251
|
Martins VM, Fernandes TR, Lopes D, Afonso CB, Domingues MRM, Côrte-Real M, Sousa MJ. Contacts in Death: The Role of the ER-Mitochondria Axis in Acetic Acid-Induced Apoptosis in Yeast. J Mol Biol 2018; 431:273-288. [PMID: 30414966 DOI: 10.1016/j.jmb.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 02/08/2023]
Abstract
Endoplasmic reticulum-mitochondria contact sites have been a subject of increasing scientific interest since the discovery that these structures are disrupted in several pathologies. Due to the emerging data that correlate endoplasmic reticulum-mitochondria contact sites function with known events of the apoptotic program, we aimed to dissect this interplay using our well-established model of acetic acid-induced apoptosis in Saccharomyces cerevisiae. Until recently, the only known tethering complex between ER and mitochondria in this organism was the ER-mitochondria encounter structure (ERMES). Following our results from a screening designed to identify genes whose deletion rendered cells with an altered sensitivity to acetic acid, we hypothesized that the ERMES complex could be involved in cell death mediated by this stressor. Herein we demonstrate that single ablation of the ERMES components Mdm10p, Mdm12p and Mdm34p increases the resistance of S. cerevisiae to acetic acid-induced apoptosis, which is associated with a prominent delay in the appearance of several apoptotic markers. Moreover, abrogation of Mdm10p or Mdm34p abolished cytochrome c release from mitochondria. Since these two proteins are embedded in the mitochondrial outer membrane, we propose that the ERMES complex plays a part in cytochrome c release, a key event of the apoptotic cascade. In all, these findings will aid in targeted therapies for diseases where apoptosis is disrupted, as well as assist in the development of acetic acid-resistant strains for industrial processes.
Collapse
Affiliation(s)
- Vítor M Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tânia R Fernandes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diana Lopes
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina B Afonso
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria R M Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Department of Chemistry & CESAM & ECOMARE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria J Sousa
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
252
|
Fruhmann G, Marchal C, Vignaud H, Verduyckt M, Talarek N, De Virgilio C, Winderickx J, Cullin C. The Impact of ESCRT on Aβ 1-42 Induced Membrane Lesions in a Yeast Model for Alzheimer's Disease. Front Mol Neurosci 2018; 11:406. [PMID: 30455629 PMCID: PMC6230623 DOI: 10.3389/fnmol.2018.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Aβ metabolism plays a pivotal role in Alzheimer’s disease. Here, we used a yeast model to monitor Aβ42 toxicity when entering the secretory pathway and demonstrate that processing in, and exit from the endoplasmic reticulum (ER) is required to unleash the full Aβ42 toxic potential. Consistent with previously reported data, our data suggests that Aβ42 interacts with mitochondria, thereby enhancing formation of reactive oxygen species and eventually leading to cell demise. We used our model to search for genes that modulate this deleterious effect, either by reducing or enhancing Aβ42 toxicity, based on screening of the yeast knockout collection. This revealed a reduced Aβ42 toxicity not only in strains hampered in ER-Golgi traffic and mitochondrial functioning but also in strains lacking genes connected to the cell cycle and the DNA replication stress response. On the other hand, increased Aβ42 toxicity was observed in strains affected in the actin cytoskeleton organization, endocytosis and the formation of multivesicular bodies, including key factors of the ESCRT machinery. Since the latter was shown to be required for the repair of membrane lesions in mammalian systems, we studied this aspect in more detail in our yeast model. Our data demonstrated that Aβ42 heavily disturbed the plasma membrane integrity in a strain lacking the ESCRT-III accessory factor Bro1, a phenotype that came along with a severe growth defect and enhanced loading of lipid droplets. Thus, it appears that also in yeast ESCRT is required for membrane repair, thereby counteracting one of the deleterious effects induced by the expression of Aβ42. Combined, our studies once more validated the use of yeast as a model to investigate fundamental mechanisms underlying the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Christelle Marchal
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | - Hélène Vignaud
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| | | | - Nicolas Talarek
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | | | - Christophe Cullin
- Institut de Chimie et Biologie des Membranes et des Nano-objets, University of Bordeaux, CNRS UMR 5248, Pessac, France
| |
Collapse
|
253
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
254
|
Angebault C, Fauconnier J, Patergnani S, Rieusset J, Danese A, Affortit CA, Jagodzinska J, Mégy C, Quiles M, Cazevieille C, Korchagina J, Bonnet-Wersinger D, Milea D, Hamel C, Pinton P, Thiry M, Lacampagne A, Delprat B, Delettre C. ER-mitochondria cross-talk is regulated by the Ca 2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci Signal 2018; 11:11/553/eaaq1380. [PMID: 30352948 DOI: 10.1126/scisignal.aaq1380] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Communication between the endoplasmic reticulum (ER) and mitochondria plays a pivotal role in Ca2+ signaling, energy metabolism, and cell survival. Dysfunction in this cross-talk leads to metabolic and neurodegenerative diseases. Wolfram syndrome is a fatal neurodegenerative disease caused by mutations in the ER-resident protein WFS1. Here, we showed that WFS1 formed a complex with neuronal calcium sensor 1 (NCS1) and inositol 1,4,5-trisphosphate receptor (IP3R) to promote Ca2+ transfer between the ER and mitochondria. In addition, we found that NCS1 abundance was reduced in WFS1-null patient fibroblasts, which showed reduced ER-mitochondria interactions and Ca2+ exchange. Moreover, in WFS1-deficient cells, NCS1 overexpression not only restored ER-mitochondria interactions and Ca2+ transfer but also rescued mitochondrial dysfunction. Our results describe a key role of NCS1 in ER-mitochondria cross-talk, uncover a pathogenic mechanism for Wolfram syndrome, and potentially reveal insights into the pathogenesis of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire Angebault
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Jennifer Rieusset
- INSERM U1060, UMR INRA 1397, CarMeN Laboratory, Lyon 1 University, F-69003 Lyon, France
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Corentin A Affortit
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Jolanta Jagodzinska
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Camille Mégy
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Mélanie Quiles
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Chantal Cazevieille
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Julia Korchagina
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Delphine Bonnet-Wersinger
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Dan Milea
- Department of Ophthalmology, Angers University Hospital, 43933 Angers, France.,Singapore Eye Research Institute, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore
| | - Christian Hamel
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,CHRU Montpellier, Centre of Reference for Genetic Sensory Diseases, CHU, Gui de Chauliac Hospital, 34090 Montpellier, France
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Bât. B36 (Tour 4) GIGA-Neurosciences, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liège 1, Belgium
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Benjamin Delprat
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France. .,MMDN, Univ. Montpellier, EPHE, INSERM U1198, F-34095 Montpellier, France
| | - Cécile Delettre
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
255
|
Van Alstyne M, Lotti F, Dal Mas A, Area-Gomez E, Pellizzoni L. Stasimon/Tmem41b localizes to mitochondria-associated ER membranes and is essential for mouse embryonic development. Biochem Biophys Res Commun 2018; 506:463-470. [PMID: 30352685 DOI: 10.1016/j.bbrc.2018.10.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
Abstract
Stasimon (also known as Tmem41b) is an evolutionarily conserved transmembrane protein first identified for its contribution to motor system dysfunction in animal models of the childhood neurodegenerative disease spinal muscular atrophy (SMA). Stasimon was shown to be required for normal neurotransmission in the motor circuit of Drosophila larvae and proper development of motor axons in zebrafish embryos as well as to suppress analogous neuronal phenotypes in SMA models of these organisms. However, the subcellular localization and molecular functions of Stasimon are poorly understood. Here, we combined immunoprecipitation with mass spectrometry to characterize the Stasimon interactome in mammalian cells, which reveals association with components of the endoplasmic reticulum (ER), mitochondria, and the COPI vesicle trafficking machinery. Expanding on the interaction results, we used subcellular fractionation studies and super-resolution microscopy to identify Stasimon as an ER-resident protein that localizes at mitochondria-associated ER membranes (MAM), functionally specialized contact sites between ER and mitochondria membranes. Lastly, through characterization of novel knockout mice, we show that Stasimon is an essential gene for mouse embryonic development. Together, these findings identify Stasimon as a novel transmembrane protein component of the MAM with an essential requirement for mammalian development.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Andrea Dal Mas
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
256
|
Mustaly-Kalimi S, Littlefield AM, Stutzmann GE. Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxid Redox Signal 2018; 29:1158-1175. [PMID: 29634342 DOI: 10.1089/ars.2017.7266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Numerous cellular processes and signaling mechanisms have been identified that contribute to Alzheimer's disease (AD) pathology; however, a comprehensive or unifying pathway that binds together the major disease features remains elusive. As an upstream mechanism, altered calcium (Ca2+) signaling is a common driving force for many pathophysiological events that emerge during normal aging and development of neurodegenerative disease. Recent Advances: Over the previous three decades, accumulated evidence has validated the concept that intracellular Ca2+ dysregulation is centrally involved in AD pathogenesis, including the aggregation of pathogenic β-amyloid (Aβ) and phospho-τ species, synapse loss and dysfunction, cognitive impairment, and neurotoxicity. CRITICAL ISSUES Although neuronal Ca2+ signaling within the cytosol and endoplasmic reticulum (ER) has been well studied, other critical central nervous system-resident cell types affected by aberrant Ca2+ signaling, such as astrocytes and microglia, have not been considered as thoroughly. In addition, certain intracellular Ca2+-harboring organelles have been well studied, such as the ER and mitochondria; however other critical Ca2+-regulated organelles, such as lysosomes and autophagosomes, have only more recently been investigated. In this review, we examine Ca2+ dysregulation in microglia and astrocytes, as well as key intracellular organelles important for cellular maintenance and protein handling. Ca2+ dysregulation within these non-neuronal cells and organelles is hypothesized to disrupt the effective clearance of misaggregated proteins and cellular signaling pathways needed for memory networks. FUTURE DIRECTIONS Overall, we aim to explore how these disrupted mechanisms could be involved in AD pathology and consider their role as potential therapeutic targets. Antioxid. Redox Signal. 29, 1158-1175.
Collapse
Affiliation(s)
- Sarah Mustaly-Kalimi
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Alyssa M Littlefield
- 1 Department of Neuroscience, School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| | - Grace E Stutzmann
- 2 Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science , North Chicago, Illinois
| |
Collapse
|
257
|
Alterations in mitochondria-endoplasmic reticulum connectivity in human brain biopsies from idiopathic normal pressure hydrocephalus patients. Acta Neuropathol Commun 2018; 6:102. [PMID: 30270816 PMCID: PMC6166280 DOI: 10.1186/s40478-018-0605-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is a neuropathology with unknown cause characterised by gait impairment, cognitive decline and ventriculomegaly. These patients often present comorbidity with Alzheimer's disease (AD), including AD pathological hallmarks such as amyloid plaques mainly consisting of amyloid β-peptide and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Even though some of the molecular mechanisms behind AD are well described, little is known about iNPH. Several studies have reported that mitochondria-endoplasmic reticulum contact sites (MERCS) regulate amyloid β-peptide metabolism and conversely that amyloid β-peptide can influence the number of MERCS. MERCS have also been shown to be dysregulated in several neurological pathologies including AD.In this study we have used transmission electron microscopy and show, for the first time, several mitochondria contact sites including MERCS in human brain biopsies. These unique human brain samples were obtained during neurosurgery from 14 patients that suffer from iNPH. Three of these 14 patients presented comorbidities with other dementias: one patient with AD, one with AD and vascular dementia and one patient with Lewy body dementia. Furthermore, we report that the numbers of MERCS are increased in biopsies obtained from patients diagnosed with dementia. Moreover, the presence of both amyloid plaques and neurofibrillary tangles correlates with decreased contact length between endoplasmic reticulum and mitochondria, while amyloid plaques alone do not seem to affect endoplasmic reticulum-mitochondria apposition. Interestingly, we report a significant positive correlation between the number of MERCS and ventricular cerebrospinal fluid amyloid β-peptide levels, as well as with increasing age of iNPH patients.
Collapse
|
258
|
Sugo M, Kimura H, Arasaki K, Amemiya T, Hirota N, Dohmae N, Imai Y, Inoshita T, Shiba-Fukushima K, Hattori N, Cheng J, Fujimoto T, Wakana Y, Inoue H, Tagaya M. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy. EMBO J 2018; 37:embj.201798899. [PMID: 30237312 DOI: 10.15252/embj.201798899] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
PGAM5, a mitochondrial protein phosphatase that is genetically and biochemically linked to PINK1, facilitates mitochondrial division by dephosphorylating the mitochondrial fission factor Drp1. At the onset of mitophagy, PGAM5 is cleaved by PARL, a rhomboid protease that degrades PINK1 in healthy cells, and the cleaved form facilitates the engulfment of damaged mitochondria by autophagosomes by dephosphorylating the mitophagy receptor FUNDC1. Here, we show that the function and localization of PGAM5 are regulated by syntaxin 17 (Stx17), a mitochondria-associated membrane/mitochondria protein implicated in mitochondrial dynamics in fed cells and autophagy in starved cells. In healthy cells, loss of Stx17 causes PGAM5 aggregation within mitochondria and thereby failure of the dephosphorylation of Drp1, leading to mitochondrial elongation. In Parkin-mediated mitophagy, Stx17 is prerequisite for PGAM5 to interact with FUNDC1. Our results reveal that the Stx17-PGAM5 axis plays pivotal roles in mitochondrial division and PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Masashi Sugo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hana Kimura
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Toshiki Amemiya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohiko Hirota
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Inoshita
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kahori Shiba-Fukushima
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jinglei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroki Inoue
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
259
|
Arrázola MS, Andraini T, Szelechowski M, Mouledous L, Arnauné-Pelloquin L, Davezac N, Belenguer P, Rampon C, Miquel MC. Mitochondria in Developmental and Adult Neurogenesis. Neurotox Res 2018; 36:257-267. [PMID: 30215161 DOI: 10.1007/s12640-018-9942-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France. .,Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.,Department of Physiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Marion Szelechowski
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laetitia Arnauné-Pelloquin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
260
|
Basso V, Marchesan E, Peggion C, Chakraborty J, von Stockum S, Giacomello M, Ottolini D, Debattisti V, Caicci F, Tasca E, Pegoraro V, Angelini C, Antonini A, Bertoli A, Brini M, Ziviani E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol Res 2018; 138:43-56. [PMID: 30219582 DOI: 10.1016/j.phrs.2018.09.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022]
Abstract
Parkin, an E3 ubiquitin ligase and a Parkinson's disease (PD) related gene, translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy. Mitochondrial pro-fusion protein Mitofusins (Mfn1 and Mfn2) were found to be a target for Parkin mediated ubiquitination. Mfns are transmembrane GTPase embedded in the outer membrane of mitochondria, which are required on adjacent mitochondria to mediate fusion. In mammals, Mfn2 also forms complexes that are capable of tethering mitochondria to endoplasmic reticulum (ER), a structural feature essential for mitochondrial energy metabolism, calcium (Ca2+) transfer between the organelles and Ca2+ dependent cell death. Despite its fundamental physiological role, the molecular mechanisms that control ER-mitochondria cross talk are obscure. Ubiquitination has recently emerged as a powerful tool to modulate protein function, via regulation of protein subcellular localization and protein ability to interact with other proteins. Ubiquitination is also a reversible mechanism, which can be actively controlled by opposing ubiquitination-deubiquitination events. In this work we found that in Parkin deficient cells and parkin mutant human fibroblasts, the tether between ER and mitochondria is decreased. We identified the site of Parkin dependent ubiquitination and showed that the non-ubiquitinatable Mfn2 mutant fails to restore ER-mitochondria physical and functional interaction. Finally, we took advantage of an established in vivo model of PD to demonstrate that manipulation of ER-mitochondria tethering by expressing an ER-mitochondria synthetic linker is sufficient to rescue the locomotor deficit associated to an in vivo Drosophila model of PD.
Collapse
Affiliation(s)
- Valentina Basso
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Elena Marchesan
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Caterina Peggion
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | | | - Denis Ottolini
- Department of Biology, University of Padova, Padova, Italy
| | - Valentina Debattisti
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Elisabetta Tasca
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | | | - Corrado Angelini
- Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Bertoli
- Department of Biomedical Science (DSB), University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy; Fondazione Ospedale San Camillo, IRCCS, Lido di Venezia, Venezia, Italy.
| |
Collapse
|
261
|
Parrado-Fernández C, Schneider B, Ankarcrona M, Conti MM, Cookson MR, Kivipelto M, Cedazo-Mínguez Á, Sandebring-Matton A. Reduction of PINK1 or DJ-1 impair mitochondrial motility in neurites and alter ER-mitochondria contacts. J Cell Mol Med 2018; 22:5439-5449. [PMID: 30133157 PMCID: PMC6201361 DOI: 10.1111/jcmm.13815] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Subcellular distribution of mitochondria in neurons is crucial for meeting the energetic demands, as well as the necessity to buffer Ca2+ within the axon, dendrites and synapses. Mitochondrial impairment is an important feature of Parkinson disease (PD), in which both familial parkinsonism genes DJ-1 and PINK1 have a great impact on mitochondrial function. We used differentiated human dopaminergic neuroblastoma cell lines with stable PINK1 or DJ-1 knockdown to study live motility of mitochondria in neurites. The frequency of anterograde and retrograde mitochondrial motility was decreased in PINK1 knockdown cells and the frequency of total mitochondrial motility events was reduced in both cell lines. However, neither the distribution nor the size of mitochondria in the neurites differed from the control cells even after downregulation of the mitochondrial fission protein, Drp1. Furthermore, mitochondria from PINK1 knockdown cells, in which motility was most impaired, had increased levels of GSK3βSer9 and higher release of mitochondrial Ca2+ when exposed to CCCP-induced mitochondrial uncoupling. Further analysis of the ER-mitochondria contacts involved in Ca2+ shuttling showed that PINK1 knockdown cells had reduced contacts between the two organelles. Our results give new insight on how PINK1 and DJ-1 influence mitochondria, thus providing clues to novel PD therapies.
Collapse
Affiliation(s)
- Cristina Parrado-Fernández
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schneider
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ankarcrona
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Melissa M Conti
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging/NIH, Bethesda, Maryland
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Aging Research Center, Karolinska Institutet-Stockholm University, Stockholm, Sweden.,Research & Development Unit, Stockholms Sjukhem, Stockholm, Sweden
| | - Ángel Cedazo-Mínguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
262
|
Roest G, La Rovere RM, Bultynck G, Parys JB. IP 3 Receptor Properties and Function at Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:149-178. [PMID: 29594861 DOI: 10.1007/978-3-319-55858-5_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a ubiquitously expressed Ca2+-release channel localized in the endoplasmic reticulum (ER). The intracellular Ca2+ signals originating from the activation of the IP3R regulate multiple cellular processes including the control of cell death versus cell survival via their action on apoptosis and autophagy. The exact role of the IP3Rs in these two processes does not only depend on their activity, which is modulated by the cytosolic composition (Ca2+, ATP, redox status, …) and by various types of regulatory proteins, including kinases and phosphatases as well as by a number of oncogenes and tumor suppressors, but also on their intracellular localization, especially at the ER-mitochondrial and ER-lysosomal interfaces. At these interfaces, Ca2+ microdomains are formed, in which the Ca2+ concentration is finely regulated by the different ER, mitochondrial and lysosomal Ca2+-transport systems and also depends on the functional and structural interactions existing between them. In this review, we therefore discuss the most recent insights in the role of Ca2+ signaling in general, and of the IP3R in particular, in the control of basal mitochondrial bioenergetics, apoptosis, and autophagy at the level of inter-organellar contact sites.
Collapse
Affiliation(s)
- Gemma Roest
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Rita M La Rovere
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| | - Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium.
| |
Collapse
|
263
|
Grimm A, Cummins N, Götz J. Local Oxidative Damage in the Soma and Dendrites Quarantines Neuronal Mitochondria at the Site of Insult. iScience 2018; 6:114-127. [PMID: 30240605 PMCID: PMC6137705 DOI: 10.1016/j.isci.2018.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Neurons are highly dependent on mitochondria, but little is known about how they react to a local mitochondrial oxidative insult. We therefore developed a protocol in primary hippocampal cultures that combines the photosensitizer mito-KillerRed with fluorescent biosensors and photoactivatable GFP. We found in both the soma and dendrites that neurons restrict the local increase in mitochondria-derived reactive oxygen species and the decrease in ATP production to the damaged compartment, by quarantining mitochondria. Although the cytosol of both the soma and dendrites became oxidized after mito-KillerRed activation, dendrites were more sensitive to the oxidative insult. Importantly, the impaired mitochondria exhibited decreased motility and fusion, thereby avoiding the spread of oxidation throughout the neuron. These results establish how neurons manage oxidative damage and increase our understanding about the somatodendritic regulation of mitochondrial functions after a local oxidative insult. An oxidative insult is contained locally to the damaged region of a neuron ATP levels decrease only in the damaged region of the soma or dendrite ATP levels increase in the regions distal to the oxidative insult Stressed mitochondria are fragmented, with a decreased motility and fusion rate
Collapse
Affiliation(s)
- Amandine Grimm
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Nadia Cummins
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD 4072, Australia.
| |
Collapse
|
264
|
Bean BDM, Dziurdzik SK, Kolehmainen KL, Fowler CMS, Kwong WK, Grad LI, Davey M, Schluter C, Conibear E. Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. J Cell Biol 2018; 217:3593-3607. [PMID: 30018089 PMCID: PMC6168272 DOI: 10.1083/jcb.201804111] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 01/24/2023] Open
Abstract
Targeting of Vps13 to membranes is highly dynamic. Bean et al. identify Ypt35 and Mcp1 as adaptors for Vps13 at endosomes and mitochondria, respectively, and show all known Vps13 adaptors use a related motif to compete for Vps13 membrane recruitment. The regulated expansion of membrane contact sites, which mediate the nonvesicular exchange of lipids between organelles, requires the recruitment of additional contact site proteins. Yeast Vps13 dynamically localizes to membrane contacts that connect the ER, mitochondria, endosomes, and vacuoles and is recruited to the prospore membrane in meiosis, but its targeting mechanism is unclear. In this study, we identify the sorting nexin Ypt35 as a novel adaptor that recruits Vps13 to endosomal and vacuolar membranes. We characterize an interaction motif in the Ypt35 N terminus and identify related motifs in the prospore membrane adaptor Spo71 and the mitochondrial membrane protein Mcp1. We find that Mcp1 is a mitochondrial adaptor for Vps13, and the Vps13–Mcp1 interaction, but not Ypt35, is required when ER-mitochondria contacts are lost. All three adaptors compete for binding to a conserved six-repeat region of Vps13 implicated in human disease. Our results support a competition-based model for regulating Vps13 localization at cellular membranes.
Collapse
Affiliation(s)
- Björn D M Bean
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Samantha K Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kathleen L Kolehmainen
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Claire M S Fowler
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Waldan K Kwong
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Leslie I Grad
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Cayetana Schluter
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
265
|
Wang X, Wen Y, Dong J, Cao C, Yuan S. Systematic In-Depth Proteomic Analysis of Mitochondria-Associated Endoplasmic Reticulum Membranes in Mouse and Human Testes. Proteomics 2018; 18:e1700478. [DOI: 10.1002/pmic.201700478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Xiaoli Wang
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Yujiao Wen
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Juan Dong
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Congcong Cao
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| | - Shuiqiao Yuan
- Family Planning Research Institute; Center of Reproductive Medicine; Tongji Medical College; Huazhong University of Science and Technology; 430030 Wuhan P.R. China
| |
Collapse
|
266
|
Cieri D, Vicario M, Vallese F, D'Orsi B, Berto P, Grinzato A, Catoni C, De Stefani D, Rizzuto R, Brini M, Calì T. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca 2+ handling. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3247-3256. [PMID: 30006151 DOI: 10.1016/j.bbadis.2018.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/16/2018] [Accepted: 07/06/2018] [Indexed: 01/21/2023]
Abstract
Intracellular neurofibrillary tangles (NFT) composed by tau and extracellular amyloid beta (Aβ) plaques accumulate in Alzheimer's disease (AD) and contribute to neuronal dysfunction. Mitochondrial dysfunction and neurodegeneration are increasingly considered two faces of the same coin and an early pathological event in AD. Compelling evidence indicates that tau and mitochondria are closely linked and suggests that tau-dependent modulation of mitochondrial functions might be a trigger for the neurodegeneration process; however, whether this occurs either directly or indirectly is not clear. Furthermore, whether tau influences cellular Ca2+ handling and ER-mitochondria cross-talk is yet to be explored. Here, by focusing on wt tau, either full-length (2N4R) or the caspase 3-cleaved form truncated at the C-terminus (2N4RΔC20), we examined the above-mentioned aspects. Using new genetically encoded split-GFP-based tools and organelle-targeted aequorin probes, we assessed: i) tau distribution within the mitochondrial sub-compartments; ii) the effect of tau on the short- (8-10 nm) and the long- (40-50 nm) range ER-mitochondria interactions; and iii) the effect of tau on cytosolic, ER and mitochondrial Ca2+ homeostasis. Our results indicate that a fraction of tau is found at the outer mitochondrial membrane (OMM) and within the inner mitochondrial space (IMS), suggesting a potential tau-dependent regulation of mitochondrial functions. The ER Ca2+ content and the short-range ER-mitochondria interactions were selectively affected by the expression of the caspase 3-cleaved 2N4RΔC20 tau, indicating that Ca2+ mis-handling and defects in the ER-mitochondria communications might be an important pathological event in tau-related dysfunction and thereby contributing to neurodegeneration. Finally, our data provide new insights into the molecular mechanisms underlying tauopathies.
Collapse
Affiliation(s)
- Domenico Cieri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Mattia Vicario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Francesca Vallese
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Beatrice D'Orsi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paola Berto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
| |
Collapse
|
267
|
Brielle S, Kaganovich D. Mitochondrial dysfunction in protein conformational disorders. J Genet 2018; 97:703-713. [PMID: 30027904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation is a hallmark of many neurodegenerative diseases. In Parkinson's disease protein misfolding of α-synuclein involves conformational changes in the protein structure that often results in self-association and aggregation leading to accumulation of α-synuclein in neuronal cells. The underlying mechanisms by which aggregations can lead to impaired cellular functions are often not understood. Meanwhile, there is growing evidence that links mitochondrial dysfunction to Parkinson's disease. As both mitochondria and protein aggregation of α-synuclein have been shown to play a major role in Parkinson's disease, it seems likely that a converging mechanism exists that links the two pathways.
Collapse
Affiliation(s)
- Shlomi Brielle
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel. ;
| | | |
Collapse
|
268
|
Mitochondrial dysfunction in protein conformational disorders. J Genet 2018. [DOI: 10.1007/s12041-018-0958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
269
|
Sheng M, Zhang G, Wang J, Yang Q, Zhao H, Cheng X, Xu Z. Remifentanil Induces Cardio Protection Against Ischemia/Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress Through the Maintenance of Zinc Homeostasis. Anesth Analg 2018; 127:267-276. [PMID: 29771714 DOI: 10.1213/ane.0000000000003414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although it is well known that remifentanil (Rem) elicits cardiac protection against ischemia/reperfusion (I/R) injury, the underlying mechanism remains unclear. This study tested if Rem can protect the heart from I/R injury by inhibiting endoplasmic reticulum (ER) stress through the maintenance of zinc (Zn) homeostasis. METHODS Isolated rat hearts were subjected to 30 minutes of regional ischemia followed by 2 hours of reperfusion. Rem was given by 3 consecutive 5-minute infusions, and each infusion was followed by a 5-minute drug-free perfusion before ischemia. Total Zn concentrations in cardiac tissue, cardiac function, infarct size, and apoptosis were assessed. H9c2 cells were subjected to 6 hours of hypoxia and 2 hours of reoxygenation (hypoxia/reoxygenation [H/R]), and Rem was given for 30 minutes before hypoxia. Metal-responsive transcription factor 1 (MTF1) overexpression plasmids were transfected into H9c2 cells 48 hours before hypoxia. Intracellular Zn level, cell viability, and mitochondrial injury parameters were evaluated. A Zn chelator N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) or an ER stress activator thapsigargin was administrated during in vitro and ex vivo studies. The regulatory molecules related to Zn homeostasis and ER stress in cardiac tissue, and cardiomyocytes were analyzed by Western blotting. RESULTS Rem caused significant reversion of Zn loss from the heart (Rem + I/R versus I/R, 9.43 ± 0.55 vs 7.53 ± 1.18; P < .05) by suppressing the expression of MTF1 and Zn transporter 1 (ZnT1). The inhibited expression of ER stress markers after Rem preconditioning was abolished by TPEN. Rem preconditioning improved the cardiac function accompanied by the reduction of infarct size (Rem + I/R versus I/R, 21% ± 4% vs 40% ± 6%; P < .05). The protective effects of Rem could be reserved by TPEN and thapsigargin. Similar effects were observed in H9c2 cells exposed to H/R. In addition, MTF1 overexpression blocked the inhibitory effects of Rem on ZnT1 expression and ER stress at reoxygenation. Rem attenuated the collapse of mitochondrial membrane potential (ΔΨm) and the generation of mitochondrial reactive oxygen species by inhibiting ER stress via cardiac Zn restoration (Rem + H/R versus H/R, 79.57% ± 10.62% vs 58.27% ± 4.32%; P < .05). CONCLUSIONS Rem maintains Zn homeostasis at reperfusion by inhibiting MTF1 and ZnT1 expression, leading to the attenuation of ER stress and cardiac injury. Our findings provide a promising therapeutic approach for managing acute myocardial I/R injury.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cell Line
- Cytoprotection
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Endoplasmic Reticulum Stress/drug effects
- Homeostasis
- Isolated Heart Preparation
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Remifentanil/pharmacology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ventricular Function, Left/drug effects
- Zinc/metabolism
- Transcription Factor MTF-1
Collapse
Affiliation(s)
- Mingwei Sheng
- From the Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Tianjin First Center Hospital, Tianjin, China
| | - Ge Zhang
- From the Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jiannan Wang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Qing Yang
- Department of Cardiology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Huanhuan Zhao
- From the Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xinxin Cheng
- From the Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- From the Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
270
|
Boczonadi V, Meyer K, Gonczarowska-Jorge H, Griffin H, Roos A, Bartsakoulia M, Bansagi B, Ricci G, Palinkas F, Zahedi RP, Bruni F, Kaspar B, Lochmüller H, Boycott KM, Müller JS, Horvath R. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons. Hum Mol Genet 2018; 27:2187-2204. [PMID: 29648643 PMCID: PMC5985729 DOI: 10.1093/hmg/ddy127] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022] Open
Abstract
The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Kathrin Meyer
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Humberto Gonczarowska-Jorge
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany,CAPES Foundation, Ministry of Education of Brazil, Brazil
| | - Helen Griffin
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Andreas Roos
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Marina Bartsakoulia
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Boglarka Bansagi
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Giulia Ricci
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
| | - Fanni Palinkas
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - René P Zahedi
- Leibniz-Institute für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Francesco Bruni
- Institute of Neuroscience, Wellcome Centre for Mitochondrial Research, Newcastle University, NE2 4HH Newcastle upon Tyne, UK,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Brian Kaspar
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA,Department of Neuroscience, Molecular, Cellular, and Developmental Biology Graduate Program and Integrated Biomedical Science Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Hanns Lochmüller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg 79160, Germany,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Kym M Boycott
- Department of Genetics, CHEO Research Institute, University of Ottawa, K1H 8L1 Ottawa, Canada
| | - Juliane S Müller
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK
| | - Rita Horvath
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, NE1 3BZ Newcastle upon Tyne, UK,To whom correspondence should be addressed at: Institute of Genetic Medicine, Newcastle University, Central Parkway, NE1 3BZ Newcastle upon Tyne, UK. Tel: +44 1912418855; Fax: +44 1912418666;
| |
Collapse
|
271
|
Little D, Luft C, Mosaku O, Lorvellec M, Yao Z, Paillusson S, Kriston-Vizi J, Gandhi S, Abramov AY, Ketteler R, Devine MJ, Gissen P. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep 2018; 8:9033. [PMID: 29899557 PMCID: PMC5998042 DOI: 10.1038/s41598-018-27058-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Maëlle Lorvellec
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Zhi Yao
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Sébastien Paillusson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Sonia Gandhi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
272
|
ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson's Disease. Neuron 2018; 98:1155-1169.e6. [PMID: 29887339 DOI: 10.1016/j.neuron.2018.05.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 01/23/2023]
Abstract
Parkinson's disease patients report disturbed sleep patterns long before motor dysfunction. Here, in parkin and pink1 models, we identify circadian rhythm and sleep pattern defects and map these to specific neuropeptidergic neurons in fly models and in hypothalamic neurons differentiated from patient induced pluripotent stem cells (iPSCs). Parkin and Pink1 control the clearance of mitochondria by protein ubiquitination. Although we do not observe major defects in mitochondria of mutant neuropeptidergic neurons, we do find an excess of endoplasmic reticulum-mitochondrial contacts. These excessive contact sites cause abnormal lipid trafficking that depletes phosphatidylserine from the endoplasmic reticulum (ER) and disrupts the production of neuropeptide-containing vesicles. Feeding mutant animals phosphatidylserine rescues neuropeptidergic vesicle production and acutely restores normal sleep patterns in mutant animals. Hence, sleep patterns and circadian disturbances in Parkinson's disease models are explained by excessive ER-mitochondrial contacts, and blocking their formation or increasing phosphatidylserine levels rescues the defects in vivo.
Collapse
|
273
|
Honrath B, Krabbendam IE, IJsebaart C, Pegoretti V, Bendridi N, Rieusset J, Schmidt M, Culmsee C, Dolga AM. SK channel activation is neuroprotective in conditions of enhanced ER-mitochondrial coupling. Cell Death Dis 2018; 9:593. [PMID: 29789578 PMCID: PMC5964177 DOI: 10.1038/s41419-018-0590-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022]
Abstract
Alterations in the strength and interface area of contact sites between the endoplasmic reticulum (ER) and mitochondria contribute to calcium (Ca2+) dysregulation and neuronal cell death, and have been implicated in the pathology of several neurodegenerative diseases. Weakening this physical linkage may reduce Ca2+ uptake into mitochondria, while fortifying these organelle contact sites may promote mitochondrial Ca2+ overload and cell death. Small conductance Ca2+-activated K+ (SK) channels regulate mitochondrial respiration, and their activation attenuates mitochondrial damage in paradigms of oxidative stress. In the present study, we enhanced ER–mitochondrial coupling and investigated the impact of SK channels on survival of neuronal HT22 cells in conditions of oxidative stress. Using genetically encoded linkers, we show that mitochondrial respiration and the vulnerability of neuronal cells to oxidative stress was inversely linked to the strength of ER–mitochondrial contact points and the increase in mitochondrial Ca2+ uptake. Pharmacological activation of SK channels provided protection against glutamate-induced cell death and also in conditions of increased ER–mitochondrial coupling. Together, this study revealed that SK channel activation provided persistent neuroprotection in the paradigm of glutamate-induced oxytosis even in conditions where an increase in ER–mitochondrial coupling potentiated mitochondrial Ca2+ influx and impaired mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Birgit Honrath
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany. .,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carmen IJsebaart
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Valentina Pegoretti
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Nadia Bendridi
- INSERM U1060, INRA U1235, Laboratoire CarMeN, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, F-69921, Oullins, France
| | - Jennifer Rieusset
- INSERM U1060, INRA U1235, Laboratoire CarMeN, Lyon University, Université Claude Bernard Lyon1, INSA-Lyon, F-69921, Oullins, France
| | - Martina Schmidt
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043, Marburg, Germany. .,Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), Research School of Behavioural and Cognitive Neurosciences (BCN), Department of Molecular Pharmacology, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
274
|
Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15:490-503. [PMID: 29413961 PMCID: PMC5881419 DOI: 10.1016/j.redox.2018.01.008] [Citation(s) in RCA: 702] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.
Collapse
Affiliation(s)
- James Nathan Cobley
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK.
| | - Maria Luisa Fiorello
- Free Radical Laboratory, Departments of Diabetes and Cardiovascular Sciences, Centre for Health Sciences, University of the Highlands and Islands, Inverness IV2 3HJ, UK
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK
| |
Collapse
|
275
|
Endo T, Tamura Y, Kawano S. Phospholipid transfer by ERMES components. Aging (Albany NY) 2018; 10:528-529. [PMID: 29706612 PMCID: PMC5940124 DOI: 10.18632/aging.101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Toshiya Endo
- Kyoto Sangyo University, Faculty of Life Sciences and Institute for Protein Dynamics, Kamigamo-motoyama, Kyoto, Japan
| | - Yasushi Tamura
- Kyoto Sangyo University, Faculty of Life Sciences and Institute for Protein Dynamics, Kamigamo-motoyama, Kyoto, Japan
| | - Shin Kawano
- Kyoto Sangyo University, Faculty of Life Sciences and Institute for Protein Dynamics, Kamigamo-motoyama, Kyoto, Japan
| |
Collapse
|
276
|
Swim Training Modulates Skeletal Muscle Energy Metabolism, Oxidative Stress, and Mitochondrial Cholesterol Content in Amyotrophic Lateral Sclerosis Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5940748. [PMID: 29849903 PMCID: PMC5924974 DOI: 10.1155/2018/5940748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Recently, in terms of amyotrophic lateral sclerosis (ALS), much attention has been paid to the cell structures formed by the mitochondria and the endoplasmic reticulum membranes (MAMs) that are involved in the regulation of Ca2+ signaling, mitochondrial bioenergetics, apoptosis, and oxidative stress. We assumed that remodeling of these structures via swim training may accompany the prolongation of the ALS lifespan. In the present study, we used transgenic mice with the G93A hmSOD1 gene mutation. We examined muscle energy metabolism, oxidative stress parameters, and markers of MAMs (Caveolin-1 protein level and cholesterol content in crude mitochondrial fraction) in groups of mice divided according to disease progression and training status. The progression of ALS was related to the lowering of Caveolin-1 protein levels and the accumulation of cholesterol in a crude mitochondrial fraction. These changes were associated with aerobic and anaerobic energy metabolism dysfunction and higher oxidative stress. Our data indicated that swim training prolonged the lifespan of ALS mice with accompanying changes in MAM components. Swim training also maintained mitochondrial function and lowered oxidative stress. These data suggest that modification of MAMs might play a crucial role in the exercise-induced deceleration of ALS development.
Collapse
|
277
|
Riehm JJ, Wang L, Ghadge G, Teng M, Correa AM, Marks JD, Roos RP, Allen MJ. Poloxamer 188 decreases membrane toxicity of mutant SOD1 and ameliorates pathology observed in SOD1 mouse model for ALS. Neurobiol Dis 2018; 115:115-126. [PMID: 29627580 DOI: 10.1016/j.nbd.2018.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Here we report a gain in function for mutant (mt) superoxide dismutase I (SOD1), a cause of familial amyotrophic lateral sclerosis (FALS), wherein small soluble oligomers of mtSOD1 acquire a membrane toxicity. Phosphatidylglycerol (PG) lipid domains are selectively targeted, which could result in membrane damage or "toxic channels" becoming active in the bilayer. This PG-selective SOD1-mediated membrane toxicity is largely reversible in vitro by a widely-available FDA-approved surfactant and membrane-stabilizer P188. Treatment of G93ASOD1 transgenic mice with P188 significantly delayed symptoms onset, extended survival and decreased motoneuron death. The use of P188 or an analogue, which targets mtSOD1 misfolding-induced membrane toxicity, may provide a new direction for ALS treatment.
Collapse
Affiliation(s)
- Jacob J Riehm
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| | - Lijun Wang
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Ghanashyam Ghadge
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Michael Teng
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| | - Ana M Correa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jeremy D Marks
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Raymond P Roos
- Department of Neurology, The University of Chicago, Chicago, IL, USA.
| | - Michael J Allen
- Department of Medicine, Section of Pulmonary Critical Care, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
278
|
Nakazawa S, Shirae-Kurabayashi M, Sawada H. Peanut agglutinin specifically binds to a sperm region between the nucleus and mitochondria in tunicates and sea urchins. Mol Reprod Dev 2018; 85:464-477. [PMID: 29575225 DOI: 10.1002/mrd.22982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022]
Abstract
Peanut agglutinin (PNA) is an established marker of the mammalian acrosome. However, we observed that PNA specifically binds to a unique intracellular structure alongside the nucleus in ascidian sperm. Here, we characterize the PNA-binding structure in sperm of marine invertebrates. PNA bound to the region between the mitochondrion and nucleus in spermatozoa of ascidians, sea urchins, and an appendicularian. However, PNA-binding substances were not exposed by the calcium ionophore ionomycin in three ascidian species, indicating that it is a distinct structure from the acrosome. Instead, the ascidian PNA-binding region was shed with the mitochondrion from the sperm head via an ionomycin-induced sperm reaction. The ascidian PNA-binding substance appeared to be solubilized with SDS, but not Triton X-100, describing its detergent resistance. Lectins, PHA-L4 , SSA, and MAL-I were detected at an area similar to the PNA-binding region, suggesting that it contains a variety of glycans. The location and some of the components of the PNA-binding region were similar to known endoplasmic reticulum (ER)-derived structures, although the ER marker concanavalin A accumulated at an area adjacent to but not overlapping the PNA-binding region. Therefore, we conclude that ascidian sperm possess a non-acrosomal, Triton-resistant, glycan-rich intracellular structure that may play a general role in reproduction of tunicates and sea urchins given its presence across a wide taxonomic range.
Collapse
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie, Japan
| |
Collapse
|
279
|
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol 2018; 28:523-540. [PMID: 29588129 DOI: 10.1016/j.tcb.2018.02.009] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Interorganellar contacts are increasingly recognized as central to the control of cellular behavior. These contacts, which typically involve a small fraction of the endomembrane surface, are local communication hubs that resemble synapses. We propose the term contactology to denote the analysis of interorganellar contacts. Endoplasmic reticulum (ER) contacts with mitochondria were recognized several decades ago; major roles in ion and lipid transfer, signaling, and membrane dynamics have been established, while others continue to emerge. The functional diversity of ER-mitochondrial (ER-mito) contacts is mirrored in their structural heterogeneity, with subspecialization likely supported by multiple, different linker-forming protein structures. The nanoscale size of the contacts has made studying their structure, function, and dynamics difficult. This review focuses on the structure of the ER-mito contacts, methods for studying them, and the roles of contacts in Ca2+ and reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
280
|
Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, Erfani P, Raczkowski A, Petrey DS, Pon LA, Polleux F. ER-mitochondria tethering by PDZD8 regulates Ca 2+ dynamics in mammalian neurons. Science 2018; 358:623-630. [PMID: 29097544 DOI: 10.1126/science.aan6009] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 01/06/2023]
Abstract
Interfaces between organelles are emerging as critical platforms for many biological responses in eukaryotic cells. In yeast, the ERMES complex is an endoplasmic reticulum (ER)-mitochondria tether composed of four proteins, three of which contain a SMP (synaptotagmin-like mitochondrial-lipid binding protein) domain. No functional ortholog for any ERMES protein has been identified in metazoans. Here, we identified PDZD8 as an ER protein present at ER-mitochondria contacts. The SMP domain of PDZD8 is functionally orthologous to the SMP domain found in yeast Mmm1. PDZD8 was necessary for the formation of ER-mitochondria contacts in mammalian cells. In neurons, PDZD8 was required for calcium ion (Ca2+) uptake by mitochondria after synaptically induced Ca2+-release from ER and thereby regulated cytoplasmic Ca2+ dynamics. Thus, PDZD8 represents a critical ER-mitochondria tethering protein in metazoans. We suggest that ER-mitochondria coupling is involved in the regulation of dendritic Ca2+ dynamics in mammalian neurons.
Collapse
Affiliation(s)
- Yusuke Hirabayashi
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan
| | - Seok-Kyu Kwon
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Hunki Paek
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Wolfgang M Pernice
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Maëla A Paul
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Jinoh Lee
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Parsa Erfani
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Ashleigh Raczkowski
- Simons Electron Microscopy Center, New York Structural Biology Center (NYSBC), New York, NY 10027, USA
| | - Donald S Petrey
- Center for Computational Biology and Bioinformatics, Department of Systems Biology, Columbia University, New York, NY 10032, USA.,Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.,Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, Columbia University, New York, NY 10027, USA. .,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.,Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| |
Collapse
|
281
|
Hughes D, Mallucci GR. The unfolded protein response in neurodegenerative disorders - therapeutic modulation of the PERK pathway. FEBS J 2018; 286:342-355. [PMID: 29476642 DOI: 10.1111/febs.14422] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/25/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved protein quality control mechanism, activated in response to Endoplasmic Reticulum (ER) stress. Signalling is mediated through three branches, PERK, IRE1, and ATF6, respectively, that together provide a coordinated response that contributes to overcoming disrupted proteostasis. PERK branch activation predominantly causes a rapid reduction in global rates of translation, while the IRE1 and ATF6 branch signalling induce a transcriptional response resulting in expression of chaperones and components of the protein degradation machinery. Protein misfolding neurodegenerative diseases show disruption of proteostasis as a biochemical feature. In the brains of animal models of disease and in human post mortem tissue from many of these disorders, markers of UPR induction, particularly, the PERK pathway can be observed in close association with disease progression. Recent research has revealed dysregulated UPR signalling to be a major pathogenic mechanism in neurodegeneration, and that genetic and pharmacological modulation of the PERK pathway results in potent neuroprotection. Targeting aberrant UPR signalling is the focus of new therapeutic strategies, which importantly could be beneficial across the broad spectrum of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Giovanna R Mallucci
- MRC Toxicology Unit, Leicester, UK.,Department of Clinical Neurosciences, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, UK
| |
Collapse
|
282
|
Delprat B, Maurice T, Delettre C. Wolfram syndrome: MAMs' connection? Cell Death Dis 2018; 9:364. [PMID: 29511163 PMCID: PMC5840383 DOI: 10.1038/s41419-018-0406-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease, the main pathological hallmarks of which associate with diabetes, optic atrophy, and deafness. Other symptoms may be identified in some but not all patients. Prognosis is poor, with death occurring around 35 years of age. To date, no treatment is available. WS was first described as a mitochondriopathy. However, the localization of the protein on the endoplasmic reticulum (ER) membrane challenged this hypothesis. ER contacts mitochondria to ensure effective Ca2+ transfer, lipids transfer, and apoptosis within stabilized and functionalized microdomains, termed “mitochondria-associated ER membranes” (MAMs). Two types of WS are characterized so far and Wolfram syndrome type 2 is due to mutation in CISD2, a protein mostly expressed in MAMs. The aim of the present review is to collect evidences showing that WS is indeed a mitochondriopathy, with established MAM dysfunction, and thus share commonalities with several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, as well as metabolic diseases, such as diabetes.
Collapse
Affiliation(s)
- Benjamin Delprat
- INSERM UMR-S1198, 34095, Montpellier, France. .,University of Montpellier, 34095, Montpellier, France.
| | - Tangui Maurice
- INSERM UMR-S1198, 34095, Montpellier, France.,University of Montpellier, 34095, Montpellier, France
| | - Cécile Delettre
- University of Montpellier, 34095, Montpellier, France. .,INSERM UMR-S1051, Institute of Neurosciences of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
283
|
Edenharter O, Schneuwly S, Navarro JA. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich's Ataxia. Front Mol Neurosci 2018; 11:38. [PMID: 29563863 PMCID: PMC5845754 DOI: 10.3389/fnmol.2018.00038] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and Drosophila frataxin. Our screen has identified silencing of Drosophila mitofusin (Marf) as a suppressor of FRDA phenotypes in glia. Drosophila Marf is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first Drosophila transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process in vivo. Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in Drosophila. Remarkably, we demonstrate that downregulation of Marf suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by Marf knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
Collapse
Affiliation(s)
- Oliver Edenharter
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
284
|
Gómez-Suaga P, Bravo-San Pedro JM, González-Polo RA, Fuentes JM, Niso-Santano M. ER-mitochondria signaling in Parkinson's disease. Cell Death Dis 2018; 9:337. [PMID: 29497039 PMCID: PMC5832754 DOI: 10.1038/s41419-017-0079-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Mitochondria form close physical contacts with a specialized domain of the endoplasmic reticulum (ER), known as the mitochondria-associated membrane (MAM). This association constitutes a key signaling hub to regulate several fundamental cellular processes. Alterations in ER-mitochondria signaling have pleiotropic effects on a variety of intracellular events resulting in mitochondrial damage, Ca2+ dyshomeostasis, ER stress and defects in lipid metabolism and autophagy. Intriguingly, many of these cellular processes are perturbed in neurodegenerative diseases. Furthermore, increasing evidence highlights that ER-mitochondria signaling contributes to these diseases, including Parkinson's disease (PD). PD is the second most common neurodegenerative disorder, for which effective mechanism-based treatments remain elusive. Several PD-related proteins localize at mitochondria or MAM and have been shown to participate in ER-mitochondria signaling regulation. Likewise, PD-related mutations have been shown to damage this signaling. Could ER-mitochondria associations be the link between pathogenic mechanisms involved in PD, providing a common mechanism? Would this provide a pharmacological target for treating this devastating disease? In this review, we aim to summarize the current knowledge of ER-mitochondria signaling and the recent evidence concerning damage to this signaling in PD.
Collapse
Affiliation(s)
- Patricia Gómez-Suaga
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - José M Bravo-San Pedro
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France
- INSERM U1138, 75006, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006, Paris, France
- Université Pierre et Marie Curie/Paris VI, 75006, Paris, France
- Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - Rosa A González-Polo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 18100, Granada, Spain
- Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura. Avda. De la Universidad S/N, C.P, 10003, Cáceres, Spain
| | - José M Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 18100, Granada, Spain.
- Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura. Avda. De la Universidad S/N, C.P, 10003, Cáceres, Spain.
| | - Mireia Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), 18100, Granada, Spain.
- Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura. Avda. De la Universidad S/N, C.P, 10003, Cáceres, Spain.
| |
Collapse
|
285
|
A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 2018; 9:335. [PMID: 29491396 PMCID: PMC5832428 DOI: 10.1038/s41419-017-0215-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
In the last few years, increased emphasis has been devoted to understanding the contribution of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) to human pathology in general, and neurodegenerative diseases in particular. A major reason for this is the central role that this subdomain of the ER plays in metabolic regulation and in mitochondrial biology. As such, aberrant MAM function may help explain the seemingly unrelated metabolic abnormalities often seen in neurodegeneration. In the specific case of Alzheimer disease (AD), besides perturbations in calcium and lipid homeostasis, there are numerous documented alterations in mitochondrial behavior and function, including reduced respiratory chain activity and oxidative phosphorylation, increased free radical production, and altered organellar morphology, dynamics, and positioning (especially perinuclear mitochondria). However, whether these alterations are primary events causative of the disease, or are secondary downstream events that are the result of some other, more fundamental problem, is still unclear. In support of the former possibility, we recently reported that C99, the C-terminal processing product of the amyloid precursor protein (APP) derived from its cleavage by β-secretase, is present in MAM, that its level is increased in AD, and that this increase reduces mitochondrial respiration, likely via a C99-induced alteration in cellular sphingolipid homeostasis. Thus, the metabolic disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in the levels of C99 at the MAM.
Collapse
|
286
|
Lau DHW, Hartopp N, Welsh NJ, Mueller S, Glennon EB, Mórotz GM, Annibali A, Gomez-Suaga P, Stoica R, Paillusson S, Miller CCJ. Disruption of ER-mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death Dis 2018; 9:327. [PMID: 29491392 PMCID: PMC5832427 DOI: 10.1038/s41419-017-0022-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
Fronto-temporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two related and incurable neurodegenerative diseases. Features of these diseases include pathological protein inclusions in affected neurons with TAR DNA-binding protein 43 (TDP-43), dipeptide repeat proteins derived from the C9ORF72 gene, and fused in sarcoma (FUS) representing major constituent proteins in these inclusions. Mutations in C9ORF72 and the genes encoding TDP-43 and FUS cause familial forms of FTD/ALS which provides evidence to link the pathology and genetics of these diseases. A large number of seemingly disparate physiological functions are damaged in FTD/ALS. However, many of these damaged functions are regulated by signalling between the endoplasmic reticulum and mitochondria, and this has stimulated investigations into the role of endoplasmic reticulum-mitochondria signalling in FTD/ALS disease processes. Here, we review progress on this topic.
Collapse
Affiliation(s)
- Dawn H W Lau
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Naomi Hartopp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Natalie J Welsh
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Sarah Mueller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Elizabeth B Glennon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Gábor M Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Ambra Annibali
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Patricia Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Radu Stoica
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK
| | - Sebastien Paillusson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK.
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
287
|
Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis 2018; 9:333. [PMID: 29491369 PMCID: PMC5832431 DOI: 10.1038/s41419-017-0125-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
Recent progress in the understanding of neurodegenerative diseases revealed that multiple molecular mechanisms contribute to pathological changes in neurons. A large fraction of these alterations can be linked to dysfunction in the endoplasmic reticulum (ER) and mitochondria, affecting metabolism and secretion of lipids and proteins, calcium homeostasis, and energy production. Remarkably, these organelles are interacting with each other at specialized domains on the ER called mitochondria-associated membranes (MAMs). These membrane structures rely on the interaction of several complexes of proteins localized either at the mitochondria or at the ER interface and serve as an exchange platform of calcium, metabolites, and lipids, which are critical for the function of both organelles. In addition, recent evidence indicates that MAMs also play a role in the control of mitochondria dynamics and autophagy. MAMs thus start to emerge as a key element connecting many changes observed in neurodegenerative diseases. This review will focus on the role of MAMs in amyotrophic lateral sclerosis (ALS) and hereditary motor and sensory neuropathy, two neurodegenerative diseases particularly affecting neurons with long projecting axons. We will discuss how defects in MAM signaling may impair neuronal calcium homeostasis, mitochondrial dynamics, ER function, and autophagy, leading eventually to axonal degeneration. The possible impact of MAM dysfunction in glial cells, which may affect the capacity to support neurons and/or axons, will also be described. Finally, the possible role of MAMs as an interesting target for development of therapeutic interventions aiming at delaying or preventing neurodegeneration will be highlighted.
Collapse
|
288
|
Identification of a highly neurotoxic α-synuclein species inducing mitochondrial damage and mitophagy in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E2634-E2643. [PMID: 29487216 DOI: 10.1073/pnas.1713849115] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exposure of cultured primary neurons to preformed α-synuclein fibrils (PFFs) leads to the recruitment of endogenous α-synuclein and its templated conversion into fibrillar phosphorylated α-synuclein (pα-synF) aggregates resembling those involved in Parkinson's disease (PD) pathogenesis. Pα-synF was described previously as inclusions morphologically similar to Lewy bodies and Lewy neurites in PD patients. We discovered the existence of a conformationally distinct, nonfibrillar, phosphorylated α-syn species that we named "pα-syn*." We uniquely describe the existence of pα-syn* in PFF-seeded primary neurons, mice brains, and PD patients' brains. Through immunofluorescence and pharmacological manipulation we showed that pα-syn* results from incomplete autophagic degradation of pα-synF. Pα-synF was decorated with autophagic markers, but pα-syn* was not. Western blots revealed that pα-syn* was N- and C-terminally trimmed, resulting in a 12.5-kDa fragment and a SDS-resistant dimer. After lysosomal release, pα-syn* aggregates associated with mitochondria, inducing mitochondrial membrane depolarization, cytochrome C release, and mitochondrial fragmentation visualized by confocal and stimulated emission depletion nanoscopy. Pα-syn* recruited phosphorylated acetyl-CoA carboxylase 1 (ACC1) with which it remarkably colocalized. ACC1 phosphorylation indicates low ATP levels, AMPK activation, and oxidative stress and induces mitochondrial fragmentation via reduced lipoylation. Pα-syn* also colocalized with BiP, a master regulator of the unfolded protein response and a resident protein of mitochondria-associated endoplasmic reticulum membranes that are sites of mitochondrial fission and mitophagy. Pα-syn* aggregates were found in Parkin-positive mitophagic vacuoles and imaged by electron microscopy. Collectively, we showed that pα-syn* induces mitochondrial toxicity and fission, energetic stress, and mitophagy, implicating pα-syn* as a key neurotoxic α-syn species and a therapeutic target.
Collapse
|
289
|
Early Presymptomatic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol 2018; 55:7839-7857. [PMID: 29468564 DOI: 10.1007/s12035-018-0955-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Intracellular β-amyloid (Aβ) accumulation is an early event in Alzheimer's disease (AD) progression. Recently, it has been uncovered that presenilins (PSs), the key components of the amyloid precursor protein (APP) processing and the β-amyloid producing γ-secretase complex, are highly enriched in a special sub-compartment of the endoplasmic reticulum (ER) functionally connected to mitochondria, called mitochondria-associated ER membrane (MAM). A current hypothesis of pathogenesis of Alzheimer's diseases (AD) suggests that MAM is involved in the initial phase of AD. Since MAM supplies mitochondria with essential proteins, the increasing level of PSs and β-amyloid could lead to metabolic dysfunction because of the impairment of ER-mitochondrion crosstalk. To reveal the early molecular changes of this subcellular compartment in AD development MAM fraction was isolated from the cerebral cortex of 3 months old APP/PS1 mouse model of AD and age-matched C57BL/6 control mice, then mass spectrometry-based quantitative proteome analysis was performed. The enrichment and purity of MAM preparations were validated with EM, LC-MS/MS and protein enrichment analysis. Label-free LC-MS/MS was used to reveal the differences between the proteome of the transgenic and control mice. We obtained 77 increased and 49 decreased protein level changes in the range of - 6.365 to + 2.988, which have mitochondrial, ER or ribosomal localization according to Gene Ontology database. The highest degree of difference between the two groups was shown by the ATP-binding cassette G1 (Abcg1) which plays a crucial role in cholesterol metabolism and suppresses Aβ accumulation. Most of the other protein changes were associated with increased protein synthesis, endoplasmic-reticulum-associated protein degradation (ERAD), oxidative stress response, decreased mitochondrial protein transport and ATP production. The interaction network analysis revealed a strong relationship between the detected MAM protein changes and AD. Moreover, it explored several MAM proteins with hub position suggesting their importance in Aβ induced early MAM dysregulation. Our identified MAM protein changes precede the onset of dementia-like symptoms in the APP/PS1 model, suggesting their importance in the development of AD.
Collapse
|
290
|
Abstract
The endoplasmic reticulum (ER) is a morphologically dynamic organelle containing different membrane subdomains with distinct cellular functions. Numerous observations have revealed that ER stress response induced by disturbed ER homeostasis is linked to various neurological/neurodegenerative disorders. In contrast, recent findings unveil that ER structural derangements are linked to the progression of several neurological diseases. The derangements involve two distinct, and likely opposing pathways. One is dysfunction of ER dynamics machinery, leading to disruption of ER network organization. Another one is facilitation of pre-existing machinery, leading to generation of markedly-ordered de novo membranous structure. Restoring the ER network can be the effective way toward the cure of ER-deranged neurological disorders.
Collapse
Affiliation(s)
- Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
291
|
Shi F, Kawano F, Park SHE, Komazaki S, Hirabayashi Y, Polleux F, Yazawa M. Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering. ACS Synth Biol 2018; 7:2-9. [PMID: 29172503 DOI: 10.1021/acssynbio.7b00248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.
Collapse
Affiliation(s)
- Fan Shi
- College
of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Department
of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, New York 10032, United States
| | - Fuun Kawano
- Department
of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, New York 10032, United States
| | - Seon-hye Emily Park
- Department
of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, New York 10032, United States
| | - Shinji Komazaki
- Department
of Anatomy, Saitama Medical University, Saitama 350-0495, Japan
| | - Yusuke Hirabayashi
- Department
of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute
and Kavli Institute for Brain Science, Columbia University, New York, New York 10025, United States
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Franck Polleux
- Department
of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute
and Kavli Institute for Brain Science, Columbia University, New York, New York 10025, United States
| | - Masayuki Yazawa
- Department
of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, New York 10032, United States
- Department
of Pharmacology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
292
|
Alzheimer's disease pathology and the unfolded protein response: prospective pathways and therapeutic targets. Behav Pharmacol 2018; 28:161-178. [PMID: 28252521 DOI: 10.1097/fbp.0000000000000299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair ER performance: this must be rapidly corrected or cell death will ensue. Protective adaptations can boost the functional capacity of the ER and form the basis of the unfolded protein response (UPR). Activated in response to the accumulation of misfolded proteins, the UPR can halt protein translation while increasing protein-handling chaperones and the degradation of erroneous proteins through a conserved three-tier molecular cascade. However, prolonged activation of the UPR can result in the maladaptation of the system, resulting in the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative disease has attracted much interest and numerous potentially 'drugable' points of crosstalk are now emerging. Here, we summarize the functions of the ER and UPR, and highlight evidence for its potential role in the pathogenesis of Alzheimer's disease, before discussing several key targets with therapeutic potential.
Collapse
|
293
|
Protection against 1-methyl-4-phenyl pyridinium-induced neurotoxicity in human neuroblastoma SH-SY5Y cells by Soyasaponin I by the activation of the phosphoinositide 3-kinase/AKT/GSK3β pathway. Neuroreport 2018; 27:730-6. [PMID: 27196724 DOI: 10.1097/wnr.0000000000000603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) can be ascribed to the progressive and selective loss of dopaminergic neurons in the substantia nigra pars compacta, and thus molecules with neuroprotective ability may have therapeutic value against PD. In the current study, the neuroprotective effects and underlying mechanisms of Soyasaponin I (Soya-I), a naturally occurring triterpene extracted from a widely used ingredient in many foods, such as Glycine max (soybean), were evaluated in a widely used cellular PD model in which neurotoxicity was induced by 1-methyl-4-phenyl pyridinium (MPP) in cultured SH-SY5Y cells. We found that Soya-I at 10-40 μM considerably protected against MPP-induced neurotoxicity as evidenced by an increase in cell viability, a decrease in lactate dehydrogenase release, and a reduction in apoptotic nuclei. Moreover, Soya-I effectively inhibited the elevated intracellular accumulation of reactive oxygen species as well as the Bax/Bcl-2 ratio caused by MPP. Most importantly, Soya-I markedly reversed the inhibition of protein expression of phosphorylated AKT and phosphorylated GSK3β caused by MPP. LY294002, the specific inhibitor of phosphoinositide 3-kinase, significantly abrogated the upregulated phosphorylated AKT and phosphorylated GSK3β offered by Soya-I, suggesting that the neuroprotection of Soya-I was mainly dependent on the activation of the phosphoinositide 3-kinase/AKT/GSK3β signaling pathway. The results taken together indicate that Soya-I may be a potential candidate for further preclinical study aimed at the prevention and treatment of PD.
Collapse
|
294
|
Filadi R, Greotti E, Pizzo P. Highlighting the endoplasmic reticulum-mitochondria connection: Focus on Mitofusin 2. Pharmacol Res 2018; 128:42-51. [PMID: 29309902 DOI: 10.1016/j.phrs.2018.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/16/2022]
Abstract
The endoplasmic reticulum (ER) and the mitochondrial network are two highly interconnected cellular structures. By proteinaceous tethers, specialized membrane domains of the ER are tightly associated with the outer membrane of mitochondria, allowing the assembly of signaling platforms where different cell functions take place or are modulated, such as lipid biosynthesis, Ca2+ homeostasis, inflammation, autophagy and apoptosis. The ER-mitochondria coupling is highly dynamic and contacts between the two organelles can be modified in their number, extension and thickness by different stimuli. Importantly, several pathological conditions, such as cancer, neurodegenerative diseases and metabolic syndromes show alterations in this feature, underlining the key role of ER-mitochondria crosstalk in cell physiology. In this contribution, we will focus on one of the major modulator of ER-mitochondria apposition, Mitofusin 2, discussing the structure of the protein and its debated role on organelles tethering. Moreover, we will critically describe different techniques commonly used to investigate this crucial issue, highlighting their advantages, drawbacks and limits.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35121 Padua, Italy; Neuroscience Institute - Italian National Research Council (CNR), Padua, 35121, Italy.
| |
Collapse
|
295
|
Abstract
Parkinson’s disease (PD) is a chronic and progressive neurodegeneration of dopamine neurons in the substantia nigra. The reason for the death of these neurons is unclear; however, studies have demonstrated the potential involvement of mitochondria, endoplasmic reticulum, α-synuclein or dopamine levels in contributing to cellular oxidative stress as well as PD symptoms. Even though those papers had separately described the individual roles of each element leading to neurodegeneration, recent publications suggest that neurodegeneration is the product of various cellular interactions. This review discusses the role of oxidative stress in mediating separate pathological events that together, ultimately result in cell death in PD. Understanding the multi-faceted relationships between these events, with oxidative stress as a common denominator underlying these processes, is needed for developing better therapeutic strategies.
Collapse
|
296
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|
297
|
Luarte A, Cornejo VH, Bertin F, Gallardo J, Couve A. The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity. Dev Neurobiol 2017; 78:181-208. [PMID: 29134778 DOI: 10.1002/dneu.22560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is highly conserved in eukaryotes and neurons. Indeed, the localization of the organelle in axons has been known for nearly half a century. However, the relevance of the axonal ER is only beginning to emerge. In this review, we discuss the structure of the ER in axons, examining the role of ER-shaping proteins and highlighting reticulons. We analyze the multiple functions of the ER and their potential contribution to axonal physiology. First, we examine the emerging roles of the axonal ER in lipid synthesis, protein translation, processing, quality control, and secretory trafficking of transmembrane proteins. We also review the impact of the ER on calcium dynamics, focusing on intracellular mechanisms and functions. We describe the interactions between the ER and endosomes, mitochondria, and synaptic vesicles. Finally, we analyze available proteomic data of axonal preparations to reveal the dynamic functionality of the ER in axons during development. We suggest that the dynamic proteome and a validated axonal interactome, together with state-of-the-art methodologies, may provide interesting research avenues in axon physiology that may extend to pathology and regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 181-208, 2018.
Collapse
Affiliation(s)
- Alejandro Luarte
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Víctor Hugo Cornejo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisca Bertin
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Javiera Gallardo
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrés Couve
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
298
|
Soto-Heredero G, Baixauli F, Mittelbrunn M. Interorganelle Communication between Mitochondria and the Endolysosomal System. Front Cell Dev Biol 2017; 5:95. [PMID: 29164114 PMCID: PMC5681906 DOI: 10.3389/fcell.2017.00095] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023] Open
Abstract
The function of mitochondria and lysosomes has classically been studied separately. However, evidence has now emerged of intense crosstalk between these two organelles, such that the activity or stress status of one organelle may affect the other. Direct physical contacts between mitochondria and the endolysosomal compartment have been reported as a rapid means of interorganelle communication, mediating lipid or other metabolite exchange. Moreover, mitochondrial derived vesicles can traffic obsolete mitochondrial proteins into the endolysosomal system for their degradation or secretion to the extracellular milieu as exosomes, representing an additional mitochondrial quality control mechanism that connects mitochondria and lysosomes independently of autophagosome formation. Here, we present what is currently known about the functional and physical communication between mitochondria and lysosomes or lysosome-related organelles, and their role in sustaining cellular homeostasis.
Collapse
Affiliation(s)
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - María Mittelbrunn
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
299
|
Abstract
An ER-mitochondrial tethering protein regulates mitochondrial calcium uptake in neurons
Collapse
Affiliation(s)
- Alyssa A Lombardi
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
300
|
HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 2017; 8:861. [PMID: 29021520 PMCID: PMC5636840 DOI: 10.1038/s41467-017-00911-y] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)–mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs. Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.
Collapse
|