251
|
Leng XH, Nishi T, Forgac M. Transmembrane topography of the 100-kDa a subunit (Vph1p) of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1999; 274:14655-61. [PMID: 10329659 DOI: 10.1074/jbc.274.21.14655] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topography of the yeast vacuolar proton-translocating ATPase a subunit (Vph1p) has been investigated using cysteine-scanning mutagenesis. A Cys-less form of Vph1p lacking the seven endogenous cysteines was constructed and shown to have 80% of wild type activity. Single cysteine residues were introduced at 13 sites within the Cys-less mutant, with 12 mutants showing greater than 70% of wild type activity. To evaluate their disposition with respect to the membrane, vacuoles were treated in the presence or absence of the impermeant sulfhydryl reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS) followed by the membrane permeable sulfhydryl reagent 3-(N-maleimidylpropionyl) biocytin (MPB). Three of the 12 active cysteine mutants were not labeled by MPB. The mutants E3C, D89C, T161C, S266C, N447C, K450C, and S703C were labeled by MPB in an AMS-protectable manner, suggesting a cytoplasmic orientation, whereas G602C and S840C showed minimal protection by AMS, suggesting a lumenal orientation. Factor Xa cleavage sites were introduced at His-499, Leu-560, and Pro-606. Cleavage at 560 was observed in the absence of detergent, suggesting a cytoplasmic orientation for this site. Based on these results, we propose a model of the a subunit containing nine transmembrane segments, with the amino terminus facing the cytoplasm and the carboxyl terminus facing the lumen.
Collapse
Affiliation(s)
- X H Leng
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
252
|
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
253
|
Dimroth P, Wang H, Grabe M, Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci U S A 1999; 96:4924-9. [PMID: 10220395 PMCID: PMC21793 DOI: 10.1073/pnas.96.9.4924] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F-ATPase of the bacterium Propionigenium modestum is driven by an electrochemical sodium gradient between the cell interior and its environment. Here we present a mechanochemical model for the transduction of transmembrane sodium-motive force into rotary torque. The same mechanism is likely to operate in other F-ATPases, including the proton-driven F-ATPases of Escherichia coli.
Collapse
Affiliation(s)
- P Dimroth
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
254
|
Abstract
FoF1 ATPase is the universal protein responsible for ATP synthesis. The enzyme comprises two reversible rotary motors: Fo is either an ion 'turbine' or an ion pump, and F1 is either a hydrolysis motor or an ATP synthesizer. Recent biophysical and biochemical studies have helped to elucidate the operating principles for both motors.
Collapse
Affiliation(s)
- G Oster
- Departments of Molecular & Cellular Biology, College of Natural Resources, University of California, Berkeley, California 94720-3112, USA.
| | | |
Collapse
|
255
|
Matthey U, Kaim G, Braun D, Wüthrich K, Dimroth P. NMR studies of subunit c of the ATP synthase from Propionigenium modestum in dodecylsulphate micelles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:459-67. [PMID: 10215857 DOI: 10.1046/j.1432-1327.1999.00288.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the Na+, Li+ or H+-binding c subunit of the ATP synthase from Propionigenium modestum was studied by NMR. Subunit c in dodecylsulphate micelles consists of four alpha-helical segments, I-IV, that are connected by short linker peptides with non-regular secondary structures. We propose that helices I (V4-I26) and IV (I69-V85) are membrane-spanning structures, and that helices II and III and the intervening hydrophilic loop are located in the cytoplasm. The Na+-binding residues Q32, E65 and S66 are located in the I-->II and III-->IV helix connections, probably near the membrane surface on the cytoplasmic side.
Collapse
Affiliation(s)
- U Matthey
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
256
|
Chen W, LoBrutto R, Frasch WD. EPR spectroscopy of VO2+-ATP bound to catalytic site 3 of chloroplast F1-ATPase from Chlamydomonas reveals changes in metal ligation resulting from mutations to the phosphate-binding loop threonine (betaT168). J Biol Chem 1999; 274:7089-94. [PMID: 10066766 DOI: 10.1074/jbc.274.11.7089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutations were made to the phosphate-binding loop threonine in the beta-subunit of the chloroplast F1-ATPase in Chlamydomonas (betaT168). Rates of photophosphorylation and ATPase-driven proton translocation measured in coupled thylakoids purified from betaT168D, betaT168C, and betaT168L mutants had <10% of the wild type rates, as did rates of Mg2+-ATPase activity of purified chloroplast F1-ATPase (CF1). The EPR spectra of VO2+-ATP bound to Site 3 of CF1 from wild type and mutants showed that EPR species C, formed exclusively upon activation, was altered in CF1 from each mutant in both signal intensity and in 51V hyperfine parameters that depend on the equatorial VO2+ ligands. These data provide the first direct evidence that Site 3 is a catalytic site. No significant differences between wild type and mutants were observed in EPR species B, the predominant form of the latent enzyme. Thus, the phosphate-binding loop threonine is an equatorial metal ligand in the activated conformation but not in the latent conformation of Site 3. The metal-nucleotide conformation that gives rise to species B is consistent with the Mg2+-ADP complex that becomes entrapped in a catalytic site in a manner that regulates enzymatic activity. The lack of catalytic function of CF1 with entrapped Mg2+-ADP may be explained in part by the absence of the phosphate-binding loop threonine as a metal ligand.
Collapse
Affiliation(s)
- W Chen
- The Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1601, USA
| | | | | |
Collapse
|
257
|
Nadanaciva S, Weber J, Senior AE. Binding of the transition state analog MgADP-fluoroaluminate to F1-ATPase. J Biol Chem 1999; 274:7052-8. [PMID: 10066761 DOI: 10.1074/jbc.274.11.7052] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli F1-ATPase from mutant betaY331W was potently inhibited by fluoroaluminate plus MgADP but not by MgADP alone. beta-Trp-331 fluorescence was used to measure MgADP binding to catalytic sites. Fluoroaluminate induced a very large increase in MgADP binding affinity at catalytic site one, a smaller increase at site two, and no effect at site three. Mutation of either of the critical catalytic site residues beta-Lys-155 or beta-Glu-181 to Gln abolished the effects of fluoroaluminate on MgADP binding. The results indicate that the MgADP-fluoroaluminate complex is a transition state analog and independently demonstrate that residues beta-Lys-155 and (particularly) beta-Glu-181 are important for generation and stabilization of the catalytic transition state. Dicyclohexylcarbodiimide-inhibited enzyme, with 1% residual steady-state ATPase, showed normal transition state formation as judged by fluoroaluminate-induced MgADP binding affinity changes, consistent with a proposed mechanism by which dicyclohexylcarbodiimide prevents a conformational interaction between catalytic sites but does not affect the catalytic step per se. The fluorescence technique should prove valuable for future transition state studies of F1-ATPase.
Collapse
Affiliation(s)
- S Nadanaciva
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
258
|
Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY. ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions. FEBS Lett 1999; 445:409-14. [PMID: 10094498 DOI: 10.1016/s0014-5793(99)00160-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A stepwise increasing membrane potential was generated in chromatophores of the phototrophic bacterium Rhodobacter capsulatus by illumination with short flashes of light. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by pH-indicators) and ATP release (measured by luminescence of luciferin-luciferase) were monitored. The ratio between the amount of protons translocated by F0F1 and the ATP yield decreased with the flash number from an apparent value of 13 after the first flash to about 5 when averaged over three flashes. In the absence of ADP, protons slipped through F0F1. The proton transfer through F0F1 after the first flash contained two kinetic components, of about 6 ms and 20 ms both under the ATP synthesis conditions and under slip. The slower component of proton transfer was substantially suppressed in the absence of ADP. We attribute our observations to the mechanism of energy storage in the ATP-synthase needed to couple the transfer of four protons with the synthesis of one molecule of ATP. Most probably, the transfer of initial protons of each tetrad creates a strain in the enzyme that slows the translocation of the following protons.
Collapse
Affiliation(s)
- B A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, Germany
| | | | | | | |
Collapse
|
259
|
Forgac M. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J Biol Chem 1999; 274:1301-5. [PMID: 9880499 DOI: 10.1074/jbc.274.3.1301] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been previously demonstrated that the vacuolar H+-ATPase (V-ATPase) of clathrin-coated vesicles is reversibly inhibited by disulfide bond formation between conserved cysteine residues at the catalytic site on the A subunit (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13224-13230). Proton transport and ATPase activity of the purified, reconstituted V-ATPase are now shown to be inhibited by the nitric oxide-generating reagent S-nitrosoglutathione (SNG). The K0.5 for inhibition by SNG following incubation for 30 min at 37 degreesC is 200-400 microM. As with disulfide bond formation at the catalytic site, inhibition by SNG is reversed upon treatment with 100 mM dithiothreitol and is partially protected in the presence of ATP. Also as with disulfide bond formation, treatment of the V-ATPase with SNG protects activity from subsequent inactivation by N-ethylmaleimide, as demonstrated by restoration of activity by dithiothreitol following sequential treatment of the V-ATPase with SNG and N-ethylmaleimide. Moreover, inhibition by SNG is readily reversed by dithiothreitol but not by the reduced form of glutathione, suggesting that the disulfide bond formed at the catalytic site of the V-ATPase may not be immediately reduced under intracellular conditions. These results suggest that SNG inhibits the V-ATPase through disulfide bond formation between cysteine residues at the catalytic site and that nitric oxide (or nitrosothiols) might act as a negative regulator of V-ATPase activity in vivo.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
260
|
Santolini J, Haraux F, Sigalat C, Moal G, André F. Kinetic analysis of tentoxin binding to chloroplast F1-ATPase. A model for the overactivation process. J Biol Chem 1999; 274:849-58. [PMID: 9873024 DOI: 10.1074/jbc.274.2.849] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of action of tentoxin on the soluble part (chloroplast F1 H+-ATPase; CF1) of chloroplast ATP synthase was analyzed in the light of new kinetic and equilibrium experiments. Investigations were done regarding the functional state of the enzyme (activation, bound nucleotide, catalytic turnover). Dialysis and binding data, obtained with 14C-tentoxin, fully confirmed the existence of two tentoxin binding sites of distinct dissociation constants consistent with the observed Kinhibition and Koveractivation. This strongly supports a two-site model of tentoxin action on CF1. Kinetic and thermodynamic parameters of tentoxin binding to the first site (Ki = 10 nM; kon = 4.7 x 10(4) s-1.M-1) were determined from time-resolved activity assays. Tentoxin binding to the high affinity site was found independent on the catalytic state of the enzyme. The analysis of the kinetics of tentoxin binding on the low affinity site of the enzyme showed strong evidence for an interaction between this site and the nucleotide binding sites and revealed a complex relationship between the catalytic state and the reactivation process. New catalytic states of CF1 devoid of epsilon-subunit were detected: a transient overstimulated state, and a dead end complex unable to bind a second tentoxin molecule. Our experiments led to a kinetic model for the reactivation phenomenon for which rate constants were determined. The implications of this model are discussed in relation to the previous mechanistic hypotheses on the effect of tentoxin.
Collapse
Affiliation(s)
- J Santolini
- Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique-Saclay, F-91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
261
|
Bianchet MA, Pedersen PL, Amzel LM. Structure of F1 -ATPase and the Mechanism of ATP Synthesis— Hydrolysis. FRONTIERS OF CELLULAR BIOENERGETICS 1999:361-376. [DOI: 10.1007/978-1-4615-4843-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
262
|
Vaillier J, Arselin G, Graves PV, Camougrand N, Velours J. Isolation of supernumerary yeast ATP synthase subunits e and i. Characterization of subunit i and disruption of its structural gene ATP18. J Biol Chem 1999; 274:543-8. [PMID: 9867878 DOI: 10.1074/jbc.274.1.543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two subunits of the yeast ATP synthase have been isolated. Subunit e was found loosely associated to the complex. Triton X-100 at a 1% concentration removed this subunit from the ATP synthase. The N-terminal sequencing of subunit i has been performed. The data are in agreement with the sequence of the predicted product of a DNA fragment of Saccharomyces cerevisiae chromosome XIII. The ATP18 gene encodes subunit i, which is 59 amino acids long and corresponds to a calculated mass of 6687 Da. Its pI is 9.73. It is an amphiphilic protein having a hydrophobic N-terminal part and a hydrophilic C-terminal part. It is not apparently related to any subunit described in other ATP synthases. The null mutant showed low growth on nonfermentable medium. Mutant mitochondria display a low ADP/O ratio and a decrease with time in proton pumping after ATP addition. Subunit i is associated with the complex; it is not a structural component of the enzyme but rather is involved in the oxidative phosphorylations. Similar amounts of ATP synthase were measured for wild-type and null mutant mitochondria. Because 2-fold less specific ATPase activity was measured for the null mutant than for the wild-type mitochondria, we make the hypothesis that the observed decrease in the turnover of the mutant enzyme could be linked to a proton translocation defect through F0.
Collapse
Affiliation(s)
- J Vaillier
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Ségalen, Bordeaux 2, 33077 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
263
|
Weber J, Senior AE. Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. J Biol Chem 1998; 273:33210-5. [PMID: 9837890 DOI: 10.1074/jbc.273.50.33210] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrium nucleotide binding to the three catalytic sites of Escherichia coli F1-ATPase was measured in the presence of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin to elucidate mechanisms of inhibition. Fluorescence signals of beta-Trp-331 and beta-Trp-148 substituted in catalytic sites were used to determine nucleotide binding parameters. Azide brought about small decreases in Kd(MgATP) and Kd(MgADP). Notably, under MgATP hydrolysis conditions, it caused all enzyme molecules to assume a state with three catalytic site-bound MgATP and zero bound MgADP. These results rule out the idea that azide inhibits by "trapping" MgADP. Rather, azide blocks the step at which signal transmission between catalytic sites promotes multisite hydrolysis. Aurovertin bound with stoichiometry of 1.8 (mol/mol of F1) and allowed significant residual turnover. Cycling of the aurovertin-free beta-subunit catalytic site through three normal conformations was indicated by MgATP binding data. Aurovertin did not change the normal ratio of 1 bound MgATP/2 bound MgADP in catalytic sites. The results indicate that it acts to slow the switch of catalytic site affinities ("binding change step") subsequent to MgATP hydrolysis. Dicyclohexylcarbodiimide shifted the ratio of catalytic site-bound MgATP/MgADP from 1:2 to 1.6:1.4, without affecting Kd(MgATP) values. Like azide, it also appears to affect activity at the step after MgATP binding, in which signal transmission between catalytic sites promotes MgATP hydrolysis.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
264
|
Abstract
The vacuolar (H+)-ATPases (or V-ATPases) function to acidify intracellular compartments in eukaryotic cells, playing an important role in such processes as receptor-mediated endocytosis, intracellular membrane traffic, protein degradation and coupled transport. V-ATPases in the plasma membrane of specialized cells also function in renal acidification, bone resorption and cytosolic pH maintenance. The V-ATPases are composed of two domains. The V1 domain is a 570-kDa peripheral complex composed of 8 subunits (subunits A-H) of molecular weight 70-13 kDa which is responsible for ATP hydrolysis. The V0 domain is a 260-kDa integral complex composed of 5 subunits (subunits a-d) which is responsible for proton translocation. The V-ATPases are structurally related to the F-ATPases which function in ATP synthesis. Biochemical and mutational studies have begun to reveal the function of individual subunits and residues in V-ATPase activity. A central question in this field is the mechanism of regulation of vacuolar acidification in vivo. Evidence has been obtained suggesting a number of possible mechanisms of regulating V-ATPase activity, including reversible dissociation of V1 and V0 domains, disulfide bond formation at the catalytic site and differential targeting of V-ATPases. Control of anion conductance may also function to regulate vacuolar pH. Because of the diversity of functions of V-ATPases, cells most likely employ multiple mechanisms for controlling their activity.
Collapse
Affiliation(s)
- M Forgac
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
265
|
Papageorgiou S, Melandri AB, Solaini G. Relevance of divalent cations to ATP-driven proton pumping in beef heart mitochondrial F0F1-ATPase. J Bioenerg Biomembr 1998; 30:533-41. [PMID: 10206473 DOI: 10.1023/a:1020528432609] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ATP hydrolysis rate and the ATP hydrolysis-linked proton translocation by the F0F1-ATPase of beef heart submitochondrial particles were examined in the presence of several divalent metal cations. All Me-ATP complexes tested sustained ATP hydrolysis, although to a different extent. However, only Mg- and Mn-ATP-dependent hydrolysis could sustain a high level of proton pumping activity, as determined by acridine fluorescence quenching. Moreover, the Km of the Me-ATP hydrolysis-induced proton pumping activity was very similar to the Km value of Me-ATP hydrolysis. Both oligomycin and DCCD caused the full recovery of the fluorescence, providing clear evidence for the association of Mg-ATP hydrolysis with proton translocation through the F0F1-ATPase complex. In contrast, with other Me-ATP complexes, including Ca-ATP as substrate, the proton pumping activity was undetectable, implicating an uncoupling nature for these substrates. Attempts to demonstrate the involvement of the epsilon subunit of the enzyme in the coupling mechanism failed, suggesting that the participation of at least the N-terminal segment of the subunit in the coupling mechanism of the mitochondrial enzyme is unlikely.
Collapse
Affiliation(s)
- S Papageorgiou
- Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Pisa, Italy
| | | | | |
Collapse
|
266
|
Spannagel C, Vaillier J, Arselin G, Graves PV, Grandier-Vazeille X, Velours J. Evidence of a subunit 4 (subunit b) dimer in favor of the proximity of ATP synthase complexes in yeast inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:260-4. [PMID: 9804970 DOI: 10.1016/s0005-2736(98)00174-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yeast mitochondria having either the D54C or E55C mutations in subunit 4 (subunit b), which is a component of the ATP synthase stator, displayed a spontaneous disulfide bridge between two subunits 4. This dimer was not soluble upon Triton X-100 extraction either at concentrations which extract the yeast ATP synthase or at higher concentrations. Increasing detergent concentrations led to a lack of the oligomycin-sensitive ATPase activity, thus showing an uncoupling between the two sectors of the mutated enzymes due to the dissociation of the subunit 4 dimer from the mutant enzyme. There is only one subunit 4 (subunit b) per eukaryotic ATP synthase. As a consequence, the results are interpreted as the proximity of ATP synthase complexes within the inner mitochondrial membrane.
Collapse
Affiliation(s)
- C Spannagel
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Ségalen, Bordeaux II, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
267
|
Svergun DI, Aldag I, Sieck T, Altendorf K, Koch MH, Kane DJ, Kozin MB, Grüber G. A model of the quaternary structure of the Escherichia coli F1 ATPase from X-ray solution scattering and evidence for structural changes in the delta subunit during ATP hydrolysis. Biophys J 1998; 75:2212-9. [PMID: 9788916 PMCID: PMC1299895 DOI: 10.1016/s0006-3495(98)77665-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.
Collapse
Affiliation(s)
- D I Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, D-22603 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Sorgen PL, Caviston TL, Perry RC, Cain BD. Deletions in the second stalk of F1F0-ATP synthase in Escherichia coli. J Biol Chem 1998; 273:27873-8. [PMID: 9774398 DOI: 10.1074/jbc.273.43.27873] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli F1F0-ATP synthase, the two b subunits form the second stalk spanning the distance between the membrane F0 sector and the bulk of F1. Current models predict that the stator should be relatively rigid and engaged in contact with F1 at fixed points. To test this hypothesis, we constructed a series of deletion mutations in the uncF(b) gene to remove segments from the middle of the second stalk of the subunit. Mutants with deletions of 7 amino acids were essentially normal, and those with deletions of up to 11 amino acids retained considerable activity. Membranes prepared from these strains had readily detectable levels of F1-ATPase activity and proton pumping activity. Removal of 12 or more amino acids resulted in loss of oxidative phosphorylation. Levels of membrane-associated F1-ATPase dropped precipitously for the longer deletions, and immunoblot analysis indicated that reductions in activity correlated with reduced levels of b subunit in the membranes. Assuming the likely alpha-helical conformation for this area of the b subunit, the 11-amino acid deletion would result in shortening the subunit by approximately 16 A. Since these deletions did not prevent the b subunit from participating in productive interactions with F1, we suggest that the b subunit is not a rigid rodlike structure, but has an inherent flexibility compatible with a dynamic role in coupling.
Collapse
Affiliation(s)
- P L Sorgen
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
269
|
Omote H, Tainaka K, Fujie K, Iwamoto-Kihara A, Wada Y, Futai M. Stability of the Escherichia coli ATP synthase F0F1 complex is dependent on interactions between gamma Gln-269 and the beta subunit loop beta Asp-301-beta Asp-305. Arch Biochem Biophys 1998; 358:277-82. [PMID: 9784240 DOI: 10.1006/abbi.1998.0856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the conserved sequence motif 301DDLTDP306 in the F0F1 ATP synthase beta subunit was assessed by mutagenic analysis in the Escherichia coli enzyme. Mutations gave variable effects on F1 sector activity, stability, and membrane binding to the F0 sector. Upon solubilization, F1 sectors of the betaD302E and betaD305E mutants (betaAsp-302 and betaAsp-305 replaced by glutamate) dissociated into subunits, while mutants with other beta305 substitutions failed to assemble. Membrane ATPase activities of beta301 and 302 mutants were 20-70% of wild type. Replacements of the gamma subunit Gln-269 had similar effects. The membrane ATPase activities of the gammaQ269E or gammaQ269D mutants were significantly lower and their F1 sectors dissociated into subunits upon solubilization. These results suggest that the beta301-305 loop and the gamma subunit region around Gln-269 form a key region for the assembly of alpha3 beta3 gamma complex. These results are consistent with the X-ray crystallographic structure of bovine F1 (J. P. Abrahams, A. G. W. Leslie, R. Lutter, and J. E. Walker (1994) Nature 370, 621-628) where the beta301DDLTD305 loop directly interacts with gammaGln-269.
Collapse
Affiliation(s)
- H Omote
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
270
|
Abstract
The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.
Collapse
Affiliation(s)
- G Kaim
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
271
|
Villaverde J, Cladera J, Hartog A, Berden J, Padrós E, Duñach M. Nucleotide and Mg2+ dependency of the thermal denaturation of mitochondrial F1-ATPase. Biophys J 1998; 75:1980-8. [PMID: 9746539 PMCID: PMC1299869 DOI: 10.1016/s0006-3495(98)77639-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of adenine nucleotides and Mg2+ on the thermal denaturation of mitochondrial F1-ATPase (MF1) was analyzed. Differential scanning calorimetry in combination with ATPase activity experiments revealed the thermal unfolding of MF1 as an irreversible and kinetically controlled process. Three significant elements were analyzed during the thermal denaturation process: the endothermic calorimetric transition, the loss of ATP hydrolysis activity, and the release of tightly bound nucleotides. All three processes occur in the same temperature range, over a wide variety of conditions. The purified F1-ATPase, which contains three tightly bound nucleotides, denatures at a transition temperature (Tm) of 55 degrees C. The nucleotide and Mg2+ content of MF1 strongly influence the thermal denaturation process. First, further binding of nucleotides and/or Mg2+ to MF1 increases the thermal denaturation temperature, whereas the thermal stability of the enzyme is decreased upon removal of the endogenous nucleotides. Second, the stabilizing effect induced by nucleotides is smaller after hydrolysis of ATP (i.e., in the presence of ADP . Mg2+) than under nonhydrolytical conditions (i.e., absence of Mg2+ or using the nonhydrolyzable analog 5'-adenylyl-imidodiphosphate). Third, whereas the thermal denaturation of MF1 fully loaded with nucleotides follows an apparent two-state kinetic process, denaturation of MF1 with a low nucleotide content follows more complex kinetics. Nucleotide content is therefore an important factor in determining the thermal stability of the MF1 complex, probably by strengthening existing intersubunit interactions or by establishing new ones.
Collapse
Affiliation(s)
- J Villaverde
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
272
|
Velours J, Spannagel C, Chaignepain S, Vaillier J, Arselin G, Graves PV, Velours G, Camougrand N. Topography of the yeast ATP synthase F0 sector. Biochimie 1998; 80:793-801. [PMID: 9893937 DOI: 10.1016/s0300-9084(00)88873-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.
Collapse
Affiliation(s)
- J Velours
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux II, France
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Bianchet MA, Hullihen J, Pedersen PL, Amzel LM. The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci U S A 1998; 95:11065-70. [PMID: 9736690 PMCID: PMC21596 DOI: 10.1073/pnas.95.19.11065] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/1998] [Accepted: 07/09/1998] [Indexed: 11/18/2022] Open
Abstract
During mitochondrial ATP synthesis, F1-ATPase-the portion of the ATP synthase that contains the catalytic and regulatory nucleotide binding sites-undergoes a series of concerted conformational changes that couple proton translocation to the synthesis of the high levels of ATP required for cellular function. In the structure of the rat liver F1-ATPase, determined to 2.8-A resolution in the presence of physiological concentrations of nucleotides, all three beta subunits contain bound nucleotide and adopt similar conformations. This structure provides the missing configuration of F1 necessary to define all intermediates in the reaction pathway. Incorporation of this structure suggests a mechanism of ATP synthesis/hydrolysis in which configurations of the enzyme with three bound nucleotides play an essential role.
Collapse
Affiliation(s)
- M A Bianchet
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.
| | | | | | | |
Collapse
|
274
|
Vasilyeva E, Forgac M. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide. J Biol Chem 1998; 273:23823-9. [PMID: 9726993 DOI: 10.1074/jbc.273.37.23823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of adenosine triphosphate (ATP)-dependent proton transport into clathrin-coated vesicles from bovine brain have been studied. We observe that the vacuolar proton-translocating ATPase (V-ATPase) from clathrin-coated vesicles is subject to two different types of inhibition by ADP. The first is competitive inhibition with respect to ATP, with a Ki for ADP of 11 microM. The second type of inhibition occurs after preincubation of the V-ATPase in the presence of ADP and Mg2+, which results in inhibition of the initial rate of proton transport followed by reactivation over the course of several minutes. The second effect is observed at ADP concentrations as low as 0.1-0.2 microM, indicating that a high affinity inhibitory complex is formed between ADP and the V-ATPase and is only slowly dissociated after the addition of ATP. We have further investigated the effect of sodium azide, an inhibitor of the F-ATPases that has been shown to stabilize an inactive complex between ADP and the F1-F0-ATP synthase (F-ATPase). We observed that azide inhibited ATP-dependent proton transport by the purified, reconstituted V-ATPase with a K0.5 of 0.2-0.4 mM but had no effect on ATP hydrolysis. Azide was shown not to increase the passive proton permeability of reconstituted vesicles and did not stimulate ATP hydrolysis by the reconstituted enzyme, in contrast with CCCP, which both abolished the proton gradient and stimulated hydrolysis. Thus, azide does not appear to act as a simple uncoupler of proton transport and ATP hydrolysis. Rather, azide may have some more direct effect on V-ATPase activity. Possible mechanisms by which azide could exert this effect on the V-ATPase and the contrasting effects of azide on the F- and V-ATPases are discussed.
Collapse
Affiliation(s)
- E Vasilyeva
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
275
|
Weber J, Wilke-Mounts S, Hammond ST, Senior AE. Tryptophan substitutions surrounding the nucleotide in catalytic sites of F1-ATPase. Biochemistry 1998; 37:12042-50. [PMID: 9724515 DOI: 10.1021/bi981089c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel tryptophan substitutions, surrounding the nucleotide bound in catalytic sites, were introduced into Escherichia coli F1-ATPase. The mutant enzymes were purified and studied by fluorescence spectroscopy. One cluster of Trp substitutions, consisting of beta-Trp-404, beta-Trp-410, beta-Asp-158 (lining the adenine-binding pocket), and beta-Trp-153 (close to the alpha/beta-phosphates), showed the same fluorescence responses to MgADP, MgAMPPNP, and MgATP and the same nucleotide binding pattern with MgADP and MgAMPPNP, with one site of higher and two sites of lower affinity. Therefore, in absence of catalytic turnover (and of gamma-subunit rotation), sites 2 and 3 appeared similar in affinity, and the region of the catalytic site sensed by these Trp substitutions did not change conformation with different nucleotides. In contrast, alpha-Trp-291 and beta-Trp-297, both close to the gamma-phosphate, showed very different fluorescence responses to MgADP versus MgAMPPNP, and in these cases the response was due exclusively or predominantly to nucleotide binding at the first, high-affinity catalytic site, thus allowing specific detection of this site. Titration with MgATP showed that the high-affinity site was present under conditions of steady-state, Vmax MgATP hydrolysis.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA
| | | | | | | |
Collapse
|
276
|
Kaim G, Dimroth P. ATP synthesis by the F1Fo ATP synthase of Escherichia coli is obligatorily dependent on the electric potential. FEBS Lett 1998; 434:57-60. [PMID: 9738451 DOI: 10.1016/s0014-5793(98)00969-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H+-translocating F1Fo ATP synthase of Escherichia coli was purified and reconstituted into proteoliposomes. This system catalyzed ATP synthesis when energized by an acid/base transition (pHin = 5.0; pHout = 8.3) with succinate, malonate or maleinate but not with MES as the acidic buffer. Under these experimental conditions an electric potential of 125-130 mV is generated by the diffusion of succinate, probably the monoanionic species, whereas with MES buffer the measured potential was at background level (approximately 5 mV). ATP was also synthesized at pH 7.2 in the absence of a delta pH by applying a K+/valinomycin diffusion potential. The rate of ATP synthesis increased with the potential in an exponential manner with an inflection point at about 70 mV. We conclude from these results that delta pH and delta psi are kinetically unequivalent driving forces for ATP synthesis by the E. coli ATP synthase and that delta psi is a mandatory force for this synthesis. The significance of these findings for the mechanism of ATP synthesis in general is discussed.
Collapse
Affiliation(s)
- G Kaim
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | |
Collapse
|
277
|
Löbau S, Weber J, Senior AE. Catalytic site nucleotide binding and hydrolysis in F1F0-ATP synthase. Biochemistry 1998; 37:10846-53. [PMID: 9692975 DOI: 10.1021/bi9807153] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
F1F0-ATP synthase was purified from Escherichia coli beta Y331W mutant. The beta-Trp-331 provided a specific fluorescent probe of catalytic site nucleotide binding. Physiological (mM) concentration of substrate MgATP filled all three catalytic sites. With MgATP or MgADP the catalytic sites showed marked binding cooperativity and asymmetry, which was dependent on Mg2+. Nucleotide binding was fast, with kon = approximately 6 x 10(5) M-1 s-1. Pi at physiological concentration (5 mM) did not bind to catalytic sites. Measurement of MgATP hydrolysis and binding under identical conditions as a function of MgATP concentration revealed that Vmax was achieved only when all three catalytic sites were filled in every enzyme molecule. The enzyme species with two catalytic sites occupied and one site empty displayed low, nonphysiological catalytic rate. This is the first characterization of nucleotide binding parameters in F1F0. The fact that the behavior of purified F1F0 was similar in most respects to that of isolated F1 demonstrated that the presence of the additional F0 subunits a, b, and c, and also fixed stoichiometric amounts of epsilon and delta, does not affect catalytic site properties. The results impact on possible catalytic mechanisms, namely, they emphasize that Pi cannot simply bind spontaneously, that an enzyme species with all three sites occupied is the only catalytically competent species, and that release of product and binding of substrate cannot be simultaneous, rather the former must precede the latter.
Collapse
Affiliation(s)
- S Löbau
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
278
|
Neumann S, Matthey U, Kaim G, Dimroth P. Purification and properties of the F1F0 ATPase of Ilyobacter tartaricus, a sodium ion pump. J Bacteriol 1998; 180:3312-6. [PMID: 9642181 PMCID: PMC107283 DOI: 10.1128/jb.180.13.3312-3316.1998] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ATPase of Ilyobacter tartaricus was solubilized from the bacterial membranes and purified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the usual subunit pattern of a bacterial F1F0 ATPase. The polypeptides with apparent molecular masses of 56, 52, 35, 16.5, and 6.5 kDa were identified as the alpha, beta, gamma, epsilon, and c subunits, respectively, by N-terminal protein sequencing and comparison with the sequences of the corresponding subunits from the Na(+)-translocating ATPase of Propionigenium modestum. Two overlapping sequences were obtained for the polypeptides moving with an apparent molecular mass of 22 kDa (tentatively assigned as b and delta subunits). No sequence could be determined for the putative a subunit (apparent molecular mass, 25 kDa). The c subunits formed a strong aggregate with the apparent molecular mass of 50 kDa which required treatment with trichloroacetic acid for dissociation. The ATPase was inhibited by dicyclohexyl carbodiimide, and Na+ ions protected the enzyme from this inhibition. The ATPase was specifically activated by Na+ or Li+ ions, markedly at high pH. After reconstitution into proteoliposomes, the enzyme catalyzed the ATP-dependent transport of Na+, Li+, or Hi+. Proton transport was specifically inhibited by Na+ or Li+ ions, indicating a competition between these alkali ions and protons for binding and translocation across the membrane. These experiments characterize the I. tartaricus ATPase as a new member of the family of FS-ATPases, which use Na+ as the physiological coupling ion for ATP synthesis.
Collapse
Affiliation(s)
- S Neumann
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| | | | | | | |
Collapse
|
279
|
Long JC, Wang S, Vik SB. Membrane topology of subunit a of the F1F0 ATP synthase as determined by labeling of unique cysteine residues. J Biol Chem 1998; 273:16235-40. [PMID: 9632682 DOI: 10.1074/jbc.273.26.16235] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topology of the a subunit of the F1F0 ATP synthase from Escherichia coli has been probed by surface labeling using 3-(N-maleimidylpropionyl) biocytin. Subunit a has no naturally occurring cysteine residues, allowing unique cysteines to be introduced at the following positions: 8, 24, 27, 69, 89, 128, 131, 172, 176, 196, 238, 241, and 277 (following the COOH-terminal 271 and a hexahistidine tag). None of the single mutations affected the function of the enzyme, as judged by growth on succinate minimal medium. Membrane vesicles with an exposed cytoplasmic surface were prepared using a French pressure cell. Before labeling, the membranes were incubated with or without a highly charged sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. After labeling with the less polar biotin maleimide, the samples were solubilized with octyl glucoside/cholate and the subunit a was purified via the oligohistidine at its COOH terminus using immobilized nickel chromatography. The purified samples were electrophoresed and transferred to nitrocellulose for detection by avidin conjugated to alkaline phosphatase. Results indicated cytoplasmic accessibility for residues 69, 172, 176, and 277 and periplasmic accessibility for residues 8, 24, 27, and 131. On the basis of these and earlier results, a transmembrane topology for the subunit a is proposed.
Collapse
Affiliation(s)
- J C Long
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | |
Collapse
|
280
|
García JJ, Capaldi RA. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. J Biol Chem 1998; 273:15940-5. [PMID: 9632641 DOI: 10.1074/jbc.273.26.15940] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unisite [gamma-32P]ATP hydrolysis was studied in ECF1 from the mutant betaE381C after generating a single disulfide bond between beta and gamma subunits to prevent the rotation of the gamma/epsilon domain. The single beta-gamma cross-link was obtained by removal of the delta subunit from F1 and then treating with CuCl2 as described previously (Aggeler, R., Haughton, M. A., and Capaldi, R. A. (1996) J. Biol. Chem. 270, 9185-9191). The mutant enzyme, betaE381C, had an increased overall rate of unisite hydrolysis of [gamma-32P]ATP compared with the wild type ECF1 due to increases in the rate of ATP binding (k+1), Pi release (k+3), and ADP release (k+4). Release of bound substrate ([gamma-32P]ATP) was also increased in the betaE381C mutant. Cross-linking between Cys-381 and the intrinsic Cys-87 of gamma caused a further increase in the rate of unisite catalysis, mainly by additional effects on nucleotide binding in the high affinity catalytic site (k+1 and k+4). In delta-subunit-free ECF1 from wild type or betaE381C F1, addition of an excess of ATP accelerated unisite catalysis. After cross-linking, unisite catalysis of betaE381C was not enhanced by the cold chase. The covalent linkage of gamma to beta increased the rate of unisite catalysis to that obtained by cold chase of ATP of the noncross-linked enzyme. It is concluded that the conversion of Glu-381 of beta to Cys induces an activated conformation of the high affinity catalytic site with low affinity for substrate and products. This state is stabilized by cross-linking the Cys at beta381 to Cys-87 of gamma. We infer from the data that rotation of the gamma/epsilon rotor in ECF1 is not linked to unisite hydrolysis of ATP at the high affinity catalytic site but to ATP binding to a second or third catalytic site on the enzyme.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
281
|
McLachlin DT, Bestard JA, Dunn SD. The b and delta subunits of the Escherichia coli ATP synthase interact via residues in their C-terminal regions. J Biol Chem 1998; 273:15162-8. [PMID: 9614129 DOI: 10.1074/jbc.273.24.15162] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0.
Collapse
Affiliation(s)
- D T McLachlin
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
282
|
Abstract
A model is presented in which ion translocation through the F0 part of the ATP synthase drives the rotation of the ring of c subunits (rotor) versus the a subunit (stator). The coupling ion binding sites on the rotor are accessible from the cytoplasm of a bacterial cell except for the c subunit at the interface to the stator. Here, the binding site is accessible from the periplasm through a channel formed by subunit a. In the ATP synthesis mode, a coupling ion is anticipated to pass through the stator channel into the binding site of the adjacent rotor subunit, following the electrical potential. Occupation of this site triggers, probably by electrostatic forces, the rotation of the ring. This makes the binding site accessible to the cytoplasm, where the coupling ion dissociates. Simultaneously, this rotation moves again an empty rotor subunit into the contact site with the stator, where its binding site becomes loaded and rotation continues.
Collapse
Affiliation(s)
- P Dimroth
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|
283
|
Jiang W, Fillingame RH. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc Natl Acad Sci U S A 1998; 95:6607-12. [PMID: 9618459 PMCID: PMC22573 DOI: 10.1073/pnas.95.12.6607] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
Subunits a and c of Fo are thought to cooperatively catalyze proton translocation during ATP synthesis by the Escherichia coli F1Fo ATP synthase. Optimizing mutations in subunit a at residues A217, I221, and L224 improves the partial function of the cA24D/cD61G double mutant and, on this basis, these three residues were proposed to lie on one face of a transmembrane helix of subunit a, which then interacted with the transmembrane helix of subunit c anchoring the essential aspartyl group. To test this model, in the present work Cys residues were introduced into the second transmembrane helix of subunit c and the predicted fourth transmembrane helix of subunit a. After treating the membrane vesicles of these mutants with Cu(1, 10-phenanthroline)2SO4 at 0 degrees, 10 degrees, or 20 degreesC, strong a-c dimer formation was observed at all three temperatures in membranes of 7 of the 65 double mutants constructed, i.e., in the aS207C/cI55C, aN214C/cA62C, aN214C/cM65C, aI221C/cG69C, aI223C/cL72C, aL224C/cY73C, and aI225C/cY73C double mutant proteins. The pattern of cross-linking aligns the helices in a parallel fashion over a span of 19 residues with the aN214C residue lying close to the cA62C and cM65C residues in the middle of the membrane. Lesser a-c dimer formation was observed in nine other double mutants after treatment at 20 degreesC in a pattern generally supporting that indicated by the seven landmark residues cited above. Cross-link formation was not observed between helix-1 of subunit c and helix-4 of subunit a in 19 additional combinations of doubly Cys-substituted proteins. These results provide direct chemical evidence that helix-2 of subunit c and helix-4 of subunit a pack close enough to each other in the membrane to interact during function. The proximity of helices supports the possibility of an interaction between Arg210 in helix-4 of subunit a and Asp61 in helix-2 of subunit c during proton translocation, as has been suggested previously.
Collapse
Affiliation(s)
- W Jiang
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | |
Collapse
|
284
|
Nathanson L, Gromet-Elhanan Z. Mutagenesis of beta-Glu-195 of the Rhodospirillum rubrum F1-ATPase and its role in divalent cation-dependent catalysis. J Biol Chem 1998; 273:10933-8. [PMID: 9556571 DOI: 10.1074/jbc.273.18.10933] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We introduced mutations at the fully conserved residue Glu-195 in subunit beta of Rhodospirillum rubrum F1-ATPase. The activities of the expressed wild type (WT) and mutant beta subunits were assayed by following their capacity to assemble into the earlier prepared beta-depleted, membrane-bound R. rubrum enzyme (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8742-8747) and to restore ATP synthesis and/or hydrolysis activity. All three mutations, beta-E195K, beta-E195Q, and beta-E195G, were found to bind as the WTbeta into the beta-depleted enzyme. They restored between 30 and 60% of the WT restored photophosphorylation activity and 16, 45, and 105%, respectively of the CaATPase activity. The mutants required, however, much higher concentrations of divalent cations and could not restore any significant MgATPase or MnATPase activities. Only beta-E195G could restore some of these activities when assayed in the presence of 100 mM sulfite and high MgCl2 or MnCl2 concentrations. These results suggest that the observed difference in restoration of ATP synthesis and CaATPase, as compared with MgATPase and MnATPase, can be due to the tight regulation of the last two activities, resulting in their inhibition at cation/ATP ratios above 0.5. The R. rubrum F1beta-E195 is equivalent to the mitochondrial F1beta-E199, which points into the tunnel leading to the F1 catalytic nucleotide binding sites (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). Our findings indicate that this residue, although not an integral part of the F1 catalytic sites, affects divalent cation binding and release of inhibitory MgADP, suggesting its participation in the interconversion of the F1 catalytic sites between different conformational states.
Collapse
Affiliation(s)
- L Nathanson
- Department of Biochemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
285
|
Ekuni A, Watanabe H, Kuroda N, Sawada K, Murakami H, Kanazawa H. Reconstitution of F1-ATPase activity from Escherichia coli subunits alpha, beta and subunit gamma tagged with six histidine residues at the C-terminus. FEBS Lett 1998; 427:64-8. [PMID: 9613601 DOI: 10.1016/s0014-5793(98)00395-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An engineered gamma subunit of Escherichia coli F1-ATPase with extra 14 and 20 amino acid residues at the N- and C-termini (His-tag gamma), respectively, was overproduced in E. coli and purified. Six histidines are included in the C-terminal extension. The reconstituted F1 containing alpha, beta, and His-tagged gamma exhibited sixty percent of the wild-type ATPase activity. The reconstituted alphabeta His-tag gamma complex was subjected to affinity chromatography with nickel-nitrilotriacetic acid (Ni-NTA) agarose resin. ATPase activity was eluted specifically with imidazole. These results implied that the tag sequence protruded to the surface of the complex and did not seriously impair the activity. The reconstituted alphabeta His-tag gamma complex, even after its binding to the resin, exhibited ATPase activity suggesting that the gamma subunit, when fixed to a solid phase, may rotate the alphabeta complex. This system may provide a new approach for analysis of the rotation mechanisms in F1-ATPase.
Collapse
Affiliation(s)
- A Ekuni
- Department of Biotechnology, Faculty of Engineering, Okayama University, Tsushimanaka, Japan
| | | | | | | | | | | |
Collapse
|
286
|
Kuo PH, Ketchum CJ, Nakamoto RK. Stability and functionality of cysteine-less F(0)F1 ATP synthase from Escherichia coli. FEBS Lett 1998; 426:217-20. [PMID: 9599011 DOI: 10.1016/s0014-5793(98)00337-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All 21 native cysteines in the Escherichia coli F(0)F1 ATP synthase were replaced by alanines. In isolated E. coli membranes, ATP-dependent proton pumping, turnover of ATP hydrolysis and steady-state transition state thermodynamic parameters of the cysteine-less enzyme were similar to wild-type. The cysteine-less enzyme was solubilized in n-octyl beta-D-glucopyranoside, purified by affinity chromatography, and reconstituted into pre-formed liposomes made from E. coli lipids. The properties of the reconstituted, purified enzyme were not significantly different from the membranous enzyme. These data demonstrate that cysteine-less F(0)F1 is biochemically stable and has functionality similar to wild-type.
Collapse
Affiliation(s)
- P H Kuo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906-0011, USA
| | | | | |
Collapse
|
287
|
Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. PLANT PHYSIOLOGY 1998; 116:1487-95. [PMID: 9536067 PMCID: PMC35057 DOI: 10.1104/pp.116.4.1487] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/1997] [Accepted: 12/04/1997] [Indexed: 05/17/2023]
Abstract
Tonoplast-enriched vesicles isolated from maize (Zea mays L.) coleoptiles and seeds synthesize ATP from ADP and inorganic phosphate (Pi) and inorganic pyrophosphate from Pi. The synthesis is consistent with reversal of the catalytic cycle of the H+-ATPase and H+-pyrophosphatase (PPase) vacuolar membrane-bound enzymes. This was monitored by measuring the exchange reaction that leads to 32Pi incorporation into ATP or inorganic pyrophosphate. The reversal reactions of these enzymes were dependent on the proton gradient formed across the vesicle membrane and were susceptible to the uncoupler carbonyl cyanide p(trifluoromethoxy)-phenylhydrazone and the detergent Triton X-100. Comparison of the two H+ pumps showed that the H+-ATPase was more active than H+-PPase in coleoptile tonoplast vesicles, whereas in seed vesicles H+-PPase activity was clearly dominant. These findings may reflect the physiological significance of these enzymes in different tissues at different stages of development and/or differentiation.
Collapse
|
288
|
Leng XH, Manolson MF, Forgac M. Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J Biol Chem 1998; 273:6717-23. [PMID: 9506970 DOI: 10.1074/jbc.273.12.6717] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that mutations in buried charged residues in the last two transmembrane helices of Vph1p (the 100-kDa subunit of the yeast V-ATPase) inhibit proton transport and ATPase activity (Leng, X. H., Manolson, M., Liu, Q., and Forgac, M. (1996) J. Biol. Chem. 271, 22487-22493). In this report we have further explored the function of this region of Vph1p (residues 721-840) using a combination of site-directed and random mutagenesis. Effects of mutations on stability of Vph1p, assembly of the V-ATPase complex, 9-amino-6-chloro-2-methoxyacridine quenching (as a measure of proton transport), and ATPase activity were assessed. Additional mutations were analyzed to test the importance of Glu-789 in TM7 and His-743 in TM6. Although substitution of Asp for Glu at position 789 led to a 50% decrease in 9-amino-6-chloro-2-methoxyacridine quenching, substitution of Ala at this position gave a mutant with 40% quenching relative to wild type, suggesting that a negative charge at this position is not absolutely essential for proton transport. Similarly, a positive charge is not essential at position His-743, since the H743Y and H743A mutants retain 20 and 60% of wild-type quenching, respectively. Interestingly, H743A approaches wild-type ATPase activity at elevated pH while the E789D mutant shows a slightly lower pH optimum than wild type, suggesting that these residues are in a location to influence V-ATPase activity. The low pumping activity of the double mutant (E789H/H743E) suggests that these residues do not form a simple ion pair. Random mutagenesis identified a number of additional mutations both inside the membrane (L739S and L746S) as well as external to the membrane (H729R and V803D) which also significantly inhibited proton pumping and ATPase activity. By contrast, a cluster of five mutations were identified between residues 800 and 814 in the soluble segment just COOH-terminal to TM7 which affected either assembly or stability of the V-ATPase complex. Two mutations (F809L and G814D) may also affect targeting of the 100-kDa subunit. These results suggest that this segment of Vph1p plays a crucial role in organization of the V-ATPase complex.
Collapse
Affiliation(s)
- X H Leng
- Department of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
289
|
Milgrom YM, Murataliev MB, Boyer PD. Bi-site activation occurs with the native and nucleotide-depleted mitochondrial F1-ATPase. Biochem J 1998; 330 ( Pt 2):1037-43. [PMID: 9480927 PMCID: PMC1219242 DOI: 10.1042/bj3301037] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates. They provide rate constant information, and show that an apparent Km for a second site of about 2 microM and Vmax of 10 s-1, as suggested by others, is not operative. Careful initial velocity measurements also eliminate other suggested Km values and are consistent with bi-site activation to near maximal hydrolysis rates, with a Km of about 130 microM and Vmax of about 700 s-1. However, the results do not eliminate the possibility of additional 'hidden' Km values with similar Vmax:Km ratios. Recent data on competition between TNP-ATP and ATP revealed a third catalytic site for ATP in the millimolar concentration range. This result, and those reported in the present paper, allow the conclusion that the mitochondrial F1-ATPase can attain near maximal activity in bi-site catalysis. Our data also add to the evidence that a recent claim, that the mitochondrial F1-ATPase does not show catalytic site cooperativity, is invalid.
Collapse
Affiliation(s)
- Y M Milgrom
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center at Syracuse, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | |
Collapse
|
290
|
Abstract
RNA polymerase (RNAP) is a processive molecular motor capable of generating forces of 25-30 pN, far in excess of any other known ATPase. This force derives from the hydrolysis free energy of nucleotides as they are incorporated into the growing RNA chain. The velocity of procession is limited by the rate of pyrophosphate release. Here we demonstrate how nucleotide triphosphate binding free energy can rectify the diffusion of RNAP, and show that this is sufficient to account for the quantitative features of the measured load-velocity curve. Predictions are made for the effect of changing pyrophosphate and nucleotide concentrations and for the statistical behavior of the system.
Collapse
Affiliation(s)
- H Y Wang
- Department of Molecular and Cellular Biology, University of California, Berkeley 94720-3112, USA
| | | | | | | |
Collapse
|
291
|
Struglics A, Fredlund KM, Møller IM, Allen JF. Two subunits of the F0F1-ATPase are phosphorylated in the inner mitochondrial membrane. Biochem Biophys Res Commun 1998; 243:664-8. [PMID: 9500982 DOI: 10.1006/bbrc.1998.8151] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inside-out submitochondrial particles from potato tuber mitochondria were incubated with [gamma-32P]ATP. More than 16 phosphorylated polypeptides were detected by autoradiography on an SDS-gel. Two phosphoproteins, migrating at 22 and 28 kDa, were excised from the SDS-gel, electroeluted, and purified further by anion chromatography. The phosphoproteins were N-terminally sequenced. Over the regions sequenced, the 22 and 28 kDa phosphoproteins had 100% sequence identity with potato proteins identified as the delta'-subunit of the F1-ATPase and the b-subunit of the F0-ATPase, respectively. We suggest that phosphorylation of these proteins may control the interaction between F1 and F0 and regulate energy coupling in oxidative phosphorylation.
Collapse
|
292
|
Kaim G, Matthey U, Dimroth P. Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F1F0 ATPases. EMBO J 1998; 17:688-95. [PMID: 9450994 PMCID: PMC1170418 DOI: 10.1093/emboj/17.3.688] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have recently isolated a mutant (aK220R, aV264E, aI278N) of the Na+-translocating Escherichia coli/Propionigenium modestum ATPase hybrid with a Na+-inhibited growth phenotype on succinate. ATP hydrolysis by the reconstituted mutant ATPase was inhibited by external (N side) NaCl but not by internal (P side) NaCl. In contrast, LiCl activated the ATPase from the N side and inhibited it from the P side. A similar pattern of activation and inhibition was observed with NaCl and the ATPase from the parent strain PEF42. We conclude from these results that the binding sites for the coupling ions on the c subunits are freely accessible from the N side. Upon occupation of these sites, the ATPase becomes more active, provided that the ions can be further translocated to the P side through a channel of the a subunit. If by mutation of the a subunit this channel becomes impermeable for Na+, N side Na+ ions specifically inhibit the ATPase activity. These conclusions were corroborated by the observation that proton transport into proteoliposomes containing the mutant ATPase was abolished by N side but not by P side Na+ ions. In contrast, LiCl affected proton translocation from either side, similar to the sidedness effect of Na+ ions on H+ transport by the parent hybrid ATPase. If the ATPase carrying the mutated a subunit was incubated with 22NaCl and ATP, 1 mol 22Na+/mol enzyme was occluded. With the parent hybrid ATPase, 22Na+ occlusion was not observed. The occluded 22Na+ could be removed from its tight binding site by 20 mM LiCl, while incubation with 20 mM NaCl was without effect. Li+ but not Na+ is therefore apparently able to pass through the mutated a subunit and make the entrapped Na+ ions accessible again to the aqueous environment. These results suggest an ion translocation mechanism through F0 that in the ATP hydrolysis mode involves binding of the coupling ions from the cytoplasm to the multiple c subunits, ATP-driven rotation to bring a Na+, Li+, or H+-loaded c subunit into a contact site with the a subunit and release of the coupling ions through the a subunit channel to the periplasmic surface of the membrane.
Collapse
Affiliation(s)
- G Kaim
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
293
|
Matsuyama S, Xu Q, Velours J, Reed JC. The Mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1998; 1:327-36. [PMID: 9660917 DOI: 10.1016/s1097-2765(00)80033-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proapoptotic mammalian protein Bax associates with mitochondrial membranes and confers a lethal phenotype when expressed in yeast. By generating Bax-resistant mutant yeast and using classical complementation cloning methods, subunits of the mitochondrial F0F1-ATPase proton pump were determined to be critical for Bax-mediated killing in S. cerevisiae. A pharmacological inhibitor of the proton pump, oligomycin, also partially abrogated the cytotoxic actions of Bax in yeast. In mammalian cells, oligomycin also inhibited Bax-induced apoptosis and activation of cell death proteases. The findings imply that an intact F0F1-ATPase in the inner membrane of mitochondria is necessary for optimal function of Bax in both yeast and mammalian cells.
Collapse
Affiliation(s)
- S Matsuyama
- Burnham Institute, Program on Apoptosis and Cell Death Research La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
294
|
Unisite ATP hydrolysis by soluble Rhodospirillum rubrum F1-ATPase is accelerated by Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:70-8. [PMID: 9526049 DOI: 10.1016/s0005-2728(97)00083-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At saturating concentrations of ATP, soluble F1 from the Rhodospirillum rubrum (RF1) exhibits a higher rate of hydrolysis with Ca2+ than with Mg2+. The mechanisms involved in the expression of a higher catalytic activity with Ca2+ were explored by measuring the ATPase activity of RF1 at substiochiometric concentrations of ATP (unisite conditions). At a ratio of 0.25 [gamma-32P]ATP per RF1, the enzyme exhibited a 50 times higher hydrolytic rate with Ca2+ than with Mg2+. The rate of [gamma-32P]ATP binding to RF1 was in the same range with the two divalent metal ions. Centrifugation-filtration of RF1 exposed to substoichiometric [gamma-32P]ATP concentrations and Mg2+ through Sephadex columns yielded an enzyme that contained [gamma-32P]ATP and [32P]phosphate in a stoichiometry that was close to one. In the presence of Ca2+, the eluted enzyme did not contain [gamma-32P]ATP nor [32P]phosphate. This indicated that the rate of product release was faster with Ca2+ than with Mg2+. It was also observed that the ratio of multisite to unisite hydrolysis rates was of similar magnitude with both divalent cations. This suggests that they do not affect differently the cooperative mechanisms that may exist between catalytic sites. In consequence, the higher ATPase activity of RF1 in presence of Ca2+ strongly suggests that the retention time of products is decreased in the presence of this cation. Copyright 1998 Elsevier Science B.V.
Collapse
|
295
|
Bald D, Amano T, Muneyuki E, Pitard B, Rigaud JL, Kruip J, Hisabori T, Yoshida M, Shibata M. ATP synthesis by F0F1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition. J Biol Chem 1998; 273:865-70. [PMID: 9422743 DOI: 10.1074/jbc.273.2.865] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ATP hydrolyzing activity of a mutant alpha3beta3gamma subcomplex of F0F1-ATP synthase (DeltaNC) from the thermophilic Bacillus PS3, which lacked noncatalytic nucleotide binding sites, was inactivated completely soon after starting the reaction (Matsui, T., Muneyuki, E. , Honda, M., Allison, W. S., Dou, C., and Yoshida, M. (1997) J. Biol. Chem. 272, 8215-8221). This inactivation is caused by rapid accumulation of the "MgADP inhibited form" which, in the case of wild-type enzyme, would be relieved by ATP binding to noncatalytic sites. We reconstituted F0F1-ATP synthase into liposomes together with bacteriorhodopsin and measured illumination-driven ATP synthesis. Remarkably, DeltaNC F0F1-ATP synthase catalyzed continuous turnover of ATP synthesis while it could not promote ATP-driven proton translocation. ATP synthesis by DeltaNC F0F1-ATP synthase, as well as wild-type enzyme, proceeded even in the presence of azide, an inhibitor of ATP hydrolysis that stabilizes the MgADP inhibited form. The time course of ATP synthesis by DeltaNC F0F1-ATP synthase was linear, and gradual acceleration to the maximal rate, which was observed for the wild-type enzyme, was not seen. Thus, ATP synthesis can proceed without nucleotide binding to noncatalytic sites even though the rate is sub-maximal. These results indicate that the MgADP inhibited form is not produced in ATP synthesis reaction, and in this regard, ATP synthesis may not be a simple reversal of ATP hydrolysis.
Collapse
Affiliation(s)
- D Bald
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
MacLeod KJ, Vasilyeva E, Baleja JD, Forgac M. Mutational analysis of the nucleotide binding sites of the yeast vacuolar proton-translocating ATPase. J Biol Chem 1998; 273:150-6. [PMID: 9417059 DOI: 10.1074/jbc.273.1.150] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To further define the structure of the nucleotide binding sites on the vacuolar proton-translocating ATPase (V-ATPase), the role of aromatic residues at the catalytic sites was probed using site-directed mutagenesis of the VMA1 gene that encodes the A subunit in yeast. Substitutions were made at three positions (Phe452, Tyr532, and Phe538) that correspond to residues observed in the crystal structure of the homologous beta subunit of the bovine mitochondrial F-ATPase to be in proximity to the adenine ring of bound ATP. Although conservative substitutions at these positions had relatively little effect on V-ATPase activity, replacement with nonaromatic residues (such as alanine or serine) caused either a complete loss of activity (F452A) or a decrease in the affinity for ATP (Y532S and F538A). The F452A mutation also appeared to reduce stability of the V-ATPase complex. These results suggest that aromatic or hydrophobic residues at these positions are essential to maintain activity and/or high affinity binding to the catalytic sites of the V-ATPase. Site-directed mutations were also made at residues (Phe479 and Arg483) that are postulated to be contributed by the A subunit to the noncatalytic nucleotide binding sites. Generally, substitutions at these positions led to decreases in activity ranging from 30 to 70% relative to wild type as well as modest decreases in Km for ATP. Interestingly, the R483E and R483Q mutants showed a time-dependent increase in ATPase activity following addition of ATP, suggesting that events at the noncatalytic sites may modulate the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- K J MacLeod
- Departments of Cellular and Molecular Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
297
|
Sawada K, Watanabe H, Moritani-Otsuka C, Kanazawa H. Subunit interactions of Escherichia coli F1-ATPase: mutants of the gamma subunits defective in interaction with the epsilon subunit isolated by the yeast two-hybrid system. Arch Biochem Biophys 1997; 348:183-9. [PMID: 9390190 DOI: 10.1006/abbi.1997.0397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously, we established a method to detect subunit interactions of F1-ATPase by the yeast two-hybrid system (Moritani, C., et al. Biochim. Biophys. Acta 1274, 67-72, 1996). Here, we isolated mutants of the gamma subunits defective in interaction with the epsilon subunit by this new procedure to study the molecular basis of coupling mechanisms of the F1F0-ATPase. Based on the intensities of the reporter gene expression in this system, five mutants of the gamma subunit with different levels of gamma-epsilon interactions were isolated and their single base substitutions were determined. Mutants with a substitution of Pro-55 for Leu, Thr-102 for Met, Val-141 for Asp, or Gln-235 for Leu exhibited decreased reporter gene expression, suggesting decreased levels of interaction, while Asp-85 for Gly mutation caused a higher level of expression, suggesting increased interaction. Among these point mutations, G85D, M102T, or D141V mutations were introduced into the gamma subunit gene in the plasmid carrying whole unc operon. Transformants carrying a deletion mutant of the whole unc operon with these expression plasmids were analyzed. Mutations M102T and D141V with decreased gamma-epsilon interaction caused increases of membrane-bound F1-ATPase activity and proton pumping activity, while G85D with increased gamma-epsilon interaction exhibited lower levels of F1-ATPase activity in the membranes. Molecular assembly of the F1 subunits on the mutant membranes detected by Western blotting exhibited no defect for all three mutants. These results suggested that the correlation between the ATPase activity and gamma-epsilon interaction is reciprocal and this interaction may regulate the ATPase activity. The topological and functional importance of Gly-85, Met-102, and Asp-141 together with Leu-55 and Leu-235 in gamma-epsilon interaction is discussed.
Collapse
Affiliation(s)
- K Sawada
- Department of Biotechnology, Faculty of Engineering, Okayama University, Japan
| | | | | | | |
Collapse
|
298
|
Sawada K, Kuroda N, Watanabe H, Moritani-Otsuka C, Kanazawa H. Interaction of the delta and b subunits contributes to F1 and F0 interaction in the Escherichia coli F1F0-ATPase. J Biol Chem 1997; 272:30047-53. [PMID: 9374480 DOI: 10.1074/jbc.272.48.30047] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.
Collapse
Affiliation(s)
- K Sawada
- Department of Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan 700.
| | | | | | | | | |
Collapse
|
299
|
Abstract
Photoaffinity labelling of hamster P-glycoprotein was carried out after trapping of radioactive Mg-8-azido-ADP in the catalytic sites by vanadate or beryllium fluoride. With either trapping agent the same labelled peptide was obtained in homogeneous form, with the sequence -FNEVVFNxPTRPDI-, corresponding to residues 1034-1037 in the C-terminal nucleotide binding site. The missing residue 'x' corresponds to Tyr-1041, which is therefore a primary reaction target of 8-azido-ADP. This tyrosine is conserved in all hamster, mouse and human P-glycoproteins. A second major labelled peptide fraction was also identified. The major sequence in this fraction was -NIHFSxPSR-, corresponding to residues 393-401 of hamster P-glycoprotein, where 'x' corresponds to Tyr-398 in the N-terminal nucleotide binding site. Therefore Tyr-398, which is also conserved in other P-glycoproteins, is also a reaction target for 8-azido-ADP. In sequence alignment of the two nucleotide binding sites, Tyr-398 exactly corresponds to Tyr-1041. The data indicate that these two tyrosines lie close to the adenine ring of bound substrate MgATP in the respective catalytic sites of P-glycoprotein.
Collapse
Affiliation(s)
- B Sankaran
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14642, USA
| | | | | |
Collapse
|
300
|
Bianchet MA, Ko YH, Amzel LM, Pedersen PL. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr 1997; 29:503-24. [PMID: 9511935 DOI: 10.1023/a:1022443209010] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Members of the ABC transporter superfamily contain two nucleotide binding domains. To date, the three dimensional structure of no member of this super-family has been elucidated. To gain structural insight, the known structures of several other nucleotides binding proteins can be used as a framework for modeling these domains. We have modeled both nucleotide binding domains of the protein CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) using the two similar domains of mitochondrial F1-ATPase. The models obtained, provide useful insights into the putative functions of these domains and their possible interaction as well as a rationale for the basis of Cystic Fibrosis causing mutations. First, the two nucleotide binding domains (folds) of CFTR are each predicted to span a 240-250 amino acid sequence rather than the 150-160 amino acid sequence originally proposed. Second, the first nucleotide binding fold, is predicted to catalyze significant rates of ATP hydrolysis as a catalytic base (E504) resides near the y phosphate of ATP. This prediction has been verified experimentally [Ko, Y.H., and Pedersen, P.L. (1995) J. Biol. Chem. 268, 24330-24338], providing support for the model. In contrast, the second nucleotide binding fold is predicted at best to be a weak ATPase as the glutamic acid residue is replaced with a glutamine. Third, F508, which when deleted causes approximately 70% of all cases of cystic fibrosis, is predicted to lie in a cleft near the nucleotide binding pocket. All other disease causing mutations within the two nucleotide binding domains of CFTR either reside near the Walker A and Walker B consensus motifs in the heart of the nucleotide binding pocket, or in the C motif which lies outside but near the nucleotide binding pocket. Finally, the two nucleotide binding domains of CFTR are predicted to interact, and in one of the two predicted orientations, F508 resides near the interface. This is the first report where both nucleotide binding domains of an ABC transporter and their putative domain-domain interactions have been modeled in three dimensions. The methods and the template used in this work can be used to analyze the structures and function of the nucleotide binding domains of all other members of the ABC transporter super-family.
Collapse
Affiliation(s)
- M A Bianchet
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | |
Collapse
|