251
|
Abstract
In the cerebellar circuit, Golgi cells are thought to contribute to information processing and integration via feedback mechanisms. In these mechanisms, dynamic modulation of Golgi cell excitability is necessary because GABA from Golgi cells causes tonic inhibition on granule cells. We studied the role and synaptic mechanisms of postsynaptic metabotropic glutamate receptor subtype 2 (mGluR2) at granule cell-Golgi cell synapses, using whole-cell recording of green fluorescent protein-positive Golgi cells of wild-type and mGluR2-deficient mice. Postsynaptic mGluR2 was activated by glutamate from granule cells and hyperpolarized Golgi cells via G protein-coupled inwardly rectifying K+ channels (GIRKs). This hyperpolarization conferred long-lasting silencing of Golgi cells, the duration and extents of which were dependent on stimulus strengths. Postsynaptic mGluR2 thus senses inputs from granule cells and is most likely important for spatiotemporal modulation of mossy fiber-granule cell transmission before distributing inputs to Purkinje cells.
Collapse
Affiliation(s)
- Dai Watanabe
- Department of Biological Sciences, Kyoto University Faculty of Medicine, Kyoto 606-8501, Japan
| | | |
Collapse
|
252
|
Abstract
We examined the expression of metabotropic glutamate (mGlu) receptors in species of fish that differ for their vulnerability to anoxic brain damage. Although expression of mGlu1a and mGlu5 receptors was similar in the brain of all species examined, expression of mGlu2/3 receptors was substantially higher in the brain of anoxia-tolerant species (i.e., the carp Carassius carassius and the goldfish Carassius auratus) than in the brain of species that are highly vulnerable to anoxic damage, such as the trouts Salmo trutta and Oncorhynchus mykiss. This difference was confirmed by measuring the mGlu2/3 receptor-mediated inhibition of forskolin-stimulated cAMP formation in slices prepared from the telencephalon of C. auratus and S. trutta. We exposed the goldfish C. auratus to water deprived of oxygen for 4 hr for the induction of hypoxic brain damage. Although the goldfish survived this treatment, the occurrence of apoptotic cell death could be demonstrated by terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining and by the assessment of caspase-3 activity in different brain region. The extent of cell death was highest in the medulla oblongata, followed by the optic tectum, cerebellum, and hypothalamus. No cell death was found in the telencephalon. This regional pattern of hypoxic damage was inversely related to the expression of mGlu2/3 receptors, which was lowest in the medulla oblongata and highest in the telencephalon. Treatment of the goldfish with the brain permeant mGlu2/3 receptor antagonist LY341495 (1 mg/kg, i.p.) amplified anoxic damage throughout the brain and enabled the induction of cell death by anoxia in the telencephalon. In contrast, treatment of the goldfish with the mGlu2/3 receptor agonist LY379268 (0.5 or 1 mg/kg, i.p.) was highly protective against anoxic brain damage. Finally, exposure to the antagonist LY341495 (0.5 microm) greatly amplified the release of glutamate induced by hypoxia in slices prepared from the medulla oblongata and the telencephalon of the goldfish. We conclude that expression of mGlu2/3 receptors provides a major defensive mechanism against brain damage in anoxia-tolerant species.
Collapse
|
253
|
Howson PA, Jane DE. Actions of LY341495 on metabotropic glutamate receptor-mediated responses in the neonatal rat spinal cord. Br J Pharmacol 2003; 139:147-55. [PMID: 12746233 PMCID: PMC1573828 DOI: 10.1038/sj.bjp.0705230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The group II metabotropic glutamate (mGlu) receptor antagonist (2S,1'S,2'S)-2-(2-carboxycyclopropyl)-2-(9H-xanthen-9-yl)glycine (LY341495) also has activity at group I and III mGlu receptors at higher concentrations and can be used to discriminate between mGlu receptor subtypes. We report the antagonist action of LY341495 on glutamate receptors expressed in the neonatal rat spinal cord preparation and the use of this antagonist to investigate the group III mGlu receptor subtypes responsible for mediating the depression of synaptic transmission in the spinal cord mediated by the group III mGlu receptor agonists (S)-2-amino-4-phosphonobutanoic acid ((S)-AP4) and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-I). 2. LY341495 antagonised mGlu receptor agonist-induced responses in the spinal cord with a rank order of potency of group II > group III > group I, which is the same as that observed in human cloned mGlu receptor cell lines. Antagonism of group II and III mGlu receptor-mediated effects were time dependent when low-nanomolar concentrations of LY341495 were used. Although the rank order of potency of LY341495 was the same on native rat and cloned human mGlu receptors, there was a compression in the selectivity between group II and III mGlu receptors, expressed in the spinal cord. 3. In agreement with a previous study on cloned ionotropic glutamate receptors 100 microM LY341495 had little or no effect on N-methyl-D-aspartate, (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid or kainate receptor-mediated responses on motoneurones. 4. LY341495 exhibited low-nanomolar potency antagonist activity against (S)-AP4 and ACPT-I suggesting that these agonists are activating predominantly mGlu8 and that mGlu4 receptors do not play a role in modulating synaptic transmission in the pathways stimulated in the experiments described here.
Collapse
Affiliation(s)
- Patrick A Howson
- Department of Pharmacology, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David E Jane
- Department of Pharmacology, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
- Author for correspondence:
| |
Collapse
|
254
|
Losonczy A, Somogyi P, Nusser Z. Reduction of excitatory postsynaptic responses by persistently active metabotropic glutamate receptors in the hippocampus. J Neurophysiol 2003; 89:1910-9. [PMID: 12686572 DOI: 10.1152/jn.00842.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The release of glutamate from axon terminals is under the control of a variety of presynaptic receptors, including several metabotropic glutamate receptors (mGluRs). Synaptically released glutamate can activate mGluRs within the same synapse where it was released and also at a distance following its diffusion from the synaptic cleft. It is unknown, however, whether the release of glutamate is under the control of persistently active mGluRs. We tested the contribution of mGluR activation to the excitatory postsynaptic responses recorded from several types of GABAergic interneuron in strata oriens/alveus of the mouse hippocampus. The application of 1 microM (alphaS)-alpha-amino-alpha-[(1S,2S)-2-carboxycyclopropyl]xanthine-9-propanoic acid (LY341495), a broad-spectrum mGluR (subtypes 2/3/7/8) antagonist at this concentration, increased evoked-excitatory postsynaptic current (eEPSC) amplitudes by 60% (n = 33). On identified cell types, LY341495 had either no effect (7 of 14 basket and 7 of 13 oriens-lacunosum moleculare, O-LM cells) or resulted in a 32 +/- 30% (mean +/- SD) increase in EPSC amplitudes recorded from basket cells and a seven-times greater (216 +/- 102%) enhancement of EPSCs in O-LM cells. The enhancement of the first EPSC of a high-frequency train indicates persistent mGluR activation. During antagonist application, the relative increase in EPSC amplitude evoked by the second and subsequent pulses in the train was not larger than that of the first EPSC, showing no further receptor activation by the released transmitter. The effect of mGluR subtype selective agonists [3 microM L(+)-2-amino-4-phosphonobutyric acid (L-AP4): mGluR4/8; 600 microM L-AP4: mGluR4/7/8; 1 microM (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IU): mGluR2/3] and an antagonist (0.2 microM LY341495: mGluR2/3/8) suggests that persistently active mGluR2/3/8 control the excitability of hippocampal network.
Collapse
Affiliation(s)
- Attila Losonczy
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; and Medical Research Council, Anatomical Neuropharmacology Unit, University Department of Pharmacology, Oxford OX1 3TH, United Kingdom
| | | | | |
Collapse
|
255
|
Scaccianoce S, Matrisciano F, Del Bianco P, Caricasole A, Di Giorgi Gerevini V, Cappuccio I, Melchiorri D, Battaglia G, Nicoletti F. Endogenous activation of group-II metabotropic glutamate receptors inhibits the hypothalamic-pituitary-adrenocortical axis. Neuropharmacology 2003; 44:555-61. [PMID: 12668041 DOI: 10.1016/s0028-3908(03)00027-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic injection of the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.), increased plasma corticosterone in mice to an extent similar to that induced by the despair test. Treatment with the mGlu2/3 receptor agonist, LY379268 (1 mg/kg, i.p.), or the non-competitive mGlu5 receptor antagonist, MPEP (5 mg/kg, i.p.), failed to induce significant changes in corticosterone levels. Searching for a site of action of LY341495, we examined the expression of mGlu receptor subtypes in the various anatomical regions of the mouse hypothalamic-pituitary-adrenal (HPA) axis. Only mGlu5 and -7 receptor mRNAs were detected in the adrenal gland by RT-PCR, whereas mGlu -1, -3, -4, -5, -7 and -8 receptor mRNAs were detected in the anterior pituitary. All transcripts (with the exception of mGlu5 and mGlu6 receptor mRNAs) were detected in the hypothalamus. However, Western blot analysis showed the presence of mGlu2/3 receptor proteins only in the hypothalamus and not in the anterior pituitary. This was consistent with functional data showing that LY341495 (0.1 and 1 microM) failed to affect ACTH secretion from isolated mouse anterior pituitaries. Moving from these observations, we examined whether LY341495 could activate the HPA axis by inhibiting mGlu2/3 receptors at hypothalamic level. We measured the release of corticotropin releasing hormone (CRH) in isolated mouse hypothalami incubated in the presence of subtype-selective mGlu receptor agonists or antagonists. Among all the drugs we have tested, only LY341495 was able to increase CRH secretion. With high concentrations of LY341495 (1 microM) this increase was similar to that induced by 50 mM K(+). The action of LY341495 was prevented by the combined application of the mGlu2/3 receptor agonist, LY379268. We conclude that group-II mGlu receptors tonically regulate the HPA axis by controlling CRH secretion at hypothalamic level.
Collapse
Affiliation(s)
- S Scaccianoce
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Ple A. Moro 5, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Bandrowski AE, Huguenard JR, Prince DA. Baseline glutamate levels affect group I and II mGluRs in layer V pyramidal neurons of rat sensorimotor cortex. J Neurophysiol 2003; 89:1308-16. [PMID: 12626613 PMCID: PMC3005275 DOI: 10.1152/jn.00644.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Possible functional roles for glutamate that is detectable at low concentrations in the extracellular space of intact brain and brain slices have not been explored. To determine whether this endogenous glutamate acts on metabotropic glutamate receptors (mGluRs), we obtained whole cell recordings from layer V pyramidal neurons of rat sensorimotor cortical slices. Blockade of mGluRs with (+)-alpha-amino-4-carboxy-alpha-methyl-benzeacetic acid (MCPG, a general mGluR antagonist) increased the mean amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), an effect attributable to a selective increase in the occurrence of large amplitude sEPSCs. 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495, a group II antagonist) increased, but R(-)-1-amino-2,3-dihydro-1H-indene-1,5-dicarboxylic acid (AIDA) and (RS)-hexyl-HIBO (group I antagonists) decreased sEPSC amplitude, and (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III antagonist) did not change it. The change in sEPSCs elicited by MCPG, AIDA, and LY341495 was absent in tetrodotoxin, suggesting that it was action potential-dependent. The increase in sEPSCs persisted in GABA receptor antagonists, indicating that it was not due to effects on inhibitory interneurons. AIDA and (S)-3,5-dihydroxyphenylglycine (DHPG, a group I agonist) elicited positive and negative shifts in holding current, respectively. LY341495 and (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV, a group II agonist) elicited negative and positive shifts in holding current, respectively. The AIDA and LY341495 elicited currents persisted in TTX. Finally, in current clamp, LY341495 depolarized cells by approximately 2 mV and increased the number of action potentials to a given depolarizing current pulse. Thus ambient levels of glutamate tonically activate mGluRs and regulate cortical excitability.
Collapse
Affiliation(s)
- A E Bandrowski
- Department of Neurology, Stanford University Medical Center, Stanford, California 94305, USA
| | | | | |
Collapse
|
257
|
Sørensen US, Bleisch TJ, Kingston AE, Wright RA, Johnson BG, Schoepp DD, Ornstein PL. Synthesis and structure-activity relationship studies of novel 2-diarylethyl substituted (2-carboxycycloprop-1-yl)glycines as high-affinity group II metabotropic glutamate receptor ligands. Bioorg Med Chem 2003; 11:197-205. [PMID: 12470714 DOI: 10.1016/s0968-0896(02)00387-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The major excitatory neurotransmitter in the central nervous system, (S)-glutamic acid , activates both ionotropic and metabotropic excitatory amino acid receptors. Its importance in connection to neurological and psychiatric disorders has directed great attention to the development of compounds that modulate the effects of this endogenous ligand. Whereas L-carboxycyclopropylglycine (L-CCG-1) is a potent agonist at, primarily, group II metabotropic glutamate receptors, alkylation of at the alpha-carbon notoriously result in group II mGluR antagonists, of which the most potent compound described so far, LY341495, displays IC(50) values of 23 and 10 nM at the group II receptor subtypes mGlu2 and mGlu3, respectively. In this study we synthesized a series of structural analogues of in which the xanthyl moiety is replaced by two substituted-phenyl groups. The pharmacological characterization shows that these novel compounds have very high affinity for group II mGluRs when tested as their racemates. The most potent analogues demonstrate K(i) values in the range of 5-12 nM, being thus comparable to LY341495.
Collapse
Affiliation(s)
- Ulrik S Sørensen
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, DC 1523 Indianapolis, IN 46285, USA
| | | | | | | | | | | | | |
Collapse
|
258
|
Fujino K, Oertel D. Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci U S A 2003; 100:265-70. [PMID: 12486245 PMCID: PMC140946 DOI: 10.1073/pnas.0135345100] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dorsal cochlear nucleus integrates acoustic with multimodal sensory inputs from widespread areas of the brain. Multimodal inputs are brought to spiny dendrites of fusiform and cartwheel cells in the molecular layer by parallel fibers through synapses that are subject to long-term potentiation and long-term depression. Acoustic cues are brought to smooth dendrites of fusiform cells in the deep layer by auditory nerve fibers through synapses that do not show plasticity. Plasticity requires Ca(2+)-induced Ca(2+) release; its sensitivity to antagonists of N-methyl-d-aspartate and metabotropic glutamate receptors differs in fusiform and cartwheel cells.
Collapse
Affiliation(s)
- Kiyohiro Fujino
- Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison 53706, USA
| | | |
Collapse
|
259
|
Zhai Y, George CA, Zhai J, Nisenbaum ES, Johnson MP, Nisenbaum LK. Group II metabotropic glutamate receptor modulation of DOI-induced c-fos mRNA and excitatory responses in the cerebral cortex. Neuropsychopharmacology 2003; 28:45-52. [PMID: 12496939 DOI: 10.1038/sj.npp.1300013] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have demonstrated that the hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) enhances glutamatergic transmission in the prefrontal cortex. This increase can be suppressed by metabotropic glutamate2/3 (mGlu2/3) receptor activation. In addition to enhancing glutamatergic transmission, DOI increases cortical c-fos expression. We tested if a reduction in glutamate release produced by mGlu2/3 receptor activation attenuates DOI-induced c-fos expression in the cortex. Similar to previous studies, DOI produced a robust increase in c-fos mRNA throughout the cortex, including the prefrontal, frontoparietal, and somatosensory regions. Pretreatment with the mGlu2/3 agonist LY379268 attenuated the DOI-induced increase in the prefrontal cortex. This suppression was blocked by the mGlu2/3 antagonist LY341495. In contrast, the DOI-induced increase in c-fos mRNA in the frontoparietal and somatosensory cortex was unaffected by the mGlu2/3 agents. These findings suggest that Group II metabotropic glutamate receptor agonists are capable of modulating postsynaptic function preferentially in the limbic cortex under conditions of enhanced glutamate release.
Collapse
Affiliation(s)
- Yan Zhai
- Lilly Research Laboratories, Neuroscience Research Division, Eli Lilly and Company, Lilly Corperate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
260
|
Manahan-Vaughan D, Ngomba RT, Storto M, Kulla A, Catania MV, Chiechio S, Rampello L, Passarelli F, Capece A, Reymann KG, Nicoletti F. An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path-dentate gyrus synapse in freely moving rats. Neuropharmacology 2003; 44:17-25. [PMID: 12559118 DOI: 10.1016/s0028-3908(02)00342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The involvement of metabotropic glutamate (mGlu) receptors in the induction of long-term potentiation (LTP) in vivo has been consistently documented. We have investigated whether LTP induction in the dentate gyrus of rats leads to changes in expression of mGlu2/3 or -5 receptor subtypes in the hippocampus. LTP was induced at the medial perforant path-dentate gyrus synapses, and mGlu receptor expression was examined by Western blot or in situ hybridization. An up-regulation of mGlu5 receptors was observed in the hippocampus both 24 and 48 h following LTP induction. This effect was restricted to the dentate gyrus and CA1 region, whereas no changes in mGlu5 receptor protein (but an increase in mRNA levels) were observed in the CA3 region. The increased expression of mGlu5 receptors was directly related to the induction of LTP, because it was not observed when tetanic stimulation was carried out in animals treated with the NMDA receptor antagonist, 2-amino-5-phosphonopentanoate (AP5). Western blot analysis also showed a reduced expression of mGlu2/3 receptors in the whole hippocampus 24 h after LTP induction, indicating that the increased expression of mGlu5 receptors was specific. These data suggest that an up-regulation of mGlu5 receptors is a component of the plastic changes that follow the induction of LTP at the perforant path-dentate gyrus synapse.
Collapse
Affiliation(s)
- D Manahan-Vaughan
- Synaptic Plasticity Research Group, Johannes Mueller Institute for Physiology, Humboldt University Medical Faculty (Charité), Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Katayama J, Akaike N, Nabekura J. Characterization of pre- and post-synaptic metabotropic glutamate receptor-mediated inhibitory responses in substantia nigra dopamine neurons. Neurosci Res 2003; 45:101-15. [PMID: 12507729 DOI: 10.1016/s0168-0102(02)00202-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two inhibitory responses mediated by both pre- and post-synaptic metabotropic glutamate receptors (mGluRs) were investigated in dopamine neurons of the substantia nigra using whole-cell patch recordings. (2R,4R)-APDC, a group II mGluR agonist, and L-2-amino-4-phosphonobutyrate (L-AP4), a group III mGluR agonist, reversibly suppressed the amplitude of excitatory postsynaptic currents (EPSCs). However, (S)-3,5-DHPG, a group I mGluR agonist, exhibited less inhibitory action on the EPSCs. LY341495, a highly potent group II mGluR antagonist, antagonized the broad spectrum mGluR agonist, 1S,3R-ACPD-induced suppression of EPSCs. In acutely dissociated dopamine neurons, glutamate (Glu) in the presence of CNQX and AP-5 evoked an outward current accompanied by an increase in K(+) conductance. (S)-3,5-DHPG, but not (2R,4R)-APDC or L-AP4, also induced an outward current. Glu-induced outward current (I(Glu-out)) was partially inhibited by LY367385, a selective mGluR1 antagonist, but not by MPEP, a selective mGluR5 antagonist. Ryanodine and cyclopiazonic acid blocked the I(Glu-out). In the presence of caffeine, Glu failed to induce a current. Charybdotoxin, but not apamin or iberiotoxin, inhibited the I(Glu-out). Taken together, both group II and III mGluRs are mainly involved in the presynaptic inhibition of Glu release to dopamine neurons, while group I mGluRs, including at least mGluR1, participate in the hyperpolarization of dopamine neurons mediated by the opening of charybdotoxin-sensitive Ca(2+)-activated K(+) channels.
Collapse
Affiliation(s)
- Jiro Katayama
- Cellular and System Physiology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
262
|
Gubellini P, Saulle E, Centonze D, Costa C, Tropepi D, Bernardi G, Conquet F, Calabresi P. Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 2003; 44:8-16. [PMID: 12559117 DOI: 10.1016/s0028-3908(02)00214-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) have been demonstrated to play a role in synaptic plasticity. It has been recently shown that mGluR1 is involved in corticostriatal long-term depression, by means of pharmacological approach and by using mGluR1-knockout mice. Here, we report that both mGluR1 and mGluR5 are involved in corticostriatal long-term potentiation (LTP). In particular, the mGluR1 antagonist LY 367385, as well as the mGluR5 antagonist MPEP, reduce LTP amplitude. Moreover, blockade of both mGluR1 and mGluR5 by LY 367385 and MPEP co-administration fully suppresses LTP. Accordingly, group II and group III mGluRs antagonists fail to affect LTP induction. Interestingly, LTP amplitude is also significantly reduced in both mGluR1- and mGluR5-knockout mice. The differential function of mGluR1 and mGluR5 in corticostriatal synaptic plasticity may play a role in the modulation of the motor activity mediated by the basal ganglia, thus providing a substrate for the pharmacological treatment of motor disorders involving the striatum.
Collapse
Affiliation(s)
- P Gubellini
- Istituto di Neurobiologia e Medicina Molecolare, CNR, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Walker DL, Rattiner LM, Davis M. Group II metabotropic glutamate receptors within the amygdala regulate fear as assessed with potentiated startle in rats. Behav Neurosci 2002; 116:1075-83. [PMID: 12492306 DOI: 10.1037/0735-7044.116.6.1075] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contribution to fear and fear learning of amygdala Group II metabotropic glutamate receptors was examined in rats. Pretest intra-amygdala infusions of the Group II receptor agonist LY354740 (0.3 or 1.0 microg/side) significantly disrupted fear-potentiated startle. The same rats were unimpaired when later tested without drug. The Group II receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (3.0 microg/side) mimicked the effect of LY354740, and coadministration of the Group II receptor antagonist LY341495 (0.3 microg/side) prevented it. Pretraining LY354740 (0.3 microg/side) infusions also blocked learning. The effects on learning and performance were significantly less pronounced in rats with misplaced cannulas. Thus, Group II metabotropic receptors within or very near the amygdala regulate fear and fear learning and are a potential target for anxiolytic compounds.
Collapse
Affiliation(s)
- David L Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
264
|
Chen WP, Kirchgessner AL. Activation of group II mGlu receptors inhibits voltage-gated Ca2+ currents in myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1282-9. [PMID: 12388194 DOI: 10.1152/ajpgi.00216.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) contains functional ionotropic and group I metabotropic glutamate (mGlu) receptors. In this study, we determined whether enteric neurons express group II mGlu receptors and the effects of mGlu receptor activation on voltage-gated Ca(2+) currents in these cells. (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), a group II mGlu receptor agonist, reversibly suppressed the Ba(2+) current in myenteric neurons isolated from the guinea pig ileum. Significant inhibition was also produced by L-glutamate and the group II mGlu receptor agonists, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) and (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine (L-CCG-I), with a rank order potency of 2R,4R-APDC > DCG-IV > L-glutamate > L-CCG-I, and was reduced by the group II mGlu receptor antagonist LY-341495. Pretreatment of neurons with pertussis toxin (PTX) reduced the action of mGlu receptor agonists, suggesting participation of G(i)/G(o) proteins. Finally, omega-conotoxin GVIA blocked current suppression by DCG-IV, suggesting modulation of N-type calcium channels. mGlu2/3 receptor immunoreactivity was displayed by neurons in culture and in the submucosal and myenteric plexus of the ileum. A subset of these cells displayed a glutamatergic phenotype as shown by the expression of vesicular glutamate transporter 2. These results provide the first evidence for functional group II mGlu receptors in the ENS and show that these receptors are PTX sensitive and negatively coupled to N-type calcium channels. Inhibition of N-type calcium channels produced by activation of group II mGlu receptors may modulate enteric neurotransmission.
Collapse
Affiliation(s)
- Wei-Ping Chen
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | |
Collapse
|
265
|
Viard E, Sapru HN. Cardiovascular responses to activation of metabotropic glutamate receptors in the nTS of the rat. Brain Res 2002; 952:308-21. [PMID: 12376193 DOI: 10.1016/s0006-8993(02)03260-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although several agonists and antagonists for different subtypes of metabotropic glutamate receptors (mGLURs) have become available in recent years, detailed information regarding their selectivity is not complete in the in vivo animal models. The purpose of the present investigation was to study the cardiovascular effects of microinjections of some of these mGLUR agonists and antagonists into the nucleus tractus solitarius (nTS). Microinjections (100 nl) of EC(50) concentrations of 3,5-DHPG (0.005 mM; mGLUR(1) agonist), APDC (17.3 mM; mGLUR(2/3) agonist), PPG (11.7 mM; mGLUR(8) agonist) and L-AP(4) (1 mM; mGLUR(4) agonist) into the nucleus tractus solitarius of urethane-anesthetized male Wistar rats elicited depressor and bradycardic responses which may be mediated by pre- and/or postsynaptic mechanisms. The blocking effect of mGLUR antagonists used here was not specific for any one type of glutamate receptors (GLURs). For example, AIDA (50 mM; mGLUR(1) antagonist) blocked the effects of EC(50) concentrations of 3,5-DHPG, and PPG. LY341495 (135 mM; mGLUR(2/3) antagonist) blocked all of the mGLURs and ionotropic GLURs. EGLU, APICA and MCCG (250 mM each; mGLUR(2/3) antagonists) blocked the effects of APDC, NMDA and AMPA. CPPG (80 mM) and MSOP (125 mM), mGLUR(4) antagonists, blocked the effects of 3,5-DHPG, PPG and L-AP(4.) D-AP7 (NMDA receptor antagonist) and NBQX (a non-NMDA receptor antagonist) did not alter the responses of any of the mGLUR agonists. The data presented may be useful in assessing the role of metabotropic and ionotropic GLURs in mediating different cardiovascular reflexes.
Collapse
Affiliation(s)
- Eddy Viard
- Department of Neurological Surgery, MSB H-586, New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103-2757, USA
| | | |
Collapse
|
266
|
Johnson MP, Chamberlain M. Modulation of stress-induced and stimulated hyperprolactinemia with the group II metabotropic glutamate receptor selective agonist, LY379268. Neuropharmacology 2002; 43:799-808. [PMID: 12384165 DOI: 10.1016/s0028-3908(02)00142-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well recognized that glutamate is an integral excitatory neurotransmitter in the neuroendocrine control of several hormonal factors. While the ability of pharmacological agents acting at ionotropic glutamate receptors to modulate the levels of serum prolactin levels has been investigated, there have been few reports of the effects mediated by the G-protein coupled, metabotropic glutamate (mGlu) receptors. The present work was undertaken to investigate the role of the Group II mGlu receptors, mGlu2 and mGlu3 in the regulation of serum polactin levels. LY379268, a Group II selective agonist, did not alter basal levels of circulating prolactin in young (36-40 day old) male rats. However, when an immobilization stress-induced hyperprolactinemia was examined, 10 mg/kg s.c. of LY379268 significantly lowered serum prolactin levels. Similarly, pretreatment with LY379268 was able to reverse the hyperprolactinemia induced with the catecholamine synthesis inhibitor, alpha-methyl-p-tyrosine (aMPT). This inhibition of hyperprolactinemia could be prevented by pretreatment with LY341495, a Group II mGlu receptor antagonist. The Group II antagonist alone had no effect on either basal nor stimulated prolactin levels. The agonist LY379268 was able to prevent the transient hyperprolactinemia associated with stimulation of serotonin 5-HT2A receptors by 2,5-dimethoxy-4-iodoamphetamine (DOI), but did not alter the high levels of circulating prolactin induced with the D2 antagonist, haloperidol. When treatment with LY379268 was delayed until 1 h after aMPT, a time demonstrated to show a full effect of aMPT on serum prolactin levels, the Group II agonist was similarly able to reverse hyperprolactinemia, suggesting LY379268 did not act by preventing the partial catecholamine depletion by aMPT. Similarly, high doses of amphetamine, a dopamine (DA) releaser, were able to reverse the aMPT-induced hyperprolactinemia, consistent with sufficient levels of dopamine remaining after aMPT treatment to modulate prolactin levels. LY379268 did not alter the hyperprolactinemia seen in estrogen-primed, ovariectomized female rats. Taken together the results indicate that stimulation of mGlu2/3 has an indirect inhibitory action on pituitary prolactin release. It is speculated that disinhibition of tubero-infundibular DA release by presynaptic Group II mGlu receptors located on inhibitory inputs to the arcuate hypothalamic nucleus is a possible explanation for the findings.
Collapse
Affiliation(s)
- M P Johnson
- Neuroscience Department, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
267
|
Kingston AE, Griffey K, Johnson MP, Chamberlain MJ, Kelly G, Tomlinson R, Wright RA, Johnson BG, Schoepp DD, Harris JR, Clark BP, Baker RS, Tizzano JT. Inhibition of group I metabotropic glutamate receptor responses in vivo in rats by a new generation of carboxyphenylglycine-like amino acid antagonists. Neurosci Lett 2002; 330:127-30. [PMID: 12231428 DOI: 10.1016/s0304-3940(02)00751-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of novel group I metabotropic glutamate receptor (mGlu) antagonists have been designed on the basis of the 4-carboxyphenylglycine pharmacophore. The compounds are either mGlu1 receptor selective or equipotent for both mGlu1 and mGlu5 receptors and have IC(50) values ranging from 1 to 30 microM determined by phosphoinositide hydrolysis (PI) assay in vitro. All the compounds produced dose-dependent inhibition of group I mGlu receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG)-induced limbic seizure responses in mice with ED(50) values ranging from 9 nmol for LY393053 to 138 nmol for LY339840 after intracerebroventricular injection and were more potent than the mGlu1 receptor antagonist 1-aminoindan-1,5-dicarboxylic acid (ED(50)=477 nmol). Further antagonist actions were also demonstrated in a model of (RS)-DHPG-induced PI hydrolysis in vivo such that LY367385 and the active cis isomer of LY393053 produced dose-dependent inhibition of PI responses in both cerebellum and hippocampus. Cis LY393053 also inhibited hippocampal PI responses when administered intraperitoneally at a dose of 30 mg/kg. These compounds define a new series of group I mGlu receptor antagonists which may serve as useful experimental tools.
Collapse
Affiliation(s)
- Ann E Kingston
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Grassi S, Frondaroli A, Pettorossi VE. Different metabotropic glutamate receptors play opposite roles in synaptic plasticity of the rat medial vestibular nuclei. J Physiol 2002; 543:795-806. [PMID: 12231639 PMCID: PMC2290544 DOI: 10.1113/jphysiol.2002.023424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Accepted: 07/01/2002] [Indexed: 11/08/2022] Open
Abstract
In the medial vestibular nuclei (MVN) of rat brainstem slices, the role of group II and III metabotropic glutamate receptors (mGluRs) and of the subtypes of group I mGluRs: mGluR1, mGluR5, was investigated in basal synaptic transmission and in the induction and maintenance of long-term potentiation (LTP). We used selective antagonists and agonists for mGluRs and we analysed the field potentials evoked by vestibular afferent stimulation before and after high-frequency stimulation (HFS) to induce LTP. The group II and III mGluR antagonist, (R,S)-alpha-2-methyl-4sulphonophenylglycine (MSPG), induced LTP per se and caused a reduction of the paired-pulse facilitation (PPF) ratio indicating an enhancement of glutamate release. This suggests that group II and III mGluRs are activated under basal conditions to limit glutamate release. Both the group II and III mGluR selective antagonists, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoate (LY341495) and (R,S)-alpha-methylserine-O-phosphate (MSOP), induced LTP, and the selective agonists, (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) depressed the field potentials and prevented HFS-LTP, with a prevailing contribution of group II mGluRs over that of group III mGluRs. The mGluR1 antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) prevented the full development and maintenance of HFS-LTP. By contrast, the mGluR5 antagonist, 2-methyl-6-phenylethynylpyridine (MPEP) induced LTP per se, which was impeded by CPCCOEt, and it had no effect on LTP once induced by HFS. The PPF analysis showed an enhancement of glutamate release during MPEP potentiation. The group I mGluR agonist, (R,S)-3,5-dihydroxyphenylglycine (DHPG) induced LTP per se, which was blocked by CPCCOEt. By contrast the mGluR5 agonist, (R,S)-2-chloro-5-hydroxypheylglycine (CHPG) prevented LTP elicited by HFS and DHPG as well. In conclusion vestibular LTP is inhibited by group II and III mGluRs during the early induction phase while it is facilitated by mGluR1 for achieving its full expression and consolidation. An additional inhibitory control is exerted by mGluR5 at the level of this facilitatory phase.
Collapse
Affiliation(s)
- Silvarosa Grassi
- Department of Internal Medicine, Section of Human Physiology, University of Perugia, Perugia I-06100, Italy.
| | | | | |
Collapse
|
269
|
Group I metabotropic glutamate receptor (mGluR)-dependent long-term depression mediated via p38 mitogen-activated protein kinase is inhibited by previous high-frequency stimulation and activation of mGluRs and protein kinase C in the rat dentate gyrus in vitro. J Neurosci 2002. [PMID: 12122073 DOI: 10.1523/jneurosci.22-14-06121.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The induction of synaptic plasticity is known to be influenced by the previous history of the synapse, a process termed metaplasticity. Here we demonstrate a novel metaplasticity in which group I metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) of synaptic transmission is regulated by previous mGluR activation. In these studies, the group I mGluR-dependent LTD induced by the selective agonist (RS)-3,5-dihydroxyphenylglycine (DHPG-LTD) was inhibited by previous preconditioning brief high-frequency stimulation (HFS), regardless of whether the preconditioning HFS induced long-term potentiation. Blockade of NMDA receptors during the preconditioning HFS did not alter the inhibition of DHPG-LTD by the HFS. However, antagonism of mGluRs during the preconditioning HFS did prevent the inhibition of DHPG-LTD by the HFS. In addition, blocking PKC stimulation during the preconditioning HFS also prevented the inhibitory effect of HFS on DHPG-LTD. The DHPG-LTD itself was not inhibited by blocking PKC stimulation but was inhibited by blocking the p38 mitogen-activated protein kinase (MAPK) pathway. Thus, whereas the DHPG-LTD is mediated via activation of the p38 MAPK pathway, the inhibitory effects of preconditioning HFS on DHPG-LTD are mediated via stimulation of group I/II mGluRs, activation of PKC, and subsequent blocking of the functioning of group I mGluR.
Collapse
|
270
|
Pothecary CA, Jane DE, Salt TE. Reduction of excitatory transmission in the retino-collicular pathway via selective activation of mGlu8 receptors by DCPG. Neuropharmacology 2002; 43:231-4. [PMID: 12213277 DOI: 10.1016/s0028-3908(02)00077-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously shown that activation of Group III metabotropic glutamate (mGlu) receptors modulates synaptic transmission in the superior colliculus. We thus investigated the effect of the selective mGlu8 receptor agonist (S)-3,4-dicarboxyphenylglycine (DCPG) on excitatory synaptic transmission in the superficial superior colliculus (SC) using an in vitro slice preparation of the rat SC. Field EPSPs evoked by optic tract stimulation under conditions of GABA receptor blockade were reduced by DCPG by up to 67.8+/-5.46% (EC(50) 1.25+/-0.56 microM), and this effect could be antagonised by LY341495 at a concentration (300 nM) known to be effective at mGlu8 receptors but not at mGlu4 or mGlu7 receptors. The broad-spectrum (mGlu4/mGlu7/mGlu8) agonist L-2-amino-4- phosphonobutyric acid (L-AP4) produced similar reductions of synaptic transmission (maximal reduction 68.6+/-2.33%; EC(50) 5.7+/-2.61 microM). These data are consistent with previous results which show that mGlu8 receptor activation can reduce synaptic transmission in the spinal cord, and indicate that similar mechanisms operate in other brain areas. Furthermore, this indicates that the mGlu8 receptor may have a role in the modulation of visual transmission in the superior colliculus.
Collapse
Affiliation(s)
- C A Pothecary
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
271
|
Ireland DR, Abraham WC. Group I mGluRs increase excitability of hippocampal CA1 pyramidal neurons by a PLC-independent mechanism. J Neurophysiol 2002; 88:107-16. [PMID: 12091536 DOI: 10.1152/jn.2002.88.1.107] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP(3))-activated Ca(2+) stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP(3)-independent transduction pathway.
Collapse
Affiliation(s)
- David R Ireland
- Department of Psychology and the Neuroscience Research Centre, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
272
|
Cai Z, Lin S, Rhodes PG. Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia. Eur J Pharmacol 2002; 437:139-45. [PMID: 11890901 DOI: 10.1016/s0014-2999(02)01289-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuroprotective effects of N-acetylaspartylglutamate (NAAG), the precursor of glutamate and a selective agonist at the Group II metabotropic glutamate (mGlu) receptor, against hypoxic-ischemic brain injury were examined in a neonatal rat model of cerebral hypoxia-ischemia. The neonatal hypoxia-ischemia procedure (unilateral carotid artery ligation followed by exposure to an 8% oxygen hypoxic condition for 1.5 h) was performed in 7-day-old rat pups. Following unilateral carotid artery ligation, NAAG (0.5 to 20 mg/kg, i.p.) was administered before or after the hypoxic exposure. Brain injury was examined 1-week later by weight reduction in the ipsilateral brain and by neuron density in the hippocampal CA1 area. In the saline-treated rat, neonatal hypoxia-ischemia resulted in severe brain injury as indicated by a 24% reduction in the ipsilateral brain weight. Low doses of NAAG (2-10 mg/kg, but not 0.5 mg/kg), administered before or even if 1 h after the hypoxic exposure, greatly reduced hypoxia-ischemia-induced brain injury (3.8-14.2% reduction in the ipsilateral brain weight). A high dose of NAAG (20 mg/kg) was ineffective. While L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) and trans-[1S,3R]-1-Amino-cyclopentane-1, 3-dicarboxylic acid (t-ACPD) were unable to provide protection against hypoxic-ischemic brain injury, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), an inhibitor of N-acetylated alpha-linked acidic dipeptidase (NAALADase), which hydrolyzes endogenous NAAG into N-acetyl-aspartate and glutamate, significantly reduced neonatal hypoxia-ischemia-induced brain injury. (alphaS)-alpha-Amino-alpha-[(1S, 2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid (LY341495), a selective antagonist at the mGlu2/3 receptor, prevented the neuroprotective effect of NAAG. Neuron density data measured in the hippocampal CA1 area confirmed that ipsilateral brain weight reduction was a valid measure for hypoxic-ischemic brain injury. Neonatal hypoxia-ischemia stimulated an elevation of cyclic AMP (cAMP) concentration in the saline-treated rat brain. NAAG, L-AP4 and t-ACPD all significantly decreased hypoxia-ischemia-induced elevation of cAMP. LY341495 blocked the effect of NAAG, but not of L-AP4 or t-ACPD, on hypoxia-ischemia-stimulated cAMP elevation. The overall results suggest that the neuroprotective effect of NAAG is largely associated with activation of mGlu2/3 receptor.
Collapse
Affiliation(s)
- Zhengwei Cai
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
273
|
Johansen TN, Stensbøl TB, Nielsen B, Vogensen SB, Frydenvang K, Sløk FA, Bräüner-Osborne H, Madsen U, Krogsgaard-Larsen P. Resolution, configurational assignment, and enantiopharmacology at glutamate receptors of 2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) and demethyl-ACPA. Chirality 2002; 13:523-32. [PMID: 11579444 DOI: 10.1002/chir.1172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).
Collapse
Affiliation(s)
- T N Johansen
- NeuroScience PharmaBiotec Research Center, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Mills CD, Xu GY, McAdoo DJ, Hulsebosch CE. Involvement of metabotropic glutamate receptors in excitatory amino acid and GABA release following spinal cord injury in rat. J Neurochem 2001; 79:835-48. [PMID: 11723176 DOI: 10.1046/j.1471-4159.2001.00630.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) leads to an increase in extracellular excitatory amino acid (EAA) concentrations resulting in glutamate receptor-mediated excitotoxic events. The glutamate receptors include ionotropic (iGluRs) and metabotropic (mGluR) receptors. Of the three groups of mGluRs, group-I activation can initiate intracellular pathways that lead to further transmitter release. Groups II and III mGluRs function mainly as autoreceptors to regulate neurotransmitter release. In an effort to examine the role of mGluRs in the increase in EAAs following SCI, we administered AIDA, a potent group-I mGluR antagonist immediately after injury. To determine subtype specific roles of the group-I mGluRs, we evaluated EAA release following LY 367385 (mGluR1 antagonist) and MPEP (mGluR5 antagonist) administration. To evaluate group-II and -III mGluRs we administered APDC (group-II agonist) and L-AP4 (group-III agonist) immediately following injury; additionally, we initiated treatment with CPPG (group-II/-III antagonist) and LY 341495 (group-II antagonist) 5 min prior to injury. Subjects were adult male Sprague-Dawley rats (225-250 g), impact injured at T10 with an NYU impactor (12.5 mm drop). Agents were injected into the epicenter of injury, amino acids where collected by microdialysis fibers inserted 0.5 mm caudal from the edge of the impact region and quantified by HPLC. Treatment with AIDA significantly decreased extracellular EAA and GABA concentrations. MPEP reduced EAA concentrations without affecting GABA. Combining LY 367385 and MPEP resulted in a decrease in EAA and GABA concentrations greater than either agent alone. L-AP4 decreased EAA levels, while treatment with LY 341495 increased EAA levels. These results suggest that mGluRs play an important role in EAA toxicity following SCI.
Collapse
Affiliation(s)
- C D Mills
- The Department of Anatomy and Neurosciences, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1043, USA
| | | | | | | |
Collapse
|
275
|
Activation of group I metabotropic glutamate receptors produces a direct excitation and disinhibition of GABAergic projection neurons in the substantia nigra pars reticulata. J Neurosci 2001. [PMID: 11549710 DOI: 10.1523/jneurosci.21-18-07001.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A pathological increase in excitatory glutamatergic input to substantia nigra pars reticulata (SNr) from the subthalamic nucleus (STN) is believed to play a key role in the pathophysiology of Parkinson's disease. We present an analysis of the physiological roles that group I metabotropic glutamate receptors (mGluRs) play in regulating SNr functions. Immunocytochemical analysis at the light and electron microscopic levels reveal that both mGuR1a and mGluR5 are localized postsynaptically in the SNr. Consistent with this, activation of group I mGluRs depolarizes SNr GABAergic neurons. Interestingly, although both group I mGluRs (mGluR1 and mGluR5) are expressed in these neurons, the effect is mediated solely by mGluR1. Light presynaptic staining for mGluR1a and mGluR5 was also observed in some terminals forming symmetric synapses and in small unmyelinated axons. Consistent with this, activation of presynaptic mGluR1a and mGluR5 decreases inhibitory transmission in the SNr. The combination of direct excitatory effects and disinhibition induced by activation of group I mGluRs could lead to a large excitation of SNr projection neurons. This suggests that group I mGluRs are likely to play an important role in the powerful excitatory control that the STN exerts on basal ganglia output neurons.
Collapse
|
276
|
David HN, Abraini JH. Differential modulation of the D1-like- and D2-like dopamine receptor-induced locomotor responses by group II metabotropic glutamate receptors in the rat nucleus accumbens. Neuropharmacology 2001; 41:454-63. [PMID: 11543765 DOI: 10.1016/s0028-3908(01)00082-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There is strong evidence for the existence of functional interactions between metabotropic glutamate receptors and dopamine transmission in the nucleus accumbens. In the present study, we investigated the interactions between group II mGlu receptors and D1-like- and D2-like receptors in the rat nucleus accumbens. Administration of the selective group II metabotropic glutamate receptor agonist APDC, which had no effect when injected alone, potentiated the locomotor response produced by the selective D1-like receptor agonist SKF 38393 but had no effect on those induced by the selective D2-like receptor agonist quinpirole (also known as LY 171555)--a compound believed to act only at D2-like presynaptic receptors when injected alone--or co-administration of SKF 38393+quinpirole--a pharmacological condition thought to stimulate both D1-like receptors and presynaptic and postsynaptic D2-like receptors. In contrast, the selective group II mGlu receptor antagonist LY 341495, which induced an increase in basal locomotor activity, showed no effect on the SKF 38393-induced locomotor response, but abolished that produced by quinpirole or SKF 38393+quinpirole. The present findings demonstrate that stimulation of group II mGlu receptors has a cooperative and potentiating action on the locomotor response induced by D1-like receptor activation, whereas blockade of group II mGlu receptors has an antagonist action on the locomotor responses induced by activation of D2-like receptors. Although these data are consistent from a pharmacological point of view, as the effects of the group II mGlu receptor antagonist LY 341495 were blocked by the group II mGlu receptor agonist APDC and conversely, the subtle neurochemical crosstalks underlying such a differential effect of group II mGlu receptors on D1-like- and D2-like DA receptors remain to be elucidated.
Collapse
Affiliation(s)
- H N David
- UMR CNRS 6551, Centre Cyceron, BP5229, Université de Caen, Boulevard H. Becquerel, 14074 Caen cedex, France
| | | |
Collapse
|
277
|
Johnson MP, Kelly G, Chamberlain M. Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists. J Neuroendocrinol 2001; 13:670-7. [PMID: 11489083 DOI: 10.1046/j.1365-2826.2001.00678.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From previous work, it appears that glutamate can activate the hypothalamic-pituitary-adrenocortical (HPA) axis by an interaction at either ionotopic or metabotropic (G-protein coupled) receptors. For example, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (ACPD), a metabotropic glutamate (mGlu) receptor agonist, has been shown to increase the levels of serum corticosterone in rats. The present study was undertaken to further characterize which of the mGlu receptors are substantially involved in control of the HPA axis. The group I mGlu receptor agonists, 3,5-dihydroxyphenylglycine (DHPG), 1S,3R-ACPD, and 2-chloro-5-hydroxyphenylglycine (CHPG) but not the inactive isomer 1R,3S-ACPD were found to dose-dependently increase serum corticosterone 1 h after intracerebroventricular (i.c.v.) injection in male rats. The relative potency, DHPG (EC50 = 520 nmol) > 1S,3R-ACPD (1.4 micromol) = CHPG (2.7 micromol) >> 1R,3S-ACPD (>> 3 micromol) is consistent with activation of group I (mGlu1/5) receptors. The effects of DHPG were long lasting with substantial elevations in corticosterone remaining for at least 3 h. In a similar manner, the group III mGlu receptor agonists, L-AP4 (4-phosphono-2-aminobutyric acid) and L-SOP (serine-O-phosphate), were found to increase serum corticosterone levels at 1 h. In contrast, the mGlu group II selective agonists LY354740 (10 mg/kg, i.p.) and subtype-selective doses of the group II antagonist LY341495 (1 mg/kg, i.p.) did not significantly elevate serum corticosterone. Given the group I agonists results, it was surprising to find that group I selective and mGlu1 selective antagonists given alone also increased serum corticosterone. As with the agonists, the rise in serum corticosterone with LY393675 (an mGlu1/5 antagonist, EC50 = 20 nmol, i.c.v.) and LY367385 (an mGlu1 antagonist, 325 nmol, i.c.v.) were dose-dependent and consistent with their relative affinity for the group I mGlu receptors. The selective mGlu5 antagonist MPEP [2-methyl-6-(phenylethylnyl)pyridine] increased serum corticosterone but only at high doses (> 30 mg/kg, i.p.). A model involving the high glutamatergic tone on GABAergic interneurons in the paraventricular nucleus of the hypothalamus is discussed as a possible explanation for these results.
Collapse
Affiliation(s)
- M P Johnson
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
278
|
Cirone J, Salt TE. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus. J Physiol 2001; 534:169-78. [PMID: 11433000 PMCID: PMC2278679 DOI: 10.1111/j.1469-7793.2001.00169.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1. Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. 2. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. 3. We found that application of the Group III metabotropic glutamate receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABA(B) receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. 4. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli.
Collapse
Affiliation(s)
- J Cirone
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
279
|
Abstract
Impaired GABAergic inhibition may contribute to the development of hyperexcitability in epilepsy. We used the pilocarpine model of epilepsy to demonstrate that regulation of excitatory synaptic drive onto GABAergic interneurons is impaired during epileptogenesis. Synaptic input from granule cells (GCs), perforant path, and CA3 inputs onto hilar border interneurons of the dentate gyrus were examined in rat hippocampal slices during the latent period (1-8 d) after induction of status epilepticus (SE). Short-term depression (STD) of GC inputs to interneurons induced by brief (500-800 msec), repetitive (5-20 Hz) stimulation, as well as paired-pulse depression at both GC and CA3 inputs to interneurons, were significantly (p < 0.05) enhanced in SE-experienced rats. In contrast, we found no significant differences between SE-experienced and age-matched control rats in the properties of minimal EPSCs evoked at low frequency (0.3 Hz). Consistent with reduced GABAergic inhibition onto granule cells, paired-pulse depression of perforant path-evoked granule cell population spikes was lost in SE-experienced rats. Enhanced STD was partially mediated by group II metabotropic glutamate receptors, because the selective antagonist, 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-yl)propanoic acid, attenuated STD in SE-experienced rats but had no effect on STD of GC inputs in the normal adult rat. The group II mGluR agonist, (2S',1R',2R',3R')-2-(2,3-dicarboxylcyclopropyl) glycine (1 micrometer), produced a greater depression of GC input to hilar border interneurons in SE-experienced rats than in controls. These results indicate that, in the SE-experienced rat, excitatory drive to hilar border inhibitory interneurons is weakened through a use-dependent mechanism involving group II metabotropic glutamate receptors.
Collapse
|
280
|
Wittmann M, Marino MJ, Bradley SR, Conn PJ. Activation of Group III mGluRs Inhibits GABAergic and Glutamatergic Transmission in the Substantia Nigra Pars Reticulata. J Neurophysiol 2001; 85:1960-8. [PMID: 11353013 DOI: 10.1152/jn.2001.85.5.1960] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The GABAergic projection neurons of the substantia nigra pars reticulata (SNr) exert an important influence on the initiation and control of movement. The SNr is a primary output nucleus of the basal ganglia (BG) and is controlled by excitatory inputs from the subthalamic nucleus (STN) and inhibitory inputs from the striatum and globus pallidus. Changes in the output of the SNr are believed to be critically involved in the development of a variety of movement disorders. Anatomical studies reveal that metabotropic glutamate receptors (mGluRs) are highly expressed throughout the BG. Interestingly, mRNA for group III mGluRs are highly expressed in STN, striatum, and globus pallidus, and immunocytochemical studies have shown that the group III mGluR proteins are present in the SNr. Thus it is possible that group III mGluRs play a role in the modulation of synaptic transmission in this nucleus. We performed whole cell patch-clamp recordings from nondopaminergic SNr neurons to investigate the effect of group III mGluR activation on excitatory and inhibitory transmission in the SNr. We report that activation of group III mGluRs by the selective agonist l(+)-2-amino-4-phosphonobutyric acid (l-AP4, 100 μM) decreases inhibitory synaptic transmission in the SNr. Miniature inhibitory postsynaptic currents studies and paired-pulse studies reveal that this effect is mediated by a presynaptic mechanism. Furthermore we found that l-AP4 (500 μM) also reduces excitatory synaptic transmission at the STN-SNr synapse by action on presynaptically localized group III mGluRs. The finding that mGluRs modulate the major inputs to SNr neurons suggests that these receptors may play an important role in motor function and could provide new targets for the development of pharmacological treatments of movement disorders.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Action Potentials/drug effects
- Amino Acids/pharmacology
- Aminobutyrates/pharmacology
- Animals
- Bicuculline/pharmacology
- Drug Design
- Electric Stimulation
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- GABA Antagonists/pharmacology
- Glutamic Acid/pharmacology
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Kainic Acid/pharmacology
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/physiology
- Patch-Clamp Techniques
- Phosphoserine/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Substantia Nigra/metabolism
- Xanthenes/pharmacology
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- M Wittmann
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
281
|
Thomas NK, Wright RA, Howson PA, Kingston AE, Schoepp DD, Jane DE. (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 2001; 40:311-8. [PMID: 11166323 DOI: 10.1016/s0028-3908(00)00169-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
(S)-3,4-Dicarboxyphenylglycine (DCPG) has been tested on cloned human mGlu1-8 receptors individually expressed in AV12-664 cells co-expressing a rat glutamate/aspartate transporter and shown to be a potent and selective mGlu8a receptor agonist (EC(50) value 31+/-2 nM, n=3) with weaker effects on the other cloned mGlu receptors (EC(50) or IC(50) values >3.5 microM on mGlu1-7). Electrophysiological characterisation on the neonatal rat spinal cord preparation revealed that (S)-3,4-DCPG depressed the fast component of the dorsal root-evoked ventral root potential (fDR-VRP) giving a biphasic concentration-response curve showing EC(50) values of 1.3+/-0.2 microM (n=17) and 391+/-81 microM (n=17) for the higher and lower affinity components, respectively. The receptor mediating the high-affinity component was antagonised by 200 microM (S)-alpha-methyl-2-amino-4-phosphonobutyrate (MAP4, K(D) value 5.4+/-1.5 microM (n=3)), a group III metabotropic glutamate (mGlu) receptor antagonist. The alpha-methyl substituted analogue of (S)-3,4-DCPG, (RS)-3,4-MDCPG (100 microM), antagonised the effects of (S)-3,4-DCPG (K(D) value 5.0+/-0.4 microM, n=3) in a similar manner to MAP4. (S)-3,4-DCPG-induced depressions of the fDR-VRP in the low-affinity range of the concentration-response curve were potentiated by 200 microM (S)-alpha-ethylglutamate (EGLU), a group II mGlu receptor antagonist, and were relatively unaffected by MAP4 (200 microM). However, depressions of the fDR-VRP mediated by the AMPA selective antagonist (R)-3,4-DCPG were not potentiated by EGLU, suggesting that the low-affinity component of the concentration-response curve for (S)-3,4-DCPG is not due to antagonism of postsynaptic AMPA receptors. It is suggested that the receptor responsible for mediating the high-affinity component is mGlu8. The receptor responsible for mediating the low-affinity effect of (S)-3,4-DCPG has yet to be identified but it is unlikely to be one of the known mGlu receptors present on primary afferent terminals or an ionotropic glutamate receptor of the AMPA or NMDA subtype.
Collapse
Affiliation(s)
- N K Thomas
- Department of Pharmacology, School of Medical Sciences, University of Bristol, BS8 1TD, Bristol, UK
| | | | | | | | | | | |
Collapse
|
282
|
Kew JN, Ducarre JM, Pflimlin MC, Mutel V, Kemp JA. Activity-dependent presynaptic autoinhibition by group II metabotropic glutamate receptors at the perforant path inputs to the dentate gyrus and CA1. Neuropharmacology 2001; 40:20-7. [PMID: 11077067 DOI: 10.1016/s0028-3908(00)00118-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pharmacological activation of metabotropic glutamate receptors (mGluRs) can inhibit synaptic transmission; however, relatively little evidence exists regarding the physiological conditions under which such autoreceptors are activated by synaptically released glutamate. Bath application of selective group II mGluR agonists profoundly inhibited field excitatory postsynaptic potentials (fEPSPs) evoked by stimulation of the perforant path inputs to both the mid-molecular layer of the dentate gyrus and the stratum lacunosum moleculare of the CA1. Application of the group II selective mGluR antagonist LY341495 resulted in an increase in the relative amplitude of a test fEPSP evoked 200 ms after a conditioning burst, but not after a single conditioning stimulus, in both pathways. Antagonist application also resulted in a marked increase in the relative amplitude of test population spikes evoked in the dentate gyrus following a conditioning burst. These observations are consistent with a presynaptic autoinhibitory action of group II metabotropic receptors that is revealed following burst stimulation of the pathway, consistent with their localisation in the preterminal zone. Activation of group II mGluRs during theta-gamma pattern discharge of projection neurones in the entorhinal cortex is likely to play an important role in the regulation of synaptic transmission and plasticity in the perforant pathway.
Collapse
Affiliation(s)
- J N Kew
- F. Hoffmann-La Roche Ltd, Pharma Division, Preclinical CNS Research, Building 70/343, CH-4070, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
283
|
Cartmell J, Perry KW, Salhoff CR, Monn JA, Schoepp DD. The potent, selective mGlu2/3 receptor agonist LY379268 increases extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindole-3-acetic acid in the medial prefrontal cortex of the freely moving rat. J Neurochem 2000; 75:1147-54. [PMID: 10936197 DOI: 10.1046/j.1471-4159.2000.0751147.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work has shown that the potent, selective metabotropic glutamate mGlu2/3 receptor agonist LY379268 acts like the atypical antipsychotic clozapine in behavioral assays. To investigate further the potential antipsychotic actions of this agent, we examined the effects of LY379268 using microdialysis in awake, freely moving rats, on extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindole-3-acetic acid (5-HIAA) in rat medial prefrontal cortex. Systemic LY379268 increased extracellular levels of dopamine, DOPAC, HVA, and 5-HIAA in a dose-dependent, somewhat delayed manner. LY379268 (3 mg/kg s.c. ) increased levels of dopamine, DOPAC, HVA, and 5-HIAA to 168, 170, 169, and 151% of basal, respectively. Clozapine (10 mg/kg) also increased dopamine, DOPAC, and HVA levels, with increases of 255, 262, and 173%, respectively, but was without effect on extracellular 5-HIAA levels by 3 mg/kg LY379268 were reversed by the selective mGlu2/3 receptor antagonist LY341495 (1 mg/kg). Furthermore, LY379268 (3 mg/kg)-evoked increases in DOPAC and HVA were partially blocked and the increase in 5-HIAA was completely blocked by local application of 3 microM tetrodotoxin. Therefore, we have demonstrated that mGlu2/3 receptor agonists activate dopaminergic and serotonergic brain pathways previously associated with the action of atypical antipsychotics such as clozapine and other psychiatric agents.
Collapse
Affiliation(s)
- J Cartmell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
284
|
Doherty AJ, Palmer MJ, Bortolotto ZA, Hargreaves A, Kingston AE, Ornstein PL, Schoepp DD, Lodge D, Collingridge GL. A novel, competitive mGlu(5) receptor antagonist (LY344545) blocks DHPG-induced potentiation of NMDA responses but not the induction of LTP in rat hippocampal slices. Br J Pharmacol 2000; 131:239-44. [PMID: 10991916 PMCID: PMC1572327 DOI: 10.1038/sj.bjp.0703574] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Revised: 06/29/2000] [Accepted: 06/30/2000] [Indexed: 11/08/2022] Open
Abstract
1. We have investigated the pharmacological properties of LY344545, a structurally related epimer of the broad spectrum competitive metabotropic glutamate receptor antagonist, LY341495. We have found that LY344545 also antagonizes competitively nearly all mGlu receptor subtypes, but with a wide spectrum of activity. The order of potency for the human receptor isoforms was mGlu(5a) (IC(50) of 5. 5+/-0.6 microM)>mGlu(2)=mGlu(3)>mGlu(1alpha)=mG lu(7)>mGlu(6)=mGlu(8). No significant mGlu(4) receptor antagonist activity was detected at the highest concentration used (100 microM). 100 microM LY344545 displaced 50+/-5% of [(3)H]-CGP39653 binding, but less than 30% of [(3)H]-kainate or [(3)H]-AMPA in radioligand binding assays. 2. LY344545 antagonized L-glutamate stimulated Ca(2+) release in CHO cells transfected with mGlu receptors in a concentration dependent manner with a 10 fold higher affinity for the rat mGlu(5a) receptor (K:(i)=2.1+/-0.6 microM) compared to the rat mGlu(1alpha) receptor (K:(i)=20.5+/-2.1 microM). 50 microM (1S, 3R)-ACPD-induced Ca(2+) rises in hippocampal CA1 neurones were also antagonized (IC(50)=6. 8+/-0.7 microM). 3. LY344545 antagonized 10 microM (S)-3,5-DHPG-induced potentiation of NMDA depolarizations in CA1 neurones (EC(50)=10. 6+/-1.0 microM). At higher concentrations (> or =100 microM), LY344545 was an NMDA receptor antagonist. 4. LY344545 also blocked the induction, but not the expression, of LTP at CA3 to CA1 synapses with an IC(50)>300 microM. This effect is consistent with its weak activity at NMDA receptors. 5. These results demonstrate that the binding of ligands to mGlu receptor subtypes is critically dependent on the spatial orientation of the same molecular substituents within a given chemical pharmacophore. The identification of LY344545 as the first competitive antagonist to show selectivity towards mGlu(5) receptors supports the potential to design more selective and potent competitive antagonists of this receptor. 6. These results further indicate that mGlu receptor-mediated potentiation of NMDA responses is not essential for the induction of LTP.
Collapse
Affiliation(s)
- A J Doherty
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD.
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Schweitzer C, Kratzeisen C, Adam G, Lundstrom K, Malherbe P, Ohresser S, Stadler H, Wichmann J, Woltering T, Mutel V. Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors. Neuropharmacology 2000; 39:1700-6. [PMID: 10884552 DOI: 10.1016/s0028-3908(99)00265-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The binding properties of [(3)H]-LY354740 were characterized on rat metabotropic glutamate receptors mGlu2 and mGlu3 expressed in Chinese hamster ovary (CHO) cells using Semliki Forest virus vectors. The saturation isotherm gave K(D) values of 20+/-5 and 53+/-8 nM and B(max) values of 474+/-161 and 667+/-89 fmol/mg protein for mGlu2 and mGlu3 receptors, respectively. NMDA, CaCl(2), DHPG and kainate were inactive up to 1 mM, whereas LY341495, DCG IV and ibotenate inhibited [(3)H]-LY354740 binding with similar potencies on both receptors. L-CCG I, L-AP4, L-AP5, LY354740 and 1S,3R-ACPD were 2- to 4-fold more potent inhibitors of [(3)H]-LY354740 binding to mGlu2 than mGlu3 receptors. However, MPPG and L-AP3 had a 6-fold and DTT a 28-fold preference for mGlu2 over mGlu3. ZnCl(2), at 10 mM, inhibited more than 70% of [(3)H]-LY354740 binding to mGlu2 receptors. At the same concentration it did not affect significantly [(3)H]-LY354740 binding to mGlu3 receptors. On the contrary, glutamate, quisqualate, EGLU and NAAG showed a 3-, 5-, 7- and 12-fold preference for mGlu3 over mGlu2. Finally, GTPgammaS, which partially inhibited the binding on mGlu2 receptors, was inactive to inhibit [(3)H]-LY354740 binding on mGlu3 receptors.
Collapse
Affiliation(s)
- C Schweitzer
- Pharmaceutical Division, Preclinical CNS Research, F. Hoffmann-La Roche Ltd., CH-4070, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Cartmell J, Monn JA, Schoepp DD. The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 2000; 400:221-4. [PMID: 10988337 DOI: 10.1016/s0014-2999(00)00423-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously reported that the specific group II metabotropic glutamate receptor agonist LY379268 inhibited phencyclidine (PCP)-induced motor activations in rats, but had mixed effects on behaviors produced by amphetamine. Here, LY379268 (1 mg/kg subcutaneous (s.c.)) attenuated amphetamine-induced ambulations and rearing but did not alter amphetamine-evoked fine motor movements. Consistent with a mechanism involving mGlu(2/3) receptors, the inhibitory actions of LY379268 on ambulations and rearing were reversed by LY341495, a mGlu(2/3) receptor antagonist. These data further suggest antipsychotic actions of mGlu(2/3) receptor agonists with a low propensity for extra-pyramidal side effects.
Collapse
Affiliation(s)
- J Cartmell
- Neuroscience Research, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Mail Drop 0510, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|
287
|
Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J Neurosci 2000. [PMID: 10777772 DOI: 10.1523/jneurosci.20-09-03085.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) leads to increased activity of glutamatergic neurons in the subthalamic nucleus (STN). Recent studies reveal that the resultant increase in STN-induced excitation of basal ganglia output nuclei is responsible for the disabling motor impairment characteristic of PD. On the basis of this, it is possible that any manipulation that reduces activity at excitatory STN synapses onto basal ganglia output nuclei could be useful in the treatment of PD. We now report that group II metabotropic glutamate receptors (mGluRs) are presynaptically localized on STN terminals and that activation of these receptors inhibits excitatory transmission at STN synapses. In agreement with the hypothesis that this could provide a therapeutic benefit in PD, a selective agonist of group II mGluRs induces a dramatic reversal of catalepsy in a rat model of PD. These results raise the exciting possibility that selective agonists of group II mGluRs could provide an entirely new approach to the treatment of PD. These novel therapeutic agents would provide a noninvasive pharmacological treatment that does not involve the manipulation of dopaminergic systems, thus avoiding the problems associated with current therapies.
Collapse
|
288
|
Johnson MP, Kelly GM, Chamberlain M. Blockade of pilocarpine-induced cerebellar phosphoinositide hydrolysis with metabotropic glutamate antagonists: evidence for an indirect control of granule cell glutamate release by muscarinic agonists. Neurosci Lett 2000; 285:71-5. [PMID: 10788710 DOI: 10.1016/s0304-3940(00)01023-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ability in vivo of the muscarinic agonist, pilocarpine, to increase phosphoinositol (PI) hydrolysis in lithium pretreated rats was investigated by measuring the accumulation of [(3)H]inositol phosphates (IP). As expected, 20 mg/kg s.c. pilocarpine, a muscarinic agonist, increased PI hydrolysis in the striatum, frontal cortex and hippocampus. Somewhat surprisingly, an increase in IP was also found in the cerebellar homogenates. In all four tissues the pilocarpine-induced effect could be completely inhibited by pretreatment with the muscarinic antagonist scopolamine (1.2 mg/kg i. p.). It was also found that the cerebellar but not the hippocampal pilocarpine-induced rise in PI hydrolysis could be blocked by the metabotropic glutamate (mGlu) receptor antagonist, LY341495 (100 nmol, i.c.v.). The same dose of LY341495 was found to also block both the cerebellar and hippocampal increase in IP formed by stimulation with the group I mGlu receptor agonist 3, 5-dihydroxyphenylglycine (1 micromol, i.c.v.). Given this data and the current information on the distribution of muscarinic and mGlu receptors in the cerebellum, it is suggested that these results may be a reflection of pilocarpine acting at M(2) receptors to indirectly increase glutamate release from parallel fibers by inhibition of gamma-aminobutyric acid-releasing Golgi cells.
Collapse
Affiliation(s)
- M P Johnson
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
289
|
De Colle C, Bessis AS, Bockaert J, Acher F, Pin JP. Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. Eur J Pharmacol 2000; 394:17-26. [PMID: 10771029 DOI: 10.1016/s0014-2999(00)00113-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the brain, group-III metabotropic glutamate (mGlu) receptors mGlu(4), mGlu(7) and mGlu(8) receptors play a critical role in controlling the release process at many glutamatergic synapses. The pharmacological profile of mGlu(4) receptor has been studied extensively, allowing us to propose a pharmacophore model for this receptor subtype. Surprisingly, the activity of only a few compounds have been reported on mGlu(7) and mGlu(8) receptors. In order to identify new possibilities for the design of selective compounds able to discriminate between the members of the group-III mGlu receptors, we have undertaken a complete pharmacological characterization of mGlu(8) receptor and compared it with that of mGlu(4) receptor, using the same expression system, and the same read out. The activities of 32 different molecules revealed that these two mGlu receptors subtypes share a similar pharmacological profile. Only small differences were noticed in addition to that previously reported with S-carboxyglutamate (S-Gla) being a partial agonist at mGlu(4) receptor and a full antagonist at mGlu(8) receptor. These include: a slightly higher relative potency of the agonists 1S,3R and 1S,3S-aminocyclopentane-1,3-dicarboxylic acid (ACPD), S-4-carboxyphenylglycine (S-4CPG) and S-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG), and a slightly higher potency of the antagonists 2-aminobicyclo[3.1.0]hexane-2, 6-dicarboxylic acid (LY354740) and RS-alpha-methyl-4-phosphonophenylglycine (MPPG) on mGlu(8) receptor. When superimposed on the mGlu(4) receptor pharmacophore model, these molecules revealed three regions that may be different between the ligand binding sites of mGlu(8) and mGlu(4) receptors.
Collapse
Affiliation(s)
- C De Colle
- Centre INSERM-CNRS de Pharmacologie-Endocrinologie, UPR 9023-CNRS, rue de la Cardonille, 34094, Montpellier, France
| | | | | | | | | |
Collapse
|
290
|
Chen Y, Bacon G, Sher E, Clark BP, Kallman MJ, Wright RA, Johnson BG, Schoepp DD, Kingston AE. Evaluation of the activity of a novel metabotropic glutamate receptor antagonist (+/-)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) in the in vitro neonatal spinal cord and in an in vivo pain model. Neuroscience 2000; 95:787-93. [PMID: 10670446 DOI: 10.1016/s0306-4522(99)00496-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclobutylglycine (+/-)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) (LY393053) has been identified as a functionally potent metabotropic glutamate receptor antagonist. It is most potent on the two group I metabotropic glutamate receptors, 1alpha and 5alpha, with IC50 values of 1.0+/-0.4 microM and 1.6+/-1.4 microM, respectively. In this study, LY393053 has also been evaluated electrophysiologically on native group I metabotropic glutamate receptors in an in vitro spinal cord preparation as well as behaviourally, in a mouse model of visceral pain. LY393053 dose-dependently antagonised group I agonist, (RS)-3, 5-dihydroxyphenylglycine, or a broad-spectrum agonist (1S,3R)-amino-1,3-cyclopentanedicarboxylic acid-induced depolarisation of spinal motoneurons. The apparent Kd values were estimated to be 0.3 microM against (RS)-3, 5-dihydroxyphenylglycine-induced depolarisation and 0.5 microM against (1S,3R)-amino-1,3-cyclopentanedicarboxylic acid-induced depolarisation, respectively. On the other hand, the dorsal root-ventral root potential elicited at 8 x threshold was depressed by LY393053 with IC50 values of 9.0+/-0.7 microM and 12.7+/-1.7 microM on monosynaptic and polysynaptic responses, respectively. When investigated using the mouse acetic acid writhing test, LY393053 showed significant analgesic effects at doses of 1-10 mg/kg intraperitoneally. An ED50 value of 6.0 mg/kg was obtained in this test. By revealing a potent effect of LY393053 in antagonising the native group I metabotropic receptor-mediated responses in the spinal cord in rodents, and an antinociceptive efficacy in a mouse visceral pain model, these results, therefore, provide additional evidence in support of the analgesic potential of metabotropic glutamate receptor antagonists.
Collapse
Affiliation(s)
- Y Chen
- Eli Lilly & Co, Windlesham, Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Chapter 1. Metabotropic glutamate receptor modulators: Recent advances and therapeutic potential. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
292
|
Sawtell NB, Huber KM, Roder JC, Bear MF. Induction of NMDA receptor-dependent long-term depression in visual cortex does not require metabotropic glutamate receptors. J Neurophysiol 1999; 82:3594-7. [PMID: 10601487 DOI: 10.1152/jn.1999.82.6.3594] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the role of group I mGluRs in the induction of long-term depression (LTD) in the visual cortex, using the novel mGluR antagonist LY341495 and mice lacking mGluR5, the predominant phosphoinositide (PI)-linked mGluR in the visual cortex. We find that LY341495 is a potent blocker of glutamate-stimulated PI hydrolysis in visual cortical synaptoneurosomes, and that it effectively antagonizes the actions of the mGluR agonist 1S, 3R-aminocyclopentane-1,3-dicarboxylic acid (ACPD) on synaptic transmission in visual cortical slices. However, LY341495 has no effect on the induction of LTD by low-frequency stimulation. Furthermore, mice lacking mGluR5 show normal NMDA receptor-dependent LTD. These results indicate that group I mGluR activation is not required for the induction of NMDA receptor-dependent LTD in the visual cortex.
Collapse
Affiliation(s)
- N B Sawtell
- Department of Neuroscience, Howard Hughes Medical Institute, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
293
|
Monastyrskaia K, Lundstrom K, Plahl D, Acuna G, Schweitzer C, Malherbe P, Mutel V. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction. Br J Pharmacol 1999; 128:1027-34. [PMID: 10556940 PMCID: PMC1571727 DOI: 10.1038/sj.bjp.0702885] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5'[gamma-35S]-thiotriphosphate [gamma-35S]-GTP binding assay. 2. Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters K(D) and Bmax values of 150 nM and 9.3 pmoles mg-1 protein, respectively. The specific binding was inhibited concentration-dependently by several mGlu receptor ligands, and their rank order of affinity was established. 3. Several peptides inhibited the [3H]-L-AP4 binding with the following rank order of potency: glutamate-glutamate>glutamate-glutamate-leucine=aspartate - glutamate>>glutamate - glutamate-aspartate>lactoyl-glutamate>>aspartate-aspartate. Aspartate-phenylalanine-methyl ester (aspartame) was inactive up to 1 mM and guanosine-5'-monophosphate and inosine-5'-monophosphate were inactive up to 100 micronM. 4. The [gamma-35S]-GTP binding functional assay was used to determine the agonist activities of the different compounds. For the rat mGlu4 agonists, L-AP4 and L-glutamate, the correlation between their occupancy and activation of the receptor was close to one. The peptides, Glu-Glu, Asp-Glu and Glu-Glu-Asp failed to stimulate the [gamma-35S]-GTP binding at receptor occupancy greater than 80% and Glu-Glu-Leu appeared to be a weak partial agonist. These peptides did not elicit a clear dose-dependent umami perception. However, Glu-lac showed a good correlation between its potency to stimulate the [gamma-35S]-GTP binding and its affinity for displacement of [3H]-L-AP4 binding. These data are in agreement with the peptide taste assessment in human subjects, which showed that the acid derivatives of glutamate had characteristics similar to umami.
Collapse
Affiliation(s)
| | - Kenneth Lundstrom
- Pharma Division Preclinical CNS Research Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Doris Plahl
- Givaudan Roure Forschung AG, CH-8600 Dübendorf, Switzerland
| | - Gonzalo Acuna
- Roche Genetics, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Christophe Schweitzer
- Pharma Division Preclinical CNS Research Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Pari Malherbe
- Pharma Division Preclinical CNS Research Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Vincent Mutel
- Pharma Division Preclinical CNS Research Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
- Author for correspondence:
| |
Collapse
|
294
|
Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999; 38:1431-76. [PMID: 10530808 DOI: 10.1016/s0028-3908(99)00092-1] [Citation(s) in RCA: 837] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metabotropic (G-protein-coupled) glutamate (mGlu) receptors have now emerged as a recognized, but still relatively new area of excitatory amino acid research. Current understanding of the roles and involvement of mGlu receptor subtypes in physiological/pathophysiological functions of the central nervous system has been recently propelled by the emergence of various structurally novel, potent, and mGlu receptor selective pharmacological agents. This article reviews the evolution of pharmacological agents that have been reported to target mGlu receptors, with a focus on the known receptor subtype selectivities of current agents.
Collapse
Affiliation(s)
- D D Schoepp
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
295
|
Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology 1999; 38:1519-29. [PMID: 10530814 DOI: 10.1016/s0028-3908(99)00053-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight known subtypes termed mGlu1-8. Currently, few ligands are available to study the pharmacology of mGlu receptor subtypes. In functional assays, we previously described LY341495 as a highly potent and selective mGlu2 and mGlu3 receptor antagonist. In this study, radiolabeled [3H]-LY341495 was used to investigate the characteristics of receptor binding to membranes from cells expressing human mGlu receptor subtypes. Using membranes from cells expressing human mGlu2 and mGlu3 receptors, [3H]-LY341495 (1 nM) specific binding was > 90% of total binding. At an approximate K(D) concentration for [3H]-LY341495 binding to human mGlu2 and mGlu3 receptors (1 nM), no appreciable specific binding of [3H-]LY341495 was found in membranes of cells expressing human mGlu1a, mGlu5a, mGlu4a, mGlu6, or mGlu7a receptors. However, modest (approximately 20% of mGlu2/3) specific [3H]-LY341495 (1 nM) binding was observed in human mGlu8 expressing cells. [3H]-LY341495 bound to membranes expressing human mGlu2 and mGlu3 receptors in a reversible and saturable manner with relatively high affinities (Bmax 20.5 +/- 5.4 and 32.0 +/- 7.0 pmol/mg protein; and K(D) = 1.67 +/- 0.20 and 0.75 +/- 0.43 nM, respectively). The pharmacology of [3H]-LY341495 binding in mGlu2 and mGlu3 expressing cells was consistent with that previously described for LY341495 in functional assays. [3H]-LY341495 binding provides a useful way to further investigate regulation of receptor expression and pharmacological properties of mGlu2 and mGlu3 receptor subtypes in recombinant systems.
Collapse
Affiliation(s)
- B G Johnson
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
296
|
Fitzjohn SM, Kingston AE, Lodge D, Collingridge GL. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 1999; 38:1577-83. [PMID: 10530819 DOI: 10.1016/s0028-3908(99)00123-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have used extracellular microelectrode recording to characterise a form of long-term depression (LTD) of synaptic transmission that can be induced by metabotropic glutamate (mGlu) receptor activation in the CA1 region of the young (12-18 day old) rat hippocampus. Activation of group I mGlu receptors by the specific agonist 3,5-dihydroxyphenylglyine (DHPG) induced LTD of field excitatory postsynaptic potentials (fEPSPs). The mGlu5 selective agonist 2-chloro-5-hydroxyphenylglycine was also capable of inducing LTD. In contrast, the group II specific agonist DCG-IV had no effect on synaptic transmission, whilst the group III receptor agonist (S)-2-amino-4-phosphonobutyrate elicited a depression that reversed fully upon agonist washout. DHPG-induced LTD could still be generated after prior saturation of electrically-induced NMDA receptor-dependent LTD. DHPG-induced LTD was reversed by tetanic stimulation comprising 100 shocks delivered at 100 Hz. A novel mGlu receptor antagonist, (RS)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) (LY393053) that potently inhibits mGlu1 and mGlu5 receptors, prevented the induction of DHPG-induced LTD. Like other mGlu receptor antagonists, LY393053 also reversed pre-established DHPG-induced LTD. In contrast, a potent mGlu1 selective antagonist (S)-2-methyl-4-carboxyphenylglycine (LY367385) did not prevent the induction of DHPG-induced LTD. In conclusion, DHPG, probably via activation of mGlu5 receptors, is able to induce a robust form of LTD in the CA1 region of the young rat hippocampus that is mechanistically distinct from NMDA receptor-dependent homosynaptic LTD.
Collapse
Affiliation(s)
- S M Fitzjohn
- Department of Anatomy, School of Medical Sciences, MRC Centre for Synaptic Plasticity, University of Bristol, UK.
| | | | | | | |
Collapse
|
297
|
Turner JP, Salt TE. Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro. J Physiol 1999; 519 Pt 2:481-91. [PMID: 10457064 PMCID: PMC2269507 DOI: 10.1111/j.1469-7793.1999.0481m.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. Corticothalamic (CT) EPSPs evoked at <= 0.1 Hz were recorded from thalamocortical neurones in the rat dorsal lateral geniculate nucleus in vitro, with both GABAA and GABAB receptors blocked. 2. The group III metabotropic glutamate (mGlu) receptor agonists L-2-amino-4-phosphono-butyric acid (L-AP4) and O-phospho-L-serine (L-SOP) both caused a concentration-dependent depression of the CT EPSP. The maximum depression and EC50 values for these effects were 64.4 +/- 3.8 % and 88.0 +/- 24.7 microM for L-AP4, and 42.0 +/- 2.5 % and 958 +/- 492 microM for L-SOP, respectively (means +/- s.e.m.). Neither agonist had any effect on membrane potential or input resistance. 3. The depression of the CT EPSP caused by L-AP4 was reversed using the group III antagonist (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4, 1 mM), and the group II/III antagonist LY341495 (3 microM), but not using the group II antagonist (2S)-alpha-ethylglutamic acid (300 microM). The potencies of L-AP4, L-SOP and LY341495 indicate that this action of L-AP4 is mediated via mGlu7 and mGlu8 and not mGlu4 receptors. 4. Neither MAP4 nor LY341495 had any effect on the CT EPSPs evoked by 10 Hz trains of five stimuli, indicating the lack of endogenous activation of group III mGlu receptors in the thalamus during short bursts of cortical input. However, the magnitude of the depression caused by L-AP4 indicates that any physiological activation of group III mGlu receptors would have a profound effect on the CT input to the thalamus, and hence cortical control of thalamic function.
Collapse
Affiliation(s)
- J P Turner
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
298
|
Laezza F, Doherty JJ, Dingledine R. Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 1999; 285:1411-4. [PMID: 10464102 DOI: 10.1126/science.285.5432.1411] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Long-term depression (LTD) is a well-known form of synaptic plasticity of principal neurons in the mammalian brain. Whether such changes occur in interneurons is still controversial. CA3 hippocampal interneurons expressing Ca2+-permeable AMPA receptors exhibited LTD after tetanic stimulation of CA3 excitatory inputs. LTD was independent of NMDA receptors and required both Ca2+ influx through postsynaptic AMPA receptors and activation of presynaptic mGluR7-like receptors. These results point to the capability of interneurons to undergo plastic changes of synaptic strength through joint activation of pre- and postsynaptic glutamate receptors.
Collapse
Affiliation(s)
- F Laezza
- Neuroscience Graduate Program, Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
299
|
Kingston AE, O'Neill MJ, Lam A, Bales KR, Monn JA, Schoepp DD. Neuroprotection by metabotropic glutamate receptor glutamate receptor agonists: LY354740, LY379268 and LY389795. Eur J Pharmacol 1999; 377:155-65. [PMID: 10456425 DOI: 10.1016/s0014-2999(99)00397-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In rat cortical neuronal cultures, metabotropic glutamate (mGlu) receptor agonists: LY354740 (+)-2-aminobicyclo[3.1.0]hexane-2,6dicarboxylate); LY379268 (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate, and LY389795 (-)-2-thia-4-aminobicyclo[3.1.0]-hexane-4,6-dicarboxylate, were neuroprotective against toxicity induced by N-methyl-D-aspartic acid (NMDA), kainic acid and staurosporine as measured by release of lactate dehydrogenase (LDH) activity into culture supernatants and DNA fragmentation by oligonucleosome formation. The potencies of the agonists were at least 100 times greater in reducing nucleosome formation than LDH release indicating a differential effect on neurons dying by apoptosis than by necrosis. In vivo studies showed that LY354740 was able to mediate a partial protection against apoptosis in CA1 hippocampal cells under ischaemic conditions where substantial CA1 cell loss occurred. The effects of the agonists in vitro were: (a) reversed by mGlu receptor antagonist LY341495, (b) enhanced by the presence of glial cells, (c) abrogated by RNA and protein synthesis inhibitors, and (d) unaltered by inhibition of endogenous adenosine activity. These results suggest that group II mGlu receptor agonists may represent a novel therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- A E Kingston
- Eli Lilly, Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, UK.
| | | | | | | | | | | |
Collapse
|
300
|
Pin JP, De Colle C, Bessis AS, Acher F. New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol 1999; 375:277-94. [PMID: 10443583 DOI: 10.1016/s0014-2999(99)00258-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The metabotropic glutamate receptors are GTP-binding-protein (G-protein) coupled receptors that play important roles in regulating the activity of many synapses in the central nervous system. As such, these receptors are involved in a wide number of physiological and pathological processes. Within the last few years, new potent and selective agonists and antagonists as well as radioligands acting on these receptors have been developed. Molecular modeling studies revealed the structural features of the glutamate binding site, and will be useful for the design of more selective and potent ligands. More interestingly, recent data revealed new regulatory sites on the receptor protein, able either to decrease or potentiate the action of the endogenous ligand. No doubt that in the near future a multitude of new tools to modulate the activity of these receptors will be discovered, enabling the identification of the possible therapeutic applications for these new neuroactive molecules.
Collapse
Affiliation(s)
- J P Pin
- Centre INSERM-CNRS de Pharmacologie-Endocrinologie, UPR 9023-CNRS, Laboratoire des Mécanismes Moléculaires des Communications Cellulaires, Montpellier, France.
| | | | | | | |
Collapse
|