251
|
Garcia MA, Koonrugsa N, Toda T. Spindle-kinetochore attachment requires the combined action of Kin I-like Klp5/6 and Alp14/Dis1-MAPs in fission yeast. EMBO J 2002; 21:6015-24. [PMID: 12426374 PMCID: PMC137203 DOI: 10.1093/emboj/cdf611] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fission yeast Klp5 and Klp6 belong to the microtubule-destabilizing Kin I family. In klp5 mutants, spindle checkpoint proteins Mad2 and Bub1 are recruited to mitotic kinetochores for a prolonged duration, indicating that these kinetochores are unattached. Further analysis shows that there are kinetochores to which only Bub1, but not Mad2, localizes. These kinetochores are likely to have been captured, yet lack tension. Thus Klp5 and Klp6 play a role in a spindle- kinetochore interaction at dual steps, capture and generation of tension. The TOG/XMAP215 family, Alp14 and Dis1 are known to stabilize microtubules and be required for the bivalent attachment of the kinetochore to the spindle. Despite apparent opposing activities towards microtubule stability, Klp5/Klp6 and Alp14/Dis1 share an essential function, as either dis1klp or alp14klp mutants are synthetically lethal, like alp14dis1. Defective phenotypes are similar to each other, characteristic of attachment defects and chromosome mis-segregation. Furthermore Alp14 is of significance for kinetochore localization of Klp5. We propose that Klp5/Klp6 and Alp14/Dis1 play a collaborative role in bipolar spindle formation during prometaphase through producing spindle dynamism.
Collapse
Affiliation(s)
- Miguel Angel Garcia
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain Corresponding author e-mail:
| | | | - Takashi Toda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln’s Inn Fields Laboratories, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK and
Centro de Biología Molecular ‘Severo Ochoa’, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain Corresponding author e-mail:
| |
Collapse
|
252
|
Sancho D, Vicente-Manzanares M, Mittelbrunn M, Montoya MC, Gordón-Alonso M, Serrador JM, Sánchez-Madrid F. Regulation of microtubule-organizing center orientation and actomyosin cytoskeleton rearrangement during immune interactions. Immunol Rev 2002; 189:84-97. [PMID: 12445267 DOI: 10.1034/j.1600-065x.2002.18908.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The reorganization of membrane, cytoskeletal and signaling molecules during immune interactions is critical for the generation of immune response. At the initiation of the T cell-antigen presenting cell (APC) interaction, antigen-independent weak adhesion forces allow the scanning of the APC surface by the T cell receptor for specific antigens. The stabilization of T cell-APC conjugates involves the segregation of membrane and intracellular signaling proteins, driven by reorganization of membrane microdomains and cytoskeletal changes. In early T cell-APC cognate interactions, the microtubular cytoskeleton undergoes drastic changes that lead to microtubule-organizing center (MTOC) reorientation to the vicinity of the cell-cell contact area. Recent data on the dynamics of MTOC redistribution and its influence in T cell-APC conjugate stabilization, together with the description of an increasing number of signaling molecules associated to this complex, underscore the key role of MTOC translocation in the T cell response. We focus on the mechanisms that control the early MTOC reorientation during T cell-APC interaction and the relevance of this process to T cell activation.
Collapse
Affiliation(s)
- David Sancho
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
253
|
Walczak CE, Gan EC, Desai A, Mitchison TJ, Kline-Smith SL. The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr Biol 2002; 12:1885-9. [PMID: 12419191 DOI: 10.1016/s0960-9822(02)01227-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Xenopus kinesin catastrophe modulator-1 (XKCM1) is a Kin I kinesin family member that uses the energy of ATP hydrolysis to depolymerize microtubules. We demonstrated previously that XKCM1 is essential for mitotic-spindle assembly in vitro and acts by regulating microtubule dynamics as a pure protein, in extracts and in cells. A portion of the XKCM1 pool is specifically localized to centromeres during mitosis and may be important in chromosome movement. To selectively analyze the function of centromere-bound XKCM1, we generated glutathione-S-transferase (GST) fusion proteins containing the N-terminal globular domain (GST-NT), the centrally located catalytic domain (GST-CD), and the C-terminal alpha-helical tail (GST-CT) of XKCM1. The GST-NT protein targeted to centromeres during spindle assembly, suggesting that the N-terminal domain of XKCM1 is sufficient for centromere localization. Addition of GST-NT prior to or after spindle assembly replaced endogenous XKCM1, indicating that centromere targeting is a dynamic process. Loss of endogenous XKCM1 from centromeres caused a misalignment of chromosomes on the metaphase plate without affecting global spindle structure. These results suggest that centromere bound XKCM1 has an important role in chromosome positioning on the spindle.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
254
|
Cheng LJ, Zhou ZM, Li JM, Zhu H, Zhu H, Zhou YD, Wang LR, Lin M, Sha JH. Expression of a novel HsMCAK mRNA splice variant, tsMCAK gene, in human testis. Life Sci 2002; 71:2741-57. [PMID: 12383881 DOI: 10.1016/s0024-3205(02)02079-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Identification of specifically expressed genes in the adult or fetal testis is very important for the study of genes related to the development and function of the testis. In this study, a human adult testis cDNA microarray was constructed and hybridized with 33P-labeled human adult and embryo testis cDNA probes, respectively. After differential display analyzing, a number of new genes related to the development of testis and spermatogenesis had been identified. One of these new genes is tsMCAK. tsMCAK was expressed 2.62 folds more in human adult testis than fetal testis. The full length of tsMCAK is 2401 bp and contains a 2013 bp open reading frame, encoding a 671-amino-acid protein. Sequence analysis showed that it has a central kinesin motor domain and is homologous to HsMCAK gene of the somatic cells. Blasting human genome database localized tsMCAK to human chromosome 1P34 and further investigation showed that it is a splice variant of HsMCAK. The tissue distribution of tsMCAK was determined by RT-PCR and it is expressed highly and specifically in the testis. Southern blot studies of its expression in patients with infertility indicated its specific expression in spermatogenic cells and its correlation with male infertility. The above results suggested that tsMCAK is a candidate gene for the testis-specific KRPs and its specific expression in the testis was correlated with spermatogenesis and may be correlated with male infertility.
Collapse
Affiliation(s)
- Li Jun Cheng
- Key Laboratory of Reproductive Medicine, Center of Human Functional Genomics, Nanjing Medical University, Hanzhong Road, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Abstract
Although the centrosome was first described over 100 years ago, we still know relatively little of the molecular mechanisms responsible for its functions. Recently, members of a novel family of centrosomal proteins have been identified in a wide variety of organisms. The transforming acidic coiled-coil-containing (TACC) proteins all appear to play important roles in cell division and cellular organisation in both embryonic and somatic systems. These closely related molecules have been implicated in microtubule stabilisation, acentrosomal spindle assembly, translational regulation, haematopoietic development and cancer progression. In this review, I summarise what we already know of this protein family and will use the TACC proteins to illustrate the many facets that centrosomes have developed during the course of evolution.
Collapse
Affiliation(s)
- Fanni Gergely
- Wellcome CR UK Institute, Department of Pharmacology, University of Cambridge, UK.
| |
Collapse
|
256
|
Putkey FR, Cramer T, Morphew MK, Silk AD, Johnson RS, McIntosh JR, Cleveland DW. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 2002; 3:351-65. [PMID: 12361599 DOI: 10.1016/s1534-5807(02)00255-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A selective disruption of the mouse CENP-E gene was generated to test how this kinetochore-associated, kinesin-like protein contributes to chromosome segregation. The removal of CENP-E in primary cells produced spindles in which some metaphase chromosomes lay juxtaposed to a spindle pole, despite the absence of microtubules stably bound to their kinetochores. Most CENP-E-free chromosomes moved to the spindle equator, but their kinetochores bound only half the normal number of microtubules. Deletion of CENP-E in embryos led to early developmental arrest. Selective deletion of CENP-E in liver revealed that tissue regeneration after chemical damage was accompanied by aberrant mitoses marked by chromosome missegregation. CENP-E is thus essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores.
Collapse
Affiliation(s)
- Frances R Putkey
- Ludwig Institute for Cancer Research, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
257
|
Komarova YA, Vorobjev IA, Borisy GG. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 2002; 115:3527-39. [PMID: 12154083 DOI: 10.1242/jcs.115.17.3527] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule dynamics were investigated in CHO and NRK cells by novel experimental approaches designed to evaluate the microtubule behavior in the cell interior. These approaches were: (1) laser photobleaching of a path through the centrosome; (2) direct observation of microtubules in centrosome-containing cytoplasts; (3) GFP-CLIP-170 expression as a marker for microtubule plus end growth; and (iv) sequential subtraction analysis. The combination of these approaches allowed us to obtain data where the density of microtubules had previously prevented conventional methods to be applicable.In the steady state, nascent microtubules grew persistently from the centrosome towards the cell margin. Frequently, they arrived at the cell margin without undergoing any transition to the shortening phase. In contrast to the growth of microtubules, shortening of the plus ends from the periphery was non-persistent; that is, rescue was frequent and the extent of shortening showed a distribution of lengths reflecting a stochastic process. The combination of persistent growth and a cell boundary led to a difference in apparent microtubule behavior in the cell interior compared with that near the cell margin. Whereas microtubules in the cell interior showed asymmetric transition frequencies, their behavior near the cell margin showed frequent fluctuations between phases of shortening and growth. Complete microtubule turnover was accomplished by the relatively rare episodes of shortening back to the centrosome. Release from the centrosome with subsequent minus end shortening also occurred but was a minor mechanism for microtubule turnover compared with the plus end pathway.We propose a life cycle for a microtubule which consists of rapid growth from the centrosome to the cell margin followed by an indefinite period of fluctuations of phases of shortening and growth. We suggest that persistent growth and asymmetric transition frequencies serve the biological function of providing a mechanism by which microtubules may rapidly accommodate to the changing shape and advancing edge of motile cells.
Collapse
Affiliation(s)
- Yulia A Komarova
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
258
|
Kline-Smith SL, Walczak CE. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell 2002; 13:2718-31. [PMID: 12181341 PMCID: PMC117937 DOI: 10.1091/mbc.e01-12-0143] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The dynamic activities of cellular microtubules (MTs) are tightly regulated by a balance between MT-stabilizing and -destabilizing proteins. Studies in Xenopus egg extracts have shown that the major MT destabilizer during interphase and mitosis is the kinesin-related protein XKCM1, which depolymerizes MT ends in an ATP-dependent manner. Herein, we examine the effects of both overexpression and inhibition of XKCM1 on the regulation of MT dynamics in vertebrate somatic cells. We found that XKCM1 is a MT-destabilizing enzyme in PtK2 cells and that XKCM1 modulates cellular MT dynamics. Our results indicate that perturbation of XKCM1 levels alters the catastrophe frequency and the rescue frequency of cellular MTs. In addition, we found that overexpression of XKCM1 or inhibition of KCM1 during mitosis leads to the formation of aberrant spindles and a mitotic delay. The predominant spindle defects from excess XKCM1 included monoastral and monopolar spindles, as well as small prometaphase-like spindles with improper chromosomal attachments. Inhibition of KCM1 during mitosis led to prometaphase spindles with excessively long MTs and spindles with partially separated poles and a radial MT array. These results show that KCM1 plays a critical role in regulating both interphase and mitotic MT dynamics in mammalian cells.
Collapse
Affiliation(s)
- Susan L Kline-Smith
- Department of Anatomy and Cell Biology, Indiana University Medical Sciences Program, Bloomington 47405, USA
| | | |
Collapse
|
259
|
Joglekar AP, Hunt AJ. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys J 2002; 83:42-58. [PMID: 12080099 PMCID: PMC1302126 DOI: 10.1016/s0006-3495(02)75148-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule "tracks" as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by "directional instability" (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
260
|
Holmfeldt P, Brattsand G, Gullberg M. MAP4 counteracts microtubule catastrophe promotion but not tubulin-sequestering activity in intact cells. Curr Biol 2002; 12:1034-9. [PMID: 12123579 DOI: 10.1016/s0960-9822(02)00897-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microtubules are polar polymers that continually switch between phases of elongation and shortening, a property referred to as dynamic instability. The ubiquitous microtubule associated protein 4 (MAP4) shows rescue-promoting activity during in vitro assembly of microtubules (i.e., promotes transitions from shortening to elongation), but its regulatory role in intact cells is poorly defined. Here, we demonstrate that ectopic MAP4 promotes outgrowth of extended MTs during beta1-integrin-induced cell spreading. An inducible cotransfection protocol was employed to further analyze the regulatory role of MAP4 in human leukemia cells with microtubules partially destabilized by either ectopic tubulin-sequestering proteins or proteins that promote catastrophes (i.e., transitions from elongation to shortening). Coexpression of proteins that sequester free tubulin heterodimers with different efficiencies was found to abolish microtubule stabilization by MAP4. In contrast, however, the microtubule-stabilizing activity of MAP4 was found to suppress the activities of two distinct and specific catastrophe promoters, namely, XKCM1 and a nonsequestering truncation derivative of Op18/stathmin. These observations reveal specificity in the microtubule-stabilizing activity of MAP4 that differentiates between two mechanistically distinct types of MT destabilization.
Collapse
Affiliation(s)
- Per Holmfeldt
- Department of Molecular Biology, Umeå University, Sweden
| | | | | |
Collapse
|
261
|
Kinoshita K, Habermann B, Hyman AA. XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol 2002; 12:267-73. [PMID: 12074886 DOI: 10.1016/s0962-8924(02)02295-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microtubules are essential for various cellular processes including cell division and intracellular organization. Their function depends on their ability to rearrange their distribution at different times and places. Microtubules are dynamic polymers and their behaviour is described as dynamic instability. Rearrangement of the microtubule cytoskeleton is made possible by proteins that modulate the parameters of dynamic instability. Studies using Xenopus egg extracts led to identification of a microtubule-associated protein called XMAP215 as a major regulator of physiological microtubule dynamics. XMAP215 belongs to an evolutionarily conserved protein family present in organisms ranging from yeast to mammals. Together with members of the Kin I family of kinesins, XMAP215 and its orthologues form an essential circuit for generating dynamic microtubules in vivo.
Collapse
Affiliation(s)
- Kazuhisa Kinoshita
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | |
Collapse
|
262
|
Garcia MA, Koonrugsa N, Toda T. Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 2002; 12:610-21. [PMID: 11967147 DOI: 10.1016/s0960-9822(02)00761-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Metaphase is thought to be a force-equilibrium state of "tug of war," in which poleward forces are pulling kinetochores and counteracting the cohesive forces between the centromeres. Unlike conventional kinesins, members of the Kin I family are microtubule-depolymerizing enzymes, which are expected to be molecules that could generate poleward forces. RESULTS We have characterized mitotic roles of two Kin I homologs, Klp5 and Klp6, in fission yeast. Klp5 and Klp6 colocalize to the mitotic kinetochores and the spindle midzone. These two proteins form a heterocomplex, but not a homocomplex. Albeit not essential, both proteins are required for accurate chromosome segregation and normal morphology of interphase microtubules. Time-lapse live analysis using GFP-alpha-tubulin indicates that these mutants spend a much longer time (2-fold) in mitosis before the initiation of anaphase B. Further observation using kinetochore and centromere markers shows that, in these mutants, sister centromeres move back and forth between the two poles, indicating that entry into anaphase A is delayed. This is supported by live image analysis showing that Cut2 securin is retained during the prolonged mitosis. Furthermore, the mitotic extension is dependent upon the Mad2 spindle checkpoint. CONCLUSIONS We discuss two models of Kin I function in fission yeast. One proposes that Klp5 and Klp6 are required for efficient capturing of kinetochores by the spindles, while the other proposes that they are required to generate tension upon kinetochore capturing. Kin I, therefore, plays a fundamental role in the establishment of metaphase, probably by generating poleward forces at the kinetochores.
Collapse
Affiliation(s)
- Miguel Angel Garcia
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, PO Box 123, 44 Lincoln's Inn Fields, WC2A 3PX, London, United Kingdom
| | | | | |
Collapse
|
263
|
Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 210:163-226. [PMID: 11580206 DOI: 10.1016/s0074-7696(01)10006-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubule-associated proteins (MAPs) function to regulate the assembly dynamics and organization of microtubule polymers. Upstream regulation of MAP activities is the major mechanism used by cells to modify and control microtubule assembly and organization. This review summarizes the functional activities of MAPs found in animal cells and discusses how these MAPs are regulated. Mechanisms controlling gene expression, isoform-specific expression, protein localization, phosphorylation, and degradation are discussed. Additional regulatory mechanisms include synergy or competition between MAPs and the activities of cofactors or binding partners. For each MAP it is likely that regulation in vivo reflects a composite of multiple regulatory mechanisms.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Biological Sciences, Lehigh University Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
264
|
Abstract
The transition from interphase to mitosis is marked by a dramatic change in microtubule dynamics resulting in the reorganization of the microtubule network that culminates in mitotic spindle formation. While the molecular basis for this change in microtubule organization remains obscure, it is currently thought that a balance in the activity of microtubule stabilizing and destabilizing factors regulates how dynamic cellular microtubules are. By mixing the microtubule stabilizer XMAP215 and the microtubule destabilizer XKCM1, reconstitution of in vivo-like microtubule dynamics has now been achieved in vitro.
Collapse
Affiliation(s)
- Søren S L Andersen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| | | |
Collapse
|
265
|
Moores CA, Yu M, Guo J, Beraud C, Sakowicz R, Milligan RA. A mechanism for microtubule depolymerization by KinI kinesins. Mol Cell 2002; 9:903-9. [PMID: 11983180 DOI: 10.1016/s1097-2765(02)00503-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Whereas most kinesins motor along microtubules, KinI kinesins are microtubule depolymerizing machines. Surprisingly, we found that a KinI fragment consisting of only the motor core is capable of ATP-dependent depolymerization. The motor binds along microtubules in all nucleotide states, but in the presence of AMPPNP, microtubule depolymerization also occurs. Structural characterization of the products of AMPPNP-induced destabilization revealed a snapshot of the disassembly machine in action as it precisely deformed a tubulin dimer. While conventional kinesins use the energy of ATP binding to execute a "powerstroke," KinIs use it to bend the underlying protofilament. Thus, the relatively small class-specific differences within the KinI motor core modulate a fundamentally conserved mode of interaction with microtubules to produce a unique depolymerizing activity.
Collapse
Affiliation(s)
- Carolyn A Moores
- Department of Cell Biology, CB227, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
266
|
Abstract
The dynamic nature of microtubules allows them to search the three-dimensional space of the cell. But what are they looking for? During cellular morphogenesis, microtubules are captured at sites just under the plasma membrane, and this polarizes the microtubule array and associated organelles. Recent data indicate that the signalling pathways that are involved in regulating the different microtubule cortical interactions are not only conserved between species, but also that they function in diverse processes.
Collapse
Affiliation(s)
- Gregg G Gundersen
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
267
|
West RR, Malmstrom T, McIntosh JR. Kinesinsklp5+ andklp6+ are required for normal chromosome movement in mitosis. J Cell Sci 2002; 115:931-40. [PMID: 11870212 DOI: 10.1242/jcs.115.5.931] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.
Collapse
Affiliation(s)
- Robert R West
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
268
|
Niederstrasser H, Salehi-Had H, Gan EC, Walczak C, Nogales E. XKCM1 acts on a single protofilament and requires the C terminus of tubulin. J Mol Biol 2002; 316:817-28. [PMID: 11866534 DOI: 10.1006/jmbi.2001.5360] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The stability of microtubules during the cell-cycle is regulated by a number of cellular factors, some of which stabilize microtubules and others that promote breakdown. XKCM1 is a kinesin-like protein that induces microtubule depolymerization and is required for mitotic spindle assembly. We have examined the binding and depolymerization effects of XKCM1 on different tubulin polymers in order to learn about its mechanism of action. Zinc-induced tubulin polymers, characterized by an anti-parallel protofilament arrangement, are depolymerized by XKCM1, indicating that this enzyme acts on a single protofilament. GDP-tubulin rings, which correspond to the low-energy state of tubulin, are stable only under conditions that inhibit XKCM1 depolymerizing activity, but can be stabilized by XKCM1 bound to AMPPNP. Tubulin polymers made of subtilisin-treated tubulin (lacking the tubulin C-terminal tail) are resistant to XKCM1-induced depolymerization, suggesting that the interaction of the acidic tail of tubulin with basic residues in XKCM1 unique to Kin I proteins is required for depolymerization.
Collapse
Affiliation(s)
- Hanspeter Niederstrasser
- Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
269
|
Eichenmuller B, Everley P, Palange J, Lepley D, Suprenant KA. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem 2002; 277:1301-9. [PMID: 11694528 DOI: 10.1074/jbc.m106628200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we show that the echinoderm microtubule (MT)-associated protein (EMAP) and related EMAP-like proteins (ELPs) share a similar domain organization with a highly conserved hydrophobic ELP (HELP) domain and a large tryptophan-aspartic acid (WD) repeat domain. To determine the function of mammalian ELPs, we generated antibodies against a 70-kDa human ELP and showed that ELP70 coassembled with MTs in HeLa cell extracts and colocalized with MTs in the mitotic apparatus. To determine whether ELP70 bound to MTs directly, human ELP70 was expressed and purified to homogeneity from baculovirus-infected Sf9 cells. Purified ELP70 bound to purified MTs with a stoichiometry of 0.40 +/- 0.04 mol of ELP70/mol of tubulin dimer and with an intrinsic dissociation constant of 0.44 +/- 0.13 microm. Using a nucleated assembly assay and video-enhanced differential interference contrast microscopy, we demonstrated that ELP70 reduced seeded nucleation, reduced the growth rate, and promoted MT catastrophes in a concentration-dependent manner. As a result, ELP70-containing MTs were significantly shorter than MTs assembled from tubulin alone. These data indicate that ELP70 is a novel MT destabilizer. A lateral destabilization model is presented to describe ELP70's effects on microtubules.
Collapse
Affiliation(s)
- Bernd Eichenmuller
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
270
|
Abstract
In eukaryotic cells members of the kinesin family mediate intracellular transport by carrying cellular cargo on microtubule tracks. The nematode Caenorhabditis elegans genome encodes 21 members of the kinesin family, which show significant homology to their mammalian orthologs. Based on motor domain sequence homology and placement of the motor domain in the protein, the C. elegans kinesins have been placed in eight distinct groups; members of which participate in embryonic development, protein transport, synaptic membrane vesicles movement and in the axonal growth. Among 21 kinesins, at least 11 play a central role in spindle movement and chromosomal segregation. Understanding the function of C. elegans kinesins and related proteins may help navigate through the intricacies of intracellular traffic in a simple animal.
Collapse
Affiliation(s)
- Shahid S Siddiqui
- Pharmacology Department, M/C 867, College of Medicine, University of Illinois, Chicago, IL 60607, USA.
| |
Collapse
|
271
|
Gillespie PJ, Li A, Blow JJ. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC BIOCHEMISTRY 2001; 2:15. [PMID: 11737877 PMCID: PMC60996 DOI: 10.1186/1471-2091-2-15] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 12/05/2001] [Indexed: 11/26/2022]
Abstract
BACKGROUND In order to ensure precise chromosome duplication, eukaryotes "license" their replication origins during late mitosis and early G1 by assembling complexes of Mcm2-7 onto them. Mcm2-7 are essential for DNA replication, but are displaced from origins as they initiate, thus ensuring that no origin fires more than once in a single cell cycle. RESULTS Here we show that a combination of purified nucleoplasmin, the origin recognition complex (ORC), Cdc6, RLF-B/Cdt1 and Mcm2-7 can promote functional origin licensing and the assembly of Mcm2-7 onto Xenopus sperm nuclei. The reconstituted reaction is inhibited by geminin, a specific RLF-B/Cdt1 inhibitor. Interestingly, the purified ORC used in the reconstitution had apparently lost the Orc6 subunit, suggesting that Orc6 is not essential for replication licensing. We use the reconstituted system to make a preliminary analysis of the different events occurring during origin assembly, and examine their nucleotide requirements. We show that the loading of Xenopus ORC onto chromatin is strongly stimulated by both ADP, ATP and ATP-gamma-S whilst the loading of Cdc6 and Cdt1 is stimulated only by ATP or ATP-gamma-S. CONCLUSIONS Nucleoplasmin, ORC, Cdc6, RLF-B/Cdt1 and Mcm2-7 are the only proteins required for functional licensing and the loading of Mcm2-7 onto chromatin. The requirement for nucleoplasmin probably only reflects a requirement to decondense sperm chromatin before ORC can bind to it. Use of this reconstituted system should allow a full biochemical analysis of origin licensing and Mcm2-7 loading.
Collapse
Affiliation(s)
- Peter J Gillespie
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Current address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | - Anatoliy Li
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- CRC Chromosome Replication Research Group, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
272
|
West RR, Malmstrom T, Troxell CL, McIntosh JR. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol Biol Cell 2001; 12:3919-32. [PMID: 11739790 PMCID: PMC60765 DOI: 10.1091/mbc.12.12.3919] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The kinesin superfamily of microtubule motor proteins is important in many cellular processes, including mitosis and meiosis, vesicle transport, and the establishment and maintenance of cell polarity. We have characterized two related kinesins in fission yeast, klp5+ and klp6+,, that are amino-terminal motors of the KIP3 subfamily. Analysis of null mutants demonstrates that neither klp5+ nor klp6+, individually or together, is essential for vegetative growth, although these mutants have altered microtubule behavior. klp5Delta and klp6Delta are resistant to high concentrations of the microtubule poison thiabendazole and have abnormally long cytoplasmic microtubules that can curl around the ends of the cell. This phenotype is greatly enhanced in the cell cycle mutant cdc25-22, leading to a bent, asymmetric cell morphology as cells elongate during cell cycle arrest. Klp5p-GFP and Klp6p-GFP both localize to cytoplasmic microtubules throughout the cell cycle and to spindles in mitosis, but their localizations are not interdependent. During the meiotic phase of the life cycle, both of these kinesins are essential. Spore viability is low in homozygous crosses of either null mutant. Heterozygous crosses of klp5Delta with klp6Delta have an intermediate viability, suggesting cooperation between these proteins in meiosis.
Collapse
Affiliation(s)
- R R West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | | | | | |
Collapse
|
273
|
Nishihama R, Machida Y. Expansion of the phragmoplast during plant cytokinesis: a MAPK pathway may MAP it out. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:507-512. [PMID: 11641066 DOI: 10.1016/s1369-5266(00)00208-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant cytokinesis involves the formation of a cell plate. This is accomplished with the help of the phragmoplast, a plant-specific cytokinetic apparatus that consists of microtubules and microfilaments. During centrifugal growth of the cell plate, the phragmoplast expands to keep its microtubules at the leading edge of the cell plate. Recent studies have revealed potential regulators of phragmoplast microtubule dynamics and the involvement of a mitogen-activated protein kinase cascade in the control of phragmoplast expansion. These studies provide new insights into the molecular mechanisms of plant cytokinesis.
Collapse
Affiliation(s)
- R Nishihama
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
274
|
Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA. Reconstitution of physiological microtubule dynamics using purified components. Science 2001; 294:1340-3. [PMID: 11701928 DOI: 10.1126/science.1064629] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microtubules are dynamically unstable polymers that interconvert stochastically between polymerization and depolymerization. Compared with microtubules assembled from purified tubulin, microtubules in a physiological environment polymerize faster and transit more frequently between polymerization and depolymerization. These dynamic properties are essential for the functions of the microtubule cytoskeleton during diverse cellular processes. Here, we have reconstituted the essential features of physiological microtubule dynamics by mixing three purified components: tubulin; a microtubule-stabilizing protein, XMAP215; and a microtubule-destabilizing kinesin, XKCM1. This represents an essential first step in the reconstitution of complex microtubule dynamics-dependent processes, such as chromosome segregation, from purified components.
Collapse
Affiliation(s)
- K Kinoshita
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | | | | | | | | |
Collapse
|
275
|
Eichenmüller B, Ahrens DP, Li Q, Suprenant KA. Saturable binding of the echinoderm microtubule-associated protein (EMAP) on microtubules, but not filamentous actin or vimentin filaments. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:161-72. [PMID: 11807937 DOI: 10.1002/cm.10002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The echinoderm microtubule-associated protein (EMAP) is a 75-kDa, WD-repeat protein associated with the mitotic spindle apparatus. To understand EMAP's biological role, it is important to determine its affinity for microtubules (MTs) and other cytoskeletal components. To accomplish this goal, we utilized a low-cost, bubble-column bioreactor to express EMAP as a hexahistidine fusion (6his) protein in baculovirus-infected insect cells. After optimizing cell growth conditions, up to 30 mg of EMAP was obtained in the soluble cell lysate from a 1-liter culture. EMAP was purified to homogeneity in a two-step process that included immobilized metal-affinity chromatography (IMAC) and anion-exchange chromatography. In vitro binding studies on cytoskeletal components were performed with the 6his-EMAP. EMAP bound to MTs, but not actin or vimentin filaments, with an intrinsic dissociation constant of 0.18 microM and binding stoichiometry of 0.7 mol EMAP per mol tubulin heterodimer. In addition, we show that a strong MT binding domain resides in the 137 amino acid, NH(2)-terminus of EMAP and a weaker binding site in the WD-domain. Previous work has shown that the EMAP concentration in the sea urchin egg is over 4 microM. Together, these results show that there is sufficient EMAP in the egg to regulate the assembly of a large pool of maternally stored tubulin.
Collapse
Affiliation(s)
- B Eichenmüller
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|
276
|
Troxell CL, Sweezy MA, West RR, Reed KD, Carson BD, Pidoux AL, Cande WZ, McIntosh JR. pkl1(+)and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 2001; 12:3476-88. [PMID: 11694582 PMCID: PMC60269 DOI: 10.1091/mbc.12.11.3476] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Revised: 07/25/2001] [Accepted: 08/29/2001] [Indexed: 11/11/2022] Open
Abstract
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.
Collapse
Affiliation(s)
- C L Troxell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Abstract
Microtubules play central roles in various cellular processes in eukaryotes. The dynamics and organisation of interphase microtubules and mitotic spindles are dramatically altered during the cell cycle and development. However, the molecular mechanisms underlying this dynamic behaviour remain to be understood. In recent years, a novel family of microtubule-associated proteins (MAPs), the Dis1/TOG family, has emerged as a versatile regulator of microtubule function. These MAPs are highly conserved in eukaryotes from yeasts and plants to humans. The localisation and function of these MAPs are not determined simply by their intrinsic microtubule-binding activity. Instead this family executes its diverse roles by interacting with other regulatory molecules, including microtubule motors and centrosomal proteins. The modular structure of these MAPs may allow them to interact with multiple proteins and thereby be involved in a wide variety of microtubule and spindle functions.
Movies available on-line
Collapse
Affiliation(s)
- H Ohkura
- The Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
278
|
Levesque AA, Compton DA. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 2001; 154:1135-46. [PMID: 11564754 PMCID: PMC2150818 DOI: 10.1083/jcb.200106093] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Revised: 07/27/2001] [Accepted: 08/01/2001] [Indexed: 11/29/2022] Open
Abstract
Chromokinesins have been postulated to provide the polar ejection force needed for chromosome congression during mitosis. We have evaluated that possibility by monitoring chromosome movement in vertebrate-cultured cells using time-lapse differential interference contrast microscopy after microinjection with antibodies specific for the chromokinesin Kid. 17.5% of cells injected with Kid-specific antibodies have one or more chromosomes that remain closely opposed to a spindle pole and fail to enter anaphase. In contrast, 82.5% of injected cells align chromosomes in metaphase, progress to anaphase, and display chromosome velocities not significantly different from control cells. However, injected cells lack chromosome oscillations, and chromosome orientation is atypical because chromosome arms extend toward spindle poles during both congression and metaphase. Furthermore, chromosomes cluster into a mass and fail to oscillate when Kid is perturbed in cells containing monopolar spindles. These data indicate that Kid generates the polar ejection force that pushes chromosome arms away from spindle poles in vertebrate-cultured cells. This force increases the efficiency with which chromosomes make bipolar spindle attachments and regulates kinetochore activities necessary for chromosome oscillation, but is not essential for chromosome congression.
Collapse
Affiliation(s)
- A A Levesque
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
279
|
Chang MS, Huang CJ, Chen ML, Chen ST, Fan CC, Chu JM, Lin WC, Yang YC. Cloning and characterization of hMAP126, a new member of mitotic spindle-associated proteins. Biochem Biophys Res Commun 2001; 287:116-21. [PMID: 11549262 DOI: 10.1006/bbrc.2001.5554] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One novel gene product, hMAP126, was demonstrated to interact with p29 in the yeast two-hybrid assay. The full-length cDNA of hMAP126 has been obtained and encodes a protein of 1120 amino acids. Multiple tissue Northern blot analysis showed that hMAP126 was abundantly expressed in the testis. Polyclonal antiserum against hMAP126 was raised and affinity-purification of anti-hMAP126 antibodies was performed. The subcellular distribution of hMAP126 was localized to the mitotic spindle. Furthermore, hMAP126 was identified to be post-translationally modified and phosphorylated by p34(cdc2) kinase in vitro. Taken together, we have isolated a novel protein, hMAP126, which may be involved in the functional and dynamic regulation of mitotic spindles.
Collapse
Affiliation(s)
- M S Chang
- Department of Medical Research, Mackay Memorial Hospital, 45 Ming-San Road, Tamshui, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Maney T, Wagenbach M, Wordeman L. Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem 2001; 276:34753-8. [PMID: 11466324 DOI: 10.1074/jbc.m106626200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is a microtubule depolymerizer that is consistent with its role in promoting chromosome segregation during mitosis. Here we show that the conserved motor domain of MCAK is necessary but not sufficient for microtubule depolymerization in cells or in vitro. The addition of only 30 amino acids N-terminal to the motor restores depolymerization activity. Furthermore, dimerization studies revealed that the smallest functional MCAK deletion constructs are monomers. These results define a highly conserved domain within MCAK and related (KIN I) kinesins that is critical for depolymerization activity and show that this depolymerization is not dependent on MCAK dimerization.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
281
|
Hussey PJ, Hawkins TJ. Plant microtubule-associated proteins: the HEAT is off in temperature-sensitive mor1. TRENDS IN PLANT SCIENCE 2001; 6:389-392. [PMID: 11544108 DOI: 10.1016/s1360-1385(01)02090-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microtubules perform essential functions in plant cells and govern, with other cytoskeletal elements, cell division, formation of cell walls and morphogenesis. For microtubules to perform their roles in the cell their organization and dynamics must be regulated and microtubule-associated proteins bear the main responsibility for these activities. We are just beginning to identify these plant microtubule-regulating proteins. Biochemical, molecular and genetic procedures have identified plant homologues of known microtubule-associated proteins, such as kinesins, katanin and XMAP215, and novel classes of plant microtubule-associated proteins, such as MAP65 and MAP190. Showing how these proteins coordinate the microtubule cytoskeleton in vivo is now the challenge. The recent identification and characterization of the Arabidopsis thaliana microtubule organization mutant, mor1, begins to address this challenge and here we highlight the significance of this work.
Collapse
|
282
|
Abstract
Tubulin dimer (tT) was purified from turkey erythrocytes. The motor domain of Drosophila non-claret disjunctional protein, NCD(335-700), was expressed in E. coli and purified. At 37 degrees C in the presence of GTP, the rate of polymerization of tT to microtubule (tMt) is accelerated over threefold by the presence of NCD(335-700). At 10 degrees C, the rate of tT polymerization is increased from zero, within experimental error, in the absence of NCD(335-700) to rates near those observed at 37 degrees C when NCD(335-700) is present. The NCD(335-700) concentration dependence of the rate indicated the reactive species was NCD(335-700)(n).tT, with n approximately 2. At 10 degrees C in the absence of GTP, polymerization does not occur, but tT activates NCD(335-700) MgATPase activity 10-fold. For the same conditions, using mians-NCD(335-700), which is modified with 2-(4'-maleimidylanilino) naphthalene-6-sulfonic acid, the apparent K(D) for binding to tT is 2.3 x 10(-5) M in the presence of MgADP. Replacing ADP with AMPPNP or ATP has a negligible effect on K(D). Mians-NCD(335-700) binding to tMt is 10-fold stronger than to tT. The above data indicate NCD(335-700) binds at a functional site on tT. The stoichiometry is consistent with the formation of NCD(335-700)(2).tT which in vitro accelerates self-assembly initiation and/or polymerization by binding a second tT in a position favorable for tubulin-tubulin interaction. The data suggest that in vivo functional NCD binding to microtubule involves one motor domain binding to alpha- and beta-subunits at the interface of two different tubulin dimers in a protofilament.
Collapse
Affiliation(s)
- S Highsmith
- Department of Biochemistry, University of the Pacific, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
283
|
Topper LM, Bastians H, Ruderman JV, Gorbsky GJ. Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 2001; 154:707-17. [PMID: 11514588 PMCID: PMC2196447 DOI: 10.1083/jcb.200104130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.
Collapse
Affiliation(s)
- L M Topper
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
284
|
Brunet S, Vernos I. Chromosome motors on the move. From motion to spindle checkpoint activity. EMBO Rep 2001; 2:669-73. [PMID: 11493594 PMCID: PMC1083995 DOI: 10.1093/embo-reports/kve158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Spindle assembly and chromosome segregation require the concerted activities of a variety of microtubule-dependent motors. This review focuses on our current knowledge of the roles played by the chromosome-associated motors during mitosis. While some appear to function conventionally in moving chromosomes along microtubules others seem to act in different ways. For example, by docking microtubules to chromosome arms, chromatin-associated motors prevent chromosome loss and participate in spindle formation and stability. Kinetochore motors participate in the formation of stable kinetochore fibers or in the control of microtubule dynamics and are involved in spindle checkpoint activity. Chromosome-associated motors thus appear to be key molecules that function in complementary ways to ensure the accuracy of chromosome segregation.
Collapse
Affiliation(s)
- S Brunet
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | | |
Collapse
|
285
|
Nogales E. Structural insight into microtubule function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:397-420. [PMID: 11441808 DOI: 10.1146/annurev.biophys.30.1.397] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley California 94720, USA.
| |
Collapse
|
286
|
Affiliation(s)
- Stéphane Brunet
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1 Heidelberg 69117 Germany
| | - Isabelle Vernos
- Cell Biology and Biophysics Program, EMBL, Meyerhofstrasse 1 Heidelberg 69117 Germany
| |
Collapse
|
287
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 2001; 98:7004-11. [PMID: 11416179 PMCID: PMC34614 DOI: 10.1073/pnas.111145398] [Citation(s) in RCA: 463] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Collapse
Affiliation(s)
- H Miki
- Department of Cell Biology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
289
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
290
|
Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol 2001; 16:89-111. [PMID: 11031231 DOI: 10.1146/annurev.cellbio.16.1.89] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The microtubule cytoskeleton is a highly regulated system. At different times in the cell cycle and positions within the organism, microtubules can be very stable or highly dynamic. Stability and dynamics are regulated by interaction with a large number of proteins that themselves may change at specific points in the cell cycle. Exogenous ligands can disrupt the normal processes by either increasing or decreasing microtubule stability and inhibiting their dynamic behavior. The recent determination of the structure of tubulin, the main component of microtubules, makes it possible now to begin to understand the details of these interactions. We review here the structure of the tubulin dimer, with particular regard to how proteins and drugs may bind and modulate microtubule dynamics.
Collapse
Affiliation(s)
- K H Downing
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
291
|
Kabir N, Schaefer AW, Nakhost A, Sossin WS, Forscher P. Protein kinase C activation promotes microtubule advance in neuronal growth cones by increasing average microtubule growth lifetimes. J Cell Biol 2001; 152:1033-44. [PMID: 11238458 PMCID: PMC2198821 DOI: 10.1083/jcb.152.5.1033] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2000] [Accepted: 01/11/2001] [Indexed: 11/22/2022] Open
Abstract
We describe a novel mechanism for protein kinase C regulation of axonal microtubule invasion of growth cones. Activation of PKC by phorbol esters resulted in a rapid, robust advance of distal microtubules (MTs) into the F-actin rich peripheral domain of growth cones, where they are normally excluded. In contrast, inhibition of PKC activity by bisindolylmaleimide and related compounds had no perceptible effect on growth cone motility, but completely blocked phorbol ester effects. Significantly, MT advance occurred despite continued retrograde F-actin flow-a process that normally inhibits MT advance. Polymer assembly was necessary for PKC-mediated MT advance since it was highly sensitive to a range of antagonists at concentrations that specifically interfere with microtubule dynamics. Biochemical evidence is presented that PKC activation promotes formation of a highly dynamic MT pool. Direct assessment of microtubule dynamics and translocation using the fluorescent speckle microscopy microtubule marking technique indicates PKC activation results in a nearly twofold increase in the typical lifetime of a MT growth episode, accompanied by a 1.7-fold increase and twofold decrease in rescue and catastrophe frequencies, respectively. No significant effects on instantaneous microtubule growth, shortening, or sliding rates (in either anterograde or retrograde directions) were observed. MTs also spent a greater percentage of time undergoing retrograde transport after PKC activation, despite overall MT advance. These results suggest that regulation of MT assembly by PKC may be an important factor in determining neurite outgrowth and regrowth rates and may play a role in other cellular processes dependent on directed MT advance.
Collapse
Affiliation(s)
- Nurul Kabir
- Yale University, New Haven, Connecticut 06520-8103
| | | | - Arash Nakhost
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A-2B4
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, Quebec, Canada H3A-2B4
| | | |
Collapse
|
292
|
Iancu C, Mistry SJ, Arkin S, Wallenstein S, Atweh GF. Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 2001; 114:909-16. [PMID: 11181174 DOI: 10.1242/jcs.114.5.909] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stathmin is a major cytosolic phosphoprotein that plays an important role in the regulation of microtubule dynamics during cell cycle progression. It has recently been proposed that the major function of stathmin is to promote depolymerization of the microtubules that make up the mitotic spindle. In this report, we tested the prediction that a deficiency in stathmin expression would result in constitutive stabilization of microtubules and lead to abnormalities in the organization of the mitotic spindle. Our studies demonstrate that antisense inhibition of stathmin expression in K562 erythroleukemic cells results in increased ratio of polymerized to depolymerized tubulin. These changes are associated with phenotypic abnormalities of the mitotic spindle and difficulty in completing mitosis. These studies also showed that inhibition of stathmin expression results in increased susceptibility of K562 leukemic cells to the pharmacological agents, like taxol, which are known to stabilize the mitotic spindle. In contrast, stathmin inhibition results in decreased sensitivity to vinblastine, an agent that destabilizes the mitotic spindle. Thus, our experimental findings are supportive of the model that stathmin is a microtubule-destabilizing factor that plays an important role in the regulation of the mitotic spindle. We also suggest a potential therapeutic approach for cancer based on the combination of stathmin inhibition with pharmacologic agents that stabilize the mitotic spindle.
Collapse
Affiliation(s)
- C Iancu
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
293
|
Abstract
Chromosome segregation during mitosis and meiosis is driven by a complex superstructure called the spindle. Microtubules are the primary structural component of spindles, and spindle assembly and function are intimately linked to the intrinsic dynamics of microtubules. This review summarizes spindle structure and highlights recent findings regarding the mechanisms and molecules involved in organizing microtubules into spindles. In addition, mechanisms for chromosome movement and segregation are discussed.
Collapse
Affiliation(s)
- D A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
294
|
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of /¿-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
295
|
Abstract
Cell biologists have long speculated that a minus end-directed motor localized at kinetochores contributes to the poleward movement of chromosomes during mitosis. Two recent studies provide direct evidence that cytoplasmic dynein can perform this function.
Collapse
Affiliation(s)
- J D Banks
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.
| | | |
Collapse
|
296
|
Gordon MB, Howard L, Compton DA. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J Cell Biol 2001; 152:425-34. [PMID: 11157972 PMCID: PMC2196006 DOI: 10.1083/jcb.152.3.425] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 12/08/2000] [Indexed: 11/22/2022] Open
Abstract
Anchorage of microtubule minus ends at spindle poles has been proposed to bear the load of poleward forces exerted by kinetochore-associated motors so that chromosomes move toward the poles rather than the poles toward the chromosomes. To test this hypothesis, we monitored chromosome movement during mitosis after perturbation of nuclear mitotic apparatus protein (NuMA) and the human homologue of the KIN C motor family (HSET), two noncentrosomal proteins involved in spindle pole organization in animal cells. Perturbation of NuMA alone disrupts spindle pole organization and delays anaphase onset, but does not alter the velocity of oscillatory chromosome movement in prometaphase. Perturbation of HSET alone increases the duration of prometaphase, but does not alter the velocity of chromosome movement in prometaphase or anaphase. In contrast, simultaneous perturbation of both HSET and NuMA severely suppresses directed chromosome movement in prometaphase. Chromosomes coalesce near the center of these cells on bi-oriented spindles that lack organized poles. Immunofluorescence and electron microscopy verify microtubule attachment to sister kinetochores, but this attachment fails to generate proper tension across sister kinetochores. These results demonstrate that anchorage of microtubule minus ends at spindle poles mediated by overlapping mechanisms involving both NuMA and HSET is essential for chromosome movement during mitosis.
Collapse
Affiliation(s)
- Michael B. Gordon
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Louisa Howard
- Rippel Electron Microscope Facility, Dartmouth College, Hanover, New Hampshire 03755
| | - Duane A. Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| |
Collapse
|
297
|
Binet MN, Humbert C, Lecourieux D, Vantard M, Pugin A. Disruption of microtubular cytoskeleton induced by cryptogein, an elicitor of hypersensitive response in tobacco cells. PLANT PHYSIOLOGY 2001; 125:564-72. [PMID: 11161014 PMCID: PMC64858 DOI: 10.1104/pp.125.2.564] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Revised: 08/24/2000] [Accepted: 09/20/2000] [Indexed: 05/18/2023]
Abstract
The dynamics of microtubular cytoskeleton were studied in tobacco (Nicotiana tabacum cv Xanthi) cells in response to two different plant defense elicitors: cryptogein, a protein secreted by Phytophthora cryptogea and oligogalacturonides (OGs), derived from the plant cell wall. In tobacco plants cryptogein triggers a hypersensitive-like response and induces systemic resistance against a broad spectrum of pathogens, whereas OGs induce defense responses, but fail to trigger cell death. The comparison of the microtubule (MT) dynamics in response to cryptogein and OGs in tobacco cells indicates that MTs appear unaffected in OG-treated cells, whereas cryptogein treatment caused a rapid and severe disruption of microtubular network. When hyperstabilized by the MT depolymerization inhibitor, taxol, the MT network was still disrupted by cryptogein treatment. On the other hand, the MT-depolymerizing agent oryzalin and cryptogein had different and complementary effects. In addition to MT destabilization, cryptogein induced the death of tobacco cells, whereas OG-treated cells did not die. We demonstrated that MT destabilization and cell death induced by cryptogein depend on calcium influx and that MT destabilization occurs independently of active oxygen species production. The molecular basis of cryptogein-induced MT disruption and its potential significance with respect to cell death are discussed.
Collapse
Affiliation(s)
- M N Binet
- Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Université de Bourgogne, Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, 17 Rue Sully, BV 86510, 21065 Dijon cedex, France.
| | | | | | | | | |
Collapse
|
298
|
Popov AV, Pozniakovsky A, Arnal I, Antony C, Ashford AJ, Kinoshita K, Tournebize R, Hyman AA, Karsenti E. XMAP215 regulates microtubule dynamics through two distinct domains. EMBO J 2001; 20:397-410. [PMID: 11157747 PMCID: PMC133481 DOI: 10.1093/emboj/20.3.397] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
XMAP215 belongs to a family of proteins involved in the regulation of microtubule dynamics. In this study we analyze the function of different parts of XMAP215 in vivo and in Xenopus egg extracts. XMAP215 has been divided into three fragments, FrN, FrM and FrC (for N-terminal, middle and C-terminal, respectively). FrN co-localizes with microtubules in egg extracts but not in cells, FrC co- localizes with microtubules and centrosomes both in egg extracts and in cells, while FrM does not co- localize with either centrosomes or microtubules. In Xenopus egg extracts, FrN stimulates microtubule growth at plus-ends by inhibiting catastrophes, while FrM has no effect, and FrC suppresses microtubule growth by promoting catastrophes. Our results suggest that XMAP215 is targeted to centrosomes and microtubules mainly through its C-terminal domain, while the evolutionarily conserved N-terminal domain contains its microtubule-stabilizing activity.
Collapse
Affiliation(s)
- Andrei V. Popov
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Andrei Pozniakovsky
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Isabelle Arnal
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Claude Antony
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Anthony J. Ashford
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Kazuhisa Kinoshita
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Regis Tournebize
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Anthony A. Hyman
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| | - Eric Karsenti
- Cell Biology Program, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Max Planck Institute for Cell Biology and Genetics, Dresden, Germany and Institut Curie, 75248 Paris, Cedex 05, France Present address: Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France Corresponding author e-mail:
| |
Collapse
|
299
|
Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 2001; 104:95-106. [PMID: 11163243 DOI: 10.1016/s0092-8674(01)00194-5] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The GTPase Ran has recently been shown to stimulate microtubule polymerization in mitotic extracts, but its mode of action is not understood. Here we show that the mitotic role of Ran is largely mediated by the nuclear transport factor importin beta. Importin beta inhibits spindle formation in vitro and in vivo and sequesters an aster promoting activity (APA) that consists of multiple, independent factors. One component of APA is the microtubule-associated protein NuMA. NuMA and other APA components are discharged from importin beta by RanGTP and induce spindle-like structures in the absence of centrosomes, chromatin, or Ran. We propose that RanGTP functions in mitosis as in interphase by locally releasing cargoes from transport factors. In mitosis, this promotes spindle assembly by organizing microtubules in the vicinity of chromosomes.
Collapse
Affiliation(s)
- M V Nachury
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
300
|
Abstract
In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.
Collapse
Affiliation(s)
- T Wittmann
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|