251
|
Kydd AS, Achari Y, Lu T, Sciore P, Rattner JB, Hart DA. The healing rabbit medial collateral ligament of the knee responds to systemically administered glucocorticoids differently than the uninjured tissues of the same joint or the uninjured MCL: a paradoxical shift in impact on specific mRNA levels and MMP-13 protein expression in injured tissues. Biochim Biophys Acta Mol Basis Dis 2006; 1741:289-99. [PMID: 16023836 DOI: 10.1016/j.bbadis.2005.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2004] [Revised: 04/07/2005] [Accepted: 05/11/2005] [Indexed: 11/24/2022]
Abstract
The impact and molecular mechanism of action of glucocorticoids in connective tissues is largely unclear, even though widely used, and whether factors such as injury and inflammation modulate this response has not been elucidated. This study describes the role of glucocorticoids in the regulation of mRNA levels for collagens I and III, MMP-13, biglycan, decorin, COX-2 and the glucocorticoid receptor in connective tissues of normal and injured joints in an established rabbit in vivo MCL scar model, and examines the potential mechanism(s) involved. In vitro promoter studies were performed using an MMP-13 promoter-luciferase expression construct in transient transfection assays with a rabbit synovial cell line (HIG-82) to identify sites of glucocorticoid-mediated transcriptional regulation and the promoter elements involved. The in vivo results indicate that scar tissue from different phases of healing (early inflammatory, granulation tissue and neovascular, and later remodelling phases, respectively) displays a different pattern of responsiveness to glucocorticoid treatment than uninjured tissue and that this responsiveness is gene dependent. The most significant impact was seen for genes such as collagen I, collagen III and MMP-13, all of which are involved in connective tissue structure and remodelling. The in vitro studies confirmed the apparent in vivo glucocorticoid-mediated response of MMP-13 mRNA and implicated the AP-1 site of the MMP-13 promoter in this regulation. Immunohistochemistry studies showed increased MMP-13 protein expression, consistent with the mRNA findings, following glucocorticoid treatment in injured tissue but not normal tissues. In conclusion, connective tissue responsiveness to glucocorticoid treatment varies depending on injury and the stage of healing of the tissue, and consequently, glucocorticoid-responsiveness may be modulated differently in states of injury and inflammation.
Collapse
Affiliation(s)
- Alison S Kydd
- McCaig Centre for Joint Injury and Arthritis Research, Faculty of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
252
|
Matsuwaki T, Kayasuga Y, Yamanouchi K, Nishihara M. Maintenance of gonadotropin secretion by glucocorticoids under stress conditions through the inhibition of prostaglandin synthesis in the brain. Endocrinology 2006; 147:1087-93. [PMID: 16293664 DOI: 10.1210/en.2005-1056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that glucocorticoids counteract the suppressive effects of tumor necrosis factor-alpha on both pulsatile and surge secretion of LH. This suggests that glucocorticoids have a protective effect on reproductive function under infectious stress. In the present study, we examined whether glucocorticoids maintain pulsatile LH secretion under various conditions of acute stress and the possible involvement of prostaglandins (PGs) in glucocorticoid actions. Three different types of stressors, namely infectious (lipopolysaccharide, 0.5 microg/kg), hypoglycemic (2-deoxy-D-glucose, 100 mg/kg), and restraint stress (1 h) were applied to ovariectomized rats. In ovariectomized rats, LH pulses were partially suppressed by restraint, but not by lipopolysaccharide or 2-deoxy-D-glucose. On the other hand, adrenalectomy (ADX) significantly enhanced the suppressive effects of all the stressors applied on LH pulses. Treatment with both corticosterone (25 mg/kg) and indomethacin (10 mg/kg) in ADX rats significantly attenuated the suppressive effects of these stressors on LH pulses. In addition, the immunoreactivity of cyclooxygenase-2, a PG-synthesizing enzyme, in the brain under stress conditions was much enhanced by ADX, and this was counteracted by corticosterone treatment. Similarly, an increase in body temperature under restraint stress was enhanced by ADX and suppressed by corticosterone. These results suggest that suppression of LH pulsatility by stress is mediated by PGs in the brain, and that increased release of endogenous glucocorticoids in response to stress counteracts this suppression by inhibiting PG synthesis, and thereby maintains reproductive function regardless of the nature of the stressor.
Collapse
Affiliation(s)
- Takashi Matsuwaki
- Department of Veterinary Physiology, Veterinary Medical Science, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
253
|
Abstract
Chemoprevention of cancer is a reality today. Prevention of breast cancer with tamoxifen, of squamous cell skin cancer with actinic keratosis by diclofenac gel and in familial polyposis with anti-inflammatory drug (COX-2) celecoxib is considered of health care clinical use. The latter has received enormous attention by cancer investigators due to the attractiveness of its action mechanism and its possibilities of future clinical use in different neoplasms. Other anti-inflammatory drugs such as aspirin and sulindac also have a proven role in chemoprevention of cancer by cycloosygenase inhibition or of related substances. The review of the mechanisms by which these substances act gives us a clear idea of what it is and what the chemoprevention will be.
Collapse
Affiliation(s)
- J J Grau de Castro
- Universidad de Barcelona, Servicio de Oncología, Hospital Clínic, Barcelona.
| |
Collapse
|
254
|
Kanefsky J, Lenburg M, Hai CM. Cholinergic receptor and cyclic stretch-mediated inflammatory gene expression in intact ASM. Am J Respir Cell Mol Biol 2005; 34:417-25. [PMID: 16339998 PMCID: PMC2644203 DOI: 10.1165/rcmb.2005-0326oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the hypothesis that cholinergic stimulation and cyclic stretch regulate inflammatory gene expression in intact airway smooth muscle by measuring mRNA expression in bovine tracheal smooth muscle using limited microarray analysis and RT-PCR. Carbachol (1 microM) induced significant increases in the expression of cyclooxygenase (COX)-1, COX-2, IL-8, and plasminogen activator, urokinase type (PLAU) to levels ranging from 1.3- to 3.1-fold of control. Sinusoidal length oscillation at an amplitude of 10% muscle length and a frequency of 1 Hz induced significant increases in the expression of CCL-2, COX-2, IL-1 beta, and IL-6 to levels ranging from 12- to 206-fold of control. Decreasing the oscillatory amplitude by 50% did not significantly change inflammatory gene expression. In contrast, decreasing the oscillatory frequency by 50% significantly attenuated inflammatory gene expression by 76-93%. Nifedipine (1 microM) had an insignificant effect on carbachol-induced gene expression, but significantly inhibited sinusoidal length oscillation-induced inflammatory gene expression by 40-78%. Correlation analysis revealed two groups of genes with differential responses to sinusoidal length oscillation. The highly responsive group included COX-2, IL-6, and IL-8, which exhibited 45- to 364-fold increases in gene expression in response to sinusoidal length oscillation. The moderately responsive group included CCL2 and PLAU, which exhibited 13- to 19-fold increases in gene expression in response to sinusoidal oscillation. These findings suggest that cyclic stretch regulates inflammatory gene expression in intact airway smooth muscle in an amplitude- and frequency-dependent manner by modulating the activity of L-type voltage-gated calcium channels.
Collapse
Affiliation(s)
- Jeannette Kanefsky
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Box G-B3, Providence, RI 02912, USA
| | | | | |
Collapse
|
255
|
Pavlovic S, Du B, Sakamoto K, Khan KMF, Natarajan C, Breyer RM, Dannenberg AJ, Falcone DJ. Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. J Biol Chem 2005; 281:3321-8. [PMID: 16338931 DOI: 10.1074/jbc.m506846200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
COX-2-dependent prostaglandin (PG) E2 synthesis regulates macrophage MMP expression, which is thought to destabilize atherosclerotic plaques. However, the administration of selective COX-2 inhibitors paradoxically increases the frequency of adverse cardiovascular events potentially through the loss of anti-inflammatory prostanoids and/or disturbance in the balance of pro- and anti-thrombotic prostanoids. To avoid these collateral effects of COX-2 inhibition, a strategy to identify and block specific prostanoid-receptor interactions may be required. We previously reported that macrophage engagement of vascular extracellular matrix (ECM) triggers proteinase expression through a MAPKerk1/2-dependent increase in COX-2 expression and PGE2 synthesis. Here we demonstrate that elicited macrophages express the PGE2 receptors EP1-4. When plated on ECM, their expression of EP2 and EP4, receptors linked to PGE2-induced activation of adenylyl cyclase, is strongly stimulated. Forskolin and dibutryl cyclic-AMP stimulate macrophage matrix metalloproteinase (MMP)-9 expression in a dose-dependent manner. However, an EP2 agonist (butaprost) has no effect on MMP-9 expression, and macrophages from EP2 null mice exhibited enhanced COX-2 and MMP-9 expression when plated on ECM. In contrast, the EP4 agonist (PGE1-OH) stimulated macrophage MMP-9 expression, which was inhibited by the EP4 antagonist ONO-AE3-208. When compared with COX-2 silencing by small interfering RNA or inhibition by celecoxib, the EP4 antagonist was as effective in inhibiting ECM-induced proteinase expression. In addition, ECM-induced MMP-9 expression was blocked in macrophages in which EP4 was silenced by small interfering RNA. Thus, COX-2-dependent ECM-induced proteinase expression is effectively blocked by selective inhibition of EP4, a member of the PGE2 family of receptors.
Collapse
Affiliation(s)
- Svetlana Pavlovic
- Department of Pathology and Laboratory Medicine, Vascular Biology Center, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
256
|
DeLong CJ, Smith WL. An intronic enhancer regulates cyclooxygenase-1 gene expression. Biochem Biophys Res Commun 2005; 338:53-61. [PMID: 16105649 DOI: 10.1016/j.bbrc.2005.07.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/30/2005] [Indexed: 11/20/2022]
Abstract
To identify cis-elements regulating PMA-induced prostaglandin H synthase-1 (PGHS-1) gene expression in the human megakaryoblast cell line, MEG-01, we performed promoter reporter assays with a luciferase reporter vector containing the -2030/-22 region of the human PGHS-1 gene. PMA treatment for 24 h increased PGHS-1 promoter activity by twofold. Mutagenesis studies of the promoter revealed a single Sp1 site essential for PMA-inducible transcription. Insertion of a highly conserved 100 bp sequence cloned from intron 8 into the -2030/-22 reporter plasmid enhanced PMA-dependent transcription 10-fold. Mutation of either a consensus AP-1 site within intron 8 or the Sp1 site in the promoter reduced PMA-induced activity by 80-100%. Gel shift assays using the intron 8 AP-1 sequence demonstrated the formation of an AP-1-specific DNA-protein complex. Our results suggest that inducible PGHS-1 gene expression involves the coordinate functioning of a Sp1 site in the promoter and an AP-1 site in intron 8.
Collapse
Affiliation(s)
- Cynthia J DeLong
- Department of Biological Chemistry, University of Michigan Medical School, 5416 Medical Science I, 1301 Catherine St., Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
257
|
Ali IU, Luke BT, Dean M, Greenwald P. Allellic variants in regulatory regions of cyclooxygenase-2: association with advanced colorectal adenoma. Br J Cancer 2005; 93:953-9. [PMID: 16205694 PMCID: PMC1369968 DOI: 10.1038/sj.bjc.6602806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase 2 (Cox-2) is upregulated in colorectal adenomas and carcinomas. Polymorphisms in the Cox-2 gene may influence its function and/or its expression and may modify the protective effect of nonsteroidal anti-inflammatory drugs (NSAIDs), thereby impacting individuals' risk of developing colorectal cancer and response to prevention/intervention strategies. In a nested case–control study, four polymorphisms in the Cox-2 gene (two in the promoter, −663 insertion/deletion, GT/(GT) and −798 A/G; one in intron 5-5229, T/G; one in 3′untranslated region (UTR)-8494, T/C) were genotyped in 726 cases of colorectal adenomas and 729 age- and gender-matched controls in the prostate, lung, colorectal, and ovarian (PLCO) cancer screening trial. There was no significant association between the Cox-2 polymorphisms and adenoma development in the overall population. However, in males, the relatively rare heterozygous genotype GT/(GT) at −663 in the promoter and the variant homozygous genotype G/G at intron 5-5229 appeared to have inverse associations (odds ratio (OR)=0.59, confidence interval (CI): 0.34–1.02 and OR=0.48, CI: 0.24–0.99, respectively), whereas the heterozygous genotype T/C at 3′UTR-8494 had a positive association (OR=1.31, CI: 1.01–1.71) with adenoma development. Furthermore, the haplotype carrying the risk-conferring 3′UTR-8494 variant was associated with a 35% increase in the odds for adenoma incidence in males (OR=1.35, CI: 1.07–1.70), but the one with a risk allele at 3′UTR-8494 and a protective allele at intron 5-5229 had no effect on adenoma development (OR=0.85, CI: 0.66–1.09). Gender-related differences in adenoma risk were also noted with tobacco usage and protective effects of NSAIDs. Our analysis underscores the significance of the overall allelic architecture of Cox-2 as an important determinant for risk assessment.
Collapse
Affiliation(s)
- I U Ali
- Division for Cancer Prevention, National Cancer Institute, 6130 Executive Blvd., Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
258
|
Boissé L, Spencer SJ, Mouihate A, Vergnolle N, Pittman QJ. Neonatal immune challenge alters nociception in the adult rat. Pain 2005; 119:133-141. [PMID: 16297551 DOI: 10.1016/j.pain.2005.09.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/08/2005] [Accepted: 09/19/2005] [Indexed: 11/27/2022]
Abstract
Intense pain or intense peripheral inflammation experienced during development can have pronounced effects upon adult pain sensation. However, little is known about the more commonly encountered mild systemic inflammation, such as that experienced with mild illness. Neonatal exposure to lipopolysaccharide (LPS), an established model of immune system activation, has been shown to affect febrile and cyclooxygenase-2 (COX-2) responses to a similar exposure in adulthood. Adult LPS also elicits a range of sickness behaviours, including enhanced responses to painful stimuli. We, therefore, hypothesized that adult sensation and pain responses could be affected by a neonatal LPS challenge. Male and female Sprague-Dawley rats were administered LPS at postnatal day 14 and were tested in adulthood for nociceptive responses to thermal and mechanical stimuli using, respectively, a plantar test apparatus and von Frey filaments, before and after adult LPS. Expression of dorsal root ganglion and lumbar spinal cord COX-2 was also examined. Animals treated as neonates with saline showed the expected hypersensitivity to painful stimuli after adult LPS as well as enhanced spinal cord COX-2. Neonatally LPS-treated rats, however, showed a significantly different profile. They displayed enhanced baseline nociception and elevated basal spinal cord COX-2 compared with neonatally saline-treated rats. Also, rather than the expected hyperalgesia after adult LPS, no changes in nociceptive responses and a reduction in spinal cord COX-2 expression were observed. These findings have important implications for the understanding of pain and its management and highlight the importance of the neonatal period in the development of pain pathways.
Collapse
Affiliation(s)
- Lysa Boissé
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada T2N 4N1 Department of Pharmacology and Therapeutics, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada
| | | | | | | | | |
Collapse
|
259
|
Park SW, Sung MW, Heo DS, Inoue H, Shim SH, Kim KH. Nitric oxide upregulates the cyclooxygenase-2 expression through the cAMP-response element in its promoter in several cancer cell lines. Oncogene 2005; 24:6689-98. [PMID: 16007171 DOI: 10.1038/sj.onc.1208816] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We previously showed that nitric oxide (NO) induces overexpression of cyclooxygenase-2 (COX-2) and production of prostaglandin E(2) in cancer cells. Here, we investigated the mechanisms by which NO induces COX-2 expression in cancer cells. We found that the cAMP-response element (CRE) is a critical factor in NO-induced COX-2 expression in all cells tested. We found that in cancer cells, three transcription factors (TFs) - cAMP response element-binding protein (CREB), activating transcription factor-2 (ATF-2) and c-jun, bound the CRE in the COX-2 promoter, and their activities were increased by addition of the NO donor, S-nitroso-N-acetyl-D,L-penicillamine (SNAP). NO-induced activation of soluble guanylate cyclase (sGC), p38 and c-Jun NH(2)-terminal kinase (JNK) upregulated the three TFs, leading to COX-2 overexpression. Addition of dibutyryl-cGMP (db-cGMP) induced COX-2 expression in a manner similar to SNAP; this induction was blocked by a p38 inhibitor (SB202190), but not by a JNK inhibitor (SP600125). NO-induced cGMP was found to activate CREB and ATF-2 in a p38, but not c-jun-dependent manner, while NO induced JNK in a cGMP-independent manner, leading to subsequent activation of c-jun and ATF-2. These results suggest that the low concentrations of endogenous NO present in cancer cell may induce the expression of many genes, including COX-2, which promotes the growth and survival of tumor cells.
Collapse
Affiliation(s)
- Seok-Woo Park
- Department of Tumor Biology, College of Medicine, Seoul National University, Chongno-gu, Korea
| | | | | | | | | | | |
Collapse
|
260
|
Mouihate A, Ellis S, Harré EM, Pittman QJ. Fever suppression in near-term pregnant rats is dissociated from LPS-activated signaling pathways. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1265-72. [PMID: 16037126 DOI: 10.1152/ajpregu.00342.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Near-term pregnant rats show a suppressed fever response to LPS that is associated with reduced induction of cyclooxygenase (COX)-2 in the hypothalamus. The objective of this study is to explore whether the LPS-activated signaling pathways in the fever-controlling region of the hypothalamus are specifically altered at near term. Three rat groups consisting of 15-day pregnant rats, near-term 21- to 22-day pregnant rats, and day 5 lactating rats were injected with a febrile dose of LPS (50 μg/kg ip). The hypothalamic preoptic area and the organum vasculosum of the lamina terminalis (OVLT) were collected 2 h after LPS injection. The activation of three transcription modulators, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and signal transducer and activator of transcription 5 (STAT5), was assessed using semiquantitative Western blot analysis. LPS activated the NF-κB pathway in all rat groups, and this response was not altered at near term. ERK1/2 and STAT5 were constitutively activated during all reproductive stages, and their levels were not significantly affected by LPS injection. Plasma levels of the proinflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), anti-inflammatory cytokines (IL-4, IL-10, and IL-1 receptor antagonist), and corticosterone were unaffected during the three reproductive stages after LPS challenge. We observed a sharp decrease in the expression of a prostaglandin-producing enzyme called lipocalin-prostaglandin D2 synthase in near-term pregnant and lactating rats. Thus fever suppression at near term is not due to an alteration in either LPS-activated intracellular signaling pathways or LPS-induced pro- and anti-inflammatory cytokine production.
Collapse
Affiliation(s)
- A Mouihate
- Hotchkiss Brain Institute, Dept. of Physiology and Biophysics, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
261
|
Bergenstock M, Min W, Simon AM, Sabatino C, O'Connor JP. A comparison between the effects of acetaminophen and celecoxib on bone fracture healing in rats. J Orthop Trauma 2005; 19:717-23. [PMID: 16314720 DOI: 10.1097/01.bot.0000184144.98071.5d] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This study compared the acute treatment effects of systemic analgesics with (celecoxib) and without anti-inflammatory activity (acetaminophen) on bone fracture healing. STUDY DESIGN Longitudinal time study of fracture healing in rats. METHODS Closed, mid diaphyseal femur fractures were produced in female Sprague-Dawley rats. The rats were treated for 10 days after fracture with 60 or 300 mg/kg of acetaminophen, 3 or 6 mg/kg of celecoxib, or vehicle by once-daily oral dosing. Fracture healing was measured after 8 weeks by radiographic examination, mechanical testing, and histology. RESULTS Radiographic scoring indicated that acute celecoxib treatment significantly impaired fracture healing; acetaminophen treatment had no negative effect. Mechanical testing supported the radiographic observations. No negative effects of celecoxib or acetaminophen treatment on the structural properties (peak torque and torsional rigidity) of the healing femurs were detected. In contrast, celecoxib treatment, but not acetaminophen treatment, significantly reduced the material properties (maximum shear stress and shear modulus) of the healing femurs (P < 0.001). Post-mechanical testing examination of the healing femurs found that 73% of the vehicle-treated or acetaminophen-treated femurs had healed as unions (30/41), 27% failed as incomplete unions (11/41), and none failed as nonunions (0%). In contrast, only 21% of the fractured femurs from the celecoxib treated rats had healed as unions (7/34), 53% failed as incomplete unions (18/34), and 26% failed as nonunions (9/34). The proportion of nonunions among the celecoxib-treated rats was significantly higher compared with the control and acetaminophen-treated rats (P < 0.001). Histologic examination indicated that similar to previous studies, celecoxib treatment, but not acetaminophen treatment, altered normal fracture callus morphology in which cartilage rather than new bone abuts the fracture site. CONCLUSIONS No negative effect from acute acetaminophen treatment on fracture healing was detected. In contrast, acute treatment with celecoxib, a selective cyclooxygenase-2 inhibitor with anti-inflammatory activity, significantly impaired fracture healing.
Collapse
Affiliation(s)
- Marika Bergenstock
- Department of Orthopaedics, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
262
|
Affiliation(s)
- Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, USA
| | | |
Collapse
|
263
|
Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, Kominea A, Papachristou GI, Karamouzis MV, Gkermpesi M, Varakis I, Papavassiliou AG. PPAR-gamma is expressed and NF-kB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 2005; 132:76-84. [PMID: 16215757 DOI: 10.1007/s00432-005-0042-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/05/2005] [Indexed: 12/14/2022]
Abstract
PURPOSE Accumulated evidence indicates that carcinogenesis is closely associated with the transformation of normal stroma into a 'reactive' stromal phenotype. The present study investigated the role of PPARgamma, COX-2 and p-IkB-alpha--important molecular targets of colon cancer chemoprevention--in this stromal remodeling by evaluating and comparing the expression of these factors in stromal myofibroblasts, macrophages and endothelial cells that surround normal colonic mucosa and colon cancer. METHODS Immunohistochemical methodology was employed on archived paraffin-embedded sections prepared from tumors and adjacent normal colon from 45 patients with colon adenocarcinomas. Double immunostaining with the universal marker for myofibroblasts (alpha-smooth muscle actin/alpha-SMA) as second primary antibody was also performed. RESULTS Stromal macrophages and endothelial cells expressed these factors both in normal colonic mucosa and colon cancer. By contrast, stromal myofibroblasts expressed PPARgamma, COX-2 and p-IkB-alpha only in colon adenocarcinomas (77.7%, 100% and 100% of cases, respectively) and not in normal colon. COX-2 and p-IkB-alpha expressions were strongly correlated in these cells (P < 0.001). PPARgamma, COX-2 and p-IkB-alpha expression did not correlate with the stage or differentiation of the adenocarcinomas. CONCLUSIONS NF-kB pathway is activated and COX-2 expression is upregulated in stromal myofibroblasts surrounding colon adenocarcinomas compared to normal colon. Induction of COX-2 expression is primarily induced by NF-kB. NSAIDs, selective COX-2 inhibitors and PPARgamma ligands may exert their chemoprophylactic properties through direct actions on these cells.
Collapse
Affiliation(s)
- Gerasimos P Vandoros
- Department of Anatomy and Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Chandrasekharan S, Foley NA, Jania L, Clark P, Audoly LP, Koller BH. Coupling of COX-1 to mPGES1 for prostaglandin E2 biosynthesis in the murine mammary gland. J Lipid Res 2005; 46:2636-48. [PMID: 16204198 DOI: 10.1194/jlr.m500213-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammary gland, like most tissues, produces measurable amounts of prostaglandin E2 (PGE2), a metabolite of arachidonic acid produced by sequential actions of two cyclooxygenases (COX-1 and COX-2) and three terminal PGE synthases: microsomal prostaglandin E2 synthase-1 (mPGES1), mPGES2, and cytosolic prostaglandin E2 synthase (cPGES). High PGE2 levels and COX-2 overexpression are frequently detected in mammary tumors and cell lines. However, less is known about PGE2 metabolic enzymes in the context of normal mammary development. Additionally, the primary COX partnerships of terminal PGE synthases and their contribution to normal mammary PGE2 biosynthesis are poorly understood. We demonstrate that expression of COX-1, generally considered constitutive, increases dramatically with lactogenic differentiation of the murine mammary gland. Concordantly, total PGE2 levels increase throughout mammary development, with highest levels measured in lactating tissue and breast milk. In contrast, COX-2 expression is extremely low, with only a modest increase detected during mammary involution. Expression of the G(s)-coupled PGE2 receptors, EP2 and EP4, is also temporally regulated, with highest levels detected at stages of maximal proliferation. PGE2 production is dependent on COX-1, as PGE2 levels are nearly undetectable in COX-1-deficient mammary glands. Interestingly, PGE2 levels are similarly reduced in lactating glands of mPGES1-deficient mice, indicating that PGE2 biosynthesis results from the coordinated activity of COX-1 and mPGES1. We thus provide evidence for the first time of functional coupling between COX-1 and mPGES1 in the murine mammary gland in vivo.
Collapse
|
265
|
Chen JJ, Huang WC, Chen CC. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol Biol Cell 2005; 16:5579-91. [PMID: 16195339 PMCID: PMC1289404 DOI: 10.1091/mbc.e05-08-0778] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of ubiquitin-proteasome pathway has been shown to be a promising strategy for the treatment of inflammation and cancer. Here, we show that proteasome inhibitors MG132, PSI-1, and lactacystin induce COX-2 expression via enhancing gene transcription rather than preventing protein degradation in the human alveolar NCI-H292 and A549, and gastric AGS epithelial cells. NF-IL6 and CRE, but not NF-kappaB elements on the COX-2 promoter were involved in the gene transcription event. The binding of CCAAT/enhancer binding protein (C/EBP)beta and C/EBPdelta to the CRE and NF-IL6 elements, as well as the recruitment of CBP and the enhancement of histone H3 and H4 acetylation on the COX-2 promoter was enhanced by MG132. However, it did not affect the total protein levels of C/EBPbeta and C/EBPdelta. MG132-induced DNA-binding activity of C/EBPdelta, but not C/EBPbeta was regulated by p38, PI3K, Src, and protein kinase C. Small interfering RNA of C/EBPdelta suppressed COX-2 expression, further strengthening the role of C/EBPdelta in COX-2 gene transcription. In addition, the generation of intracellular reactive oxygen species (ROS) in response to MG132 contributed to the activation of MAPKs and Akt. These findings reveal that the induction of COX-2 transcription induced by proteasome inhibitors requires ROS-dependent protein kinases activation and the subsequent recruitments of C/EBPdelta and CBP.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan
| | | | | |
Collapse
|
266
|
Moon Y, Glasgow WC, Eling TE. Curcumin suppresses interleukin 1beta-mediated microsomal prostaglandin E synthase 1 by altering early growth response gene 1 and other signaling pathways. J Pharmacol Exp Ther 2005; 315:788-95. [PMID: 16081677 DOI: 10.1124/jpet.105.084434] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Curcumin (diferuloylmethane) is one of the phytophenolic compounds found in the turmeric plant with anti-inflammatory and anticarcinogenic activities. One possible mechanism for these activities is the inhibition of prostaglandin (PG) E(2) formation. In this study and other reports, curcumin suppresses interleukin-1beta-induced formation of prostaglandin E(2) in a concentration-dependent manner. Interleukin-1beta-induced microsomal prostaglandin E synthase 1 (mPGES-1) and cyclooxygenase-2 were attenuated by curcumin at the protein and mRNA levels, but a more dramatic inhibition of mPGES-1 expression was observed at lower concentrations of curcumin in A549 human lung epithelial cells. The inhibition of mPGES-1 expression by curcumin shifted the arachidonic acid profile from PGE(2) to PGF(2alpha) and 6-keto-PGF(1alpha) as major metabolites. The expression of early growth response gene 1 (EGR-1), a key transcription factor of cytokine-induced mPGES-1, was inhibited by curcumin. Incubation with siRNA for EGR-1 inhibited interleukin (IL)-1beta-induced mPGES-1, and the controlled expression of EGR-1 increased the mPGES-1 expression. Several proinflammatory signaling molecules, such as nuclear factor kappaB (NF-kappaB) and mitogen-activated protein kinases, are also known to affect curcumin-regulated gene expression. Curcumin inhibited IkappaBalpha phosphorylation and degradation and thus reduced the expression of mPGES-1. Curcumin suppressed cytokine-induced mPGES-1 by inhibiting phosphorylation of Jun N-terminal kinase (JNK)1/2. However, EGR-1 expression was suppressed by lower concentrations of curcumin, as compared with JNK1/2 and IkappaBalpha. These results indicate that curcumin inhibits IL-1beta-induced PGE(2) formation by inhibiting the expression of mPGES-1 that is mediated by suppression of EGR-1 expression as well as NF-kappaB and JNK1/2.
Collapse
Affiliation(s)
- Yuseok Moon
- Eicosanoid Biochemistry Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
267
|
Abstract
The rationale for the development of selective inhibitors of cyclooxygenase-2 (COX-2) was the proposal that this enzyme plays an important role in inflammation but does not contribute to the resistance of the gastrointestinal mucosa against injury. However, studies from several groups have established that both COX-1 and COX-2 have important functions in the maintenance of gastrointestinal mucosal integrity. Thus, in the normal rat stomach lesions only develop when both COX-1 and COX-2 are inhibited. On the other hand, in specific pathophysiological situations the isolated inhibition of either COX-1 or COX-2 without simultaneous suppression of the other COX isoenzyme is ulcerogenic. Furthermore, COX-2 plays an important role in the healing of gastric ulcers and inhibition of COX-2 delays ulcer healing. From these findings the initial concept that only inhibition of COX-1 interferes with gastrointestinal defense has to be re-evaluated.
Collapse
Affiliation(s)
- Brigitta M Peskar
- Department of Experimental Clinical Medicine, University of Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany.
| |
Collapse
|
268
|
De Caterina R, Massaro M. Omega-3 Fatty Acids and the Regulation of Expression of Endothelial Pro-Atherogenic and Pro-Inflammatory Genes. J Membr Biol 2005; 206:103-16. [PMID: 16456721 DOI: 10.1007/s00232-005-0783-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Indexed: 01/19/2023]
Abstract
By partially replacing the corresponding omega-6 analogues in membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of genes--e.g., adhesion molecules, chemoattractants, inflammatory cytokines--involved in endothelial activation in response to inflammatory and pro-atherogenic stimuli. This regulation occurs, at least in part, through a decreased activation of the nuclear factor-kappaB system of transcription factors, secondary to decreased generation of intracellular hydrogen peroxide. Such regulation by omega-3 fatty acids is likely linked to the presence of a higher number of double bonds in the fatty acid chain in omega-3 compared with omega-6 fatty acids. By similar mechanisms, omega-3 fatty acids have been recently shown to reduce gene expression of cyclooxygenase-2, an inflammatory gene involved, through the activation of some metalloproteinases, in plaque angiogenesis and plaque rupture. The quenching of gene expression of pro-inflammatory pro-atherogenic genes by omega-3 fatty acids has consequences on the extent of leukocyte adhesion to vascular endothelium, early atherogenesis and later stages of plaque development and plaque rupture, ultimately yielding a plausible comprehensive explanation for the vasculoprotective effects of these nutrients.
Collapse
|
269
|
Alvarez Y, Briones AM, Balfagón G, Alonso MJ, Salaices M. Hypertension increases the participation of vasoconstrictor prostanoids from cyclooxygenase-2 in phenylephrine responses. J Hypertens 2005; 23:767-77. [PMID: 15775781 DOI: 10.1097/01.hjh.0000163145.12707.63] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The present study was designed to analyse whether hypertension alters the involvement of cyclooxygenase-2-derived mediators in phenylephrine-induced vasoconstrictor responses. METHODS Vascular reactivity experiments were performed in aortic segments from normotensive, Wistar-Kyoto, and spontaneously hypertensive rats (SHR); protein expression was measured by western blot and/or immunohistochemistry, and prostaglandin F2alpha (PGF2alpha), 8-isoprostane and prostacyclin release were determined by enzyme immunoassay commercial kits. RESULTS The protein synthesis inhibitor dexamethasone (1 micromol/l), the non-selective cyclooxygenase inhibitor indomethacin (10 micromol/l), the selective cyclooxygenase-2 inhibitor NS 398 (1 micromol/l), and the thromboxane A2/prostaglandin H2 (TP) receptor antagonist SQ 29,548 (1 micromol/l), reduced the concentration-response curves to phenylephrine more in segments from hypertensive than from normotensive rats; however, the thromboxane A2 (TxA2) synthase inhibitors furegrelate (10 micromol/l) and OKY 046 (1 and 10 micromol/l) had no effect in either strain. Removing endothelium or adding dexamethasone almost abolished the NS 398 effect. Cyclooxygenase-2 protein expression, which was reduced by dexamethasone, was higher in aorta from hypertensive animals. In both strains cyclooxygenase-2 was localized mainly in endothelial cells and adventitial fibroblasts. 13,14-Dihydro-15-keto-PGF2alpha, 6-keto-PGF1alpha and 8-isoprostane levels were greater in the medium from hypertensive than from normotensive rats; NS 398 decreased levels of the three metabolites studied only in the medium from SHR. CONCLUSIONS PGF2alpha and 8-isoprostane seem to be involved in the response to phenylephrine in rat aorta; this involvement is greater in hypertensive rats, probably due to a higher endothelial induction of cyclooxygenase-2.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Departamento de Farmacología y Terapéutica bDepartamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
270
|
Wang BS, Chen JH, Liang YC, Duh PD. Effects of Welsh onion on oxidation of low-density lipoprotein and nitric oxide production in macrophage cell line RAW 264.7. Food Chem 2005. [DOI: 10.1016/j.foodchem.2004.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
271
|
Sayasith K, Lussier JG, Sirois J. Role of upstream stimulatory factor phosphorylation in the regulation of the prostaglandin G/H synthase-2 promoter in granulosa cells. J Biol Chem 2005; 280:28885-93. [PMID: 15927963 DOI: 10.1074/jbc.m413434200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To investigate the role of USF phosphorylation in the regulation of the PGHS-2 promoter in granulosa cells, promoter activity assays were performed in primary cultures of bovine granulosa cells transfected with the chimeric PGHS-2 promoter/luciferase (LUC) construct -149/-2PGHS-2.LUC. Transfections were done in the absence or presence of forskolin; the protein kinase A (PKA) inhibitor H-89; or an expression vector encoding USF1, USF2, the catalytic subunit of PKA (cPKA), or a PKA inhibitor protein (PKI). Electrophoretic mobility shift assays were performed to study USF/DNA interactions using granulosa cell nuclear extracts and a 32P-labeled proximal PGHS-2 promoter fragment containing the E-box element. The results show that forskolin stimulation and cPKA overexpression caused a marked and significant increase in USF-dependent DNA binding and PGHS-2 promoter activities (p < 0.05). In contrast, both activities were decreased by H-89 treatment or PKI overexpression. Reverse transcription-PCR analyses revealed that these treatments had similar effects on endogenous PGHS-2 mRNA levels in granulosa cells. Cotransfection studies with a USF2 mutant lacking N-terminal activation domains (U2Delta1-220) repressed forskolin-, cPKA-, and USF-dependent PGHS-2 promoter activities. Electrophoretic mobility shift assays showed that U2Delta1-220 was able to compete with full-length USF proteins and to saturate the E-box element. Immunoprecipitation/Western blot analyses revealed an increase in the levels of phosphorylated USF1 and USF2 after forskolin treatment, whereas chromatin immunoprecipitation assays showed that binding of USF proteins to the endogenous PGHS-2 promoter was stimulated by forskolin. Site-directed mutagenesis of a consensus PKA phosphorylation site within USF proteins abolished their transactivating capacity. Collectively, these results characterize the role of USF phosphorylation in PGHS-2 expression and identify the phosphorylation-dependent increase in USF binding to the E-box as a putative molecular basis for the increase in PGHS-2 promoter transactivation in granulosa cells.
Collapse
Affiliation(s)
- Khampoune Sayasith
- Centre de Recherche en Reproduction Animale and the Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 7C6, Canada
| | | | | |
Collapse
|
272
|
Duque J, Fresno M, Iñiguez MA. Expression and Function of the Nuclear Factor of Activated T Cells in Colon Carcinoma Cells. J Biol Chem 2005; 280:8686-93. [PMID: 15632146 DOI: 10.1074/jbc.m413076200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence shows a crucial role of the Ca2+/ calcineurin-mediated activation of the nuclear factor of activated T cells (NFAT) in the regulation of a variety of processes in nonimmune cells. Here we provide evidence that NFATc1 and NFATc2 are expressed in human colon carcinoma cell lines. These proteins are translocated from the cytoplasm to the nucleus upon treatment with a combination of phorbol 12-myristate 13-acetate plus the calcium ionophore A23187. Subsequent to translocation to the nucleus, NFATc1 and NFATc2 were able to bind to a NFAT response element in the DNA, regulating transcriptional activation of genes containing a NFAT-responsive element such as cyclooxygenase-2 (COX-2). COX-2 expression and prostaglandin E2 (PGE2) production were induced upon pharmacological stimuli leading to NFAT activation and blunted by inhibition of calcineurin phosphatase with cyclosporin A or tacrolimus (FK506). Expression of NFAT wild type protein or the active catalytic subunit of calcineurin transactivates COX-2 promoter activity, whereas a dominant negative mutant of NFAT inhibited COX-2 induction in colon carcinoma cell lines. Furthermore, mutation or deletion of NFAT binding sites in the human COX-2 promoter greatly diminished its induction by phorbol 12-myristate 13-acetate/calcium ionophore A23187. These findings demonstrate the presence and activation of NFAT in human colon carcinoma cells, with important implications in the regulation of genes involved in the transformed phenotype as COX-2.
Collapse
Affiliation(s)
- Javier Duque
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
273
|
Jimenez JL, Iñiguez MA, Muñoz-Fernández MA, Fresno M. Effect of phosphodiesterase 4 inhibitors on NFAT-dependent cyclooxygenase-2 expression in human T lymphocytes. Cell Signal 2005; 16:1363-73. [PMID: 15381252 DOI: 10.1016/j.cellsig.2004.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 04/02/2004] [Accepted: 04/04/2004] [Indexed: 01/19/2023]
Abstract
Transcriptional induction of cyclooxygenase-2 (COX-2) occurs early after T cell receptor triggering and has functional implications in inflammation. Here, we show that phosphodiesterase (PDE)-4 inhibitors block COX-2 induction and prostaglandin synthesis in activated T cells. COX-2 inhibition by PDE4 inhibitors occurs mainly at the transcriptional level. Two response elements for the nuclear factor of activated T cells (NFAT) in the COX-2 promoter were required for inhibition by these drugs. PDE4 inhibitors did not affect NFAT nuclear translocation upon T cell activation; rather they prevented NFAT binding to DNA and induction of the transactivation function of GAL4-NFAT. These effects seem to be cAMP/PKA independent as they were not mimicked by the permeable analog dBcAMP or by forskolin, neither can be reverted by the PKA inhibitors H89 or KT-5720. These results may explain some of the anti-inflammatory properties of PDE4 inhibitors through the blockade of NFAT-mediated transactivation of pro-inflammatory genes such as COX-2.
Collapse
Affiliation(s)
- José L Jimenez
- Laboratorio de Inmunología, Hospital Universitario Gregorio Marañón, C/ Doctor Esquerdo 46, 28007 Madrid, Spain
| | | | | | | |
Collapse
|
274
|
Shinji Y, Tsukui T, Tatsuguchi A, Shinoki K, Kusunoki M, Suzuki K, Hiratsuka T, Wada K, Futagami S, Miyake K, Gudis K, Sakamoto C. Induced microsomal PGE synthase-1 is involved in cyclooxygenase-2-dependent PGE2 production in gastric fibroblasts. Am J Physiol Gastrointest Liver Physiol 2005; 288:G308-15. [PMID: 15458923 DOI: 10.1152/ajpgi.00313.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that the cyclooxygenase (COX)-2/PGE2 pathway plays a key role in VEGF production in gastric fibroblasts. Recent studies have identified three PGE synthase (PGES) isozymes: cytosolic PGES (cPGES) and microsomal PGES (mPGES)-1 and -2, but little is known regarding the expression and roles of these enzymes in gastric fibroblasts. Thus we examined IL-1beta-stimulated mPGES-1 and cPGES mRNA and protein expression in gastric fibroblasts by quantitative PCR and Western blot analysis, respectively, and studied both their relationship to COX-1 and -2 and their roles in PGE2 and VEGF production in vitro. IL-1beta stimulated increases in both COX-2 and mPGES-1 mRNA and protein expression levels. However, COX-2 mRNA and protein expression were more rapidly induced than mPGES-1 mRNA and protein expression. Furthermore, MK-886, a nonselective mPGES-1 inhibitor, failed to inhibit IL-1beta-induced PGE2 release at the 8-h time point, while totally inhibiting PGE2 at the later stage. However, MK-886 did inhibit IL-1beta-stimulated PGES activity in vitro by 86.8%. N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide (NS-398), a selective COX-2 inhibitor, totally inhibited PGE2 production at both the 8-h and 24-h time points, suggesting that COX-2-dependent PGE2 generation does not depend on mPGES-1 activity at the early stage. In contrast, NS-398 did not inhibit VEGF production at 8 h, and only partially at 24 h, whereas MK-886 totally inhibited VEGF production at each time point. These results suggest that IL-1beta-induced mPGES-1 protein expression preferentially coupled with COX-2 protein at late stages of PGE2 production and that IL-1beta-stimulated VEGF production was totally dependent on membrane-associated proteins involved in eicosanoid and glutathione metabolism (MAPEG) superfamily proteins, which includes mPGES-1, but was partially dependent on the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Yoko Shinji
- Pathophysiological Management, Medical Oncology Third Department of Internal Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Ikeda S, Kitagawa M, Imai H, Yamada M. The Roles of Vitamin A for Cytoplasmic Maturation of Bovine Oocytes. J Reprod Dev 2005; 51:23-35. [PMID: 15750294 DOI: 10.1262/jrd.51.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vitamin A is one of the micronutrients which have been implicated in cattle reproduction. In cattle, ingested vitamin A, mainly as beta-carotene (BC) from forages and retinol ester from formula feed, is metabolized and transported to the oocytes and cumulus-granulosa cells in ovarian follicles through binding to various interacting molecules. The active form of vitamin A, retinoic acid (RA), functions as a regulator of gene expression in these targets. Early research showed the positive effects of vitamin A supplementation on bovine fertility in artificial insemination, and several studies on effects of vitamin A metabolites used in other artificial reproductive techniques (ART), including superovulation, ovum pick up, and in vitro maturation culture have provided evidence for the specific roles of vitamin A in oocyte cytoplasmic maturation (acquisition of developmental competence of oocytes during their meiotic maturation period for the embryonic development after fertilization). BC may enhance cytoplasmic maturation by its antioxidant properties which cannot be replaced by RA. Furthermore, RA may promote cytoplasmic maturation of bovine oocytes via its modulatory effects on the gene expression of gonadotrophin receptors, midkine, cyclooxygenase-2, and nitric oxide synthase in cumulus-granulosa cells.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Livestock Farm, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
276
|
Beloqui O, Páramo JA, Orbe J, Benito A, Colina I, Monasterio A, Díez J. Monocyte cyclooxygenase-2 overactivity: a new marker of subclinical atherosclerosis in asymptomatic subjects with cardiovascular risk factors? Eur Heart J 2004; 26:153-8. [PMID: 15618071 DOI: 10.1093/eurheartj/ehi016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Cyclooxygenase-2 (COX-2)-mediated prostaglandin production by activated macrophages is associated with inflammation and atherosclerosis. We investigated the relationship between COX-2-mediated prostaglandin-E2 (PGE2) release, cardiovascular risk factors, and carotid atherosclerosis in apparently healthy subjects. METHODS AND RESULTS PGE2 release by lipopolysaccharide-stimulated blood monocytes was measured by ELISA in 291 subjects (76.5% men, mean age 58) who underwent global vascular risk assessment and carotid ultrasonography. COX-2 expression (real-time RT-PCR) was analysed in a subgroup of 100 subjects (76% men, mean age 59). Inducible PGE2 production was associated with smoking and diabetes (P<0.05), but not with arterial hypertension, dyslipidaemia, or obesity. Subjects in the highest tertile of PGE2 (>8.1 ng/mL) had significantly higher mean carotid intima-media thickness (IMT) than those in the lowest tertile (P<0.01). No significant differences among tertiles were observed in the levels of inflammatory markers (C-reactive protein, fibrinogen, and von Willebrand factor). The association between PGE2 and carotid IMT remained statistically significant (P=0.012) after adjustment for a number of cardiovascular and inflammatory risk factors. A correlation between COX-2 expression and PGE2 production was observed (P<0.005). CONCLUSIONS COX-2-mediated PGE2 overproduction by stimulated monocytes might provide a new marker of subclinical atherosclerosis in asymptomatic subjects exposed to cardiovascular risk factors.
Collapse
Affiliation(s)
- Oscar Beloqui
- Department of Internal Medicine, University Clinic, Clínica Universitaria, Avenida de Pío XII 36, 31008 Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
277
|
Peng T, Lu X, Feng Q. NADH oxidase signaling induces cyclooxygenase‐2 expression during lipopolysaccharide stimulation in cardiomyocytes. FASEB J 2004; 19:293-5. [PMID: 15546960 DOI: 10.1096/fj.04-2289fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclooxygenase-2 (COX-2) is induced in response to lipopolysaccharide (LPS). However, the signaling mechanisms of LPS-induced COX-2 expression in cardiomyocytes are not well understood. The aim of this study was to investigate the role of gp91(phox)-containing NADH oxidase signaling pathway in LPS-induced COX-2 expression in cardiomyocytes. Cultured neonatal mouse cardiomyocytes showed basal COX-2 expression and PGE2 production. In response to LPS, COX-2 expression and PGE2 production increased by two- to four-fold, which were completely blocked by a selective COX-2 inhibitor NS398. LPS also increased NADH oxidase (gp91(phox) and p47(phox) subunits) expression and superoxide generation. Deficiency of gp91(phox) or suppression of p22(phox) expression decreased NADH oxidase activity and down-regulated COX-2 expression and PGE2 production stimulated by LPS. Pharmacological inhibitors of NADH oxidase prevented LPS-induced COX-2 expression and PGE2 production. The effect of NADH oxidase was mediated through MAPK activation, since inhibition of NADH-oxidase activity prevented phosphorylation of ERK1/2, p38, and JNK1/2, as well as selective inhibition of each subfamily of MAPK by siRNAs and a dominant negative mutant of JNK1 decreased COX-2 expression and completely abrogated PGE2 production in response to LPS. Furthermore, LPS-induced NF-kappaB activation was decreased by inhibition of NADH oxidase, ERK1/2 or JNK1/2 activation, suggesting that LPS increases NF-kappaB activity and COX-2 expression via NADH oxidase-dependent activation of ERK1/2 and JNK1/2. In conclusion, NADH oxidase signaling represents a novel pathway leading to COX-2 expression via MAPK/NF-kappaB-dependent mechanisms in cardiomyocytes during LPS stimulation. Our study suggests that gp91(phox)-containing NADH oxidase is a potential therapeutic target of sepsis.
Collapse
Affiliation(s)
- Tianqing Peng
- Cardiology Research Laboratory, Lawson Health Research Institute, London Health Sciences Centre, Ontario, Canada
| | | | | |
Collapse
|
278
|
Abstract
Cyclooxygenases (COXs) catalyze the rate-limiting step in the production of prostaglandins, bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of aspirin-like drugs. In mammals, the two COX genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2). Cyclooxygenases (COXs) catalyze the rate-limiting step in the production of prostaglandins, bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of aspirin-like drugs. COX genes have been cloned from coral, tunicates and vertebrates, and in all the phyla where they are found, there are two genes encoding two COX isoenzymes; it is unclear whether these genes arose from an early single duplication event or from multiple independent duplications in evolution. The intron-exon arrangement of COX genes is completely conserved in vertebrates and mostly conserved in all species. Exon boundaries largely define the four functional domains of the encoded protein: the amino-terminal hydrophobic signal peptide, the dimerization domain, the membrane-binding domain, and the catalytic domain. The catalytic domain of each enzyme contains distinct peroxidase and cyclooxygenase active sites; COXs are classified as members of the myeloperoxidase family. All COXs are homodimers and monotopic membrane proteins (inserted into only one leaflet of the membrane), and they appear to be targeted to the lumenal membrane of the endoplasmic reticulum, where they are N-glycosylated. In mammals, the two COX genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2); both are of significant pharmacological importance.
Collapse
Affiliation(s)
- N V Chandrasekharan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| | | |
Collapse
|
279
|
Chen LC, Chen BK, Chang JM, Chang WC. Essential role of c-Jun induction and coactivator p300 in epidermal growth factor-induced gene expression of cyclooxygenase-2 in human epidermoid carcinoma A431 cells. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1683:38-48. [PMID: 15238218 DOI: 10.1016/j.bbalip.2004.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 03/29/2004] [Accepted: 04/21/2004] [Indexed: 02/04/2023]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme responsible for high-level prostaglandin production during inflammation and carcinogenesis. In this study, the transcriptional regulation of COX-2 expression induced by epidermal growth factor (EGF) in human epidermoid carcinoma A431 cells was studied. EGF treatment induced the expression of COX-2 mRNA, protein, promoter and enzyme activity in a time-dependent manner. EGF-induced COX-2 promoter activity was inhibited by overexpression of the dominant-negative forms of Ras and ERK2. Induction of COX-2 and c-Jun by EGF was completely suppressed by MEK inhibitor combined with JNK inhibitor. Analysis of the COX-2 promoter binding proteins by gel mobility shift assay and DNA affinity precipitation assay revealed that c-Jun and p300 binding to CRE/E-box site were responsible for the EGF-induced COX-2 gene transcription. Overexpression of p300 significantly enhanced COX-2 promoter activity in cells overexpressed of c-Jun or treated with EGF. EGF- and c-Jun-induced transcription of COX-2 promoter was repressed by cotransfection of E1A in a dose-dependent manner. All together, these results indicated that the EGF-induced expression of COX-2 in A431 cells was mediated through the Ras-ERK/JNK signaling pathway, and subsequent induction of c-Jun following MAPK activation, in cooperation with coactivator p300, was required for the EGF response.
Collapse
Affiliation(s)
- Lei-Chin Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
280
|
Long JA, Fogel-Petrovic M, Knight DA, Thompson PJ, Upham JW. Higher prostaglandin e2 production by dendritic cells from subjects with asthma compared with normal subjects. Am J Respir Crit Care Med 2004; 170:485-91. [PMID: 15151923 DOI: 10.1164/rccm.200311-1595oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are thought to play an important role in the pathogenesis of allergic disorders through their ability to interact with T cells to initiate and amplify helper T cell Type 2 immune responses. The mechanisms by which this occurs are not completely understood, nor is it clear whether DC function differs between normal individuals and individuals with asthma. We compared the function of DCs from 10 subjects with allergic asthma and 10 normal individuals, focusing on the production of prostaglandin E (PGE) 2, interleukin (IL)-10, and IL-12 p70, mediators that play an important role in helper T cell Type 1/Type 2 polarization. Monocyte-derived DCs were established by culturing monocytes with granulocyte-macrophage colony-stimulating factor and IL-4 for 7 days, and then stimulated with LPS plus IFN-gamma. PGE2, IL-10, and IL-12 production was evaluated by ELISA, whereas cyclooxygenase-1, and -2 messenger RNA expression was analyzed using reverse transcription-polymerase chain reaction. LPS-stimulated monocyte-derived DCs from individuals with asthma exhibited increased PGE2 and IL-10 production, but equivalent IL-12 p70 synthesis, when compared with DCs from normal subjects. Increased PGE2 synthesis by DCs from subjects with asthma was associated with an increase in cyclooxygenase-2 messenger RNA expression. These findings support the notion that DC function is significantly altered in allergic asthma.
Collapse
Affiliation(s)
- Julie A Long
- Asthma and Allergy Research Institute, University of Western Australia, West Perth, WA, Australia
| | | | | | | | | |
Collapse
|
281
|
Järving R, Järving I, Kurg R, Brash AR, Samel N. On the Evolutionary Origin of Cyclooxygenase (COX) Isozymes. J Biol Chem 2004; 279:13624-33. [PMID: 14732711 DOI: 10.1074/jbc.m313258200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, COX-1 and COX-2, two cyclooxygenase isozymes with different physiological functions and gene regulation, catalyze identical reactions in prostaglandin synthesis. It is still not understood why there are multiple forms of COX enzyme in the same cell type and when the evolutionary duplication of the COX gene occurred. Here we report the structure of two genes encoding for COX isozymes in the coral Gersemia fruticosa, the first non-vertebrate organism from which a cyclooxygenase was characterized. Both genes are about 20 kb in size and consist of nine exons. Intron/exon boundaries are well conserved between coral and mammalian COX genes. mRNAs of the previously reported G. fruticosa COX-A (GenBank trade mark accession number AY004222) and the novel COX-B share 94% sequence identity in the coding regions and less than 30% in the 5'- and 3'-untranslated region. Transcripts of both COX genes are detectable in coral cells, although the transcriptional level of COX-A is 2 orders of magnitude higher than COX-B. Expression of both coral genes in mammalian cells gave functional proteins with similar catalytic properties. By data base analyses we also detected and constructed different pairs of COX genes from the primitive chordates, Ciona savignyi and Ciona intestinalis. These two gene pairs encode proteins with 50% intra-species and only 70% cross-species sequence identity. Our results suggest that invertebrate COX gene pairs do not correspond to vertebrate COX-1 and COX-2 and are consistent with duplication of the COX gene having occurred independently in corals, ascidians, and vertebrates. It is evident that due to the importance and complexity of its regulatory role, COX has multiple isoforms in all organisms known to express it, and the genes encoding for the isozymes may to be regulated differently.
Collapse
Affiliation(s)
- Reet Järving
- Department of Chemistry, Tallinn Technical University, Akadeemia tee 15, Tallinn 12618
| | | | | | | | | |
Collapse
|
282
|
Boulet L, Ouellet M, Bateman KP, Ethier D, Percival MD, Riendeau D, Mancini JA, Méthot N. Deletion of microsomal prostaglandin E2 (PGE2) synthase-1 reduces inducible and basal PGE2 production and alters the gastric prostanoid profile. J Biol Chem 2004; 279:23229-37. [PMID: 15016822 DOI: 10.1074/jbc.m400443200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible protein recently shown to be an important source of inflammatory PGE2. Here we have used mPGES-1 wild type, heterozygote, and null mice to assess the impact of reduction or absence mPGES-1 protein on the production of PGE2 and other prostaglandins in lipopolysaccharide (LPS)-treated macrophages and mice. Thioglycollate-elicited peritoneal macrophages with mPGES-1 deficiency were found to lose their ability to produce PGE2 upon LPS stimulation. Resident mPGES-1(-/-) peritoneal macrophages exhibited severely impaired PGE2-releasing activity but retained some LPS-inducible PGE2 production capacity. Both macrophage types showed a 50% decrease in PGE2 production with removal of one copy of the mPGES-1 gene. In vivo, mPGES-1 deletion abolished the LPS-stimulated production of PGE2 in spleen, kidney, and brain. Surprisingly, lack of mPGES-1 activity resulted in an 80-90% decrease in basal, cyclooxygenase-1 (COX-1)-dependent PGE2 production in stomach and spleen, and a 50% reduction in brain and kidney. Other prostaglandins (thromboxane B2, PGD2, PGF(2alpha), and 6-keto-PGF(1alpha)) were significantly elevated in stomachs of mPGES-1-null mice but not in other tissues. Examination of mRNA for several terminal prostaglandin synthases did not reveal changes in expression levels associated with mPGES-1 deficiency, indicating that gastric prostaglandin changes may be due to shunting of cyclooxygenase products to other terminal synthases. These data demonstrate for the first time a dual role for mPGES-1 in both inflammatory and COX-1-mediated PGE2 production and suggest an interdependence of prostanoid production with tissue-specific alterations of prostaglandin levels in the absence of mPGES-1.
Collapse
Affiliation(s)
- Louise Boulet
- Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec H9H 3L1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
283
|
Shanmugam N, Gaw Gonzalo IT, Natarajan R. Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 2004; 53:795-802. [PMID: 14988266 DOI: 10.2337/diabetes.53.3.795] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The cyclooxygenase (COX)-2 enzyme has been implicated in the pathogenesis of several inflammatory diseases. However, its role in diabetic vascular disease is unclear. In this study, we evaluated the hypothesis that diabetic conditions can induce COX-2 in monocytes. High glucose treatment of THP-1 monocytic cells led to a significant three- to fivefold induction of COX-2 mRNA and protein expression but not COX-1 mRNA. High glucose-induced COX-2 mRNA was blocked by inhibitors of nuclear factor-kappaB (NF-kappaB), protein kinase C, and p38 mitogen-activated protein kinase. In addition, an antioxidant and inhibitors of mitochondrial superoxide, NADPH oxidase, and glucose metabolism to glucosamine also blocked high glucose-induced COX-2 expression to varying degrees. High glucose significantly increased transcription from a human COX-2 promoter-luciferase construct (twofold, P < 0.001). Promoter deletion analyses and inhibition of transcription by NF-kappaB superrepressor and cAMP-responsive element binding (CREB) mutants confirmed the involvement of NF-kappaB and CREB transcription factors in high glucose-induced COX-2 regulation. In addition, isolated peripheral blood monocytes from type 1 and type 2 diabetic patients had high levels of COX-2 mRNA, whereas those from normal volunteers showed no expression. These results show that high glucose and diabetes can augment inflammatory responses by upregulating COX-2 via multiple signaling pathways, leading to monocyte activation relevant to the pathogenesis of diabetes complications.
Collapse
Affiliation(s)
- Narkunaraja Shanmugam
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | |
Collapse
|
284
|
Hofer TPJ, Bitterle E, Beck-Speier I, Maier KL, Frankenberger M, Heyder J, Ziegler-Heitbrock L. Diesel exhaust particles increase LPS-stimulated COX-2 expression and PGE2production in human monocytes. J Leukoc Biol 2004; 75:856-64. [PMID: 14966191 DOI: 10.1189/jlb.0803387] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Little is known about health effects of ultrafine particles (UFP) found in ambient air, but much of their action may be on cells of the lung, including cells of the monocyte/macrophage lineage. We have analyzed the effects of diesel exhaust particles (DEP; SRM1650a) on human monocytes in vitro. DEP, on their own, had little effect on cyclooxygenase (COX)-2 gene expression in the Mono Mac 6 cell line. However, when cells were preincubated with DEP for 1 h, then stimulation with the Toll-like receptor 4 (TLR4) ligand lipopolysaccharide (LPS) induced an up-to fourfold-higher production of COX-2 mRNA with an average twofold increase. This costimulatory effect of DEP led to enhanced production of COX-2 protein and to increased release of prostaglandin E(2) (PGE(2)). The effect was specific in that tumor necrosis factor gene expression was not enhanced by DEP costimulation. Furthermore, costimulation with the TLR2 ligand Pam3Cys also led to enhanced COX-2 mRNA. DEP and LPS showed similar effects on COX-2 mRNA in primary blood mononuclear cells, in highly purified CD14-positive monocytes, and in monocyte-derived macrophages. Our data suggest that UFP such as DEP may exert anti-inflammatory effects mediated by enhanced PGE(2) production.
Collapse
Affiliation(s)
- Thomas P J Hofer
- GSF National Research Center for Environment and Health, Insitute for Inhalation Biology, Neuherberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
285
|
Romano M, Claria J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J 2003; 17:1986-95. [PMID: 14597668 DOI: 10.1096/fj.03-0053rev] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclooxygenase (COX) and lipoxygenase (LO) metabolic pathways are emerging as key regulators of cell proliferation and neo-angiogenesis. COX and LO inhibitors are being investigated as potential anticancer drugs and results from clinical trials seem to be encouraging. In this article we will review evidence of COX-2 and 5-LO involvement in cancer pathobiology, propose a model of integrated control of cell proliferation by these enzymes, and discuss the pharmacologic implications of this model.
Collapse
Affiliation(s)
- Mario Romano
- Department of Biomedical Sciences, University G. D'Annunzio, Ce.S.I., 66013 Chieti, Italy.
| | | |
Collapse
|
286
|
van Anholt RD, Spanings T, Koven W, Wendelaar Bonga SE. Effects of acetylsalicylic acid treatment on thyroid hormones, prolactins, and the stress response of tilapia (Oreochromis mossambicus). Am J Physiol Regul Integr Comp Physiol 2003; 285:R1098-106. [PMID: 12842867 DOI: 10.1152/ajpregu.00731.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cyclooxygenase (COX) pathway converts arachidonic acid (ArA) into prostaglandins (PGs), which interact with the stress response in mammals and possibly in fish as well. Acetylsalicylic acid (ASA) is a COX inhibitor and was used to characterize the effects of PGs on the release of several hormones and the stress response of tilapia (Oreochromis mossambicus). Plasma PGE2 was significantly reduced at 100 mg ASA/kg body wt, and both basal PGE2 and cortisol levels correlated negatively with plasma salicylate. Basal plasma 3,5,3'-triiodothyronine (T3) was reduced by ASA treatment, whereas prolactin (PRL)188 increased at 100 mg ASA/kg body wt. ASA depressed the cortisol response to the mild stress of 5 min of net confinement. As expected, glucose and lactate were elevated in the stressed control fish, but the responses were blunted by ASA treatment. Gill Na+-K+-ATPase activity was not affected by ASA. Plasma osmolarity increased after confinement in all treatments, whereas sodium only increased at the high ASA dose. This is the first time ASA has been administered to fish in vivo, and the altered hormone release and the inhibition of the acute stress response indicated the involvement of PGs in these processes.
Collapse
Affiliation(s)
- Rogier D van Anholt
- Dept. of Animal Ecology and Ecophysiology, Faculty of Science, Univ. of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
287
|
Shanmugam N, Kim YS, Lanting L, Natarajan R. Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J Biol Chem 2003; 278:34834-44. [PMID: 12837757 DOI: 10.1074/jbc.m302828200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) enzyme and its inflammatory products such as prostaglandin E2 (PGE2) have been implicated in the pathogenesis of several inflammatory diseases. However their role in diabetic vascular disease is unclear. Advanced glycation end products (AGEs) act via their receptor, RAGE, to play a major role in diabetic complications. In this study, we investigated the effect of AGEs and S100b, a specific RAGE ligand, on the expression of COX-2 and the molecular mechanisms involved in cultured THP-1 monocytes and human peripheral blood monocytes. S100b treatment of THP-1 cells led to a significant 3-5-fold induction of COX-2 mRNA (p < 0.001). COX-2 protein and its product PGE2 were also increased, whereas COX-1 expression was unaffected. In vitro prepared AGE also induced COX-2 mRNA. S100b-induced COX-2 mRNA was blocked by an anti-RAGE antibody and by inhibitors of NF-kappa B (Bay11-7082), oxidant stress, protein kinase C, ERK, and p38 MAPKs. S100b (4-h treatment) significantly increased transcription from a human COX-2 promoter-luciferase construct (4-fold, p < 0.001). Promoter deletion analyses and inhibition of transcription by an NF-kappa B superrepressor mutant confirmed NF-kappa B involvement. This was further supported by inhibition of S100b-induced PGE2 by Bay11-7082. Additionally, S100b-induced adherence of THP-1 monocytes to vascular smooth muscle cells was blocked by the COX-2 inhibitor NS-398, Bay11-7082, inhibitors of ERK and p38 MAPK, and protein kinase C thereby indicating functional relevance. S100b also increased COX-2 mRNA expression in human peripheral blood monocytes from healthy donors. Moreover, COX-2 mRNA levels were clearly evident in monocytes obtained from diabetic patients but not from normal subjects. These results show for the first time that AGEs can augment inflammatory responses by up-regulating COX-2 via RAGE and multiple signaling pathways, thereby leading to monocyte activation and vascular cell dysfunction.
Collapse
Affiliation(s)
- Narkunaraja Shanmugam
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
288
|
Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem 2003; 38:645-59. [PMID: 12932896 DOI: 10.1016/s0223-5234(03)00115-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dual COX/5-LOX (cyclooxygenase/5-lipoxygenase) inhibitors constitute a valuable alternative to classical non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors for the treatment of inflammatory diseases. Indeed, these latter present diverse side effects, which are reduced or absent in dual-acting agents. In this review, COX and 5-LOX pathways are first described in order to highlight the therapeutic interest of designing such compounds. Various structural families of dual inhibitors are illustrated.
Collapse
Affiliation(s)
- Caroline Charlier
- Lab. de Chimie Moléculaire Structurale, Facultés Universitaires N.-D. de la Paix, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| | | |
Collapse
|
289
|
Abstract
The enzymes that convert arachidonic acid to prostaglandin H2 are named cyclooxygenase-1 (COX-1) and COX-2. The properties of COX-1 are different from those of COX-2. It was originally thought that the function of COX-1 was involved in physiological phenomena, whereas that of COX-2 was involved in various pathologies. However, studies with COX-2 knockout mouse suggest that COX-2 also plays important roles in development and homeostasis. This chapter focuses on the distinct functions of COX-1 and COX-2.
Collapse
Affiliation(s)
- Ikuo Morita
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, Japan.
| |
Collapse
|