251
|
Le Blanc J, Fleury S, Boukhatem I, Bélanger JC, Welman M, Lordkipanidzé M. Platelets Selectively Regulate the Release of BDNF, But Not That of Its Precursor Protein, proBDNF. Front Immunol 2020; 11:575607. [PMID: 33324399 PMCID: PMC7723927 DOI: 10.3389/fimmu.2020.575607] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) plays a role in synaptic plasticity and neuroprotection. BDNF has well-established pro-survival effects, whereas its precursor protein, proBDNF, induces apoptosis. Thus, it has been suggested that the proBDNF/BDNF ratio could be an indicator of neuronal health. Access to neurons is, understandably, limited. Because of their similarities, platelets have been put forward as a non-invasive biomarker of neuronal health; indeed, they store large quantities of BDNF and can release it into circulation upon activation, similarly to neurons. However, whether platelets also express the precursor proBDNF protein remains unknown. We therefore sought to characterize proBDNF levels in human platelets and plasma. Methods The presence of proBDNF was assessed by immunoblotting, cell fractionation, flow cytometry, and confocal microscopy in washed platelets from 10 healthy volunteers. Platelets from 20 independent healthy volunteers were activated with several classical agonists and the release of BDNF and proBDNF into plasma was quantified by ELISA. Results Platelets expressed detectable levels of proBDNF (21 ± 13 fmol/250 x 106 platelets). ProBDNF expression was mainly localized in the intracellular compartment. The proBDNF to BDNF molar ratio was ~1:5 in platelets and 10:1 in plasma. In stark contrast to the release of BDNF during platelet activation, intraplatelet and plasma concentrations of proBDNF remained stable following stimulation with classical platelet agonists, consistent with non-granular expression. Conclusions Platelets express both the mature and the precursor form of BDNF. Whether the intraplatelet proBDNF to BDNF ratio could be used as a non-invasive biomarker of cognitive health warrants further investigation.
Collapse
Affiliation(s)
- Jessica Le Blanc
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.,Research Center, Montreal Heart Institute, Montréal, QC, Canada
| | - Samuel Fleury
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.,Research Center, Montreal Heart Institute, Montréal, QC, Canada
| | - Imane Boukhatem
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.,Research Center, Montreal Heart Institute, Montréal, QC, Canada
| | - Jean-Christophe Bélanger
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.,Research Center, Montreal Heart Institute, Montréal, QC, Canada
| | - Mélanie Welman
- Research Center, Montreal Heart Institute, Montréal, QC, Canada
| | - Marie Lordkipanidzé
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.,Research Center, Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
252
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
253
|
Methamphetamine Increases the Proportion of SIV-Infected Microglia/Macrophages, Alters Metabolic Pathways, and Elevates Cell Death Pathways: A Single-Cell Analysis. Viruses 2020; 12:v12111297. [PMID: 33198269 PMCID: PMC7697917 DOI: 10.3390/v12111297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Both substance use disorder and HIV infection continue to affect many individuals. Both have untoward effects on the brain, and the two conditions often co-exist. In the brain, macrophages and microglia are infectable by HIV, and these cells are also targets for the effects of drugs of abuse, such as the psychostimulant methamphetamine. To determine the interaction of HIV and methamphetamine, we isolated microglia and brain macrophages from SIV-infected rhesus monkeys that were treated with or without methamphetamine. Cells were subjected to single-cell RNA sequencing and results were analyzed by statistical and bioinformatic analysis. In the animals treated with methamphetamine, a significantly increased proportion of the microglia and/or macrophages were infected by SIV. In addition, gene encoding functions in cell death pathways were increased, and the brain-derived neurotropic factor pathway was inhibited. The gene expression patterns in infected cells did not cluster separately from uninfected cells, but clusters comprised of microglia and/or macrophages from methamphetamine-treated animals differed in neuroinflammatory and metabolic pathways from those comprised of cells from untreated animals. Methamphetamine increases CNS infection by SIV and has adverse effects on both infected and uninfected microglia and brain macrophages, highlighting the dual and interacting harms of HIV infection and drug abuse on the brain.
Collapse
|
254
|
Brain-derived neurotropic factor and cortisol levels negatively predict working memory performance in healthy males. Neurobiol Learn Mem 2020; 175:107308. [DOI: 10.1016/j.nlm.2020.107308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022]
|
255
|
Woelfer M, Li M, Colic L, Liebe T, Di X, Biswal B, Murrough J, Lessmann V, Brigadski T, Walter M. Ketamine-induced changes in plasma brain-derived neurotrophic factor (BDNF) levels are associated with the resting-state functional connectivity of the prefrontal cortex. World J Biol Psychiatry 2020; 21:696-710. [PMID: 31680600 DOI: 10.1080/15622975.2019.1679391] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Synaptic plasticity and brain-derived neurotrophic factor (BDNF) signalling are proposed to play key roles in antidepressant drug action. Ketamine, an N-methyl-D-aspartate receptor antagonist and putative antidepressant, may increase synaptic plasticity in prefrontal cortex through higher expression of BDNF. Furthermore, ketamine was shown to change resting-state functional connectivity (RSFC) of dorsomedial prefrontal cortex (dmPFC). METHODS In a randomised, placebo-controlled study, we investigated acutely (100 min) and at 24 h following subanesthetic ketamine infusion which dmPFC seeded RSFC changes are most strongly associated with plasma BDNF level changes in 53 healthy participants (21 females, age: 24.4 ± 2.9 years) using 7 T-fMRI. RESULTS We observed higher relative levels of BDNF 2 h and 24 h after ketamine compared to placebo. Whole-brain regression revealed that the change in BDNF after 24 h was associated with RSFC decreases from dmPFC to posterior cingulate cortex and ventromedial PFC at 24 h and exploratively also at the 100 min measurement point. Follow-up analyses revealed that RSFC reductions following ketamine were restricted to subjects showing increased BDNF levels at 24 h. CONCLUSIONS Our findings indicate BDNF level dynamics following ketamine are related to acute and 24 h RSFC changes. Particularly when BDNF increases are observed after ketamine infusion, a disconnection from dmPFC after 24 h is seen and may reflect synaptic plasticity effects.
Collapse
Affiliation(s)
- Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany
| | - Lejla Colic
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Thomas Liebe
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - James Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Volkmar Lessmann
- Institute of Physiology, Otto-von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Tanja Brigadski
- Institute of Physiology, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Informatics and Microsystems Technology, University of Applied Science Kaiserslautern, Zweibrücken, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tuebingen, Tuebingen, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
256
|
Lira FS, Conrado de Freitas M, Gerosa-Neto J, Cholewa JM, Rossi FE. Comparison Between Full-Body vs. Split-Body Resistance Exercise on the Brain-Derived Neurotrophic Factor and Immunometabolic Response. J Strength Cond Res 2020; 34:3094-3102. [PMID: 33105359 DOI: 10.1519/jsc.0000000000002653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lira, FS, Conrado de Freitas, M, Gerosa-Neto, J, Cholewa, JM, and Rossi, FE. Comparison between full-body vs. split-body resistance exercise on the brain-derived neurotrophic factor immunometabolic response. J Strength Cond Res 34(11): 3094-3102, 2020-Intense aerobic exercise seems to increase serum concentrations of brain-derived neurotrophic factor (BDNF) in conjunction with increasing lactate; however, less is known about the BDNF response to differing resistance exercise protocols. We hypothesized that full-body (FB) resistance exercise will elicit a greater increase in serum BDNF and lactate compared with split-body resistance exercise. Twelve recreationally resistance-trained men (age = 25.3 ± 5.9 years) performed 3 randomized trials of 18 sets of exercise: upper-body (UB), lower-body (LB), and FB conditions. Serum BDNF levels were assessed at rest, immediately Post-exercise, Post-1 hour, and Post-2 hours during recovery. Lactate concentration was evaluated at rest, after 9 sets, Post-exercise, Post-5, Post-10, and Post-30 minutes during recovery. In addition, interleukin (IL-6 and IL-10) and the IL-6/IL-10 ratio were calculated. Lactate concentration and total volume were greater in the FB condition compared with LB and UB (p < 0.05). For BDNF, effect sizes were largest in the LB (1.4), followed by the FB (0.75), and moderate to UB (0.33), although no significant differences were observed between conditions. There was a statistically significant relationship between lactate and BDNF only for LB condition (rho = 0.72; p = 0.013). There were a greater IL-10 Post-1 hour for FB condition compared with UB and LB (p < 0.001), and lower IL-6/IL-10 ratio in FB compared with UB (p < 0.001). Lower body induced a great BDNF response, and FB resistance exercise elicited a greater increase of serum cytokines than UB in trained men. We speculate that the volume of work performed by larger muscles has a larger influence on BDNF than overall volume.
Collapse
Affiliation(s)
- Fabio S Lira
- Department of Physical Education, Exercise and Immunometabolism Research Group, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Marcelo Conrado de Freitas
- Department of Physical Education, Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, São Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Jose Gerosa-Neto
- Department of Physical Education, Exercise and Immunometabolism Research Group, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina; and
| | - Fabrício E Rossi
- Department of Physical Education, Immunometabolism of Skeletal Muscle and Exercise Research Group, Federal University of Piauí (UFPI), Teresina, Brazil
| |
Collapse
|
257
|
Li S, Weinstein G, Zare H, Teumer A, Völker U, Friedrich N, Knol MJ, Satizabal CL, Petyuk VA, Adams HHH, Launer LJ, Bennett DA, De Jager PL, Grabe HJ, Ikram MA, Gudnason V, Yang Q, Seshadri S. The genetics of circulating BDNF: towards understanding the role of BDNF in brain structure and function in middle and old ages. Brain Commun 2020; 2:fcaa176. [PMID: 33345186 PMCID: PMC7734441 DOI: 10.1093/braincomms/fcaa176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in brain development and function. Substantial amounts of BDNF are present in peripheral blood, and may serve as biomarkers for Alzheimer's disease incidence as well as targets for intervention to reduce Alzheimer's disease risk. With the exception of the genetic polymorphism in the BDNF gene, Val66Met, which has been extensively studied with regard to neurodegenerative diseases, the genetic variation that influences circulating BDNF levels is unknown. We aimed to explore the genetic determinants of circulating BDNF levels in order to clarify its mechanistic involvement in brain structure and function and Alzheimer's disease pathophysiology in middle-aged and old adults. Thus, we conducted a meta-analysis of genome-wide association study of circulating BDNF in 11 785 middle- and old-aged individuals of European ancestry from the Age, Gene/Environment Susceptibility-Reykjavik Study (AGES), the Framingham Heart Study (FHS), the Rotterdam Study and the Study of Health in Pomerania (SHIP-Trend). Furthermore, we performed functional annotation analysis and related the genetic polymorphism influencing circulating BDNF to common Alzheimer's disease pathologies from brain autopsies. Mendelian randomization was conducted to examine the possible causal role of circulating BDNF levels with various phenotypes including cognitive function, stroke, diabetes, cardiovascular disease, physical activity and diet patterns. Gene interaction networks analysis was also performed. The estimated heritability of BDNF levels was 30% (standard error = 0.0246, P-value = 4 × 10-48). We identified seven novel independent loci mapped near the BDNF gene and in BRD3, CSRNP1, KDELC2, RUNX1 (two single-nucleotide polymorphisms) and BDNF-AS. The expression of BDNF was associated with neurofibrillary tangles in brain tissues from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). Seven additional genes (ACAT1, ATM, NPAT, WDR48, TTC21A, SCN114 and COX7B) were identified through expression and protein quantitative trait loci analyses. Mendelian randomization analyses indicated a potential causal role of BDNF in cardioembolism. Lastly, Ingenuity Pathway Analysis placed circulating BDNF levels in four major networks. Our study provides novel insights into genes and molecular pathways associated with circulating BDNF levels and highlights the possible involvement of plaque instability as an underlying mechanism linking BDNF with brain neurodegeneration. These findings provide a foundation for a better understanding of BDNF regulation and function in the context of brain aging and neurodegenerative pathophysiology.
Collapse
Affiliation(s)
- Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Galit Weinstein
- School of Public Health, University of Haifa, Haifa 3498838, Israel
| | - Habil Zare
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Maria J Knol
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Hieab H H Adams
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Lenore J Launer
- Department of Health and Human Services, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David A Bennett
- Department of Neurology, Rush University Medical Center, Chicago, IL 60612, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032, USA
- Program in Population and Medical Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
- German Center for Neurodegererative Diseases (DZNE), Rostock/Greifswald, Germany
| | - M Arfan Ikram
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands
| | - Vilmundur Gudnason
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101 Reykjavik, Iceland
- Icelandic Heart Association, 201 Kopavogur, Iceland
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, 78229 TX, USA
- The Framingham Study, Framingham, MA 01702, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
258
|
Bakusic J, Ghosh M, Polli A, Bekaert B, Schaufeli W, Claes S, Godderis L. Epigenetic perspective on the role of brain-derived neurotrophic factor in burnout. Transl Psychiatry 2020; 10:354. [PMID: 33077716 PMCID: PMC7573604 DOI: 10.1038/s41398-020-01037-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a potential role in the neurobiology of burnout, but there are no studies investigating the underlying genetic and epigenetic mechanisms. Our aim is to further explore the role of BDNF in burnout, by focusing on the Val66Met polymorphism and methylation patterns of the BDNF gene and serum BDNF (sBDNF) protein expression. We conducted a cross-sectional study by recruiting 129 individuals (59 with burnout and 70 healthy controls). Participants underwent a clinical interview, psychological assessment and blood sample collection. Polymorphism and DNA methylation were measured on DNA from whole blood, using pyrosequencing and sBDNF levels were measured using ELISA. We found significantly increased methylation of promoter I and IV in the burnout group, which also correlated with burnout symptoms. In addition, DNA methylation of promoter I had a significant negative effect on sBDNF. For DNA methylation of exon IX, we did not find a significant difference between the groups, nor associations with sBDNF. The Val66Met polymorphism neither differed between groups, nor was it associated with sBDNF levels. Finally, we did not observe differences in sBDNF level between the groups. Interestingly, we observed a significant negative association between depressive symptoms and sBDNF levels. The current study is the first to show that BDNF DNA methylation changes might play an important role in downregulation of the BDNF protein levels in burnout. The presence of depressive symptoms might have an additional impact on these changes.
Collapse
Affiliation(s)
- Jelena Bakusic
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| | - Manosij Ghosh
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Andrea Polli
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium ,grid.8767.e0000 0001 2290 8069Pain in Motion research group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram Bekaert
- grid.5596.f0000 0001 0668 7884Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology; KU Leuven, Leuven, Belgium
| | - Wilmar Schaufeli
- grid.5596.f0000 0001 0668 7884Work, Organisational and Personnel Psychology, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- grid.5596.f0000 0001 0668 7884Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium ,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
259
|
Rivera P, Aranda J, Alén F, Vargas A, Serrano A, Pavón FJ, Orio L, Rubio L, Moratalla R, de Fonseca FR, Suárez J. Sex-specific behavioral and neurogenic responses to cocaine in mice lacking and blocking dopamine D1 or dopamine D2 receptors. J Comp Neurol 2020; 529:1724-1742. [PMID: 33047300 DOI: 10.1002/cne.25052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 12/22/2022]
Abstract
Adult neurogenesis in rodents is modulated by dopaminergic signaling and inhibited by cocaine. However, the sex-specific role of dopamine D1 and D2 receptors (D1R, D2R) in the deleterious effect of cocaine on adult neurogenesis has not been described yet. Here, we explored sex differences in (a) cell proliferation (5'-bromo-2'-deoxyuridine [BrdU]), (b) neural precursor (nestin), (c) neuronal phenotype (BrdU/β3-tubulin), and (d) neuronal maturity (NeuN) in the subventricular zone (SVZ) of the lateral ventricles and striatum of mice with genetic deletion (D1-/- , D2-/- ) or pharmacological blockage (SCH23390: 0.1 mg/kg/day/5 days; Raclopride: 0.3 mg/kg/day/5 days) of D1R and D2R, and treated (10 mg/kg/day/5 days) and then challenged (5 mg/kg, 48 hr later) with cocaine. Results indicated that hyperactivity responses to cocaine were absent in D1-/- mice and reduced in SCH23390-treated mice. Activity responses to cocaine were reduced in D2-/- males, but absent in D2-/- females and increased in Raclopride-treated females. D1R deletion blocked the deleterious effect of cocaine on SVZ cell proliferation in males. Cocaine-exposed D1-/- males also had reduced neuronal phenotype of SVZ newborn cells and increased striatal neuronal maturity. D2-/- mice had lower proliferative and neural precursor responses. Cocaine in D2-/- females or coadministered with Raclopride in wild-type females improved SVZ cell proliferation, an effect that positively correlated with plasma brain-derived neurotrophic factor (BDNF) concentrations. In conclusion, the sex-specific D1R and D2R signaling on SVZ cell proliferation, neural progenitor and neuronal maturity is differentially perturbed by cocaine, and BDNF may be required to link D2R to neuroplasticity in cocaine addiction in females.
Collapse
Affiliation(s)
- Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jesús Aranda
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Vargas
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; and UGC Corazón, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Leticia Rubio
- Departamento de Anatomía Humana y Medicina Legal, Universidad de Málaga, Málaga, Spain
| | - Rosario Moratalla
- Instituto Cajal de Madrid, Consejo Superior de Investigaciones Científica, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Regional de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
260
|
Gomutbutra P, Yingchankul N, Chattipakorn N, Chattipakorn S, Srisurapanont M. The Effect of Mindfulness-Based Intervention on Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Controlled Trials. Front Psychol 2020; 11:2209. [PMID: 33041891 PMCID: PMC7522212 DOI: 10.3389/fpsyg.2020.02209] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: This systematic review aims to answer three questions. First, how much do mindfulness-based interventions (MBIs) affect peripheral brain-derived neurotrophic factor (BDNF)? Second, do mindfulness exercise-based interventions (exercise-MBIs) and mindfulness meditation-based interventions (meditation-MBIs) affect peripheral BDNF differently? Third, does the age of participants and the accumulative hours of MBI practice affect peripheral BDNF? Methods: We included randomized controlled trials comparing MBI and no intervention in adults (age >18 years) who reported peripheral BDNF. Database searches included PubMed, CINAHL, CENTRAL, PsyInfo, and Scopus. Two reviewers independently selected the studies and assessed the trial quality. We used the standardized mean difference (SMD) as the effect size index and conducted moderator analyses. Results: Eleven studies are included in this systematic review. Five studies applying exercise-MBI and three studies applying meditation-MBI are included in the meta-analysis (N = 479). The pooled effect size shows a significantly greater increase of peripheral BDNF in MBI groups compared to the control groups (k = 8, N = 479, SMD = 0.72, 95% CI 0.31-1.14, I 2= 78%). Significantly more increases of BDNF in the MBI groups are found in both subgroups of exercise-MBI and meditation-MBI. The effect sizes of both subgroups are not significantly different between subgroups (χ2 = 0.02, p = 0.88). We find no significant correlation between the effect sizes and the age of participants (r = -0.0095, p = 0.45) or accumulative hours of MBI practice (r = 0.0021, p = 0.57). Conclusion: The heterogeneous data of this small sample-size meta-analysis suggests that MBI can increase peripheral BDNF. Either exercise-MBI or meditation-MBI can increase peripheral BDNF.
Collapse
Affiliation(s)
- Patama Gomutbutra
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,The Northern Neuroscience Center, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Nalinee Yingchankul
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Manit Srisurapanont
- Department of Psychiatry, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
261
|
Polli A, Ghosh M, Bakusic J, Ickmans K, Monteyne D, Velkeniers B, Bekaert B, Godderis L, Nijs J. DNA Methylation and Brain-Derived Neurotrophic Factor Expression Account for Symptoms and Widespread Hyperalgesia in Patients With Chronic Fatigue Syndrome and Comorbid Fibromyalgia. Arthritis Rheumatol 2020; 72:1936-1944. [PMID: 32562379 DOI: 10.1002/art.41405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The epigenetics of neurotrophic factors holds the potential to unravel the mechanisms underlying the pathophysiology of complex conditions such as chronic fatigue syndrome (CFS). This study was undertaken to explore the role of brain-derived neurotrophic factor (BDNF) genetics, epigenetics, and protein expression in patients with both CFS and comorbid fibromyalgia (CFS/FM). METHODS A repeated-measures study was conducted in 54 participants (28 patients with CFS/FM and 26 matched healthy controls). Participants underwent a comprehensive assessment, including questionnaires, sensory testing, and blood withdrawal. Serum BDNF (sBDNF) protein levels were measured using enzyme-linked immunosorbent assay, while polymorphism and DNA methylation were measured in blood using pyrosequencing technology. To assess the temporal stability of the measures, participants underwent the same assessment twice within 4 days. RESULTS Repeated-measures mixed linear models were used for between-group analysis, with mean differences and 95% confidence intervals (95% CIs) shown. Compared to controls, serum BNDF was higher in patients with CFS/FM (F = 15.703; mean difference 3.31 ng/ml [95% CI 1.65, 4.96]; P = 0.001), whereas BDNF DNA methylation in exon 9 was lower (F = 7.543; mean difference -2.16% [95% CI -3.93, -0.83]; P = 0.007). BDNF DNA methylation was mediated by the Val66Met (rs6265) polymorphism. Lower methylation in the same region predicted higher sBDNF levels (F = 7.137, β = -0.408 [95% CI -0.711, -0.105]; P = 0.009), which in turn predicted participants' symptoms (F = 14.410, β = 3.747 [95% CI 1.79, 5.71]; P = 0.001) and widespread hyperalgesia (F = 4.147, β = 0.04 [95% CI 0.01, 0.08]; P = 0.044). CONCLUSION Our findings indicate that sBDNF levels are elevated in patients with CFS/FM and that BDNF methylation in exon 9 accounts for the regulation of protein expression. Altered BDNF levels might represent a key mechanism explaining CFS/FM pathophysiology.
Collapse
Affiliation(s)
- Andrea Polli
- Vrije Universiteit Brussel, Brussels, Belgium, Katholieke Universiteit Leuven, Leuven, Belgium, and Scientific Research Foundation, Flanders, Belgium
| | - Manosij Ghosh
- Katholieke Universiteit Leuven, Leuven, Belgium, and Scientific Research Foundation, Flanders, Belgium
| | | | - Kelly Ickmans
- Vrije Universiteit Brussel and University Hospital Brussels, Brussels, Belgium, and Scientific Research Foundation, Flanders, Belgium
| | | | | | - Bram Bekaert
- University Hospitals Leuven, and Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lode Godderis
- Katholieke Universiteit Leuven, Leuven, Belgium, and External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Jo Nijs
- Vrije Universiteit Brussel, Brussels, Belgium, and University Hospital Brussels, Brussels, Belgium
| |
Collapse
|
262
|
Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: the Sefuri study. Sci Rep 2020; 10:16442. [PMID: 33020545 PMCID: PMC7536184 DOI: 10.1038/s41598-020-73576-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
The beneficial effects of brain-derived neurotrophic factor (BDNF)—a member of the neurotrophin family—on cognitive function or dementia are well established in both rodents and human beings. In contrast, little is known about the association of proBDNF—a precursor protein with opposing neuronal effects of BDNF—with cognitive function in non-demented older adults. We analyzed brain magnetic resonance imaging findings of 256 community-dwelling older adults (mean age of 68.4 years). Serum BDNF and proBDNF levels were measured by quantitative enzyme-linked immunosorbent assay. Logistic regression analysis revealed that older age, less physical activity, hippocampal atrophy, and lower BDNF levels were independently associated with memory impairment determined by the Rivermead Behavioral Memory Test. Path analysis based on structural equation modeling indicated that age, sport activity, hippocampal atrophy and BDNF but not proBDNF were individually associated with Rivermead Behavioral Memory Test scores. These findings suggest that impaired BDNF function, in addition to physical inactivity and hippocampal atrophy, is associated with age-related memory impairment. Therefore, BDNF may be a potential target for dementia prevention.
Collapse
|
263
|
Afroundeh R, Saleh V, Siahkouhian M, Asadi A. THE EFFECT OF AN 8-WEEK ANAEROBIC GYMNASTICS TRAINING ON BDNF, VEGF, AND SOME PHYSIOLOGICAL CHARACTERISTICS IN CHILDREN. SCIENCE OF GYMNASTICS JOURNAL 2020. [DOI: 10.52165/sgj.12.3.381-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to observe changes in levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), resting metabolic rate (RMR) and maximum oxygen consumption (VO2max) in the gymnast children after an anaerobic gymnastics training program. Thirty beginner gymnasts aged 8-12 years old were randomly assigned to control (n = 15) and experimental (n = 15) groups. The anaerobic gymnastics training was conducted for 8 weeks, 3 times per a week. Each session lasted 45 minutes: 10 min warm-up, 30 min core exercise, and 5 min cool down. The anthropometric and body composition of subjects were measured and growth factors were measured by using human BDNF and VEGF PicoKine™ ELISA Kit and analysis was performed using sandwich enzyme-linked immunosorbent assay (Morland et al.) before and after the intervention, and VO2max, maximum heart rate and RMR were measured using a gas analyzer. At the baseline there were not any significant differences between both groups (p>0.05). But in the post-test, a significant difference was observed for BDNF(p=0.02) and VEGF(p=0.018) values between the two groups. Within-group there was a decrease in the value of the maximum heart rate indicator (P<0.05) and VO2max and BDNF increased significantly after an intervention (P<0.05). In conclusion, the results of the present study suggest that anaerobic gymnastic training increases the level of salivary BDNF and VEGF in children. These types of exercises may also improve cardiorespiratory fitness in children.
Collapse
|
264
|
Zheng T, Chen X, Ge B, Chen B, Qin L, Tian L, Gao Y, Hu X, Xiao L, Pan H, Chen Y. Association between plasma dipeptidyl peptidase-4 activity to brain-derived neurotrophic factor ratio and depressive symptoms in middle-aged and older adults with normal glucose tolerance: A cross-sectional study. World J Biol Psychiatry 2020; 21:642-650. [PMID: 32081046 DOI: 10.1080/15622975.2020.1733078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 01/26/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
Objectives: Attenuation of brain-derived neurotrophic factor (BDNF) availability and increased dipeptidyl peptidase-4 (DPP4) activity have both been reported to link to the pathogenesis of depression. The aim of this study was to test the correlation between depressive symptoms and plasma DPP4 activity to BDNF ratio (DBR).Methods: We evaluated DPP4 activity, BDNF, oxidative stress parameters and inflammatory markers and calculated DBR in a cross-sectional sample of 1640 non-diabetic participants.Results: DPP4 activity was negatively related to BDNF in participants with and without depressive symptoms (r= -0.351 and r= -0.404, p<.001). Nitrotyrosine and 8-iso-PGF2a mediated 18.4 and 12.6% of the total effect of DPP4 activity on BDNF, respectively. 8-iso-PGF2a, nitrotyrosine, C-reactive protein, interleukin-6 and PHQ-9 score progressively increased across DBR quartiles. Participants whose DBRs were in the highest quartile had 2.64-fold increased odds (OR = 3.03) of depressive symptoms. The depressive symptoms risk increased more with lower levels of BDNF and higher levels of DPP4 activity (p<.05).Conclusions: Our data suggested inverse correlation between DPP4 activity and BDNF through the oxidative stress mediator. The positive relationship between DBR and depressive symptoms risk raises feasibility of identifying DBR as a novel biological marker or even a possible therapeutic target for depression.
Collapse
Affiliation(s)
- Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xu Chen
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Bo Ge
- Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Bo Chen
- Department of Human Anatomy, Southwest Medical University, Luzhou, Sichuan, China
| | - Linyuan Qin
- Department of Epidemiology and Health Statistics, Guilin Medical University, Guilin, Guangxi, China
| | - Li Tian
- Department of Endocrinology and Metabolism, West China Hospital, Chengdu, Sichuan, China
| | - Yun Gao
- Department of Endocrinology and Metabolism, West China Hospital, Chengdu, Sichuan, China
| | - Xueping Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Liuping Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Haidong Pan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yujie Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
265
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
266
|
Massa N, Alrohaibani A, Mammino K, Bello M, Taylor N, Cuthbert B, Fargotstein M, Coulter MM, Boatright JH, Nocera J, Duncan E. The Effect of Aerobic Exercise on Physical and Cognitive Outcomes in a Small Cohort of Outpatients with Schizophrenia. Brain Plast 2020; 5:161-174. [PMID: 33282679 PMCID: PMC7685675 DOI: 10.3233/bpl-200105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Schizophrenia (SCZ) is a severe, chronic illness characterized by psychotic symptoms and impairments in many cognitive domains. Dysregulation of brain derived neurotrophic factor (BDNF) is associated with the cognitive impairments seen in patients with SCZ. Given the growing literature supporting a positive effect of aerobic exercise on cognition in other populations, we hypothesized that a structured aerobic exercise program would improve cognitive and functional outcomes in subjects with SCZ, potentially mediated by increases in BDNF. Methods: The study was a small randomized parallel group clinical trial of subjects with SCZ comparing 12 weeks of aerobic exercise (AE) against control (CON) stretching and balance training. At Baseline, Week 12, and Week 20 we collected serum samples for analysis of brain derived neurotrophic factor (BDNF), and assessed functional, physical, and cognitive outcomes. Linear regression models were used to compare change scores between timepoints. Results: We randomized 21 subjects to AE and 17 to CON; however, only 9 AE and 6 CON completed their programs. Subjects in both groups were slower at the 400 m walk in Week 12 compared to Baseline, but the AE group had significantly less slowing than the CON group (B = –28.32, p = 0.011). Between Week 12 and Week 20, the AE group had a significantly greater change score on the Composite and Visual Learning Domain of the MATRICS Consensus Cognitive Battery (B = 5.11, p = 0.03; B = 13.96, p = 0.006). Conclusion: These results indicate that participation in a structured aerobic exercise paradigm may modestly blunt physical function decline and enhance cognitive function in individuals with SCZ.
Collapse
Affiliation(s)
- Nicholas Massa
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | | | - Kevin Mammino
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Medina Bello
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Nicholas Taylor
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Bruce Cuthbert
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jeffery H Boatright
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Joe Nocera
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Neurology and Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
267
|
Heidarzadeh-Rad N, Gökmen-Özel H, Kazemi A, Almasi N, Djafarian K. Effects of a Psychobiotic Supplement on Serum Brain-derived Neurotrophic Factor Levels in Depressive Patients: A Post Hoc Analysis of a Randomized Clinical Trial. J Neurogastroenterol Motil 2020; 26:486-495. [PMID: 32989186 PMCID: PMC7547201 DOI: 10.5056/jnm20079] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background/Aims Psychobiotics are probiotics or prebiotics that, upon ingestion in adequate amounts, yield positive influence on mental health via microbiota-gut-brain axis regulation to modulate the circulating cytokines, chemokines, neurotransmitters, or neurotrophins levels. We have recently shown that a psychobiotic combination (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175; CEREBIOME) significantly improved depression symptoms in patients with depression. Recent animal data suggest the influence of the gut microbiota on brain-derived neurotrophic factor (BDNF), which was shown to correlate with antidepressant response in depressive patients. Therefore, we conducted this exploratory post hoc analysis of BDNF levels to clarify the mechanism of action of this psychobiotic in our cohort. Methods Our study was a double-blind, randomized controlled trial of patients with low-to-moderate depression receiving either a probiotic combination, prebiotic or placebo. From the 110 patients randomized in the trial, 78 were included in this post hoc analysis (probiotic, n = 28; prebiotic and placebo, n = 25). We compared serum BDNF levels from participants at baseline and endpoint, and assessed the Pearson correlation between depression severity and BDNF levels for each intervention. Results We found that post-intervention BDNF levels were significantly different between groups (P < 0.001). Furthermore, BDNF levels increased significantly in the probiotic group compared to both the prebiotic (P < 0.001) and placebo groups (P = 0.021), which inversely correlated with depression severity compared to placebo (ANOVA/ANCOVA, P = 0.012; Pearson, r = -0.79, P < 0.001). In the prebiotic group, BDNF levels reduced but not significantly compared with placebo group (P > 0.05). Conclusion Eight-week supplementation with B. longum and L. helveticus in depressive patients improved depression symptoms, possibly by increasing BDNF levels.
Collapse
Affiliation(s)
- Nazanin Heidarzadeh-Rad
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Hülya Gökmen-Özel
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Almasi
- Department of Nutrition and Dietetics, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
268
|
Tarassova O, Ekblom MM, Moberg M, Lövdén M, Nilsson J. Peripheral BDNF Response to Physical and Cognitive Exercise and Its Association With Cardiorespiratory Fitness in Healthy Older Adults. Front Physiol 2020; 11:1080. [PMID: 32982796 PMCID: PMC7477111 DOI: 10.3389/fphys.2020.01080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
Physical exercise (PE) has been shown to improve brain function via multiple neurobiological mechanisms promoting neuroplasticity. Cognitive exercise (CE) combined with PE may show an even greater effect on cognitive function. Brain-derived neurotrophic factor (BDNF) is important for neuroplastic signaling, may reduce with increasing age, and is confounded by fitness. The source and physiological role of human peripheral blood BDNF in plasma (pBDNF) is thought to differ from that in serum (sBDNF), and it is not yet known how pBDNF and sBDNF respond to PE and CE. A training intervention study in healthy older adults investigated the effects of acute (35 min) and prolonged (12 weeks, 30 sessions) CE and PE, both alone and in combination, on pBDNF and sBDNF. Cross-sectional associations between baseline pBDNF, sBDNF and cardiorespiratory fitness (CRF) were also investigated. Participants (65-75 years) were randomly assigned to four groups and prescribed either CE plus 35 min of rest (n = 21, 52% female); PE [performed on a cycle ergometer at moderate intensity (65-75% of individual maximal heart rate)] plus 35 min of rest (n = 27, 56% female); CE plus PE (n = 24, 46% female), or PE plus CE (n = 25, 52% female). Groups were tested for CRF using a maximal treadmill ergometer test (VO2peak); BDNF levels (collected 48 h after CRF) during baseline, after first exercise (PE or CE) and after second exercise (PE, CE or rest); and cognitive ability pre and post 12-week training. At both pre and post, pBDNF increased after CE and PE (up to 222%), and rest (∼67%), whereas sBDNF increased only after PE (up to 18%) and returned to baseline after rest. Acute but not prolonged PE increased both pBDNF and sBDNF. CE induced acute changes in pBDNF only. Baseline pBDNF was positively associated with baseline sBDNF (n = 93, r = 0.407, p < 0.001). No changes in CRF were found in any of the groups. Baseline CRF did not correlate with baseline BDNF. Even though baseline pBDNF and sBDNF were associated, patterns of changes in pBDNF and sBDNF in response to exercise were explicitly different. Further experimental scrutiny is needed to clarify the biological mechanisms of these results.
Collapse
Affiliation(s)
- Olga Tarassova
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Maria M Ekblom
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Moberg
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.,Department of Psychology, Gothenburg University, Gothenburg, Sweden
| | - Jonna Nilsson
- The Swedish School of Sport and Health Sciences, Stockholm, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| |
Collapse
|
269
|
Rehman NU, Esmaeilpour K, Joushi S, Abbas M, Al-Rashida M, Rauf K, Masoumi-Ardakani Y. Effect of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide on cognitive deficits and hippocampal plasticity during nicotine withdrawal in rats. Biomed Pharmacother 2020; 131:110783. [PMID: 33152941 DOI: 10.1016/j.biopha.2020.110783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.
Collapse
Affiliation(s)
- Naeem Ur Rehman
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Pakistan.
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
270
|
Kumar PK, Mitra P, Ghosh R, Sharma S, Nebhinani N, Sharma P. Association of circulating BDNF levels with BDNF rs6265 polymorphism in schizophrenia. Behav Brain Res 2020; 394:112832. [PMID: 32726665 DOI: 10.1016/j.bbr.2020.112832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting 1% of the world population. Disturbances in neuronal development and synaptic connections are important factors in the pathogenesis of schizophrenia. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays a critical role in the development of neurons. Among several polymorphisms reported in BDNF, the rs6265 polymorphism is known to be associated with many neuropsychiatric diseases. This study was aimed to determine the effect of BDNF rs6265 functional polymorphism on serum BDNF concentration in patients with schizophrenia. In total, 50 schizophrenia patients and 50 controls were recruited after obtaining written informed consent. Serum BDNF levels were estimated using the ELISA method and BDNF rs6265 polymorphism was genotyped using T-ARMS PCR. Serum BDNF levels were decreased significantly in schizophrenia patients when compared to the healthy controls (p < 0.0001). Further, the rs6265 polymorphism was also not associated with the schizophrenia (p = 0.41). Intragroup analysis between different genotypes revealed no association between the serum BDNF levels and rs6265 polymorphism. Our results suggest that the functional polymorphism rs6265 is not associated with serum BDNF levels, which is in line with previous findings, which indicates that serum BDNF levels depend more on diagnostic effect than genetic effect. Replication studies on a larger study population are needed.
Collapse
Affiliation(s)
- Pvsn Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Nebhinani
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
271
|
Chung CC, Huang PH, Chan L, Chen JH, Chien LN, Hong CT. Plasma Exosomal Brain-Derived Neurotrophic Factor Correlated with the Postural Instability and Gait Disturbance-Related Motor Symptoms in Patients with Parkinson's Disease. Diagnostics (Basel) 2020; 10:E684. [PMID: 32932791 PMCID: PMC7555255 DOI: 10.3390/diagnostics10090684] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin, responsible for neuronal development, function, and survival. Assessments of peripheral blood BDNF in patients with Parkinson's disease (PD) previously yielded inconsistent results. Plasma exosomes can carry BDNF, so this study investigated the role of plasma exosomal BDNF level as a biomarker of PD. A total of 114 patients with mild to moderate PD and 42 non-PD controls were recruited, and their clinical presentations were evaluated. Plasma exosomes were isolated with exoEasy Maxi Kits, and enzyme-linked immunosorbent assay was used to assess plasma exosomal BDNF levels. Statistical analysis was performed using SPSS version 19.0, and findings were considered significant at p < 0.05. The analysis revealed no significant differences in plasma exosomal BDNF levels between patients with PD and controls. Patients with PD with low plasma exosomal BDNF levels (in the lowest quartile) exhibited a significant association with daily activity dysfunction but not with cognition/mood or overall motor symptoms as assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). Investigation of UPDRS part III subitems revealed that low plasma exosomal BDNF level was significantly associated with increased motor severity of postural instability and gait disturbance (PIGD)-associated symptoms (rising from a chair, gait, and postural stability) after adjustment for age and sex. In conclusion, although plasma exosomal BDNF level could not distinguish patients with PD from controls, the association with PIGD symptoms in patients with PD may indicate its potential role as a biomarker. Follow-up studies should investigate the association between plasma exosomal BDNF levels and changes in clinical symptoms.
Collapse
Affiliation(s)
- Chen Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 11031, Taiwan
| | - Pai Hao Huang
- Department of Neurology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Hung Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chien Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Zhongzheng Rd, Zhonghe District, New Taipei City 23561, Taiwan; (C.C.C.); (L.C.); (J.-H.C.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
272
|
Wang D, Li H, Du X, Zhou J, Yuan L, Ren H, Yang X, Zhang G, Chen X. Circulating Brain-Derived Neurotrophic Factor, Antioxidant Enzymes Activities, and Mitochondrial DNA in Bipolar Disorder: An Exploratory Report. Front Psychiatry 2020; 11:514658. [PMID: 33061913 PMCID: PMC7518036 DOI: 10.3389/fpsyt.2020.514658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
AIM Accumulated evidence indicates that neurotrophin deregulations, oxidative stress injury, and mitochondrial dysfunction have been involved in bipolar disorder (BD); however, their real roles in BD are unclear. Investing the possible interaction between three systems is worthwhile understanding this complex process. METHODS We measured plasma brain-derived neurotrophic factor (BDNF) level, leukocytes mitochondrial DNA copy number (mtDNAcn), and activities of antioxidant enzymes in BD patients (n = 97) and healthy controls (n = 31). Analysis of variance and linear regression analyses were performed to explore the interaction between mtDNAcn, antioxidant enzymes, and BDNF. RESULTS Compared with healthy controls, there were significant decreases of glutathione peroxidase activity, BDNF levels, and mtDNA content, significant increases of manganese superoxide dismutase (MnSOD) activity among BD patients (all p < 0.05). Regression analysis showed MnSOD activity had a moderate effect on BDNF (beta = 0.23, t = 8.5, p = 0.001). Copper zinc SOD and total SOD activity were significantly correlated with Hamilton Depression Scale scores in depressive patients (r = -0.38, p = 0.013; r = -0.35, p = 0.022). Unexpectedly, we observed no significant correlation between mtDNA content and BDNF in BD patients (p > 0.05). CONCLUSION The findings coincide with our hypothesis that abnormal antioxidant enzymes, mtDNAcn, and peripheral BDNF may be involved in the course of BD. There were significant correlations between peripheral BDNF, antioxidant enzyme activities and mtDNAcn, suggesting that oxidative stress, mitochondrial function, and BDNF may influence each other in BD.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Hong Li
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangdong Du
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jun Zhou
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, China National Clinical Research Center on Mental Health Disorders, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, China
| | - Liu Yuan
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, China National Clinical Research Center on Mental Health Disorders, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, China National Clinical Research Center on Mental Health Disorders, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, China
| | - Xiaonan Yang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Guangya Zhang
- Department of Geriatric Psychiatry, Suzhou Mental Health Center, Suzhou Guangji Hospital, the Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiaogang Chen
- Department of Psychiatry, the Second Xiangya Hospital of Central South University, China National Clinical Research Center on Mental Health Disorders, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
273
|
Huang Z, Wu D, Qu X, Li M, Zou J, Tan S. BDNF and nicotine dependence: associations and potential mechanisms. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0044/revneuro-2020-0044.xml. [PMID: 32887210 DOI: 10.1515/revneuro-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
Smoking is the leading preventable cause of death worldwide and tobacco addiction has become a serious public health problem. Nicotine is the main addictive component of tobacco, and the majority of people that smoke regularly develop nicotine dependence. Nicotine addiction is deemed to be a chronic mental disorder. Although it is well known that nicotine binds to the nicotinic acetylcholine receptors (nAChRs) and activates the mesolimbic dopaminergic system (MDS) to generate the pleasant and rewarding effects, the molecular mechanisms of nicotine addiction are not fully understood. Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain, which regulates neuron survival, differentiation, and synaptic plasticity, mainly through binding to the high affinity receptor tyrosine kinase receptor B (TrkB). BDNF gene polymorphisms are associated with nicotine dependence and blood BDNF levels are altered in smokers. In this review, we discussed the effects of nicotine on BDNF expression in the brain and summarized the underlying signaling pathways, which further indicated BDNF as a key regulator in nicotine dependence. Further studies that aim to understand the neurobiological mechanism of BDNF in nicotine addcition would provide a valuable reference for quitting smoking and developing the treatment of other addictive substances.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Xilin Qu
- Grade 2017 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| |
Collapse
|
274
|
Brain-Derived Neurotrophic Factor in the Cerebrospinal Fluid Increases During Electroconvulsive Therapy in Patients With Depression: A Preliminary Report. J ECT 2020; 36:193-197. [PMID: 32118691 DOI: 10.1097/yct.0000000000000667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Preclinical evidence suggests a role for brain-derived neurotrophic factor (BDNF) in the mode of action of electroconvulsive therapy (ECT). Clinical data regarding BDNF levels in serum or plasma are more inconsistent. We measured BDNF levels from the cerebrospinal fluid (CSF) in patients with major depression before and shortly after a course of ECT. METHODS Cerebrospinal fluid and serum BDNF levels were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. RESULTS We included 9 patients with a severe depressive episode within a major depressive disorder into the study. The CSF BDNF concentrations at baseline were lower compared with those CSF BDNF levels after the complete ECT treatment (P = 0.042), whereas no such a constellation was found for serum BDNF. No associations between the BDNF levels and the amount of individual ECT sessions or the reduction of the depressive symptoms were found. CONCLUSIONS For the first time, it has been shown that CSF BDNF concentrations increase during a course of ECT in patients with a severe unipolar depressive episode, which is in line with the neurotrophin hypothesis as a mode of action of ECT, although it was not possible to demonstrate either a dose-effect relation or a relationship with the actual antidepressant effects in our small sample. Major limitation is the small sample size.
Collapse
|
275
|
Ottesen NM, Meluken I, Frikke-Schmidt R, Plomgaard P, Scheike T, Kessing LV, Miskowiak K, Vinberg M. S100B and brain derived neurotrophic factor in monozygotic twins with, at risk of and without affective disorders. J Affect Disord 2020; 274:726-732. [PMID: 32664008 DOI: 10.1016/j.jad.2020.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The calcium binding protein S100B and brain derived neurotrophic factor (BDNF) are both biomarkers implicated in neuronal processes in the central nervous system and seem to be associated with affective disorders. Here we investigated both markers in a sample of monozygotic (MZ) twins with, at risk of and without affective disorders, aiming to evaluate whether these markers have a role as causal factors- or trait markers for affective disorders. METHOD We measured serum S100B and plasma BDNF levels in 204 monozygotic twins (MZ) with unipolar or bipolar disorder in remission or partial remission (affected), their unaffected co-twins (high-risk) and twins with no personal or family history of affective disorder (low-risk). RESULTS No significant group differences in S100B and BDNF levels were found between the three groups. Exploratory analysis revealed that higher S100B levels were correlated with lower cognitive performance. LIMITATIONS The cross-sectional design cannot elucidate the two neuronal biomarkers role as causal factors. We would have preferred a higher sample size in the high- and low-risk groups. CONCLUSION The present result did not support a role for S100B and BDNF as neither causal factors nor trait markers for affective disorders. Elevated S100B levels may associate with impaired cognition, but further studies are warranted.
Collapse
Affiliation(s)
- Ninja Meinhard Ottesen
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Iselin Meluken
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen University Hospital; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Peter Plomgaard
- Department of Clinical Biochemistry Rigshospitalet, Copenhagen University Hospital; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Thomas Scheike
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Kamilla Miskowiak
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Department of Psychology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød.
| |
Collapse
|
276
|
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiol Learn Mem 2020; 175:107298. [PMID: 32822863 DOI: 10.1016/j.nlm.2020.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Neurotrophins are signalling molecules involved in the formation and maintenance of synapses in the brain. They can cross the blood-brain barrier and be detected in peripheral blood, suggesting they may be a potential biomarker for brain health and function. In this review, the available literature was systematically searched for studies comparing peripheral neurotrophins levels with MRI and cognitive measures in healthy adults. Twenty-four studies were identified, six of which included a neuroimaging outcome. Fifteen studies measuring cognition were eligible for meta-analysis. The majority of studies measured levels of brain-derived neurotrophic factor (BDNF), with few assessing other neurotrophins. Results revealed BDNF is related to some neuroimaging outcomes, with some studies suggesting older age may be an important factor. A higher proportion of studies who had older samples observed significant effects between cognition and neurotrophin levels. When cognitive studies were pooled together in a meta-analysis, there was a weak non-significant effect between BDNF and cognitive outcomes. There was also a high level of heterogeneity between cognitive studies. Results indicated that gender was a notable source of the heterogeneity, but additional studies employing relevant covariates are necessary to better characterise the inter-relationship between circulating neurotrophins and cognition.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia; Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
277
|
Oliveira GSD, Iraci L, Pinheiro GS, Casal MZ, Haas AN, Pochmann D, Martinez FG, Elsner V, Dani C. Effect of exercise and grape juice on epigenetic modulation and functional outcomes in PD: A randomized clinical trial. Physiol Behav 2020; 227:113135. [PMID: 32798568 DOI: 10.1016/j.physbeh.2020.113135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the impact of an aquatic physical training program associated with grape juice (Vitis labrusca) consumption on functional outcomes, Brain-Derived Neurotrophic Factor (BDNF) and global histone H4 acetylation levels in peripheral blood from individuals with Parkinson's disease. METHODS Nineteen participants were randomized to Aquatic Exercise (AQ, n = 9) and Aquatic Exercise + Grape Juice (AQ+GJ, n = 10) groups and performed to 4 weeks of an aquatic intervention (twice a week, approximately 60 min/session). The AQ+GJ groups also consumed 400 mL of grape juice per day during this period. Functional capacity (six-min walk test, 6MWT), mobility (The Timed Up and Go, TUG) and the risk of falls (Berg Balance Scale, BBS) were evaluated before and after intervention. In addition, blood collections were carried out for biomarker analysis (e.g. BDNF and global histone H4). RESULTS The aquatic exercise program induced functional improvement in individuals with Parkinson's disease, specifically ameliorating their mobility and functional capacity. In addition, enhanced levels of BDNF and histone H4 acetylation were found after the intervention. Grape juice consumption did not potentiate these effects, since any significant differences between the AQ and AQ+GJ groups were not found in all analysed variables. CONCLUSIONS The present study provides important insights about aquatic exercise-modulated BDNF levels in individuals with Parkinson's disease in combination with functional improvements, suggesting that histone acetylation status may interact to dictate the molecular mechanisms involved in this response. Parkinson disease, aquatic exercise, BDNF, epigenetic, grape juice.
Collapse
Affiliation(s)
| | - Lucio Iraci
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS-Brasil
| | | | - Marcela Zimmermann Casal
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Aline Nogueira Haas
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Daniela Pochmann
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil
| | - Flavia Gomes Martinez
- Laboratório de Pesquisa do Exercício, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Viviane Elsner
- Curso de Fisioterapia do Centro Universitário Metodista-IPA, Porto Alegre, RS-Brasil; Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS-Brasil
| | - Caroline Dani
- Programa de Pós-Graduação em Biociências e Reabilitação do Centro Universitário Metodista -IPA. Rua Coronel Joaquim Pedro Salgado, 80 - Rio Branco, Porto Alegre - RS, CEP 90420-060, Brasil.
| |
Collapse
|
278
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K, Czuba M, Langfort J. Exercise-Induced Elevated BDNF Level Does Not Prevent Cognitive Impairment Due to Acute Exposure to Moderate Hypoxia in Well-Trained Athletes. Int J Mol Sci 2020; 21:ijms21155569. [PMID: 32759658 PMCID: PMC7432544 DOI: 10.3390/ijms21155569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to acute hypoxia causes a detrimental effect on the brain which is also manifested by a decrease in the ability to perform psychomotor tasks. Conversely, brain-derived neurotrophic factor (BDNF), whose levels are elevated in response to exercise, is a well-known factor in improving cognitive function. Therefore, the aim of our study was to investigate whether the exercise under hypoxic conditions affects psychomotor performance. For this purpose, 11 healthy young athletes performed a graded cycloergometer exercise test to volitional exhaustion under normoxia and acute mild hypoxia (FiO2 = 14.7%). Before, immediately after exercise and after a period of recovery, choice reaction time (CRT) and number of correct reactions (NCR) in relation to changes in serum BDNF were examined. Additionally, other selected factors which may modify BDNF production, i.e., cortisol (C), nitrite, catecholamines (adrenalin-A, noradrenaline-NA, dopamine-DA, serotonin-5-HT) and endothelin-1 (ET-1), were also measured. Exercise in hypoxic conditions extended CRT by 13.8% (p < 0.01) and decreased NCR (by 11.5%) compared to rest (p < 0.05). During maximal workload, NCR was lower by 9% in hypoxia compared to normoxia (p < 0.05). BDNF increased immediately after exercise in normoxia (by 29.3%; p < 0.01), as well as in hypoxia (by 50.0%; p < 0.001). There were no differences in BDNF between normoxia and hypoxia. Considering the fact that similar levels of BDNF were seen in both conditions but cognitive performance was suppressed in hypoxia, acute elevation of BDNF did not compensate for hypoxia-induced cognition impairment. Moreover, neither potentially negative effects of C nor positive effects of A, DA and NO on the brain were observed in our study.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
- Correspondence:
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, 00-968 Warsaw, Poland;
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland; (K.P.); (M.C.)
| | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland; (K.P.); (M.C.)
- Faculty of Health Sciences, Jan Dlugosz University, 42-200 Czestochowa, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| |
Collapse
|
279
|
Marston KJ, Brown BM, Rainey-Smith SR, Bird S, Wijaya LK, Teo SYM, Martins RN, Peiffer JJ. An Intense, But Ecologically Valid, Resistance Exercise Session Does Not Alter Growth Factors Associated With Cognitive Health. J Aging Phys Act 2020; 28:605-612. [PMID: 31968304 DOI: 10.1123/japa.2019-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
The purpose of this investigation was to assess the acute changes in growth factors associated with cognitive health following two ecologically valid, intense resistance exercise sessions. Twenty-nine late-middle-aged adults performed one session of either (a) moderate-load resistance exercise or (b) high-load resistance exercise. Venous blood was collected prior to warm-up, immediately following exercise and 30 min following exercise. Serum was analyzed for brain-derived neurotrophic factor, insulin-like growth factor 1, and vascular endothelial growth factor. Session intensity was determined by blood lactate concentration and session rating of perceived exertion. Postexercise blood lactate was greater following moderate-load when compared with high-load resistance exercise. Subjective session intensity was rated higher by the session rating of perceived exertion following moderate-load when compared with high-load resistance exercise. No differences were observed in serum growth factor levels between groups. Ecologically valid and intense moderate-load or high-load exercise methods do not alter serum growth factor levels in late-middle-aged adults.
Collapse
|
280
|
Tiekou Lorinczova H, Fitzsimons O, Mursaleen L, Renshaw D, Begum G, Zariwala MG. Co-Administration of Iron and a Bioavailable Curcumin Supplement Increases Serum BDNF Levels in Healthy Adults. Antioxidants (Basel) 2020; 9:E645. [PMID: 32707771 PMCID: PMC7463477 DOI: 10.3390/antiox9080645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is key for the maintenance of normal neuronal function and energy homeostasis and has been suggested to improve cognitive function, including learning and memory. Iron and the antioxidant curcumin have been shown to influence BDNF homeostasis. This 6-week, double blind, randomized, placebo-controlled study examined the effects of oral iron supplementation at low (18 mg) and high (65 mg) ferrous (FS) iron dosages, compared to a combination of these iron doses with a bioavailable formulated form of curcumin (HydroCurcTM; 500 mg) on BDNF levels in a healthy adult cohort of 155 male (26.42 years ± 0.55) and female (25.82 years ± 0.54) participants. Participants were randomly allocated to five different treatment groups: both iron and curcumin placebo (FS0+Plac), low dose iron and curcumin placebo (FS18+Plac), low dose iron and curcumin (FS18+Curc), high dose iron and curcumin placebo (FS65+Plac) and high dose iron and curcumin (FS65+Curc). Results showed a significant increase in BDNF over time (26%) in the FS18+Curc group (p = 0.024), and at end-point between FS18+Curc and FS18+Plac groups (35%, p = 0.042), demonstrating for the first time that the combination with curcumin, rather than iron supplementation alone, results in increased serum BDNF. The addition of curcumin to iron supplementation may therefore provide a novel approach to further enhance the benefits associated with increased BDNF levels.
Collapse
Affiliation(s)
- Helena Tiekou Lorinczova
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Owen Fitzsimons
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Leah Mursaleen
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
- The Cure Parkinson’s Trust, 120 New Cavendish St, Fitzrovia, London W1W 6XX, UK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory St, Coventry CV1 5FB, UK;
| | - Gulshanara Begum
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Mohammed Gulrez Zariwala
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| |
Collapse
|
281
|
Jun YH, Kim ST. Brain-derived neurotrophic factor in non-proliferative diabetic retinopathy with diabetic macular edema. Eur J Ophthalmol 2020; 31:1915-1919. [PMID: 32686489 DOI: 10.1177/1120672120944801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate aqueous humor (AH) and serum levels of brain-derived neurotrophic factor (BDNF) in non-proliferative diabetic retinopathy (NPDR) patients with diabetic macular edema (DME). METHODS The prospective study consists of 20 patients with DME NPDR, 20 patients with no-DME NPDR, and 20 healthy control subjects. Serum and AH samples were obtained during cataract surgery and intravitreal injection. Serum and AH levels of BDNF were measured by enzyme-linked immunosorbent assay. RESULTS The mean serum levels of BDNF were lower in both NPDR groups compared to the control group (DME NPDR group, p = 0.015; no-DME NPDR group, p = 0.024). Furthermore, the mean serum level of BDNF was lower in the DME NPDR group compared to the no-DME NPDR group (p = 0.041). The mean AH levels of BDNF were significantly reduced in both NPDR groups compared to the control group (DME NPDR group, p < 0.001; no-DME NPDR group, p = 0.006). Further, the mean AH level of BDNF was significantly lower in the DME NPDR group compared to the no-DME NPDR group (p = 0.037). CONCLUSION Serum and AH levels of BDNF were reduced in NPDR patients with DME than without DME.
Collapse
Affiliation(s)
- Yong Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
282
|
Lin LY, Kelliny S, Liu LC, Al-Hawwas M, Zhou XF, Bobrovskaya L. Peripheral ProBDNF Delivered by an AAV Vector to the Muscle Triggers Depression-Like Behaviours in Mice. Neurotox Res 2020; 38:626-639. [DOI: 10.1007/s12640-020-00256-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
|
283
|
Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE, Kuo YM. BDNF reverses aging-related microglial activation. J Neuroinflammation 2020; 17:210. [PMID: 32664974 PMCID: PMC7362451 DOI: 10.1186/s12974-020-01887-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Excessive microglial activation is implicated in the pathogenesis of various age-related neurodegenerative diseases. In addition to neurons, brain-derived neurotrophic factor (BDNF) and its receptor TrkB are also expressed in microglia. However, the direct effect of BDNF on age-related microglial activation has rarely been investigated. METHODS We began to address this question by examining the effect of age on microglial activation and the BDNF-TrkB pathway in mice. By using pharmacological and genetic approaches, the roles of BDNF and downstream signaling pathways in microglial activation and related neurotoxicity were examined in microglial cell line and primary microglial cells. RESULTS We showed that microglial activation was evident in the brains of aged mice. The levels of BDNF and TrkB in microglia decreased with age and negatively correlated with their activation statuses in mice during aging. Interestingly, aging-related microglial activation could be reversed by chronic, subcutaneous perfusion of BDNF. Peripheral lipopolysaccharide (LPS) injection-induced microglial activation could be reduced by local supplement of BDNF, while shTrkB induced local microglial activation in naïve mice. In cultured microglial cell line and primary microglial cells, BDNF inhibited LPS-induced microglial activation, including morphological changes, activations of p38, JNK, and NF-кB, and productions of proinflammatory cytokines. These effects were blocked by shTrkB. BDNF induced activations of ErK and CREB which then competed with LPS-induced activation of NF-кB for binding to a common coactivator, CREB-binding protein. CONCLUSIONS Decreasing BDNF-TrkB signaling during aging favors microglial activation, while upregulation BDNF signaling inhibits microglial activation via the TrkB-Erk-CREB pathway.
Collapse
Affiliation(s)
- Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ting Chiang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Bu-Miin Huang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Fan-E Mo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta Hsueh Road, 70101, Tainan, Taiwan.
| |
Collapse
|
284
|
Atik YT, Gokce A, Halis F, Cimen HI. Can low serum brain-derived neurotrophic factor levels be associated with lifelong premature ejaculation?; A pilot study. Andrologia 2020; 52:e13746. [PMID: 32654287 DOI: 10.1111/and.13746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to present the association between the serum level of brain-derived neurotrophic factor (BDNF) and the lifelong pre-mature ejaculation (PE). The data of 40 patients with lifelong PE and 40 healthy controls were evaluated prospectively. PE diagnostic tool and patient-reported outcome measures were performed to the participants. The serum BDNF level measurement was made after the collecting of blood samples in both groups. The mean ± SD age of the PE and control group was 34.43 ± 5.71 and 33.03 ± 3.97 years respectively (p = .228). Only the participant who has been married included in the study, and there was no difference in the mean marriage duration. In both groups, smoking status, alcohol use and body mass index were similar. The median PE diagnostic tool scores were 15 (11-20), and serum BDNF levels were 225.3 (26.1-689.6) ng/ml in the PE group, 5 (0-9) and 540.9 (102.9-769.2) ng/ml in the control group respectively (p < .001 for both). The patients with PE had significantly lower serum BDNF levels. Our study suggests that lower serum BDNF levels may be directly related to lifelong PE.
Collapse
Affiliation(s)
- Yavuz T Atik
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Ahmet Gokce
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Fikret Halis
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Haci Ibrahim Cimen
- Department of Urology, Sakarya University School of Medicine, Sakarya, Turkey
| |
Collapse
|
285
|
Nakajima K, Oiso S, Kariyazono H. Brain-Derived Neurotrophic Factor Up-Regulation by the Methanol Extract of Foxtail Millet in Human Peripheral Cells. J Nutr Sci Vitaminol (Tokyo) 2020; 66:284-288. [PMID: 32612092 DOI: 10.3177/jnsv.66.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in synaptic plasticity and neuronal differentiation. The neurotrophic hypothesis of depression, which suggests that reduced BDNF in the hippocampus underlies depression, has attracted increasing attention. Stress, a major cause of depression, leads to decreased BDNF levels, and administration of BDNF into the hippocampus shows an antidepressant effect. BDNF is synthesized in peripheral tissues as well as in the brain. Since BDNF crosses the blood-brain barrier, intake of food ingredients that elevate BDNF in peripheral tissues may be useful for the prevention and treatment of depression. However, no screening method for BDNF up-regulators in peripheral tissues has been reported. In this study, we revealed that ACHN human kidney adenocarcinoma cells secreted BDNF. In addition, we demonstrated that the methanol extract of foxtail millet up-regulated BDNF levels in ACHN cells. Our results indicate that ACHN cells could be useful in the screening for peripheral-BDNF up-regulators, and that foxtail millet may have the potential to elevate BDNF levels in peripheral tissues.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroko Kariyazono
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Nagasaki International University.,Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
286
|
Sugasini D, Yalagala PCR, Subbaiah PV. Plasma BDNF is a more reliable biomarker than erythrocyte omega-3 index for the omega-3 fatty acid enrichment of brain. Sci Rep 2020; 10:10809. [PMID: 32616795 PMCID: PMC7331585 DOI: 10.1038/s41598-020-67868-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Enriching brain DHA is believed to be beneficial for the prevention and treatment of several neurological diseases, including Alzheimer's disease. An impediment in assessing the effectiveness of the treatments is the lack of a reliable biomarker for brain DHA. The commonly used erythrocyte omega-3 index is not suitable for brain because of the involvement of unique transporter at the blood brain barrier (BBB). We recently showed that dietary lysophosphatidylcholine (LPC)-DHA significantly increases brain DHA, which results in increase of brain BDNF. Since there is bidirectional transport of BDNF through the BBB, we tested the hypothesis that plasma BDNF may be used as biomarker for brain DHA enrichment. We altered the brain DHA in rats and mice over a wide range using different dietary carriers of DHA, and the correlations between the increase in brain omega-3 index with the increases in plasma BDNF and the erythrocyte index were determined. Whereas the increase in brain omega-3 index positively correlated with the increase in plasma BDNF, it negatively correlated with the erythrocyte index. These results show that the plasma BDNF is more reliable than the erythrocyte index as biomarker for assessing the effectiveness of omega-3 supplements in improving brain function.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Poorna C R Yalagala
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Papasani V Subbaiah
- Division of Endocrinology and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA. .,Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
287
|
Neto J, da Silva DS, da Silva IV, Thill J, Pochmann D, Brito C, Elsner V. Relationship between levels of physical activity and brain derived neurotrophic factor in peripheral blood of monozygotic twins. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies involving monozigotic (MZ) twins are of great importance for the understanding of genetic and environmental influences without the development of individual pathologies and pathways associated with lifestyle. In this context, discordance has recently been suggested in the levels of the brain-derived neurotrophic factor (BDNF) in MZ twins, which may be associated with the practice of physical activity (PA). The objective was to verify the relationship between the peripheral levels of BDNF and PA in MZ twins. This transversal and quantitative study included 11 pairs of MZ twins that answered the International Physical Activity Questionnaire (IPAQ), a brief anamnesis and were submitted to a blood collection (15 ml) for BDNF levels analysis, measured through ELISA kit according to the manufacturer’s instructions. The study was approved by the Ethics Committee of Centro Universitário Metodista IPA (no. 1.746.954). There was no statistically significant relationship between BDNF and PA levels in sedentary and physically active MZ twins (P=0.431). PA practice does not seem to influence BDNF levels in these individuals.
Collapse
Affiliation(s)
- J.P. Neto
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Anhanguera, Porto Alegre, RS, Brazil
| | - D. Santos da Silva
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - I.R. Vital da Silva
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - J. Thill
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - D. Pochmann
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
| | - C. Brito
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
| | - V.R. Elsner
- Programa de Pós-graduação em Biociências e Reabilitação, Centro Universitário Metodista – IPA, Street Coronel Joaquim Pedro Salgado 80 – Rio Branco, Porto Alegre, RS 90420-060, Brazil
- Curso de Fisioterapia, Centro Universitário Metodista – IPA, Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
288
|
Blanco AM, Bertucci JI, Hatef A, Unniappan S. Feeding and food availability modulate brain-derived neurotrophic factor, an orexigen with metabolic roles in zebrafish. Sci Rep 2020; 10:10727. [PMID: 32612127 PMCID: PMC7329848 DOI: 10.1038/s41598-020-67535-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point to a role for brain-derived neurotrophic factor (BDNF) on feeding in mammals. However, its role on energy balance is unclear. Moreover, whether BDNF regulates energy homeostasis in non-mammals remain unknown. This research aimed to determine whether BDNF is a metabolic peptide in zebrafish. Our results demonstrate that BDNF mRNAs and protein, as well as mRNAs encoding its receptors trkb2, p75ntra and p75ntrb, are detectable in the zebrafish brain, foregut and liver. Intraperitoneal injection of BDNF increased food intake at 1, 2 and 6 h post-administration, and caused an upregulation of brain npy, agrp and orexin, foregut ghrelin, and hepatic leptin mRNAs, and a reduction in brain nucb2. Fasting for 7 days increased bdnf and p75ntrb mRNAs in the foregut, while decreased bdnf, trkb2, p75ntra and p75ntrb mRNAs in the brain and liver. Additionally, the expression of bdnf and its receptors increased preprandially, and decreased after a meal in the foregut and liver. Finally, we observed BDNF-induced changes in the expression and/or activity of enzymes involved in glucose and lipid metabolism in the liver. Overall, present results indicate that BDNF is a novel regulator of appetite and metabolism in fish, which is modulated by energy intake and food availability.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
289
|
Wu C, Lu J, Lu S, Huang M, Xu Y. Increased ratio of mature BDNF to precursor-BDNF in patients with major depressive disorder with severe anhedonia. J Psychiatr Res 2020; 126:92-97. [PMID: 32428748 DOI: 10.1016/j.jpsychires.2020.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although studies have shown that severe anhedonia in patients with major depressive disorder (MDD) is associated with poor treatment outcomes, the biological mechanism of this feature is unclear. The aim of this study was to investigate the dysfunction of brain-derived neurotrophic factor (BDNF) metabolism, measured by the ratio of mature BDNF to precursor-BDNF, in MDD patients with severe anhedonia. METHODS We measured plasma levels of mature BDNF (mBDNF), precursor-BDNF (proBDNF), tissue plasminogen activator (tPA) and tropomyosin-related kinase B (trkB) in outpatients with MDD with anhedonia (n = 26), outpatients with MDD without anhedonia (n = 29) and age- and sex-matched healthy controls (HCs, n = 38) by enzyme-linked immunosorbent assay kits, and we calculated the ratio of mBDNF to proBDNF (M/P). We compared these biological determinants among the three groups and explored the interrelationships between anhedonia severity and BDNF metabolism. RESULTS The levels of mBDNF, proBDNF, and tPA and the ratio of M/P were identified with highly significant differences among the three groups. Compared with MDD patients without anhedonia and healthy controls, MDD patients with anhedonia showed higher level of the ratio of M/P, and it was positively associated with the SHAPS scores in MDD patients. Compared to healthy controls, the plasma tPA concentrations were higher in MDD patients with anhedonia but were not different from those in MDD patients without anhedonia. CONCLUSION These results provide novel evidence regarding the relationship between anhedonia and plasma BDNF metabolism. The hypermetabolism of BDNF may be a function of anhedonia rather than other characteristics in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
290
|
Walsh EI, Smith L, Northey J, Rattray B, Cherbuin N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res Rev 2020; 60:101044. [PMID: 32171785 DOI: 10.1016/j.arr.2020.101044] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
Physical activity has received substantial research attention due to its beneficial impact on cognition in ageing, particularly via the action of brain-derived neurotrophic factor (BDNF). It is well established that physical activity can elevate circulating levels of BDNF, and that BDNF has neurotrophic, neuroprotective and cognitively beneficial properties. Yet, practical implementation of this knowledge is limited by a lack of clarity on context and dose-effect. Against a shifting backdrop of gradually diminishing physical and cognitive capacity in normal ageing, the type, intensity, and duration of physical activity required to elicit elevations in BDNF, and more importantly, the magnitude of BDNF elevation required for detectable neuroprotection remains poorly characterised. The purpose of this review is to provide an overview of the association between physical activity, BDNF, and cognition, with a focus on clarifying the magnitude of these effects in the context of normative ageing. We discuss the implications of the available evidence for the design of physical activity interventions intended to promote healthy cognitive ageing.
Collapse
|
291
|
Nagy EE, Frigy A, Szász JA, Horváth E. Neuroinflammation and microglia/macrophage phenotype modulate the molecular background of post-stroke depression: A literature review. Exp Ther Med 2020; 20:2510-2523. [PMID: 32765743 PMCID: PMC7401670 DOI: 10.3892/etm.2020.8933] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence hints to the central role of neuroinflammation in the development of post-stroke depression. Danger signals released in the acute phase of ischemia trigger microglial activation, along with the infiltration of neutrophils and macrophages. The increased secretion of proinflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα) provokes neuronal degeneration and apoptosis, whereas IL-6, interferon γ (IFNγ), and TNFα induce aberrant tryptophane degradation with the accumulation of the end-product quinolinic acid in resident glial cells. This promotes glutamate excitotoxicity via hyperexcitation of N-methyl-D-aspartate receptors and antagonizes 5-hydroxy-tryptamine, reducing synaptic plasticity and neuronal survival, thus favoring depression. In the post-stroke period, CX3CL1 and the CD200-CD200R interaction mediates the activation of glial cells, whereas CCL-2 attracts infiltrating macrophages. CD206 positive cells grant the removal of excessive danger signals; the high number of regulatory T cells, IL-4, IL-10, transforming growth factor β (TGFβ), and intracellular signaling via cAMP response element-binding protein (CREB) support the M2 type differentiation. In favorable conditions, these cells may exert efficient clearance, mediate tissue repair, and might be essential players in the downregulation of molecular pathways that promote post-stroke depression.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Attila Frigy
- Department of Internal Medicine IV, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - József Attila Szász
- Neurology Clinic II, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emőke Horváth
- Department of Pathology, 'George Emil Palade' University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
292
|
Nirwan M, Halder K, Saha M, Pathak A, Balakrishnan R, Ganju L. Improvement in resilience and stress-related blood markers following ten months yoga practice in Antarctica. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2020; 18:201-207. [PMID: 32554833 DOI: 10.1515/jcim-2019-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Wintering is associated with distress to humans who work in the isolated and confined environment of Antarctica and yoga has been proved helpful for coping with stress. Therefore, a study was conducted on 14 winter expedition members of Indian Scientific Antarctic Expedition (2016) to find out the effects of yoga on stress-related markers. METHODS Participants were divided into yoga, and control (non-yoga) groups. The yoga group practiced yoga for 10 months (from January to October 2016) daily in the morning for an hour. The Resilience test questionnaire was administrated at baseline and endpoint of the study. Blood samples were collected during the study at different intervals for the estimation of 8-hydroxydeoxyguanosine (8-OHdG), brain-derived neurotrophic factor (BDNF), serotonin and cortisol using ELISA. RESULTS A trend of improvement was observed in the resilience test score in the yoga group. From January to October, 8-OHdG serum values in the yoga group declined by 55.9% from 1010.0 ± 67.8 pg/mL to 445.6 ± 60.5 pg/mL (Mean ± SD); in the control group, the decline was 49.9% from 1060.4 ± 54.6 pg/mL to 531.1 ± 81.8 pg/mL. In serotonin serum levels in the yoga group, there was a 3.1% increase from 6.4 ± 1.6 ng/mL to 6.6 ± 0.4 ng/mL while no increase was noticed in the control group. Cortisol values in the yoga group decreased by 19.9% from 321.0 ± 189.6 ng/mL to 257.1 ± 133.8 ng/mL; in the control group it increased by 2.8% from 241.2 ± 51.8 ng/mL to 247.8 ± 90.9 ng/mL. CONCLUSIONS It could be concluded from the present study that following 10 months yoga practice may be useful for better resilience and management of stress-related blood markers for the polar sojourners.
Collapse
Affiliation(s)
- Mohit Nirwan
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Kaushik Halder
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | - Mantu Saha
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi-110054, India
| | - Anjana Pathak
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| | | | - Lilly Ganju
- Defence Institute of Physiology & Allied Sciences (DIPAS) Defence R & D Organization Timarpur, Delhi, India
| |
Collapse
|
293
|
Psychological distress and lack of PINK1 promote bioenergetics alterations in peripheral blood mononuclear cells. Sci Rep 2020; 10:9820. [PMID: 32555260 PMCID: PMC7300038 DOI: 10.1038/s41598-020-66745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Psychological distress induces oxidative stress and alters mitochondrial metabolism in the nervous and immune systems. Psychological distress promotes alterations in brain metabolism and neurochemistry in wild-type (WT) rats in a similar manner as in Parkinsonian rats lacking endogenous PTEN-induced kinase 1 (PINK1), a serine/threonine kinase mutated in a recessive forms of Parkinson’s disease. PINK1 has been extensively studied in the brain, but its physiological role in peripheral tissues and the extent to which it intersects with the neuroimmune axis is not clear. We surmised that PINK1 modulates the bioenergetics of peripheral blood mononuclear cells (PBMCs) under basal conditions or in situations that promote oxidative stress as psychological distress. By using an XF metabolic bioanalyzer, PINK1-KO-PBMCs showed significantly increased oxidative phosphorylation and basal glycolysis compared to WT cells and correlated with motor dysfunction. In addition, psychological distress enhanced the glycolytic capacity in PINK1-KO-PBMCs but not in WT-PBMCs. The level of antioxidant markers and brain-derived neurotrophic factor were altered in PINK1-KO-PBMCs and by psychological distress. In summary, our data suggest that PINK1 is critical for modulating the bioenergetics and antioxidant responses in PBMCs whereas lack of PINK1 upregulates compensatory glycolysis in response to oxidative stress induced by psychological distress.
Collapse
|
294
|
Mora-Gonzalez J, Migueles JH, Esteban-Cornejo I, Cadenas-Sanchez C, Pastor-Villaescusa B, Molina-García P, Rodriguez-Ayllon M, Rico MC, Gil A, Aguilera CM, Escolano-Margarit MV, Gejl AK, Andersen LB, Catena A, Ortega FB. Sedentarism, Physical Activity, Steps, and Neurotrophic Factors in Obese Children. Med Sci Sports Exerc 2020; 51:2325-2333. [PMID: 31634295 DOI: 10.1249/mss.0000000000002064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to examine the associations of sedentary time, physical activity (PA) and step-related behaviors with neurotrophic growth factors. METHODS A total of 97 children with overweight/obesity age 8 to 11 yr participated in this study. Sedentary time, PA, and steps were measured by GT3X+ accelerometers in hip and nondominant wrist. Estimates of light, moderate, vigorous, and moderate-to-vigorous PA (MVPA) were obtained. Steps per daytime, peak 60-, 30-, and 1-min cadence were computed. The time accumulated (min·d) in different cadence bands of steps was also computed from hip accelerometer. Plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin growth factor-1 (IGF-1) were determined by the XMap technology (Luminex IS 100/200 system, Luminex Corporation, Austin, TX). RESULTS Light PA, moderate PA, MVPA, and the peak 60-min cadence were positively related with BDNF concentrations (all P < 0.05), and only light PA to VEGF (P = 0.048). No association was observed for IGF-1 (P > 0.05). The associations of light PA with BDNF and VEGF disappeared (all P > 0.05) after performing analyses with nondominant wrist-placement data. However, moderate PA and MVPA remained significantly associated with BDNF (both P < 0.05). The time accumulated in cadence bands of 40 to 59 steps per day and 60 to 79 steps per day (i.e., walking at slow pace) was positively associated with plasma BDNF (all P < 0.05). CONCLUSIONS In conclusion, PA is positively related to plasma BDNF, whereas no relationship was observed for VEGF or IGF-1. Higher amounts of time spent in slow walking cadence bands could increment BDNF levels. Exercise-based randomized controlled trials in children with overweight/obesity should be carried out to better understand the influence of PA behaviors on the neurotrophic factors.
Collapse
Affiliation(s)
- Jose Mora-Gonzalez
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN
| | - Jairo H Migueles
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN.,Department of Psychology, Northeastern University, Boston, MA
| | - Cristina Cadenas-Sanchez
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN
| | - Belén Pastor-Villaescusa
- LMU - Ludwig-Maximilians-Universität München, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, Munich, GERMANY.,Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, SPAIN
| | - Pablo Molina-García
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN.,Department of Rehabilitation Sciences, KU Leuven - University of Leuven, Leuven, BELGIUM
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN
| | - María C Rico
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, SPAIN
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, SPAIN.,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, SPAIN.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, SPAIN
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Granada, SPAIN.,Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, SPAIN.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, SPAIN
| | | | - Anne Kaer Gejl
- Department of Physiotherapy and Occupational Therapy, University College Copenhagen, Copenhagen, DENMARK
| | - Lars Bo Andersen
- Western Norway University of Applied Sciences, Campus Sogndal, Faculty of Education, Arts and Sport, NORWAY
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, SPAIN
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sports Science, University of Granada, Granada, SPAIN
| |
Collapse
|
295
|
Serum BDNF Levels Are Reduced in Patients with Disorders of Consciousness and Are Not Modified by Verticalization with Robot-Assisted Lower-Limb Training. Neural Plast 2020; 2020:5608145. [PMID: 32565776 PMCID: PMC7261323 DOI: 10.1155/2020/5608145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Little is known about plastic changes occurring in the brains of patients with severe disorders of consciousness (DOCs) caused by acute brain injuries at rest and during rehabilitative treatment. Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity whose production is powerfully modulated by physical exercise. In this study, we compared serum BDNF levels in 18 patients with unresponsive wakefulness syndrome (UWS) and in a minimally conscious state (MCS) with those in 16 sex- and age-matched healthy controls. In 12 patients, serum BDNF levels before and after verticalization with ErigoPro robot-assisted lower-limb training were compared. Serum BDNF levels were significantly lower in patients (median, 1141 pg/ml; 25th and 75th percentiles, 1016 and 1704 pg/ml) than in controls (median, 2450 pg/ml; 25th and 75th percentiles, 2100 and 2875 pg/ml; p < 0.001). BDNF levels measured before and after verticalization with robot-assisted lower-limb training did not change (p = 0.5). Moreover, BDNF levels did not differ between patients with UWS and MCS (p = 0.2), or between patients with traumatic and nontraumatic brain injuries (p = 0.6). BDNF level correlated positively with the time since brain injury (p = 0.025). In conclusion, serum BDNF levels are reduced in patients with UWS and MCS and cannot be improved by verticalization associated with passive lower-limb training. Additional studies are needed to better understand the mechanisms underlying BDNF reduction in patients with DOCs and to determine the best rehabilitative strategies to promote restorative plastic changes in these patients.
Collapse
|
296
|
Sefidgari-Abrasi S, Roshangar L, Karimi P, Morshedi M, Rahimiyan-Heravan M, Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin Nutr 2020; 40:190-201. [PMID: 32446786 DOI: 10.1016/j.clnu.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus, as a metabolic disorder, can lead to diabetic cardiomyopathy, identified by cardiomyocyte apoptosis and myocardial fibrosis. Brain-derived neurotrophic factor (BDNF) and serotonin are two neurotransmitters that can control cardiomyocyte apoptosis and myocardial fibrosis through their cardiac receptors. In the present study, we investigated the impacts of L. plantarum and inulin supplementation on the inhibition of cardiac apoptosis and fibrosis by modulating intestinal, serum, and cardiac levels of serotonin and BDNF as well as their cardiac receptors. METHODS Diabetes was induced by a high-fat diet and streptozotocin in male Wistar rats. Rats were divided into six groups and were supplemented with L. plantarum, inulin or their combination for 8 weeks. Finally, the rats were killed and levels of intestinal, serum, and cardiac parameters were evaluated. RESULTS Concurrent administration of L. plantarum and inulin caused a significant rise in the expression of cardiac serotonin and BDNF receptors (P < 0.001) as well as a significant fall in cardiac interstitial and perivascular fibrosis (P < 0.001, both) and apoptosis (P = 0.01). Moreover, there was a strong correlation of cardiac 5-Hydroxytryptamine 2B (5-HT2B) and tropomyosin receptor kinase B (TrkB) receptors with interstitial/perivascular fibrosis and apoptosis (P < 0.001, both). CONCLUSIONS/INTERPRETATION Results revealed beneficial effects of L. plantarum, inulin or their combination on intestinal, serum, and cardiac serotonin and BDNF accompanied by higher expression of their cardiac receptors and lower levels of cardiac apoptotic and fibrotic markers. It seems that L. plantarum and inulin supplementation could be considered as a novel adjunct therapy to reduce cardiac complications of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Safa Sefidgari-Abrasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Rahimiyan-Heravan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
297
|
Chang YM, Ashok Kumar K, Ju DT, Ho TJ, Mahalakshmi B, Lin WT, Day CH, Vijaya Padma V, Liao PH, Huang CY. Dipeptide IF prevents the effects of hypertension-induced Alzheimer's disease on long-term memory in the cortex of spontaneously hypertensive rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:570-581. [PMID: 31889399 DOI: 10.1002/tox.22892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Hypertension (HTN) is one of the most prevalent chronic conditions; it can damage blood vessels and rupture blood vessels can trap in small vessels. This blockage can prevent blood flow and oxygen delivery to brain cells and can result in Alzheimer's disease (AD). HTN- and AD-mediated long-time memory loss and its treatment remain poorly understood. Plant-derived natural compounds are alternative solutions for effectively treating diseases without any side effects. This study revealed that bioactive peptides extracted from potato hydrolysis suppress HTN-mediated long-term memory (LTM) loss and cell apoptosis, thus improving memory formation and neuronal cell survival in the spontaneously hypertensive rat (SHR) rat model. SHR rats were treated with bioactive peptide IF (10 mg/kg orally) and angiotensin-converting enzyme inhibitors (5 mg/kg orally). In this study, we evaluated the molecular expression levels of BDNF-, GluR1-, and CREB-mediated markers protein expression in 24-week-old SHR rats. The study result showed that HTN-induced AD regulated long-term memory (LTM) loss and neuronal degeneration in the SHR animals. The bioactive peptide-treated animals showed an elevated level of survival proteins. Bioactive peptide IF activate CREB-mediated downstream proteins to regulate synaptic plasticity and neuronal survival in the SHR rat model.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- Department of Chinese Medicine, 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - K Ashok Kumar
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Cecilia H Day
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
298
|
Miller MW. Leveraging genetics to enhance the efficacy of PTSD pharmacotherapies. Neurosci Lett 2020; 726:133562. [DOI: 10.1016/j.neulet.2018.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
|
299
|
Zheng T, Ge B, Qin L, Chen B, Tian L, Gao Y, Xiao L, Hu X, Pan H, Chen Y. Association of Plasma DPP4 Activity and Brain-Derived Neurotrophic Factor With Moderate to Severe Depressive Symptoms in Patients With Type 2 Diabetes: Results From a Cross-Sectional Study. Psychosom Med 2020; 82:350-358. [PMID: 32358323 DOI: 10.1097/psy.0000000000000796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The objective of this study was to assess the association of plasma dipeptidyl peptidase-4 (DPP4) activity, brain-derived neurotrophic factor (BDNF), and the DPP4/BDNF ratio (DBR) with moderate to severe depressive symptoms in patients with type 2 diabetes mellitus. Increased DPP4 activity and decreased BDNF in peripheral circulation have been implicated in the pathophysiology of depression. METHODS We performed a cross-sectional study using data from 1535 patients with type 2 diabetes mellitus. The main outcome measures were plasma DPP4 activity, BDNF levels, DBR, inflammation markers, and oxidative stress parameters. Depressive symptoms were assessed using the nine-item Patient Health Questionnaire. RESULTS DPP4 activity and BDNF were negatively correlated in patients with and without moderate to severe depressive symptoms (p < .001). Oxidative stress partially mediated the inverse correlation between DPP4 and BDNF. Nitrotyrosine, 8-iso-PGF2a, interleukin-6, C-reactive protein, and the nine-item Patient Health Questionnaire score increased significantly with rising quartiles of DBR. Patients in the highest quartile of DPP4 activity and DBR and lowest quartile of BDNF more often had moderate to severe depressive symptoms compared with those in the lowest quartile of DPP4 activity and DBR and the highest quartile of BDNF, respectively (p < .05). The likelihood of having moderate to severe depressive symptoms increased more with higher DPP4 activity and lower BDNF. CONCLUSIONS Our hypothesis-generating study demonstrates that oxidative stress might partially play a mediating role in the negative relationship between DPP4 activity and BDNF. DBR is positively related to moderate to severe depressive symptoms and thus might be used as a novel biological measure associated with depressive symptoms in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tianpeng Zheng
- From the Departments of Endocrinology and Metabolism (Zheng, Xiao, Hu, Pan, Chen) and Urology (Ge), The Second Affiliated Hospital of Guilin Medical University; Department of Epidemiology and Health Statistics (Qin), Guilin Medical University, Guilin, Guangxi; Department of Human Anatomy (Chen), Southwest Medical University, Luzhou; and Department of Endocrinology and Metabolism (Tian, Gao), West China Hospital, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
300
|
CSF levels of a set of neurotrophic factors (brain-derived neurotrophic factor, nerve growth factor) and neuropeptides (neuropeptide Y, galanin) in epileptic children. J Clin Neurosci 2020; 76:41-45. [PMID: 32327377 DOI: 10.1016/j.jocn.2020.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 01/03/2023]
Abstract
This paper aims to investigate the possible roles of a set of neurotrophic factors (brain-derived neurotrophic factor-BDNF, nerve growth factor-NGF) and neuropeptides (neuropeptide Y-NPY, and galanin) in children with active epileptogenesis. The cerebrospinal fluid (CSF) levels of BDNF, NPY, NGF and galanin were measured with enzyme-linked immunosorbent assays in epileptic children (n = 73) and controls (n = 64). There were no significant alterations in the CSF levels of BDNF, NPY and NGF in epileptic children with active clinical seizures compared with the levels of controls. However profoundly depressed galanin levels were found in infants with epileptic encephalopathy (mean ± SD:0.63 ± 0.19 pg/ml) and significantly increased galanin levels were measured in children with drug resistant epilepsy during the period of status epilepticus (mean ± SD: 6.92 ± 1.19, pg/ml pg/ml) compared with the levels of controls. Depressed levels of galanin might reflect a defective anti-epileptogenic effect of galanin in infants with epileptic encephalopathy. On the contrary, increased CSF levels of galanin might be a result of anti-epileptogenic effects of this peptide in epileptic children with status epilepticus.
Collapse
|