando
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (B.D.)
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy; (G.C.); (A.M.S.L.); (V.P.)
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy; (G.C.); (A.M.S.L.); (V.P.)
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70100 Bari, Italy; (G.C.); (A.M.S.L.); (V.P.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy;
| | - Benedetta D’Attoma
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (B.D.)
| | - Francesco Russo
- Laboratory of Nutritional Pathophysiology, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte (Ba), Italy; (A.O.); (B.D.)
- Correspondence: ; Tel.: +3908-0499-4129
| |
Collapse
|
292
|
Den H, Dong X, Chen M, Zou Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment - a meta-analysis of randomized controlled trials. Aging (Albany NY) 2020; 12:4010-4039. [PMID: 32062613 PMCID: PMC7066922 DOI: 10.18632/aging.102810] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are live microbes that confer health benefits to the host. Preliminary animal evidence supports the potential role of probiotics in ameliorating cognitive health, however, findings from clinical trials in Alzheimer’s disease (AD) or mild cognitive impairment (MCI) subjects are controversial. Thus, a meta-analysis is needed to clarify the efficacy of probiotics on cognition in AD or MCI patients. EMBASE, PubMed, Web of Science and Cochrane library were systematically searched and manually screened for relevant published randomized controlled trials (RCTs). Among the 890 citations identified, 5 studies involving 297 subjects met eligibility. There was a significant improvement in cognition (SMD = 0.37; 95% CI, 0.14, 0.61; P = 0.002; I2 = 24%), while a significant reduction in malondialdehyde (SMD = −0.60; 95% CI, −0.91, −0.28; P = 0.000; I2 = 0.0%) and high-sensitivity C-reactive protein (SMD = −0.57; 95% CI, −0.95, −0.20; P = 0.003; I2 = 0.0%) post-intervention levels between the probiotics and control group. This meta-analysis indicated that probiotics improved cognitive performance in AD or MCI patients, possibly through decreasing levels of inflammatory and oxidative biomarkers. However, current evidence is insufficient, and more reliable evidence from large-scale, long-period, RCT is needed.
Collapse
Affiliation(s)
- Haoyue Den
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Xunhu Dong
- Department of Chemical Defense, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mingliang Chen
- Department of Chemical Defense, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Institute of Pathology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongmin Zou
- Department of Chemical Defense, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
293
|
Sharma V, Kaur S. The Effect of Probiotic Intervention in Ameliorating the Altered Central Nervous System Functions in Neurological Disorders: A Review. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There has been a significant rise in the occurrence of various neurological ailments worldwide. The need to investigate newer and safer intervention therapies with prophylactic and/or therapeutic effects is well understood. Probiotics have recently been shown to hold promise as an intervention option that warrants future work. Probiotic strains have shown beneficial treatment outcomes as evidenced in various animal and human studies. Although numerous articles have highlighted the role of gut microbiota and its cross-talk with human brain in modulating Central Nervous System (CNS) physiology and neurochemistry, the present review solely focuses on the ability of externally administered probiotic strains (that may or may not be part of the already existing gut microflora of an average human) in ameliorating the altered CNS functions in patients. The review aims at giving a comprehensive analysis of the studies performed on animals and humans and discusses the findings in different neurological and psychiatric disorders (Anxiety, Major Depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, cognitive impairmentsetc). The article also highlights different mechanisms through which the probiotic bacteria operate in improving neurologic manifestations or decreasing the incidence of neurological disorders. These underlying mechanisms include both direct as well as indirect pathways involving neural, hormonal and immunological pathways. The potential of probiotics as an important dietary modification as well as a useful intervention therapy with preventive and therapeutic value for the target population holds strong. However, future evaluation into formulation designing, selecting the best probiotic strain(s) for each specific disease and safety and tolerability aspects in patients needs to be considered.
Collapse
|
294
|
Ai H, Fang W, Hu H, Hu X, Lu W. Antidiabetic Drug Metformin Ameliorates Depressive-Like Behavior in Mice with Chronic Restraint Stress via Activation of AMP-Activated Protein Kinase. Aging Dis 2020; 11:31-43. [PMID: 32010479 PMCID: PMC6961762 DOI: 10.14336/ad.2019.0403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Depression is one of the most prevalent neuropsychiatric disorders in modern society. However, traditional drugs, such as monoaminergic agents, have defect showing lag response requiring several weeks to months. Additionally, these drugs have limited efficacy and high resistance rates in patients with depression. Thus, there is an urgent need to develop novel drugs or approaches for the treatment of depression. Here, using biochemical, pharmacological, genetic and behavioral methods, we demonstrate that metformin imparts a fast-acting antidepressant-like effect in naïve mice as well as stressed mice subjected to chronic restraint stress model. Moreover, inhibition of AMP-activated protein kinase (AMPK) activity by compound C or knock down of hippocampal AMPKα occluded the antidepressant-like effect induced by metformin. Our results suggest that metformin may be a viable therapeutic drug for the treatment of stress-induced depression via activation of AMPK.
Collapse
Affiliation(s)
- Heng Ai
- 1Department of Physiology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiqing Fang
- 2Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Hanyi Hu
- 3Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xupang Hu
- 4Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Zhejiang, China
| | - Wen Lu
- 5Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
295
|
Long-term probiotic intervention mitigates memory dysfunction through a novel H3K27me3-based mechanism in lead-exposed rats. Transl Psychiatry 2020; 10:25. [PMID: 32066679 PMCID: PMC7026181 DOI: 10.1038/s41398-020-0719-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/07/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic lead exposure is associated with the development of neurodegenerative diseases, characterized by the long-term memory decline. However, whether this pathogenesis could be prevented through adjusting gut microbiota is not yet understood. To address the issue, pregnant rats and their female offspring were treated with lead (125 ppm) or separately the extra probiotics (1010 organisms/rat/day) till adulthood. For results, memory dysfunction was alleviated by the treatment of multispecies probiotics. Meanwhile, the gut microbiota composition was partially normalized against lead-exposed rats, which in turn mediated the memory repairment via fecal transplantation trials. In the molecular aspect, the decreased H3K27me3 (trimethylation of histone H3 Lys 27) in the adult hippocampus was restored with probiotic intervention, an epigenetic event mediated by EZH2 (enhancer of zeste homolog 2) at early developmental stage. In a neural cellular model, EZH2 overexpression showed the similar rescue effect with probiotics, whereas its blockade led to the neural re-damages. Regarding the gut-brain inflammatory mediators, the disrupted IL-6 (interleukin 6) expression was resumed by probiotic treatment. Intraperitoneal injection of tocilizumab, an IL-6 receptor antagonist, upregulated the hippocampal EZH2 level and consequently alleviated the memory injuries. In conclusion, reshaping gut microbiota could mitigate memory dysfunction caused by chronic lead exposure, wherein the inflammation-hippocampal epigenetic pathway of IL-6-EZH2-H3K27me3, was first proposed to mediate the studied gut-brain communication. These findings provided insight with epigenetic mechanisms underlying a unique gut-brain interaction, shedding light on the safe and non-invasive treatment of neurodegenerative disorders with environmental etiology.
Collapse
|
296
|
Schneider F, Horowitz A, Lesch KP, Dandekar T. Delaying memory decline: different options and emerging solutions. Transl Psychiatry 2020; 10:13. [PMID: 32066684 PMCID: PMC7026464 DOI: 10.1038/s41398-020-0697-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
Memory decline can be a devastating disease and increases in aging Western populations. Memory enhancement technologies hold promise for this and other conditions. Approaches include stem cell transplantation, which improved memory in several animal studies as well as vaccination against Alzheimer´s disease (AD) by β-amyloid antibodies. For a positive clinical effect, the vaccine should probably be administered over a long period of time and before amyloid pathologies manifest in the brain. Different drugs, such as erythropoietin or antiplatelet therapy, improve memory in neuropsychiatric diseases or AD or at least in animal studies. Omega-3 polyunsaturated fatty acid-rich diets improve memory through the gut-brain axis by altering the gut flora through probiotics. Sports, dancing, and memory techniques (e.g., Method of Loci) utilize behavioral approaches for memory enhancement, and were effective in several studies. Augmented reality (AR) is an auspicious way for enhancing memory in real time. Future approaches may include memory prosthesis for head-injured patients and light therapy for restoring memory in AD. Memory enhancement in humans in health and disease holds big promises for the future. Memory training helps only in mild or no impairment. Clinical application requires further investigation.
Collapse
Affiliation(s)
- Felicitas Schneider
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alan Horowitz
- grid.8379.50000 0001 1958 8658Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Klaus-Peter Lesch
- grid.8379.50000 0001 1958 8658Division of Molecular Psychiatry, Laboratory of Translational Neuroscience, Center of Mental Health, University of Würzburg, Würzburg, Germany ,grid.448878.f0000 0001 2288 8774Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia ,grid.5012.60000 0001 0481 6099Department of Psychiatry and Psychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,EMBL, Computational Biology and Structures Program, 69117, Heidelberg, Germany.
| |
Collapse
|
297
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
298
|
Yong SJ, Tong T, Chew J, Lim WL. Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Front Neurosci 2020; 13:1361. [PMID: 32009871 PMCID: PMC6971226 DOI: 10.3389/fnins.2019.01361] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
The accumulating knowledge of the host-microbiota interplay gives rise to the microbiota-gut-brain (MGB) axis. The MGB axis depicts the interkingdom communication between the gut microbiota and the brain. This communication process involves the endocrine, immune and neurotransmitters systems. Dysfunction of these systems, along with the presence of gut dysbiosis, have been detected among clinically depressed patients. This implicates the involvement of a maladaptive MGB axis in the pathophysiology of depression. Depression refers to symptoms that characterize major depressive disorder (MDD), a mood disorder with a disease burden that rivals that of heart diseases. The use of probiotics to treat depression has gained attention in recent years, as evidenced by increasing numbers of animal and human studies that have supported the antidepressive efficacy of probiotics. Physiological changes observed in these studies allow for the elucidation of probiotics antidepressive mechanisms, which ultimately aim to restore proper functioning of the MGB axis. However, the understanding of mechanisms does not yet complete the endeavor in applying probiotics to treat MDD. Other challenges remain which include the heterogeneous nature of both the gut microbiota composition and depressive symptoms in the clinical setting. Nevertheless, probiotics offer some advantages over standard pharmaceutical antidepressants, in terms of residual symptoms, side effects and stigma involved. This review outlines antidepressive mechanisms of probiotics based on the currently available literature and discusses therapeutic potentials of probiotics for depression.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Tommy Tong
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
299
|
Kambe J, Watcharin S, Makioka-Itaya Y, Inoue R, Watanabe G, Yamaguchi H, Nagaoka K. Heat-killed Enterococcus fecalis (EC-12) supplement alters the expression of neurotransmitter receptor genes in the prefrontal cortex and alleviates anxiety-like behavior in mice. Neurosci Lett 2020; 720:134753. [PMID: 31931033 DOI: 10.1016/j.neulet.2020.134753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Gut microbiota plays a crucial role in the maintenance of mental health and influences mental disorders such as depression and anxiety. Several studies have reported the beneficial affects of probiotics in mental health. Heat-killed Enterococcus faecalis strain EC-12 (EC-12), a lactic acid bacterium induces activation of the immune system. However, little is known about the effect of EC-12 on mental health. In the present study, the anti-anxiety effect of EC-12 was elucidated in vivo. Male mice fed on diet supplemented with EC-12 showed decreased anxiety-like behavior in open-field and elevated plus-mazetest. In addition, EC-12 supplementation exhibited an anti-depressive trend in mice subjected to forced swim test. The expression of neurotransmitter receptor genes: Adrb3 and Avpr1a were significantly enhanced in EC-12 supplemented mice compared to that of the control mice. In mice, analyses of gut microbiota composition by next generation sequencing revealed significant increase in Butyricicoccus and Enterococcus with EC-12 supplementation. Significant difference was not detected in the expression of neurotransmitter receptor genes in the prefrontal cortex with the administration of sodium butyrate compared to that of the control group. The mechanism associated with EC-12 mediated reduced anxiety-like behavior and altered gene expression in the brain needs to be further elucidated. Taken together, the present study is the first to report the possibility of exploiting the anti-anxiety effect of heat-killed EC-12 as a novel probiotic to promote mental health.
Collapse
Affiliation(s)
- Jun Kambe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sovijit Watcharin
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hirohito Yamaguchi
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
300
|
Abstract
Stress is a nonspecific response of the body to any demand imposed upon it, disrupting the body homoeostasis and manifested with symptoms such as anxiety, depression or even headache. These responses are quite frequent in the present competitive world. The aim of this review is to explore the effect of stress on gut microbiota. First, we summarize evidence of where the microbiota composition has changed as a response to a stressful situation, and thereby the effect of the stress response. Likewise, we review different interventions that can modulate microbiota and could modulate the stress according to the underlying mechanisms whereby the gut-brain axis influences stress. Finally, we review both preclinical and clinical studies that provide evidence of the effect of gut modulation on stress. In conclusion, the influence of stress on gut microbiota and gut microbiota on stress modulation is clear for different stressors, but although the preclinical evidence is so extensive, the clinical evidence is more limited. A better understanding of the mechanism underlying stress modulation through the microbiota may open new avenues for the design of therapeutics that could boost the pursued clinical benefits. These new designs should not only focus on stress but also on stress-related disorders such as anxiety and depression, in both healthy individuals and different populations.
Collapse
|