251
|
Ma D, Straathof J, Liu Y, Hull NM. Monitoring SARS-CoV-2 RNA in Wastewater with RT-qPCR and Chip-Based RT-dPCR: Sewershed-Level Trends and Relationships to COVID-19. ACS ES&T WATER 2022; 2:2084-2093. [PMID: 37552751 PMCID: PMC9173673 DOI: 10.1021/acsestwater.2c00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 08/10/2023]
Abstract
We evaluated the performance of reverse transcription quantitative PCR (uniplex and duplex RT-qPCR) and chip-based digital PCR (duplex RT-dPCR) using CDC N1 and CDC N2 assays for longitudinal monitoring of SARS-CoV-2 RNA in influent wastewater samples (n = 281) from three wastewater plants in Ohio from January 2021 to January 2022. Human fecal virus (PMMoV) and wastewater flow rate were used to normalize SARS-CoV-2 concentrations. SARS-CoV-2 measurements and COVID-19 cases were strongly correlated, but normalization effects on correlations varied between sewersheds. SARS-CoV-2 measurements by RT-qPCR were strongly correlated with 7-day moving average COVID-19 cases (average Spearman's ρ = 0.58, p < 0.05). SARS-CoV-2 was detected more frequently in samples with duplex RT-dPCR than with duplex RT-qPCR during periods of low COVID-19 cases. Duplex and uniplex RT-qPCR N1 concentrations were more strongly correlated with cases (ρ = 0.62) than N2 (ρ = 0.52). RT-dPCR correlations (average ρ = 0.21) were weaker than those of RT-qPCR (average ρ = 0.58). We also share practical experience from establishing wastewater surveillance. Per sample, RT-qPCR had a lower cost ($6 vs $18) and sample turnaround time (3-4 h vs 7-9 h) than RT-dPCR. These findings reinforce selection and use of PCR-based wastewater surveillance tools.
Collapse
Affiliation(s)
- Daniel Ma
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Judith Straathof
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Yijing Liu
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Natalie Marie Hull
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
- The Sustainability Institute, The Ohio
State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
252
|
Gynther M, Estrada ML, Loppi S, Korhonen P, Kanninen KM, Malm T, Koistinaho J, Auriola S, Fricker G, Puris E. Increased Expression and Activity of Brain Cortical cPLA2 Due to Chronic Lipopolysaccharide Administration in Mouse Model of Familial Alzheimer's Disease. Pharmaceutics 2022; 14:2438. [PMID: 36365256 PMCID: PMC9695895 DOI: 10.3390/pharmaceutics14112438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 02/05/2024] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) is an enzyme regulating membrane phospholipid homeostasis and the release of arachidonic acid utilized in inflammatory responses. It represents an attractive target for the treatment of Alzheimer's disease (AD). Previously, we showed that lipopolysaccharide (LPS)-induced systemic inflammation caused abnormal lipid metabolism in the brain of a transgenic AD mouse model (APdE9), which might be associated with potential changes in cPLA2 activity. Here, we investigated changes in cPLA2 expression and activity, as well as the molecular mechanisms underlying these alterations due to chronic LPS administration in the cerebral cortex of female APdE9 mice as compared to saline- and LPS-treated female wild-type mice and saline-treated APdE9 mice. The study revealed the significant effects of genotype LPS treatment on cortical cPLA2 protein expression and activity in APdE9 mice. LPS treatment resulted in nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) activation in the cortex of APdE9 mice. The gene expressions of inflammation markers Il1b and Tnfa were significantly elevated in the cortex of both APdE9 groups compared to the wild-type groups. The study provides evidence of the elevated expression and activity of cPLA2 in the brain cortex of APdE9 mice after chronic LPS treatment, which could be associated with NFkB activation.
Collapse
Affiliation(s)
- Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Mariana Leal Estrada
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Sanna Loppi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Department of Immunobiology, University of Arizona, 1656 E Mabel Street, Tucson, AZ 85724-5221, USA
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Neuroscience Center, Helsinki Institute for Life Science, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| |
Collapse
|
253
|
Gene Expression Profile in the Sandhoff Mouse Brain with Progression of Age. Genes (Basel) 2022; 13:genes13112020. [DOI: 10.3390/genes13112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Sandhoff disease (SD) is a fatal neurodegenerative disorder belonging to the family of diseases called GM2 Gangliosidosis. There is no curative treatment of SD. The molecular pathogenesis of SD is still unclear though it is clear that the pathology initiates with the build-up of ganglioside followed by microglial activation, inflammation, demyelination and apoptosis, leading to massive neuronal loss. In this article, we explored the expression profile of selected immune and myelination associated transcripts (Wfdc17, Ccl3, Lyz2, Fa2h, Mog and Ugt8a) at 5-, 10- and 16-weeks, representing young, pre-symptomatic and late stages of the SD mice. We found that immune system related genes (Wfdc17, Ccl3, Lyz2) are significantly upregulated by several fold at all ages in Hexb-KO mice relative to Hexb-het mice, while the difference in the expression levels of myelination related genes is not statistically significant. There is an age-dependent significant increase in expression of microglial/pro-inflammatory genes, from 5-weeks to the near humane end-point, i.e., 16-week time point; while the expression of those genes involved in myelination decreases slightly or remains unchanged. Future studies warrant use of new high-throughput gene expression modalities (such as 10X genomics) to delineate the underlying pathogenesis in SD by detecting gene expression changes in specific neuronal cell types and thus, paving the way for rational and precise therapeutic modalities.
Collapse
|
254
|
An insight into the mechanisms underpinning the anti-browning effect of Codium tomentosum on fresh-cut apples. Food Res Int 2022; 161:111884. [DOI: 10.1016/j.foodres.2022.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
255
|
Elwin K, Robinson G, Pérez-Cordón G, Chalmers RM. Development and evaluation of a real-time PCR for genotyping of Cryptosporidium spp. from water monitoring slides. Exp Parasitol 2022; 242:108366. [PMID: 36089005 DOI: 10.1016/j.exppara.2022.108366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
Cryptosporidium is an important cause of gastroenteritis globally and the main agent of waterborne outbreaks caused by protozoan parasites. Water monitoring for Cryptosporidium oocysts is by detection and enumeration using stained slide microscopy. Species identification (known as genotyping) may be undertaken post hoc and remains a specialist test, only undertaken in some laboratories. The benchmark method is nested PCR-sequencing of part of the SSU rRNA gene, but not all slides are typable and the workflow is cumbersome. We report the development, in-house validation and application of a real-time PCR-sequencing assay based on that gene, using a hydrolysis probe, for the detection and genotyping of all Cryptosporidium spp. The assay was investigated in two formats; a high volume DNA template for analysing all the DNA extracted from Cryptosporidium-positive water monitoring slides with <5 oocysts seen, and a lower volume DNA template permitting several technical replicates from slides with ≥5 oocysts seen where multiple species are more likely to be present. Each format conformed to the MIQE guidelines for amplification dynamics and was specific for Cryptosporidium spp. With high sensitivity, being capable of detecting and genotyping single oocysts by sequencing of a 435 bp amplicon. When 65 water monitoring slides with <5 oocysts seen were tested, slide typeability varied by sending laboratory (n = 9), and ranged from 22 to 60%. Typeability was 75% for slides with ≥5 oocysts seen that were submitted by a single laboratory. The laboratory workflow was improved by using real-time PCR, and decreased the time to result compared with nested PCR-sequencing. In practical application, there was no loss of typeability when the ≥5 oocysts assay was applied to all slides, irrespective of the number of oocysts present.
Collapse
Affiliation(s)
- Kristin Elwin
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Guy Robinson
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Gregorio Pérez-Cordón
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
256
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
257
|
Ulluwishewa D, Mullaney J, Adam K, Claycomb R, Anderson RC. A bioactive bovine whey protein extract improves intestinal barrier function in vitro. JDS COMMUNICATIONS 2022; 3:387-392. [PMID: 36465501 PMCID: PMC9709612 DOI: 10.3168/jdsc.2022-0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/30/2022] [Indexed: 06/17/2023]
Abstract
The human intestine plays an important role as a barrier against the ingress of pathogens and other harmful antigens. Accordingly, proper regulation of the intestinal barrier is essential for optimal health. Intestinal barrier function is regulated in part by the interactions between dietary compounds and the intestinal immune system. Bioactive whey proteins from bovine milk (such as lactoferrin, lactoperoxidase, and immunoglobulins) are known to exert a range of physiological functions, including modulation of the immune system, and thus have the potential to regulate intestinal barrier function. While the effects of individual whey proteins on intestinal barrier function have been studied to some extent, less is known about the potentially synergistic properties of whey protein mixtures. Here we investigated the effects of a bioactive bovine whey protein (BWP) extract containing all whey proteins with an isoelectric point >6.8 on intestinal barrier function in vitro. Intestinal epithelial cell (Caco-2) monolayers were treated with BWP before measuring the barrier integrity over 48 h by means of trans-epithelial electrical resistance (TEER). Treatment of epithelial monolayers with 1 mg/mL BWP resulted in an increase in TEER compared with untreated epithelial monolayers. To determine whether BWP could mitigate immune-mediated intestinal barrier dysfunction, we challenged differentiated Caco-2 cell monolayers with tumor necrosis factor α (TNFα) to obtain an in vitro model of a "leaky" intestinal epithelium. The TNFα challenge led to a decrease in TEER over time across untreated control monolayers, indicating a loss of barrier function. This loss of barrier function was mitigated in monolayers treated with 1 mg/mL BWP, but not monolayers treated with the equivalent amount of lactoferrin present in 1 mg/mL BWP. These data suggest that naturally co-occurring bioactive proteins together may enhance intestinal barrier integrity and protect against inflammation-induced barrier dysfunction to a greater extent than lactoferrin alone. Further work is required to determine the key proteins and protein combinations within BWP, and the mechanisms through which BWP modulates intestinal barrier function.
Collapse
Affiliation(s)
- Dulantha Ulluwishewa
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Jane Mullaney
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1142, New Zealand
| | | | | | - Rachel C. Anderson
- AgResearch Ltd., Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| |
Collapse
|
258
|
Esposito P, Gandelman M, Rodriguez C, Liang J, Ismail N. The acute effects of antimicrobials and lipopolysaccharide on the cellular mechanisms associated with neurodegeneration in pubertal male and female CD1 mice. Brain Behav Immun Health 2022; 26:100543. [PMID: 36345322 PMCID: PMC9636049 DOI: 10.1016/j.bbih.2022.100543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to stressors during puberty can cause enduring effects on brain functioning and behaviours related to neurodegeneration. However, the mechanisms underlying these effects remain unclear. The gut microbiome is a complex and dynamic system that could serve as a possible mechanism through which early life stress may increase the predisposition to neurodegeneration. Therefore, the current study was designed to examine the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatments on the cellular mechanisms associated with neurodegenerative disorders in male and female mice. At five weeks of age, male and female CD-1 mice received 200 μL of broad-spectrum antimicrobials or water, through oral gavage, twice daily for seven days. Mice received an intraperitoneal (i.p.) injection of either saline or LPS at 6 weeks of age (i.e., pubertal period). Sickness behaviours were recorded and mice were euthanized 8 h post-injection. Following euthanasia, brains and blood samples were collected. The results indicated that puberal antimicrobial and LPS treatment induced sex-dependent changes in biomarkers related to sickness behaviour, peripheral inflammation, intestinal permeability, and neurodegeneration. The findings suggest that pubertal LPS and antimicrobial treatment may increase susceptibility to neurodegenerative diseases later in life, particularly in males. Pubertal antimicrobial and LPS treatment increase cytokine concentrations. Antimicrobial and LPS treatment have sex-specific effects on intestinal permeability. They also induce sex-specific changes in neurodegenerative markers. Antimicrobial treatment did not potentiate LPS-induced sickness behaviours.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Michelle Gandelman
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Cloudia Rodriguez
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Jacky Liang
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ontario, K1N 6N5, Canada,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada,Corresponding author. 136 Jean-Jacques Lussier Vanier Hall, Room 2076A, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
259
|
Enabling Ethanologenesis in Moorella thermoacetica through Construction of a Replicating Shuttle Vector. FERMENTATION 2022. [DOI: 10.3390/fermentation8110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Replicating plasmid shuttle vectors are key tools for efficient genetic and metabolic engineering applications, allowing the development of sustainable bioprocesses using non-model organisms with unique metabolic capabilities. To date, very limited genetic manipulation has been achieved in the thermophilic acetogen, Moorella thermoacetica, partly due to the lack of suitable shuttle vectors. However, M. thermoacetica has considerable potential as an industrial chassis organism, which can only be unlocked if reliable and effective genetic tools are in place. This study reports the construction of a replicating shuttle vector for M. thermoacetica through the identification and implementation of a compatible Gram-positive replicon to allow plasmid maintenance within the host. Although characterisation of plasmid behaviour proved difficult, the designed shuttle vector was subsequently applied for ethanologenesis, i.e., ethanol production in this organism. The non-native ethanologenesis in M. thermoacetica was achieved via plasmid-borne overexpression of the native aldh gene and heterologous expression of Clostridium autoethanogenum adhE1 gene. This result demonstrates the importance of the developed replicating plasmid vector for genetic and metabolic engineering efforts in industrially important M. thermoacetica.
Collapse
|
260
|
A critical path to producing high quality, reproducible data from quantitative western blot experiments. Sci Rep 2022; 12:17599. [PMID: 36266411 PMCID: PMC9585080 DOI: 10.1038/s41598-022-22294-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
Western blotting experiments were initially performed to detect a target protein in a complex biological sample and more recently, to measure relative protein abundance. Chemiluminescence coupled with film-based detection was traditionally the gold standard for western blotting but accurate and reproducible quantification has been a major challenge from this methodology. The development of sensitive, camera-based detection technologies coupled with an updated technical approach permits the production of reproducible, quantitative data. Fluorescence reagent and detection solutions are the latest innovation in western blotting but there remains questions and debate concerning their relative sensitivity and dynamic range versus chemiluminescence. A methodology to optimize and produce excellent, quantitative western blot results with rigorous data analysis from membranes probed with both fluorescent and chemiluminescent antibodies is described. The data reveal when and how to apply these detection methods to achieve reproducible data with a stepwise approach to data processing for quantitative analysis.
Collapse
|
261
|
Zhang J, Zhang XQ, Ling XZ, Zhao XH, Zhou KZ, Wang JY, Zhang GX. Prediction of the Effect of Methylation in the Promoter Region of ZP2 Gene on Egg Production in Jinghai Yellow Chickens. Vet Sci 2022; 9:vetsci9100570. [PMID: 36288183 PMCID: PMC9609111 DOI: 10.3390/vetsci9100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Egg production in chickens is a quantitative trait. The aim of this study was to investigate the effect of promoter methylation of the Zona pellucida 2 (ZP2) gene on egg production. Real-time fluorescence quantification showed that the expression of the ZP2 gene in the ovaries of 300-day-old Jinghai yellow chickens in the high-laying group was significantly higher than that in the low-laying group (p < 0.01). A series of deletion fragments of the ZP2 gene promoter in Jinghai yellow chickens had different promoter activities in DF-1 cells, and the core region of the ZP2 gene promoter was found to be between −1552 and −1348. Four CpG islands in the promoter region of the ZP2 gene were detected by software prediction. The overall degree of methylation of the ZP2-1 amplified fragment was negatively correlated with mRNA expression to some extent (R = −0.197); the overall degree of methylation of the ZP2-2 amplified fragment was also negatively correlated with mRNA expression to some extent (R = −0.264), in which the methylation of methylcytosine (mC)-9, mC-20, and mC-21 sites was significantly negatively correlated with mRNA expression (p < 0.05). In addition, the mC-20 and mC-21 sites are located on the Sp1 transcription factor binding site, and it is speculated that these two sites may be the main sites for regulating transcription. In summary, the methylation sites mC-20 and mC-21 of the ZP2 gene may inhibit the binding of Sp1 and DNA, affect the transcription of the ZP2 gene, and then affect the number of eggs produced by the Jinghai yellow chickens.
Collapse
Affiliation(s)
- Jin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiang-Qian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuan-Ze Ling
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiu-Hua Zhao
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, China
| | - Kai-Zhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Jin-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Gen-Xi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- Correspondence:
| |
Collapse
|
262
|
Boubegtitene A, Merret R. Monitoring mRNA Half-Life in Arabidopsis Using Droplet Digital PCR. PLANTS (BASEL, SWITZERLAND) 2022; 11:2616. [PMID: 36235485 PMCID: PMC9571659 DOI: 10.3390/plants11192616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
mRNA decay is an important process in post-transcriptional regulation; in addition, it plays a crucial role in plant development and response to stress. The development of new tools to quantify mRNA decay intermediates is thus important to better characterize the dynamic of mRNA decay in various conditions. Here, we applied droplet digital PCR (ddPCR), a recent and precise PCR technology, to determine mRNA half-life in Arabidopsis seedlings. We demonstrated that ddPCR can correctly assess mRNA half-life from a wide variety of transcripts in a reproducible manner. We also demonstrated that thanks to multiplexing mRNA, the half-life of multiple transcripts can be followed in the same reaction. As ddPCR allows precise quantification, we proposed that this approach is highly suitable when a low amount of RNA is available; for the detection of many targets or for the analysis of lowly expressed transcripts.
Collapse
Affiliation(s)
- Alexandre Boubegtitene
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| | - Rémy Merret
- CNRS-LGDP UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR 5096, 58 Avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
263
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|
264
|
Sakka R, Abdelhedi F, Sellami H, Pichon B, Lajmi Y, Mnif M, Kebaili S, Derbel R, Kamoun H, Gdoura R, Delbaere A, Desir J, Abramowicz M, Vialard F, Dupont JM, Ammar-Keskes L. An unusual familial Xp22.12 microduplication including EIF1AX: A novel candidate dosage-sensitive gene for premature ovarian insufficiency. Eur J Med Genet 2022; 65:104613. [PMID: 36113757 DOI: 10.1016/j.ejmg.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/22/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022]
Abstract
We report on the results of array-CGH and Whole exome sequencing (WES) studies carried out in a Tunisian family with 46,XX premature ovarian insufficiency (POI). This study has led to the identification of a familial Xp22.12 tandem duplication with a size of 559.4 kb, encompassing only three OMIM genes (RPS6KA3, SH3KBP1and EIF1AX), and a new heterozygous variant in SPIDR gene: NM_001080394.3:c.1845_1853delTATAATTGA (p.Ile616_Asp618del) segregating with POI. Increased mRNA expression levels were detected for SH3KBP1 and EIF1AX, while a normal transcript level for RPS6KA3 was detected in the three affected family members, explaining the absence of intellectual disability (ID). To the best of our knowledge, this is the first duplication involving the Xp22.12 region, reported in a family without ID, but rather with secondary amenorrhea (SA) and female infertility. As EIF1AX is a regulatory gene escaping X-inactivation, which has an extreme dosage sensitivity and highly expressed in the ovary, we suggest that this gene might be a candidate gene for ovarian function. Homozygous nonsense pathogenic variants of SPIDR gene have been reported in familial cases in POI. It has been suggested that chromosomal instability associated with SPIDR molecular defects supports the role of SPIDR protein in double-stranded DNA damage repair in vivo in humans and its causal role in POI. In this family, the variant (p.Ile616_Asp618del), present in a heterozygous state, is located in the domain that interacts with BLM and might disrupt the BLM binding ability of SPIDR protein. These findings strengthen the hypothesis that the additional effect of this variant could lead to POI in this family. Although the work represents the first evidence that EIF1AX duplication might be responsible for POI through its over-expression, further functional studies are needed to clarify and prove EIF1AX involvement in POI phenotype.
Collapse
Affiliation(s)
- Rim Sakka
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fatma Abdelhedi
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia; Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia.
| | - Hanen Sellami
- Water Researches and Technologies Center (CERTE), University of Carthage, Tourist Road Soliman, Nabeul, Tunisia; Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Bruno Pichon
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Yosra Lajmi
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Mouna Mnif
- Department of Endocrinology, Hedi Chaker Hospital, Sfax, Tunisia
| | - Sahbi Kebaili
- Department of Gynecology, HediChaker Hospital, Sfax, Tunisia
| | - Rihab Derbel
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, Hedi Chaker Hospital, Sfax, Tunisia
| | - Radhouane Gdoura
- Toxicology, Environmental Microbiology and Health Research Laboratory (LR17ES06), Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, UniversitéLibre de Bruxelles, Brussels, Belgium
| | - Julie Desir
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Center of Medical Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - François Vialard
- Genetics Department, CHI Poissy St Germain-en-Laye, F-78300, Poissy, France; RHuMA Team, UMR-BREED, INRAE-UVSQ-ENVA, UFR-SVS, F-78180, Montigny le Bretonneux, France
| | - Jean-Michel Dupont
- Cytogenetics Department, Cochin Hospital, Assistance Publique des Hôpitaux de Paris, Sorbonne Paris Cité, Paris Descartes University, Medical School, Paris, France
| | - Leila Ammar-Keskes
- Human Molecular Genetics Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
265
|
Bergez-Hernández F, Arámbula-Meraz E, Alvarez-Arrazola M, Irigoyen-Arredondo M, Luque-Ortega F, Martínez-Camberos A, Cedano-Prieto D, Contreras-Gutiérrez J, Martínez-Valenzuela C, García-Magallanes N. Expression Analysis of miRNAs and Their Potential Role as Biomarkers for Prostate Cancer Detection. Am J Mens Health 2022; 16:15579883221120989. [PMID: 36082407 PMCID: PMC9465588 DOI: 10.1177/15579883221120989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer diagnosed in men worldwide. The detection methods for PCa are either unreliable, like prostate-specific antigen (PSA), or extremely invasive, such as in the case of biopsies. Therefore, there is an urgent necessity for reliable and less invasive detection procedures that can differentiate between patients with benign diseases and those with cancer. In this matter, microRNAs (miRNAs) are suggested as potential biomarkers for cancer. MiRNAs have been found to be dysregulated in several different cancers, and these genetic alterations may present specific signatures for a given malignancy. Here, we examined the expression of miR141-3p, miR145-5p, miR146a-5p, and miR148b-3p in human tissue samples of PCa (n = 41) and benign prostatic diseases (BPD) (n = 30) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We combined the expression results with patient clinicopathological characteristics in logistic regression models to create accurate PCa predictive models. A model including information of miR148b-3p and patient age showed relevant prediction results (area under the curve [AUC] = 0.818, precision = 0.763, specificity = 0.762, and accuracy = 0.762). A model including all four miRNAs and patient age presented outstanding prediction results (AUC = 0.918, precision = 0.861, specificity = 0.861, and accuracy = 0.857). Our results represent a potential novel procedure based on logistic regression models that utilize miRNA expressions and patient age to assist with PCa diagnosis.
Collapse
Affiliation(s)
- Fernando Bergez-Hernández
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y
Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | | | - Martín Irigoyen-Arredondo
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Fred Luque-Ortega
- Laboratorio de Ciencias Básicas,
Facultad de Odontología, Universidad Autónoma de Sinaloa, Culiacán Rosales,
México
| | - Alejandra Martínez-Camberos
- Posgrado en Ciencias Biomédicas,
Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa,
Culiacán Rosales, México
| | - Dora Cedano-Prieto
- Laboratorio de Genética y
Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | - José Contreras-Gutiérrez
- Centro de Investigación y
Docencia en Ciencias de la Salud, Hospital Civil de Culiacán, Universidad
Autónoma de Sinaloa, Culiacán Rosales, México
| | - Carmen Martínez-Valenzuela
- Laboratorio de Genotoxicología
“Dr Jesus Kumate Rodriguez,” Unidad de Investigación en Ambiente y Salud,
Universidad Autónoma de Occidente, Los Mochis, México
| | - Noemí García-Magallanes
- Laboratorio de Biomedicina y
Biología Molecular, Ingeniería en Biotecnología, Universidad Politécnica de
Sinaloa, Mazatlán, México,Noemí García Magallanes,
Laboratorio de Biomedicina y Biología Molecular, Ingeniería en
Biotecnología, Universidad Politécnica de Sinaloa, Carretera Municipal
Libre Mazatlán-Higueras s/n 3km col. Genaro Estrada, 82199 Mazatlán,
Sinaloa, México.
| |
Collapse
|
266
|
Jin XC, Peng DQ, Kim SJ, Kim NY, Nejad JG, Kim D, Smith SB, Lee HG. Vitamin A supplementation downregulates ADH1C and ALDH1A1 mRNA expression in weaned beef calves. ANIMAL NUTRITION 2022; 10:372-381. [PMID: 35949197 PMCID: PMC9356019 DOI: 10.1016/j.aninu.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Our previous studies demonstrated that oral vitamin A supplementation during late-stage pregnancy and the neonatal stage enhances birth weight, growth performance, and mRNA expression related to muscle and preadipocyte development in beef cattle. The alcohol dehydrogenase 1C (ADH1C) c.-64T > C genotype also correlated with vitamin A concentration in beef production. This study aimed to investigate the effects of vitamin A supplementation on the muscle development and vitamin A metabolism in weaned beef calves with different ADH1C genotypes. Twenty male calves (90 d of age; initial BW: 89.03 kg [SD 8.60]) were stratified according to ADH1C genotype and vitamin A treatment (duration: 3 months) and randomly assigned to 4 groups with a 2 × 2 factorial arrangement. Vitamin A treatments included the following: control (10,000 IU/kg of as-fed, a. TT type; b. TC type); treatment (40,000 IU/kg of as-fed, c. TT type; and d. TC type). Parameters including BW, FI, blood, longissimus dorsi muscle, and liver status during the experimental period were analyzed using the generalized linear model (GLM) procedure and Tukey's test by SAS 9.4 program. Serum vitamin A was significantly increased (P < 0.05) in the vitamin A treatment group at 4 and 6 months of age. TT type calves showed higher serum vitamin A concentration (P < 0.05) than the TC type calves. Serum triglyceride and non-esterified fatty acid (NEFA) levels increased (P < 0.05) in the treatment group compared with the control at 6 months of age. However, BW, ADG and FI showed no differences between the groups. In addition, mRNA expression in longissimus dorsi muscle revealed upregulation of paired box 7 (PAX7) (P < 0.05) after the vitamin A treatment period based on biopsy results. Both ADH1C and aldehyde dehydrogenase (ALDH) 1A1 mRNA expression was downregulated (P < 0.01) by vitamin A supplementation. The TC type of ADH1C showed higher mRNA expression than the TT type. However, no effect was observed on adipogenic mRNA expression (preadipocyte factor-1 [PREF-1], peroxisome proliferator-activated receptor gamma [PPARγ], fatty acid binding protein 4 [FABP4]) in all groups. Our findings suggest that weaned calves treated with vitamin A may promote the storage of satellite cells by elevating PAX7 gene expression in the muscle. The TC type calves may show increased capacity for vitamin A metabolism, which can be used in genetically customizing feed management to maximize beef production in the calves.
Collapse
|
267
|
VanGenderen CA, Granet JA, Filippelli RL, Liu Y, Chang NC. Modulating Myogenesis: An Optimized In Vitro Assay to Pharmacologically Influence Primary Myoblast Differentiation. Curr Protoc 2022; 2:e565. [PMID: 36165685 DOI: 10.1002/cpz1.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intentional pharmacological manipulation of myogenesis is an important technique for understanding the underlying mechanisms of muscle differentiation and disease etiology. Using the pharmacological agent metformin as an example molecule, we present a systematic approach to examine the impact of pharmacological agents on the myogenic program. This consists of optimizing the in vitro differentiation of primary myoblast cells followed by the generation of a dose-response curve for a respective pharmaceutical. To assess myogenic differentiation, we utilized three approaches (incorporating both transcriptional and protein techniques) to assess the effects of biologically active agents on the in vitro differentiation of primary myogenic progenitors. First, the immunofluorescent visualization of myosin heavy chain (MYHC), which is expressed in differentiated myofibers, is used to obtain the fusion index, a quantitative read-out of differentiation efficiency. Second, quantitative reverse transcription PCR (RT-qPCR) reveals the expression of myogenic factors (Pax7, Myf5, Myod, Myog, Myh2) at the transcript level. Third, western blotting is used to assess the protein expression levels of the myogenic markers (PAX7, MYF5, MYOD, MYOG, and MYHC). By monitoring the expression of these various myogenic factors during the differentiation process, the relative cellular state and differentiation status between samples can be determined. Combined, these approaches enable the successful assessment of the impact of pharmacological agents on myogenic differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Immunofluorescence assay for qualitative and quantitative assessment of pharmacological agents on in vitro myogenic differentiation Support Protocol 1: Evaluating myogenic gene expression by RT-qPCR Support Protocol 2: Evaluating myogenic protein expression by western blot.
Collapse
Affiliation(s)
| | | | | | - Yiyang Liu
- McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
268
|
Martínez-Camberos A, Alvarez-Arrazola M, Arámbula-Meraz E, Romero-Quintana J, Luque-Ortega F, Romo-Martinez E, Sánchez-Urbina R, Cedano-Prieto D, González-Castillo A, García-Magallanes N. Dysregulation of KRT19, TIMP1, and CLDN1 gene expression is associated with thyroid cancer. Biochem Biophys Res Commun 2022; 617:55-59. [PMID: 35679711 DOI: 10.1016/j.bbrc.2022.05.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Thyroid nodules are the main indicators of thyroid cancer, their malignancy is evaluated by cytological analysis and imaging technology, however, there are still cases where the result is not enough to classify thyroid cancer. Therefore, there is a necessity for accurate molecular biomarkers to collaborate in the diagnosis. Here, we analyzed the mRNA relative expression of CLDN1, TIMP1, and KRT19 genes in FNA of malignant (n = 48) and benign (n = 49) thyroid nodules by RT-qPCR analysis to assess their predictive value as cancer biomarkers. We identified a significant overexpression of the three transcripts in malignant nodules, therefore, the evaluation of their predictive capacity to distinguish between benign and malignant nodule as individual biomarkers were evaluated by logistic regression tests, obtaining promising prediction results to rule out cancer; later by random forest to create a stronger model, we included expression results with clinicopathological characteristics, the best model consists of the three-mRNA level expression with patient's history of cancer (AUC = 0.821, accuracy = 85.4% and sensitivity of 81.1%). These results demonstrate a dysregulated expression of CLDN1, KRT19 and TIMP1 in thyroid cancer, thus, represent a promising panel of biomarkers to be evaluated in indeterminate thyroid nodules.
Collapse
Affiliation(s)
- Alejandra Martínez-Camberos
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, 80010, Mexico.
| | | | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, 80010, Mexico.
| | - José Romero-Quintana
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, 80010, Mexico.
| | - Fred Luque-Ortega
- Laboratorio de Ciencias Básicas, Facultad de Odontología, Universidad Autónoma de Sinaloa, Culiacán, 80010, Mexico.
| | - Enrique Romo-Martinez
- Laboratorio de Biomedicina y Biología Molecular, Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Mazatlán, 82199, Mexico.
| | - Rocio Sánchez-Urbina
- Unidad de Investigación en Malformaciones Congénitas, Hospital Infantil de México Federico Gómez, México City, Mexico.
| | - Dora Cedano-Prieto
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, 80010, Mexico.
| | - Adrián González-Castillo
- Laboratorio de Biomedicina y Biología Molecular, Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Mazatlán, 82199, Mexico.
| | - Noemí García-Magallanes
- Laboratorio de Biomedicina y Biología Molecular, Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Mazatlán, 82199, Mexico.
| |
Collapse
|
269
|
Smetanina MA, Oscorbin IP, Shadrina AS, Sevost'ianova KS, Korolenya VA, Gavrilov KA, Shevela AI, Shirshova AN, Oskina NA, Zolotukhin IA, Filipenko ML. Quantitative and structural characteristics of mitochondrial DNA in varicose veins. Vascul Pharmacol 2022; 145:107021. [PMID: 35690235 DOI: 10.1016/j.vph.2022.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We examined quantitative (in terms of mtDNA/nuclear DNA) and structural (in terms of common deletions in the MT-ND4 gene region) characteristics of mitochondrial DNA (mtDNA) in varicose veins (VVs) and venous wall layers by comparing mitochondrial genome parameters, as well as mitochondrial function (in terms of mitochondrial membrane potential (MtMP)), in varicose vein (VV) vs. non-varicose vein (NV) tissue samples. METHODS We analyzed paired great saphenous vein samples (VV vs. NV segments from each patient left after venous surgery) harvested from patients with VVs. Relative mtDNA level and the proportion of no-deletion mtDNA were determined by a multiplex quantitative PCR (qPCR), confirming the latter with a more sensitive method - droplet digital PCR (ddPCR). Mitochondria's functional state in VVs was assessed using fluorescent (dependent on MtMP) live-staining of mitochondria in venous tissues. RESULTS Total mtDNA level was lower in VV than in NV samples (predominantly in the t. media layer). ddPCR analysis showed lower proportion of no-deletion mtDNA in VVs. Because of the decrease in relative MtMP in VVs, our results suggest a possible reduction of mitochondrial function in VVs. CONCLUSION Quantitative and structural changes (copy number and integrity) of mtDNA are plausibly involved in VV pathogenesis. Future clinical studies implementing the mitochondrial targeting may be eventually fostered after auxiliary mechanistic studies.
Collapse
Affiliation(s)
- Mariya A Smetanina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Fundamental Medicine of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexandra S Shadrina
- Laboratory of Glycogenomics, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Kseniya S Sevost'ianova
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Valeria A Korolenya
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin A Gavrilov
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Andrey I Shevela
- Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Surgical Diseases of V. Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Arina N Shirshova
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Natalya A Oskina
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Igor A Zolotukhin
- Department of Faculty Surgery, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Laboratory of Molecular Diagnostics Development, Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
270
|
Chandler AC, Yakoub M, Fujiwara T, Donlin LT, Purdue PE, Healey JH. Neoplastic synovial lining cells that coexpress podoplanin and CD90 overproduce CSF-1, driving tenosynovial giant cell tumor. J Orthop Res 2022; 40:1918-1925. [PMID: 34855235 PMCID: PMC9160208 DOI: 10.1002/jor.25216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
Tenosynovial giant cell tumor (TCGT) is a rare neoplasm affecting the synovium of joints, bursae, and tendon sheaths. The overproduction of colony-stimulating factor-1 (CSF-1) by a minority of the tumor population works in a paracrine fashion to drive tumor growth. Pathology of the reactive, monocytic component has been well elucidated, whereas the populations of neoplastic cells and all the sources of CSF-1 overproduction are incompletely characterized. Podoplanin (PDPN), or gp38, is a cell surface glycoprotein that is expressed on fibroblast-like synovial cells and upregulated in rheumatoid arthritis and many cancers; it governs cell mobility, epithelial-mesenchymal transition, and other functions and is associated with lymphangiogenesis and poor prognosis in many solid tumors, which underscores its local and possible systemic effects. We found higher PDPN expression in TGCT than in internal controls of patients' healthy synovium. Flow cytometry partitioned PDPNhigh cells into PDPNhigh CD90+ and PDPNhigh CD14+ populations. Quantitative real-time polymerase chain reaction analysis of the PDPNhigh CD90+ cells revealed that CSF-1 expression was 10-fold higher than in PDPNhigh CD14+ cells. Therefore, we conclude that the lining fibroblast-like synovial cells, which express PDPNhigh CD90+ , are responsible for the overproduction of CSF-1 and for driving tumor growth.
Collapse
Affiliation(s)
- Andrew C. Chandler
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Touro College of Osteopathic Medicine, New York, NY, USA
| | - Mohamed Yakoub
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomohiro Fujiwara
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - John H. Healey
- Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
271
|
Kandoi D, Ruhil K, Govindjee G, Tripathy BC. Overexpression of cytoplasmic C 4 Flaveria bidentis carbonic anhydrase in C 3 Arabidopsis thaliana increases amino acids, photosynthetic potential, and biomass. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1518-1532. [PMID: 35467074 PMCID: PMC9342616 DOI: 10.1111/pbi.13830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 05/20/2023]
Abstract
An important method to improve photosynthesis in C3 crops, such as rice and wheat, is to transfer efficient C4 characters to them. Here, cytosolic carbonic anhydrase (CA: βCA3) of the C4 Flaveria bidentis (Fb) was overexpressed under the control of 35 S promoter in Arabidopsis thaliana, a C3 plant, to enhance its photosynthetic efficiency. Overexpression of CA resulted in a better supply of the substrate HCO3- for the endogenous phosphoenolpyruvate carboxylase in the cytosol of the overexpressers, and increased its activity for generating malate that feeds into the tricarboxylic acid cycle. This provided additional carbon skeleton for increased synthesis of amino acids aspartate, asparagine, glutamate, and glutamine. Increased amino acids contributed to higher protein content in the transgenics. Furthermore, expression of FbβCA3 in Arabidopsis led to a better growth due to expression of several genes leading to higher chlorophyll content, electron transport, and photosynthetic carbon assimilation in the transformants. Enhanced CO2 assimilation resulted in increased sugar and starch content, and plant dry weight. In addition, transgenic plants had lower stomatal conductance, reduced transpiration rate, and higher water-use efficiency. These results, taken together, show that expression of C4 CA in the cytosol of a C3 plant can indeed improve its photosynthetic capacity with enhanced water-use efficiency.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Kamal Ruhil
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Govindjee Govindjee
- Department of Plant BiologyDepartment of Biochemistry, and Center of Biophysics & Quantitative BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Baishnab C. Tripathy
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
- Department of BiotechnologySharda UniversityGreater NoidaUPIndia
| |
Collapse
|
272
|
Cao X, Mao Y, Gu Y, Ge S, Lu W, Gu Y, Li Z. Highly sensitive and simultaneous detection of ctDNAs related to non-small cell lung cancer in serum using a catalytic hairpin assembly strategy in a SERS microfluidic chip. J Mater Chem B 2022; 10:6194-6206. [PMID: 35904034 DOI: 10.1039/d2tb01024k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor DNA (ctDNA) is an ideal biomarker for cancer diagnosis based on liquid biopsy, so there is an urgent need for developing an efficient, rapid, and ultrasensitive detection method to meet clinical needs. In this paper, a novel surface-enhanced Raman scattering (SERS) microfluidic chip combined with a catalytic hairpin assembly (CHA) was proposed to detect two non-small cell lung cancer (NSCLC)-related ctDNA (TP53 and PIK3CA-Q546K) simultaneously. The chip consists of six channels for parallel detection. In the reaction region, the CHA reaction between HP1 of the SERS probe and HP2 of the capture substrate was triggered by ctDNAs to form HP1-HP2 duplexes. As the reaction proceeds, more and more SERS probes are captured on the substrate. The gathered reaction products continuously form a lot of hot spots, which greatly enhance the SERS signal. This reaction was completed within 5 minutes. Through this method, the detection limits of TP53 and PIK3CA-Q546K in human serum were as low as 2.26 aM and 2.34 aM, respectively. The microfluidic chip also exhibited high specificity, reproducibility and stability. The clinical feasibility of the SERS microfluidic chip was verified by analyzing the serum samples of healthy subjects and NSCLC patients. The reliability of the experimental results was verified by the qRT-PCR test. The constructed SERS-based analytical micro-platform has great potential in dynamic monitoring of cancer staging and could be used as a clinical tool for early cancer screening.
Collapse
Affiliation(s)
- Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen, 041004, P. R. China
| | - Yingyan Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China.,Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Zhiyue Li
- The First Clinical College, Dalian Medical University, Dalian, 116000, P. R. China
| |
Collapse
|
273
|
Kot M, Mazurkiewicz E, Wiktor M, Wiertelak W, Mazur AJ, Rahalevich A, Olczak M, Maszczak-Seneczko D. SLC35A2 Deficiency Promotes an Epithelial-to-Mesenchymal Transition-like Phenotype in Madin–Darby Canine Kidney Cells. Cells 2022; 11:cells11152273. [PMID: 35892570 PMCID: PMC9331475 DOI: 10.3390/cells11152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
In mammalian cells, SLC35A2 delivers UDP–galactose for galactosylation reactions that take place predominantly in the Golgi lumen. Mutations in the corresponding gene cause a subtype of a congenital disorder of glycosylation (SLC35A2-CDG). Although more and more patients are diagnosed with SLC35A2-CDG, the link between defective galactosylation and disease symptoms is not fully understood. According to a number of reports, impaired glycosylation may trigger the process of epithelial-to-mesenchymal transition (EMT). We therefore examined whether the loss of SLC35A2 activity would promote EMT in a non-malignant epithelial cell line. For this purpose, we knocked out the SLC35A2 gene in Madin–Darby canine kidney (MDCK) cells. The resulting clones adopted an elongated, spindle-shaped morphology and showed impaired cell–cell adhesion. Using qPCR and western blotting, we revealed down-regulation of E-cadherin in the knockouts, while the fibronectin and vimentin levels were elevated. Moreover, the knockout cells displayed reorganization of vimentin intermediate filaments and altered subcellular distribution of a vimentin-binding protein, formiminotransferase cyclodeaminase (FTCD). Furthermore, depletion of SLC35A2 triggered Golgi compaction. Finally, the SLC35A2 knockouts displayed increased motility and invasiveness. In conclusion, SLC35A2-deficient MDCK cells showed several hallmarks of EMT. Our findings point to a novel role for SLC35A2 as a gatekeeper of the epithelial phenotype.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Maciej Wiktor
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Wojciech Wiertelak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.K.); (E.M.); (A.J.M.)
| | - Andrei Rahalevich
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Mariusz Olczak
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
| | - Dorota Maszczak-Seneczko
- Department of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland; (M.W.); (W.W.); (A.R.); (M.O.)
- Correspondence:
| |
Collapse
|
274
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
275
|
Flatschacher D, Speckbacher V, Zeilinger S. qRAT: an R-based stand-alone application for relative expression analysis of RT-qPCR data. BMC Bioinformatics 2022; 23:286. [PMID: 35854213 PMCID: PMC9297597 DOI: 10.1186/s12859-022-04823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reverse transcription quantitative real-time PCR (RT-qPCR) is a well-established method for analysing gene expression. Most RT-qPCR experiments in the field of microbiology aim for the detection of transcriptional changes by relative quantification, which means the comparison of the expression level of a specific gene between different samples by the application of a calibration condition and internal reference genes. Due to the numerous data processing procedures and factors that can influence the final result, relative expression analysis and interpretation of RT-qPCR data are still not trivial and often necessitate the use of multiple separate software packages capable of performing specific functions. RESULTS Here we present qRAT, a stand-alone desktop application based on R that automatically processes raw output data from any qPCR machine using well-established and state-of-the-art statistical and graphical techniques. The ability of qRAT to analyse RT-qPCR data was evaluated using two example datasets generated in our laboratory. The tool successfully completed the procedure in both cases, returning the expected results. The current implementation includes functionalities for parsing, filtering, normalizing and visualisation of relative RT-qPCR data, like the determination of the relative quantity and the fold change of differentially expressed genes as well as the correction of inter-plate variation for multiple-plate experiments. CONCLUSION qRAT provides a comprehensive, straightforward, and easy-to-use solution for the relative quantification of RT-qPCR data that requires no programming knowledge or additional software installation. All application features are available for free and without requiring a login or registration.
Collapse
Affiliation(s)
| | | | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
276
|
Ahmed W, Bivins A, Metcalfe S, Smith WJM, Ziels R, Korajkic A, McMinn B, Graber TE, Simpson SL. RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance. WATER RESEARCH 2022; 220:118621. [PMID: 35665675 PMCID: PMC9109001 DOI: 10.1016/j.watres.2022.118621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RT-qPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ryan Ziels
- Department of Civil Engineering, University of British Columbia, Vancouver, Canada
| | - Asja Korajkic
- United States Environmental Protection Agency, 26 W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Brian McMinn
- United States Environmental Protection Agency, 26 W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa K1H 8L1, Canada
| | | |
Collapse
|
277
|
Zhang X, Tian C, Tian C, Cheng J, Mao W, Li M, Chen M. LTBP2 inhibits prostate cancer progression and metastasis via the PI3K/AKT signaling pathway. Exp Ther Med 2022; 24:563. [PMID: 36034756 PMCID: PMC9400130 DOI: 10.3892/etm.2022.11500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Biochemical recurrence (BCR) is a cause of concern in advanced prostate cancer (PCa). Thus, novel diagnostic biomarkers are required to improve clinical care. However, research on PCa immunotherapy is also scarce. Hence, the present study aimed to explore promising BCR-related diagnostic biomarkers, and their expression pattern, prognostic value, immune response effects, biological functions, and possible molecular mechanisms were evaluated. GEO datasets (GSE46602, GSE70768, and GSE116918) were downloaded and merged as the training cohort, and differential expression analysis was performed. Lasso regression and SVM-RFE algorithm, as well as PPI analysis and MCODE algorithm, were then applied to filter BCR-related biomarker genes. The CIBERSORT and estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) methods were used to calculate the fractions of tumor-infiltrating immune cells. GO/DO enrichment analyses were used to identify the biological functions. The expression of latent transforming growth factor β-binding protein 2 (LTBP2) was determined by RT-qPCR and western blotting. The role of LTBP2 in PCa was determined by CCK-8, Transwell, and the potential mechanism was investigated by KEGG and GSEA and confirmed by western blotting. In total, 44 BCR-related differentially expressed genes (DEGs) in the training cohort were screened. LTBP2 was found to be a diagnostic biomarker of BCR in PCa and was associated with CD4+ T-cell infiltration and response to anti-PD-1/PD-L1 immunotherapy. Subsequently, using the ESTIMATE algorithm, it was identified that LTBP2 was associated with the tumor microenvironment and could be a predictor of the clinical benefit of immune checkpoint blockade. Finally, the expression and biological function of LTBP2 were evaluated via cellular experiments. The results showed that LTBP2 was downregulated in PCa cells and inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro. In conclusion, LTBP2 was a promising diagnostic biomarker of BCR of PCa and had an important role in CD4+ T-cell recruitment. Moreover, it was associated with immunotherapy in patients with PCa who developed BCR, and it inhibited PCa proliferation and metastasis via the PI3K/AKT signaling pathway in vitro.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Chuanjie Tian
- Department of Urology, Langxi County People's Hospital, Xuancheng, Anhui 242100, P.R. China
| | - Jianbin Cheng
- Department of Urology Surgery, Heqiao Hospital, Yixing, Jiangsu 214200, P.R. China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| | - Menglan Li
- NHC Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, Jiangsu 210036, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of South‑East University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
278
|
Jurickova I, Bonkowski E, Angerman E, Novak E, Huron A, Akers, G, Iwasawa K, Braun T, Hadar R, Hooker M, Han S, Cutler DJ, Okou DT, Kugathasan S, Jegga A, Wells J, Takebe T, Mollen KP, Haberman Y, Denson LA. Eicosatetraynoic Acid and Butyrate Regulate Human Intestinal Organoid Mitochondrial and Extracellular Matrix Pathways Implicated in Crohn's Disease Strictures. Inflamm Bowel Dis 2022; 28:988-1003. [PMID: 35259271 PMCID: PMC9247849 DOI: 10.1093/ibd/izac037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Perturbagen analysis of Crohn's disease (CD) ileal gene expression data identified small molecules including eicosatetraynoic acid (ETYA), which may exert an antifibrotic effect. We developed a patient-specific human intestinal organoid (HIO) model system to test small molecule regulation of mitochondrial and wound-healing functions implicated in stricturing behavior. METHODS HIOs were made from CD induced pluripotent stem cells with and without a loss-of-function haplotype in the DUOX2 gene implicated in ileal homeostasis and characterized under basal conditions and following exposure to butyrate and ETYA using RNA sequencing, flow cytometry, and immunofluorescent and polarized light microscopy. Mitochondrial activity was measured using high-resolution respirometry and tissue stiffness using atomic force microscopy. RESULTS HIOs expressed core mitochondrial and extracellular matrix (ECM) genes and enriched biologic functions implicated in CD ileal strictures; ECM gene expression was suppressed by both butyrate and ETYA, with butyrate also suppressing genes regulating epithelial proliferation. Consistent with this, butyrate, but not ETYA, exerted a profound effect on HIO epithelial mitochondrial function, reactive oxygen species production, and cellular abundance. Butyrate and ETYA suppressed HIO expression of alpha smooth muscle actin expressed by myofibroblasts, type I collagen, and collagen protein abundance. HIOs exhibited tissue stiffness comparable to normal human ileum; this was reduced by chronic ETYA exposure in HIOs carrying the DUOX2 loss-of-function haplotype. CONCLUSIONS ETYA regulates ECM genes implicated in strictures and suppresses collagen content and tissue stiffness in an HIO model. HIOs provide a platform to test personalized therapeutics, including small molecules prioritized by perturbagen analysis.
Collapse
Affiliation(s)
- Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erin Bonkowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth Novak
- Division of General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex Huron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Grayce Akers,
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tzipi Braun
- Department of Pediatrics, Sheba Medical Center, Tel-Aviv University, Tel-HaShomer, Israel
| | - Rotem Hadar
- Department of Pediatrics, Sheba Medical Center, Tel-Aviv University, Tel-HaShomer, Israel
| | - Maria Hooker
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sarah Han
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David T Okou
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Subra Kugathasan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Anil Jegga
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James Wells
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Institute of Research, Tokyo Medical and Dental University, Japan
| | - Kevin P Mollen
- Division of General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Sheba Medical Center, Tel-Aviv University, Tel-HaShomer, Israel
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
279
|
Byrne DJ, Lipovsek M, Crespo A, Grubb MS. Brief sensory deprivation triggers plasticity of dopamine-synthesising enzyme expression in genetically labelled olfactory bulb dopaminergic neurons. Eur J Neurosci 2022; 56:3591-3612. [PMID: 35510299 PMCID: PMC9540594 DOI: 10.1111/ejn.15684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In the glomerular layer of the olfactory bulb, local dopaminergic interneurons play a key role in regulating the flow of sensory information from nose to cortex. These dual dopamine- and GABA-releasing cells are capable of marked experience-dependent changes in the expression of neurotransmitter-synthesising enzymes, including tyrosine hydroxylase (TH). However, such plasticity has most commonly been studied in cell populations identified by their expression of the enzyme being studied and after long periods of sensory deprivation. Here, instead, we used brief 1- or 3-day manipulations of olfactory experience in juvenile mice, coupled with a conditional genetic approach that labelled neurons contingent upon their expression of the dopamine transporter (DAT-tdTomato). This enabled us to evaluate the potential for rapid changes in neurotransmitter-synthesising enzyme expression in an independently identified neuronal population. Our labelling strategy showed good specificity for olfactory bulb dopaminergic neurons, while revealing a minority sub-population of non-dopaminergic DAT-tdTomato cells that expressed the calcium-binding protein calretinin. Crucially, the proportions of these neuronal subtypes were not affected by brief alterations in sensory experience. Short-term olfactory manipulations also produced no significant changes in immunofluorescence or whole-bulb mRNA for the GABA-synthesising enzyme GAD67/Gad1. However, in bulbar DAT-tdTomato neurons, brief sensory deprivation was accompanied by a transient, small drop in immunofluorescence for the dopamine-synthesising enzyme dopa decarboxylase (DDC) and a sustained decrease for TH. Deprivation also produced a sustained decrease in whole-bulb Th mRNA. Careful characterisation of an independently identified, genetically labelled neuronal population therefore enabled us to uncover rapid experience-dependent changes in dopamine-synthesising enzyme expression.
Collapse
Affiliation(s)
- Darren J. Byrne
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
- Ear InstituteUniversity College LondonLondonUK
| | - Andres Crespo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN)King's College LondonLondonUK
| |
Collapse
|
280
|
Amelioration for an ignored pitfall in reference gene selection by considering the mean expression and standard deviation of target genes. Sci Rep 2022; 12:11129. [PMID: 35778437 PMCID: PMC9249883 DOI: 10.1038/s41598-022-15277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Routine tissue-specific reference genes are often used in expression studies, but target genes are not taken into account. Using the relative RT-qPCR approach, we evaluated the expression of three target genes. At the same time, meta-analyses were conducted in various ethnic groups, genders, and thyroid cancer subtypes. When eight common reference genes were examined, it was discovered that some of them not only lacked consistent expression but also had considerable expression variance. It is worth noting that while choosing a reference gene, the mean gene expression and its standard deviation should be carefully addressed. An equation was developed based on this, and it was used to perform statistical analysis on over 25,000 genes. According to the subtype of thyroid cancer and, of course, the target genes in this investigation, appropriate reference genes were proposed. The intuitive choice of GAPDH as a common reference gene caused a major shift in the quantitative expression data of target genes, inverting the relative expression values. As a result, choosing the appropriate reference gene(s) for quantification of transcription data, and especially for relative studies of the expression of target gene(s), is critical and should be carefully considered during the study design.
Collapse
|
281
|
Liu F, Kambakam S, Almeida MP, Ming Z, Welker JM, Wierson WA, Schultz-Rogers LE, Ekker SC, Clark KJ, Essner JJ, McGrail M. Cre/ lox regulated conditional rescue and inactivation with zebrafish UFlip alleles generated by CRISPR-Cas9 targeted integration. eLife 2022; 11:71478. [PMID: 35713402 PMCID: PMC9270027 DOI: 10.7554/elife.71478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to regulate gene activity spatially and temporally is essential to investigate cell type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression, >99% reduction of endogenous gene expression, and recapitulated known indel loss of function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss of function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.
Collapse
Affiliation(s)
- Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Jordan M Welker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Laura E Schultz-Rogers
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, United States
| |
Collapse
|
282
|
Schüle S, Ostheim P, Port M, Abend M. Identifying radiation responsive exon-regions of genes often used for biodosimetry and acute radiation syndrome prediction. Sci Rep 2022; 12:9545. [PMID: 35680903 PMCID: PMC9184472 DOI: 10.1038/s41598-022-13577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Gene expression (GE) analysis of FDXR, DDB2, WNT3 and POU2AF1 is a promising approach for identification of clinically relevant groups (unexposed, low- and high exposed) after radiological/nuclear events. However, results from international biodosimetry exercises have shown differences in dose estimates based on radiation-induced GE of the four genes. Also, differences in GE using next-generation-sequening (NGS) and validation with quantitative real-time polymerase chain reaction (qRT-PCR) was reported. These discrepancies could be caused by radiation-responsive differences among exons of the same gene. We performed GE analysis with qRT-PCR using TaqMan-assays covering all exon-regions of FDXR, DDB2, WNT3 and POU2AF1. Peripheral whole blood from three healthy donors was X-irradiated with 0, 0.5 and 4 Gy. After 24 and 48 h a dose-dependent up-regulation across almost all exon-regions for FDXR and DDB2 (4–42-fold) was found. A down-regulation for POU2AF1 (two- to threefold) and WNT3 (< sevenfold) at the 3’-end was found at 4 Gy irradiation only. Hence, this confirms our hypothesis for radiation-responsive exon-regions for WNT3 and POU2AF1, but not for FDXR and DDB2. Finally, we identified the most promising TaqMan-assays for FDXR (e.g. AR7DTG3, Hs00244586_m1), DDB2 (AR47X6H, Hs03044951_m1), WNT3 (Hs00902258_m1, Hs00902257_m1) and POU2AF1 (Hs01573370_g1, Hs01573371_m1) for biodosimetry purposes and acute radiation syndrome prediction, considering several criteria (detection limit, dose dependency, time persistency, inter-individual variability).
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology Affiliated to the University Ulm, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
283
|
Ngouth N, Monaco MC, Walker L, Corey S, Ikpeama I, Fahle G, Cortese I, Das S, Jacobson S. Comparison of qPCR with ddPCR for the Quantification of JC Polyomavirus in CSF from Patients with Progressive Multifocal Leukoencephalopathy. Viruses 2022; 14:v14061246. [PMID: 35746716 PMCID: PMC9229850 DOI: 10.3390/v14061246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients.
Collapse
Affiliation(s)
- Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
| | - Lorenzo Walker
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Sydney Corey
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Ijeoma Ikpeama
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Gary Fahle
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (S.C.); (I.C.)
| | - Sanchita Das
- Department of Laboratory Medicine, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (L.W.); (I.I.); (G.F.); (S.D.)
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (N.N.); (M.C.M.)
- Correspondence:
| |
Collapse
|
284
|
Medeiros-Furquim T, Ayoub S, Johnson LJ, Aprico A, Nwoke E, Binder MD, Kilpatrick TJ. Cladribine Treatment for MS Preserves the Differentiative Capacity of Subsequently Generated Monocytes, Whereas Its Administration In Vitro Acutely Influences Monocyte Differentiation but Not Microglial Activation. Front Immunol 2022; 13:678817. [PMID: 35734180 PMCID: PMC9207174 DOI: 10.3389/fimmu.2022.678817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Cladribine (2-chlorodeoxyadenosine, 2CdA) is one of the most effective disease-modifying drugs for multiple sclerosis (MS). Cladribine is a synthetic purine nucleoside analog that induces cell death of lymphocytes and oral cladribine treatment leads to a long-lasting disease stabilization, potentially attributable to immune reconstitution. In addition to its effects on lymphocytes, cladribine has been shown to have immunomodulatory effects on innate immune cells, including dendritic cells and monocytes, which could also contribute to its therapeutic efficacy. However, whether cladribine can modulate human macrophage/microglial activation or monocyte differentiation is currently unknown. The aim of this study was to determine the immunomodulatory effects of cladribine upon monocytes, monocyte-derived macrophages (MDMs) and microglia. We analyzed the phenotype and differentiation of monocytes from MS patients receiving their first course of oral cladribine both before and three weeks after the start of treatment. Flow cytometric analysis of monocytes from MS patients undergoing cladribine treatment revealed that the number and composition of CD14/CD16 monocyte subsets remained unchanged after treatment. Furthermore, after differentiation with M-CSF, such MDMs from treated MS patients showed no difference in gene expression of the inflammatory markers compared to baseline. We further investigated the direct effects of cladribine in vitro using human adult primary MDMs and microglia. GM-CSF-derived MDMs were more sensitive to cell death than M-CSF-derived MDMs. In addition, MDMs treated with cladribine showed increased expression of costimulatory molecules CD80 and CD40, as well as expression of anti-inflammatory, pro-trophic genes IL10 and MERTK, depending on the differentiation condition. Cladribine treatment in vitro did not modulate the expression of activation markers in human microglia. Our study shows that cladribine treatment in vitro affects the differentiation of monocytes into macrophages by modulating the expression of activation markers, which might occur similarly in tissue after their infiltration in the CNS during MS.
Collapse
Affiliation(s)
- Tiago Medeiros-Furquim
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Sinan Ayoub
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Laura J. Johnson
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Andrea Aprico
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Eze Nwoke
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michele D. Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Trevor J. Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Trevor J. Kilpatrick,
| |
Collapse
|
285
|
Renault C, Bolloré K, Pisoni A, Motto-Ros C, Van de Perre P, Reynes J, Tuaillon E. Accuracy of real-time PCR and digital PCR for the monitoring of total HIV DNA under prolonged antiretroviral therapy. Sci Rep 2022; 12:9323. [PMID: 35665775 PMCID: PMC9167282 DOI: 10.1038/s41598-022-13581-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Total HIV DNA is a standard marker to monitor the HIV reservoir in people living with HIV. We investigated HIV DNA quantification accuracy by a real-time PCR kit (qPCR) and digital PCR (dPCR) method within the same set of primers and probes. Among 48 aviremic patients followed for up to 7 years with qPCR, the mean coefficient of variation of total HIV DNA between two successive measurements was 77% (± 0.42log10 HIVDNA copies/106 PBMC). The total HIV DNA quantified by the two PCR methods has a high correlation (0.99 and 0.83, for 8E5 and PLHIV samples, respectively), but we observed better repeatability and reproducibility of the dPCR compared to the qPCR (CV of 11.9% vs. 24.7% for qPCR, p-value = 0.024). Furthermore, we highlighted a decay of the number of HIV copies in the 8E5 cell line qPCR standard over time (from 0.73 to 0.43 copies per cell), contributing to variations of HIV DNA results in patients whose HIV reservoir should be theoretically stabilized. Our study highlighted that absolute quantification of total HIV DNA by dPCR allows more accurate monitoring of the HIV reservoir than qPCR in patients under prolonged antiretroviral therapy.
Collapse
Affiliation(s)
- Constance Renault
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Karine Bolloré
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Amandine Pisoni
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France.,CHU de Montpellier, Montpellier, France
| | - Camille Motto-Ros
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France.,CHU de Montpellier, Montpellier, France
| | - Jacques Reynes
- IRD UMI 233, INSERM U1175, Montpellier University, Montpellier, France.,Infectious Diseases Department, CHU de Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, Antilles University, Montpellier, France. .,CHU de Montpellier, Montpellier, France.
| |
Collapse
|
286
|
Zhang X, Li Z, Liu X, Qin X, Luo J, Zhang W, Liu B, Wei Y. ZPI prevents ox-LDL-mediated endothelial injury leading to inhibition of EndMT, inflammation, apoptosis, and oxidative stress through activating Pi3k/Akt signal pathway. Drug Dev Res 2022; 83:1212-1225. [PMID: 35656597 DOI: 10.1002/ddr.21952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-mediated endothelial dysfunction exerts an essential role in the development of atherosclerosis. Protein Z-dependent protease inhibitor (ZPI), a member of the serine protease inhibitor superfamily, could inhibit the function of activated coagulation factor X (FXa) via interaction with protein Z (PZ). Studies have pointed out that ZPI was statistically related to atherosclerotic diseases, which may have a robust cardiovascular protective effect. However, the underlying mechanism of ZPI on ox-LDL-mediated endothelial injury requires further elucidation. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (100 μg/ml) and ZPI (10 μg/ml). Cell viability was measured by the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, oxidative stress, and endothelial-to-mesenchymal transition (EndMT) were analyzed by immunofluorescence (IF). Cell migration was measured using a wound-healing assay. Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine messenger RNA and protein expression. Ox-LDL (100 μg/ml, 48 h) significantly reduced cell viability and migration, increased EndMT, inflammation, apoptosis, and oxidative stress. The related protein expression of phosphatidylinositol 3 kinase/protein kinase B (Pi3k/Akt) signal pathway in HUVECs was also simultaneously decreased. We also discovered that ZPI treatment could prevent ox-LDL-mediated endothelial injury through the improvement of cell viability and alleviation of apoptosis, oxidative stress, EndMT, and inflammation. Thus, the protective effect of ZPI on HUVECs may be mediated by activation of the Pi3k/Akt signal pathway. ZPI may exert an important protective role in HUVECs dysfunction triggered by ox-LDL via activation of the Pi3k/Akt signal pathway. Therefore, ZPI may possess potential therapeutic effects on atherosclerotic endothelial injury-related diseases.
Collapse
Affiliation(s)
- Xingxu Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Qin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenming Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
287
|
Alsing S, Doktor TK, Askou AL, Jensen EG, Ahmadov U, Kristensen LS, Andresen BS, Aagaard L, Corydon TJ. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:58-76. [PMID: 35356684 PMCID: PMC8933642 DOI: 10.1016/j.omtn.2022.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
Collapse
|
288
|
Puris E, Jalkanen A, Auriola S, Loppi S, Korhonen P, Kanninen KM, Malm T, Koistinaho J, Gynther M. Systemic inflammation elevates cytosolic prolyl oligopeptidase protein expression but not peptidase activity in the cerebral cortices of familial Alzheimer`s disease modeling mice. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
289
|
Rakpenthai A, Apodiakou A, Whitcomb SJ, Hoefgen R. In silico analysis of cis-elements and identification of transcription factors putatively involved in the regulation of the OAS cluster genes SDI1 and SDI2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1286-1304. [PMID: 35315155 DOI: 10.1111/tpj.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis thaliana sulfur deficiency-induced 1 and sulfur deficiency-induced 2 (SDI1 and SDI2) are involved in partitioning sulfur among metabolite pools during sulfur deficiency, and their transcript levels strongly increase in this condition. However, little is currently known about the cis- and trans-factors that regulate SDI expression. We aimed at identifying DNA sequence elements (cis-elements) and transcription factors (TFs) involved in regulating expression of the SDI genes. We performed in silico analysis of their promoter sequences cataloging known cis-elements and identifying conserved sequence motifs. We screened by yeast-one-hybrid an arrayed library of Arabidopsis TFs for binding to the SDI1 and SDI2 promoters. In total, 14 candidate TFs were identified. Direct association between particular cis-elements in the proximal SDI promoter regions and specific TFs was established via electrophoretic mobility shift assays: sulfur limitation 1 (SLIM1) was shown to bind SURE cis-element(s), the basic domain/leucine zipper (bZIP) core cis-element was shown to be important for HY5-homolog (HYH) binding, and G-box binding factor 1 (GBF1) was shown to bind the E box. Functional analysis of GBF1 and HYH using mutant and over-expressing lines indicated that these TFs promote a higher transcript level of SDI1 in vivo. Additionally, we performed a meta-analysis of expression changes of the 14 TF candidates in a variety of conditions that alter SDI expression. The presented results expand our understanding of sulfur pool regulation by SDI genes.
Collapse
Affiliation(s)
- Apidet Rakpenthai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Sarah J Whitcomb
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
290
|
Skurska E, Szulc B, Maszczak-Seneczko D, Wiktor M, Wiertelak W, Makowiecka A, Olczak M. Incorporation of fucose into glycans independent of the GDP-fucose transporter SLC35C1 preferentially utilizes salvaged over de novo GDP-fucose. J Biol Chem 2022; 298:102206. [PMID: 35772493 PMCID: PMC9304781 DOI: 10.1016/j.jbc.2022.102206] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mutations in the SLC35C1 gene encoding the Golgi GDP-fucose transporter are known to cause leukocyte adhesion deficiency II. However, improvement of fucosylation in leukocyte adhesion deficiency II patients treated with exogenous fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which remains a mystery. To investigate this phenomenon, we developed and characterized a human cell–based model deficient in SLC35C1 activity. The resulting cells were cultured in the presence/absence of exogenous fucose and mannose, followed by examination of fucosylation potential and nucleotide sugar levels. We found that cells displayed low but detectable levels of fucosylation in the absence of SLC35C1. Strikingly, we show that defects in fucosylation were almost completely reversed upon treatment with millimolar concentrations of fucose. Furthermore, we show that even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by these knockout cells. We also found that the SLC35C1-independent transport preferentially utilized GDP-fucose from the salvage pathway over the de novo biogenesis pathway as a source of this substrate. Taken together, our results imply that the Golgi systems of GDP-fucose transport discriminate between substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthases.
Collapse
Affiliation(s)
- Edyta Skurska
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Bożena Szulc
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Maciej Wiktor
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | - Wojciech Wiertelak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland
| | | | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Poland, Wrocław, Poland.
| |
Collapse
|
291
|
Kong WL, Machida RJ. Development of transcriptomics-based growth rate indices in two model eukaryotes and relevance to metatranscriptomic datasets. Mol Ecol Resour 2022; 22:2627-2639. [PMID: 35620942 PMCID: PMC9545445 DOI: 10.1111/1755-0998.13652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022]
Abstract
Growth rate estimation is important to understand the flow of energy and nutrient elements in an ecosystem, but it has remained challenging, especially on microscopic organisms. In this study, we propose four growth rate indices that use mRNA abundance ratios between nuclear and mitochondrial genes: (1) total nuclear and mitochondrial mRNA ratio (Nuc:Mito‐TmRNA); (2) nuclear and mitochondrial ribosomal protein mRNA ratio (Nuc:Mito‐RPmRNA); (3) gene ontology (GO) terms and total mitochondrial mRNA ratios; and (4) nuclear and mitochondrial specific gene mRNA ratio. We examine these proposed ratios using RNA‐Seq datasets of Daphnia magna, and Saccharomyces cerevisiae retrieved from the NCBI Short Read Archive. The results showed that both Nuc:Mito‐TmRNA and Nuc:Mito‐RPmRNA ratio indices showed significant correlations with the growth rate for both species. A large number of GO terms mRNA ratios showed significant correlations with the growth rate of S. cerevisiae. Lastly, we identified mRNA ratios of several specific nuclear and mitochondrial gene pairs that showed significant correlations. We foresee future implications for the proposed mRNA ratios used in metatranscriptome analyses to estimate the growth rate of communities and species.
Collapse
Affiliation(s)
- Wye-Lup Kong
- Biodiversity Program, International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ryuji J Machida
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
292
|
Fischer F, Benner C, Goyala A, Grigolon G, Vitiello D, Wu J, Zarse K, Ewald CY, Ristow M. Ingestion of single guide RNAs induces gene overexpression and extends lifespan in Caenorhabditis elegans via CRISPR activation. J Biol Chem 2022; 298:102085. [PMID: 35636511 PMCID: PMC9243178 DOI: 10.1016/j.jbc.2022.102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
Inhibition of gene expression in Caenorhabditis elegans, a versatile model organism for studying the genetics of development and aging, is achievable by feeding nematodes with bacteria expressing specific dsRNAs. Overexpression of hypoxia-inducible factor 1 (hif-1) or heat-shock factor 1 (hsf-1) by conventional transgenesis has previously been shown to promote nematodal longevity. However, it is unclear whether other methods of gene overexpression are feasible, particularly with the advent of CRISPR-based techniques. Here, we show that feeding C. elegans engineered to stably express a Cas9-derived synthetic transcription factor with bacteria expressing promoter-specific single guide RNAs (sgRNAs) also allows activation of gene expression. We demonstrate that CRISPR activation via ingested sgRNAs specific for the respective promoter regions of hif-1 or hsf-1 increases gene expression and extends lifespan of C. elegans. Furthermore, and as an in silico resource for future studies aiming to use CRISPR activation in C. elegans, we provide predicted promoter-specific sgRNA target sequences for >13,000 C. elegans genes with experimentally defined transcription start sites. We anticipate that the approach and components described herein will help to facilitate genome-wide gene overexpression studies, for example, to identify modulators of aging or other phenotypes of interest, by enabling induction of transcription by feeding of sgRNA-expressing bacteria to nematodes.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| | - Christoph Benner
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Science and Policy Program, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Anita Goyala
- Extracellular Matrix Regeneration Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Davide Vitiello
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - JiaYee Wu
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Kim Zarse
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Endocrinology and Diabetology, Berlin, Germany
| | - Collin Y Ewald
- Extracellular Matrix Regeneration Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Department of Health Sciences and Technology, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland; Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Experimental Endocrinology and Diabetology, Berlin, Germany.
| |
Collapse
|
293
|
Lopes-Junior EH, Bertevello CR, de Oliveira Silveira G, Guedes CB, Rodrigues GD, Ribeiro VS, Amaral MS, Kanamura CT, Pinto PLS, Krüger RF, Verjovski-Almeida S, Oliveira KC. Human tumor necrosis factor alpha affects the egg-laying dynamics and glucose metabolism of Schistosoma mansoni adult worms in vitro. Parasit Vectors 2022; 15:176. [PMID: 35610661 PMCID: PMC9128126 DOI: 10.1186/s13071-022-05278-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Several studies have described the effects of human tumor necrosis factor alpha (hTNF-α) on Schistosoma mansoni. hTNF-α affects the worm’s development, metabolism, egg-laying, gene expression and protein phosphorylation. The available data on the influence of hTNF-α on egg-laying in S. mansoni are controversial, but understanding the mechanism of egg-laying regulation in this species is essential in combating schistosomiasis. We characterized the effects of in vitro treatment of S. mansoni adult worms with different doses of hTNF-α (5, 20 and 40 ng/ml) for 5 days. We explored the effects on egg-laying rate, glucose levels, ATP metabolism, and messenger RNA (mRNA) expression levels of lactate dehydrogenase, glucose transporters and the parasite gene which acts as an hTNF-α receptor, SmTNFR. hTNF-α influenced egg-laying in a time- and dose-dependent manner: at a dose of 40 ng/ml, egg-laying increased on day 2 and decreased on days 3 and 4; at 20 ng/ml, egg-laying decreased on day 3; while at 5 ng/ml, egg-laying decreased on day 4. The total number of eggs produced was not affected by the different treatments, but the egg-laying dynamics were: the median egg-laying time decreased significantly with treatment, and egg developmental stages and size were also affected. At 5 and 20 ng/ml hTNF-α, lactate production diminished on day 3 up to day 5, while glucose uptake increased on day 5. At 40 ng/ml, glucose uptake diminished on day 1 up to day 3, while ATP accumulation was detected on day 5. No significant changes in mRNA expression were detected in any of the treatments. We found that crosstalk involving hTNF-α and parasite signaling plays a role in the fine-scale regulation of the worm’s metabolism and physiology, and points to new strategies for disease control.
Collapse
Affiliation(s)
- Ednilson Hilário Lopes-Junior
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Romero Bertevello
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gilbert de Oliveira Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Banca Guedes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gratchela Dutra Rodrigues
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Viviane Sousa Ribeiro
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Rodrigo Ferreira Krüger
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Katia Cristina Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
294
|
Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. Formation of Blood Neutrophil Extracellular Traps Increases the Mastitis Risk of Dairy Cows During the Transition Period. Front Immunol 2022; 13:880578. [PMID: 35572521 PMCID: PMC9092530 DOI: 10.3389/fimmu.2022.880578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
The current study was conducted to analyze the functions of blood neutrophils in transition cows and their association with postpartum mastitis risk as indicated by somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and postpartum, serum samples were obtained from each cow to measure neutrophil extracellular trap (NET)-related variables, and blood neutrophils were collected for transcriptome analysis by RNA sequencing. The serum concentration of NETs was significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs (36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the transcriptome differences in neutrophils between high- and low-SCC cows were mainly in cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways were mainly involved in both the cell cycle and NETosis. These results indicated that the formation of NETs in the blood of transition dairy cows was different between cows with low and high SCCs, which may be used as a potential indicator for the prognosis of postpartum mastitis risk and management strategies of perinatal dairy cows.
Collapse
Affiliation(s)
- Lu-Yi Jiang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruo-Wei Guan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fushan Shi
- Department of Veterinary Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Department of Animal & Veterinary Sciences, University of Vermont, Burlington, MA, United States
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
295
|
Yang J, Li D, Wang J, Zhang R, Li J. Design, optimization, and application of multiplex rRT-PCR in the detection of respiratory viruses. Crit Rev Clin Lab Sci 2022:1-18. [PMID: 35559711 DOI: 10.1080/10408363.2022.2072467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viral respiratory infections are common and serious diseases. Because there is no effective treatment method or vaccine for respiratory tract infection, early diagnosis is vital to identify the pathogen so as to determine the infectivity of the patient and to quickly take measures to curb the spread of the virus, if warranted, to avoid serious public health problems. Real-time reverse transcriptase PCR (rRT-PCR), which has high sensitivity and specificity, is the best approach for early diagnosis. Among rRT-PCR methods, multiplex rRT-PCR can resolve issues arising from various types of viruses, high mutation frequency, coinfection, and low concentrations of virus. However, the design, optimization, and validation of multiplex rRT-PCR are more complicated than singleplex rRT-PCR, and comprehensive research on multiplex rRT-PCR methodology is lacking. This review summarizes recent progress in multiplex rRT-PCR methodology, outlines the principles of design, optimization and validation, and describes a scheme to help diagnostic companies to design and optimize their multiplex rRT-PCR detection panel and to assist laboratory staff to solve problems in their daily work. In addition, the analytical validity, clinical validity and clinical utility of multiplex rRT-PCR in viral respiratory tract infection diagnosis are assessed to provide theoretical guidance and useful information for physicians to understand the test results.
Collapse
Affiliation(s)
- Jing Yang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jie Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| |
Collapse
|
296
|
Serra I, Stravs A, Osório C, Oyaga MR, Schonewille M, Tudorache C, Badura A. Tsc1 Haploinsufficiency Leads to Pax2 Dysregulation in the Developing Murine Cerebellum. Front Mol Neurosci 2022; 15:831687. [PMID: 35645731 PMCID: PMC9137405 DOI: 10.3389/fnmol.2022.831687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 12/03/2022] Open
Abstract
Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that promotes the inhibition of mechanistic target of rapamycin (mTOR) pathway, and mutations in TSC1 lead to a rare complex disorder of the same name. Despite phenotype heterogeneity, up to 50% of TSC patients present with autism spectrum disorder (ASD). Consequently, TSC models are often used to probe molecular and behavioral mechanisms of ASD development. Amongst the different brain areas proposed to play a role in the development of ASD, the cerebellum is commonly reported to be altered, and cerebellar-specific deletion of Tsc1 in mice is sufficient to induce ASD-like phenotypes. However, despite these functional changes, whether Tsc1 haploinsufficiency affects cerebellar development is still largely unknown. Given that the mTOR pathway is a master regulator of cell replication and migration, we hypothesized that dysregulation of this pathway would also disrupt the development of cell populations during critical periods of cerebellar development. Here, we used a mouse model of TSC to investigate gene and protein expression during embryonic and early postnatal periods of cerebellar development. We found that, at E18 and P7, mRNA levels of the cerebellar inhibitory interneuron marker paired box gene 2 (Pax2) were dysregulated. This dysregulation was accompanied by changes in the expression of mTOR pathway-related genes and downstream phosphorylation of S6. Differential gene correlation analysis revealed dynamic changes in correlated gene pairs across development, with an overall loss of correlation between mTOR- and cerebellar-related genes in Tsc1 mutants compared to controls. We corroborated the genetic findings by characterizing the mTOR pathway and cerebellar development on protein and cellular levels with Western blot and immunohistochemistry. We found that Pax2-expressing cells were largely unchanged at E18 and P1, while at P7, their number was increased and maturation into parvalbumin-expressing cells delayed. Our findings indicate that, in mice, Tsc1 haploinsufficiency leads to altered cerebellar development and that cerebellar interneuron precursors are particularly susceptible to mTOR pathway dysregulation.
Collapse
Affiliation(s)
- Ines Serra
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Ana Stravs
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Maria Roa Oyaga
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| |
Collapse
|
297
|
Savarese AM, Grigsby KB, Jensen BE, Borrego MB, Finn DA, Crabbe JC, Ozburn AR. Corticosterone Levels and Glucocorticoid Receptor Gene Expression in High Drinking in the Dark Mice and Their Heterogeneous Stock (HS/NPT) Founder Line. Front Behav Neurosci 2022; 16:821859. [PMID: 35645743 PMCID: PMC9135139 DOI: 10.3389/fnbeh.2022.821859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
The High Drinking in the Dark (HDID-1) line of mice has been selectively bred for achieving high blood alcohol levels (BALs) in the Drinking in the Dark task, a model of binge-like drinking. Recently, we determined that glucocorticoid receptor (GR) antagonism with either mifepristone or CORT113176 (a selective GR antagonist) reduced binge-like ethanol intake in the HDID-1 mice, but not in their founder line, HS/NPT. Here, we examined whether the selection process may have altered glucocorticoid functioning by measuring (1) plasma corticosterone levels and (2) expression of the genes encoding GR (Nr3c1) and two of its chaperone proteins FKBP51 and FKBP52 (Fkbp5 and Fkbp4) in the brains (nucleus accumbens, NAc) of HDID-1 and HS/NPT mice. We observed no genotype differences in baseline circulating corticosterone levels. However, HDID-1 mice exhibited a greater stimulated peak corticosterone response to an IP injection (of either ethanol or saline) relative to their founder line. We further observed reduced basal expression of Fkbp4 and Nr3c1 in the NAc of HDID-1 mice relative to HS/NPT mice. Finally, HDID-1 mice exhibited reduced Fkbp5 expression in the NAc relative to HS/NPT mice following an injection of 2 g/kg ethanol. Together, these data suggest that selective breeding for high BALs may have altered stress signaling in the HDID-1 mice, which may contribute to the observed selective efficacy of GR antagonism in reducing binge-like ethanol intake in HDID-1, but not HS/NPT mice. These data have important implications for the role that stress signaling plays in the genetic risk for binge drinking.
Collapse
Affiliation(s)
- Antonia M. Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kolter B. Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bryan E. Jensen
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marissa B. Borrego
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Deborah A. Finn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
298
|
Transcriptomes of testis and pituitary from male Nile tilapia (O. niloticus L.) in the context of social status. PLoS One 2022; 17:e0268140. [PMID: 35544481 PMCID: PMC9094562 DOI: 10.1371/journal.pone.0268140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/22/2022] [Indexed: 11/19/2022] Open
Abstract
African cichlids are well established models for studying social hierarchies in teleosts and elucidating the effects social dominance has on gene expression. Ascension in the social hierarchy has been found to increase plasma levels of steroid hormones, follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) as well as gonadosomatic index (GSI). Furthermore, the expression of genes related to gonadotropins and steroidogenesis and signaling along the brain-pituitary-gonad axis (BPG-axis) is affected by changes of an animal’s social status. In this study, we use RNA-sequencing to obtain an in-depth look at the transcriptomes of testes and pituitaries from dominant and subordinate male Nile tilapia living in long-term stable social hierarchies. This allows us to draw conclusions about factors along the brain-pituitary-gonad axis that are involved in maintaining dominance over weeks or even months. We identify a number of genes that are differentially regulated between dominant and subordinate males and show that in high-ranking fish this subset of genes is generally upregulated. Genes differentially expressed between the two social groups comprise growth factors, related binding proteins and receptors, components of Wnt-, Tgfβ- and retinoic acid-signaling pathway, gonadotropin signaling and steroidogenesis pathways. The latter is backed up by elevated levels of 11-ketotestosterone, testosterone and estradiol in dominant males. Luteinizing hormone (Lh) is found in higher concentration in the plasma of long-term dominant males than in subordinate animals. Our results both strengthen the existing models and propose new candidates for functional studies to expand our understanding of social phenomena in teleost fish.
Collapse
|
299
|
Graça AL, Gómez-Florit M, Osório H, Rodrigues MT, Domingues RMA, Reis RL, Gomes ME. Controlling the fate of regenerative cells with engineered platelet-derived extracellular vesicles. NANOSCALE 2022; 14:6543-6556. [PMID: 35420605 DOI: 10.1039/d1nr08108j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) have emerged as cell-free nanotherapeutic agents for the potential treatment of multiple diseases and for tissue engineering and regenerative medicine strategies. Nevertheless, the field has typically relied on EVs derived from stem cells, the production of which in high quantities and high reproducibility is still under debate. Platelet-derived EVs were produced by a freeze-thaw method of platelet concentrates, a highly available clinical waste material. The aim of this study was to produce and thoroughly characterize platelet-derived EVs and understand their effects in adipose-tissue derived stem cells (hASCs), endothelial cells (HUVECs) and macrophages. Two different EV populations were obtained after differential centrifugation, namely small EVs (sEVs) and medium EVs (mEVs), which showed different size distributions and unique proteomic signatures. EV interaction with hASCs resulted in the modulation of the gene expression of markers related to their commitment toward different lineages. Moreover, mEVs showed higher angiogenic potential than sEVs, in a tube formation assay with HUVECs. Also, the EVs were able to modulate macrophage polarization. Altogether, these results suggest that platelet-derived EVs are promising candidates to be used as biochemical signals or therapeutic tools in tissue engineering and regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana L Graça
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
300
|
A “notch” in the cellular communication network in response to anoxia by wood frog (Rana sylvatica). Cell Signal 2022; 93:110305. [DOI: 10.1016/j.cellsig.2022.110305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|