251
|
Civera C, Simon B, Stier G, Sattler M, Macias MJ. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily. Proteins 2006; 58:354-66. [PMID: 15573383 DOI: 10.1002/prot.20320] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.
Collapse
Affiliation(s)
- Concepcion Civera
- Dpto Quimica Fisica II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
252
|
Walters JW, Dilks SA, DiNardo S. Planar polarization of the denticle field in the Drosophila embryo: roles for Myosin II (zipper) and fringe. Dev Biol 2006; 297:323-39. [PMID: 16890930 PMCID: PMC8711031 DOI: 10.1016/j.ydbio.2006.04.454] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Epithelial planar cell polarity (PCP) allows epithelial cells to coordinate their development to that of the tissue in which they reside. The mechanisms that impart PCP as well as effectors that execute the polarizing instructions are being sought in many tissues. We report that the epidermal epithelium of Drosophila embryos exhibits PCP. Cells of the prospective denticle field, but not the adjacent smooth field, align precisely. This requires Myosin II (zipper) function, and we find that Myosin II is enriched in a bipolar manner, across the parasegment, on both smooth and denticle field cells during denticle field alignment. This implies that actomyosin contractility, in combination with denticle-field-specific effectors, helps execute the cell rearrangements involved. In addition to this parasegment-wide polarity, prospective denticle field cells express an asymmetry, uniquely recognizing one cell edge over others as these cells uniquely position their actin-based protrusions (ABPs; which comprise each denticle) at their posterior edge. Cells of the prospective smooth field appear to be lacking proper effectors to elicit this unipolar response. Lastly, we identify fringe function as a necessary effector for high fidelity placement of ABPs and show that Myosin II (zipper) activity is necessary for ABP placement and shaping as well.
Collapse
|
253
|
Blair A, Tomlinson A, Pham H, Gunsalus KC, Goldberg ML, Laski FA. Twinstar, the Drosophila homolog of cofilin/ADF, is required for planar cell polarity patterning. Development 2006; 133:1789-97. [PMID: 16571634 DOI: 10.1242/dev.02320] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planar cell polarity (PCP) is a level of tissue organization in which cells adopt a uniform orientation within the plane of an epithelium. The process of tissue polarization is likely to be initiated by an extracellular gradient. Thus, determining how cells decode and convert this graded information into subcellular asymmetries is key to determining how cells direct the reorganization of the cytoskeleton to produce uniformly oriented structures. Twinstar (Tsr), the Drosophila homolog of Cofilin/ADF (actin depolymerization factor), is a component of the cytoskeleton that regulates actin dynamics. We show here that various alleles of tsr produce PCP defects in the wing, eye and several other epithelia. In wings mutant for tsr, Frizzled (Fz) and Flamingo (Fmi) proteins do not properly localize to the proximodistal boundaries of cells. The correct asymmetric localization of these proteins instructs the actin cytoskeleton to produce one actin-rich wing hair at the distal-most vertex of each cell. These results argue that actin remodeling is not only required in the manufacture of wing hairs, but also in the PCP read-out that directs where a wing hair will be secreted.
Collapse
Affiliation(s)
- Adrienne Blair
- Department of Molecular Cell and Developmental Biology, and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
254
|
Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133:1767-78. [PMID: 16571627 PMCID: PMC4158842 DOI: 10.1242/dev.02347] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Pediatrics and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0627, La Jolla, CA 92093-0627, USA
| | - Natasha S. Hamblet
- Department of Pediatrics and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0627, La Jolla, CA 92093-0627, USA
| | - Sharayne Mark
- Department of Cell Biology and Otolaryngology, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - Mary E. Dickinson
- Divison of Biology and Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan C. Brinkman
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, MC 0627, La Jolla, CA 92093-0627, USA
| | - Neil Segil
- Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, CA 90057
| | - Scott E. Fraser
- Divison of Biology and Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ping Chen
- Department of Cell Biology and Otolaryngology, School of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | - John B. Wallingford
- Molecular Cell and Developmental Biology & Institute for Cellular and Molecular Biology, 1 University Station C0930, University of Texas, Austin, TX 78712, USA
| | - Anthony Wynshaw-Boris
- Department of Pediatrics and Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0627, La Jolla, CA 92093-0627, USA
- Author for correspondence ()
| |
Collapse
|
255
|
Kimura H, Usui T, Tsubouchi A, Uemura T. Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J Cell Sci 2006; 119:1118-29. [PMID: 16507587 DOI: 10.1242/jcs.02832] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven-pass transmembrane cadherins (7-TM cadherins) play pleiotropic roles in epithelial planar cell polarity, shaping dendritic arbors and in axonal outgrowth. In contrast to their role in planar polarity, how 7-TM cadherins control dendritic and axonal outgrowth at the molecular level is largely unknown. Therefore, we performed extensive structure-function analysis of the Drosophila 7-TM cadherin Flamingo (Fmi) and investigated the activities of individual mutant forms mostly in dendritogenesis of dendritic arborization (da) neurons. One of the fmi-mutant phenotypes was overgrowth of branches in the early stage of dendrite development. In da neurons but not in their adjacent non-neuronal cells, expression of a truncated form (ΔN) that lacks the entire cadherin repeat sequence, rescues flies - at least partially - from this phenotype. Another phenotype is observed at a later stage, when dendritic terminals outgrowing from the contralateral sides meet and then avoid each other. In the fmi mutant, by contrast, those branches overlapped. Overexpression of the ΔN form on the wild-type background phenocopied the overlap phenotype in the mutant, and analysis in heterologous systems supported the possibility that this effect might be because the Fmi-Fmi homophilic interaction is inhibited by ΔN. We propose that a dual molecular function of Fmi play pivotal roles in dendrite morphogenesis. In the initial growing phase, Fmi might function as a receptor for a sofar-unidentified ligand and this hypothetical heterophilic interaction would be responsible for limiting branch elongation. At a later stage, homophilic Fmi-binding at dendro-dendritic interfaces would elicit avoidance between dendritic terminals.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Biophysics, Graduate School of Science, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
256
|
Abstract
Wnts are secreted proteins important to many biological processes. frizzled genes encode a family of Wnt receptors that signal to the intracellular compartment through the cytosolic protein Disheveled. Limited information is available concerning the regulation of Frizzleds at a biochemical level. We report here that Xenopus Frizzled-3 is phosphorylated in a Disheveled-dependent manner that appears to require the DEP domain of Disheveled. Phosphorylation of serine 576 causes a decrease in electrophoretic mobility and accounts for a significant fraction of receptor phosphorylation, although additional residues in the C-terminal tail are also phosphorylated. In addition, mutations that interfere with Frizzled-3 function also interfere with phosphorylation, but these inactive mutants can be phosphorylated when an active form of Frizzled-3 is co-expressed. Mutation of C-terminal serines including serine 576 significantly enhances Frizzled-3-mediated induction of neural crest markers, suggesting that C-terminal phosphorylation plays a role in down-regulating Frizzled signaling.
Collapse
Affiliation(s)
- Wang A Yanfeng
- Cell and Molecular Biology Graduate Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
257
|
Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T. Polarized Transport of Frizzled along the Planar Microtubule Arrays in Drosophila Wing Epithelium. Dev Cell 2006; 10:209-22. [PMID: 16459300 DOI: 10.1016/j.devcel.2005.11.016] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/05/2005] [Accepted: 11/21/2005] [Indexed: 02/03/2023]
Abstract
Cells in a variety of developmental contexts sense extracellular cues that are given locally on their surfaces, and subsequently amplify the initial signal to achieve cell polarization. Drosophila wing cells acquire planar polarity along the proximal-distal (P-D) axis, in which the amplification of the presumptive cue involves assembly of a multiprotein complex that spans distal and proximal boundaries of adjacent cells. Here we pursue the mechanisms that place one of the components, Frizzled (Fz), at the distal side. Intracellular particles of GFP-tagged Fz moved preferentially toward distal boundaries before Fz::GFP and other components were tightly localized at the P/D cortex. Arrays of microtubules (MTs) were approximately oriented along the P-D axis and these MTs contributed to the formation of the cortical complex. Furthermore, there appeared to be a bias in the P-D MTs, with slightly more plus ends oriented distally. The hypothesis of polarized vesicular trafficking of Fz is discussed.
Collapse
Affiliation(s)
- Yuko Shimada
- Laboratory of Cell Recognition and Pattern Formation, Graduate School of Biostudies, South Campus Research Building (Building G), Room 118, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
258
|
Kobayashi H, Michiue T, Yukita A, Danno H, Sakurai K, Fukui A, Kikuchi A, Asashima M. Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/JNK pathway in Xenopus. Mech Dev 2006; 122:1138-53. [PMID: 16026968 DOI: 10.1016/j.mod.2005.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/14/2005] [Accepted: 05/11/2005] [Indexed: 11/21/2022]
Abstract
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, 7-8-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
259
|
Classen AK, Anderson KI, Marois E, Eaton S. Hexagonal packing of Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell 2006; 9:805-17. [PMID: 16326392 DOI: 10.1016/j.devcel.2005.10.016] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 08/19/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms that order cellular packing geometry are critical for the functioning of many tissues, but they are poorly understood. Here, we investigate this problem in the developing wing of Drosophila. The surface of the wing is decorated by hexagonally packed hairs that are uniformly oriented by the planar cell polarity pathway. They are constructed by a hexagonal array of wing epithelial cells. Wing epithelial cells are irregularly arranged throughout most of development, but they become hexagonally packed shortly before hair formation. During the process, individual cell boundaries grow and shrink, resulting in local neighbor exchanges, and Cadherin is actively endocytosed and recycled through Rab11 endosomes. Hexagonal packing depends on the activity of the planar cell polarity proteins. We propose that these proteins polarize trafficking of Cadherin-containing exocyst vesicles during junction remodeling. This may be a common mechanism for the action of planar cell polarity proteins in diverse systems.
Collapse
Affiliation(s)
- Anne-Kathrin Classen
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | | | | | | |
Collapse
|
260
|
Le Garrec JF, Lopez P, Kerszberg M. Establishment and maintenance of planar epithelial cell polarity by asymmetric cadherin bridges: A computer model. Dev Dyn 2006; 235:235-46. [PMID: 16258926 DOI: 10.1002/dvdy.20617] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Animal scales, hairs, feathers, and cilia are oriented due to cell polarization in the epithelial plane. Genes involved have been identified, but the signal and mechanism remain unknown. In Drosophila wing polarization, the action of a gradient of Frizzled activity is widely assumed; and cell-cell signalling by cadherins such as Flamingo surely plays a major role. We present a computer model where reading the Frizzled gradient occurs through biased, feedback-reinforced formation of Flamingo-based asymmetric intercellular complexes. Through these complexes neighboring cells are able to compare their Frizzled activity levels. Our computations are highly noise-resistant and reproduce both wild-type and all known mutant wing phenotypes; other phenotypes are predicted. The model puts stringent limits on a Frizzled activation signal, which should exhibit unusual properties: (1) the extracellular Frizzled signalling gradient should be counterdirectional--decreasing from proximal (P) to distal (D), whereas during polarization, the intracellular Frizzled gradient builds up from P to D; (2) the external gradient should be relatively weak and short-lived, lest it prevent inversion of intracellular Frizzled. These features, largely independent of model details, may provide useful clues for future experimental efforts.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Modélisation Dynamique des Systèmes Biologiques Intégrés, CNRS UMR 7138 Systématique, Adaptation, Evolution, Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
261
|
Hawkins NC, Ellis GC, Bowerman B, Garriga G. MOM-5 frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions. Dev Biol 2005; 284:246-59. [PMID: 15990090 DOI: 10.1016/j.ydbio.2005.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/29/2005] [Accepted: 05/18/2005] [Indexed: 11/23/2022]
Abstract
Asymmetric cell divisions produce all 302 neurons of the C. elegans hermaphrodite. Here, we describe a role for a C. elegans Dishevelled homolog, DSH-2, in an asymmetric neuroblast division. In dsh-2 mutants, neurons normally descended from the anterior neuroblast daughter of the ABpl/rpppa blast cell were frequently duplicated, while non-neuronal cells produced by the posterior daughter cell were often missing. These observations indicate that in the absence of dsh-2 function, the posterior daughter cell was transformed into a second anterior-like cell. Loss of mom-5, a C. elegans frizzled homolog, produced a similar phenotype. We also show that the DSH-2 protein localized to the cell cortex in most cells of the embryo. In the absence of MOM-5/Fz, DSH-2 was localized to the cytoplasm, suggesting that MOM-5 regulates asymmetric cell division by controlling the localization of DSH-2. Although all neurons in C. elegans are produced by an invariant pattern of cell divisions, our results indicate that cell signaling may contribute to asymmetric neuroblast division during embryogenesis.
Collapse
Affiliation(s)
- Nancy C Hawkins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.
| | | | | | | |
Collapse
|
262
|
Wallingford JB, Habas R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 2005; 132:4421-36. [PMID: 16192308 DOI: 10.1242/dev.02068] [Citation(s) in RCA: 375] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Dishevelled protein regulates many developmental processes in animals ranging from Hydra to humans. Here, we discuss the various known signaling activities of this enigmatic protein and focus on the biological processes that Dishevelled controls. Through its many signaling activities, Dishevelled plays important roles in the embryo and the adult, ranging from cell-fate specification and cell polarity to social behavior. Dishevelled also has important roles in the governance of polarized cell divisions, in the directed migration of individual cells, and in cardiac development and neuronal structure and function.
Collapse
Affiliation(s)
- John B Wallingford
- Section of Molecular Cell and Developmental Biology, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
263
|
Ren N, He B, Stone D, Kirakodu S, Adler PN. The shavenoid gene of Drosophila encodes a novel actin cytoskeleton interacting protein that promotes wing hair morphogenesis. Genetics 2005; 172:1643-53. [PMID: 16322503 PMCID: PMC1456309 DOI: 10.1534/genetics.105.051433] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular- and tissue-level morphogenesis. The developing hairs are filled with F-actin and microtubules and the activity of these cytoskeletons is important for hair morphogenesis. On the basis of mutant phenotypes several genes have been identified as playing a key role in stimulating hair formation. Mutations in shavenoid (sha) (also known as kojak) result in a delay in hair morphogenesis and in some cells forming no hair and others several small hairs. We report here the molecular identification and characterization of the sha gene and protein. sha encodes a large novel protein that has homologs in other insects, but not in more distantly related organisms. The Sha protein accumulated in growing hairs and bristles in a pattern that suggested that it could directly interact with the actin cytoskeleton. Consistent with this mechanism of action we found that Sha and actin co-immunoprecipitated from wing disc cells. The morphogenesis of the hair involves temporal control by sha and spatial control by the genes of the frizzled planar polarity pathway. We found a strong genetic interaction between mutations in these genes consistent with their having a close but parallel functional relationship.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Cancer Center and Morphogenesis and Regenerative Medicine Institute, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | | | |
Collapse
|
264
|
Abstract
Polarization is a feature common to many cell types. Epithelial cells, for example, exhibit a characteristic apical-basolateral polarity that is critical for their function. In addition to this ubiquitous form of polarity, whole fields of cells are often polarized in a plane perpendicular to the apical-basal axis. This form of polarity, referred to as planar cell polarity (PCP), exists in all adult Drosophila cuticular tissues, as well as in numerous vertebrate tissues, including the mammalian skin and inner ear epithelia. Recent advances in the study of PCP establishment are beginning to unravel the molecular mechanisms underlying this cellular process. This review discusses new developments in the molecular understanding of PCP in Drosophila and vertebrates and integrates the current data in a model to illustrate how interactions between PCP factors might function to generate planar polarity.
Collapse
Affiliation(s)
- Thomas J Klein
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, NY 10029, USA.
| | | |
Collapse
|
265
|
Dabdoub A, Kelley MW. Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. ACTA ACUST UNITED AC 2005; 64:446-57. [PMID: 16041762 DOI: 10.1002/neu.20171] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The planar cell polarity (PCP) pathway, a noncanonical Wnt signaling pathway, is crucial for embryonic development in all animals as it is responsible for the regulation of coordinated orientation of structures within the plane of the various epithelia. In the mammalian cochlea, one of the best examples of planar polarity in vertebrates, stereociliary bundles located on mechanosensory hair cells within the sensory epithelium are all uniformly polarized. Generation of this polarity is important for hair cell mechanotransduction and auditory perception as stereociliary bundles are only sensitive to vibrations in their single plane of polarization. We describe the two step developmental process that results in the generation of planar polarity in the mammalian inner ear. Furthermore, we review evidence for the role of Wnt signaling, and the possible generation of a Wnt gradient, in planar polarity.
Collapse
Affiliation(s)
- Alain Dabdoub
- Section on Developmental Neuroscience, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
266
|
Lim J, Norga KK, Chen Z, Choi KW. Control of planar cell polarity by interaction of DWnt4 and four-jointed. Genesis 2005; 42:150-61. [PMID: 15986451 DOI: 10.1002/gene.20142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Drosophila eye and the wing display specific planar cell polarity. Although Frizzled (Fz) signaling has been implicated in the establishment of ommatidial and wing hair polarity, evidence for the Wnt gene function has been limited. Here we examined the function of a Drosophila homolog of Wnt4 (DWnt4) in the control of planar polarity. We show that DWnt4 mRNA and protein are preferentially expressed in the ventral region of eye disc. DWnt4 mutant eyes show polarity reversals mostly in the ventral domain, consistent with the ventral expression of DWnt4. Ectopic expression of DWnt4 in the dorsoventral (DV) polar margins is insufficient to induce ommatidial polarity but becomes inductive when coexpressed with Four-jointed (Fj). Similarly, DWnt4 and Fj result in synergistic induction of hair polarity toward the source of expression in the wing. Consistent with genetic interaction, we provide evidence for direct interaction of DWnt4 and Fj transmembrane protein. The extracellular domain of Fj is required for direct binding to DWnt4 and for the induction of hair polarity. In contrast to the synergy between DWnt4 and Fj, DWnt4 antagonizes the polarizing effect of Fz. Our results suggest that DWnt4 is involved in ommatidial polarity signaling in the ventral region of the eye and its function is mediated by interacting with Fj.
Collapse
Affiliation(s)
- Janghoo Lim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
267
|
Saburi S, McNeill H. Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Curr Opin Cell Biol 2005; 17:482-8. [PMID: 16099635 DOI: 10.1016/j.ceb.2005.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 08/03/2005] [Indexed: 01/09/2023]
Abstract
Planar cell polarity (PCP) is the coordinated organization of cells within the plane of the epithelium, first described in Drosophila. A Frizzled signalling pathway dedicated to PCP (the non-canonical Frizzled pathway) acts through Dishevelled and small G proteins, as does the classical Wnt pathway, but then diverges downstream of Dishevelled. Recent studies have demonstrated a crucial role for several atypical cadherin molecules (Fat, Dachsous and Flamingo) in controlling PCP signalling. Recent work has also indicated that the first sign of PCP during development is the polarized localization of PCP proteins (Frizzled, Flamingo, Dishevelled, etc). Exciting new data reveal that this PCP pathway is conserved to man.
Collapse
Affiliation(s)
- Sakura Saburi
- Samuel Lunenfeld Research Institute, Toronto, Ontario M5G 1X, Canada
| | | |
Collapse
|
268
|
Abstract
Epithelial cells are patterned not only along their apical-basolateral axis, but also along the plane of the epithelial sheet; the latter event is regulated by the planar cell polarity (PCP) pathway. PCP regulates diverse outputs, such as the distal placement of a hair in all cells of the Drosophila wing, and convergent extension movements during gastrulation in the vertebrate embryo. This primer describes the molecular mechanisms that initiate and establish PCP, as well as biochemical pathways that translate PCP signaling to cell type-specific patterning events. The primer concludes with a discussion of current topics in the field with two PCP researchers, Matt Kelley, Ph.D., and Helen McNeill, Ph.D.
Collapse
Affiliation(s)
- Julie C Kiefer
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
269
|
Abstract
The formation of properly differentiated organs often requires the planar coordination of cell polarization within the tissues. Such planar cell polarization (PCP) events are best studied in Drosophila, where many of the key players, known as PCP genes, have already been identified. Genetic analysis of the PCP genes suggests that the establishment of polarity consists of three major steps. The first step involves the generation of a global polarity cue; this in turn promotes the second step, the redistribution of the core PCP proteins, leading to the formation of asymmetrically localized signaling centers. During the third step, these complexes control tissue-specific cellular responses through the activation of cell type specific effector genes. Here we discuss some of the most recent advances that have provided valuable new insight into each of the three major steps of planar cell polarization.
Collapse
Affiliation(s)
- József Mihály
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | |
Collapse
|
270
|
Goto T, Davidson L, Asashima M, Keller R. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr Biol 2005; 15:787-93. [PMID: 15854914 DOI: 10.1016/j.cub.2005.03.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 11/24/2022]
Abstract
The noncanonical wnt/planar cell polarity (PCP) pathway [1] regulates the mediolaterally (planarly) polarized cell protrusive activity and intercalation that drives the convergent extension movements of vertebrate gastrulation [2], yet the underlying mechanism is unknown. We report that perturbing expression of Xenopus PCP genes, Strabismus (Xstbm), Frizzled (Xfz7), and Prickle (Xpk), disrupts radially polarized fibronectin fibril assembly on mesodermal tissue surfaces, mediolaterally polarized motility, and intercalation. Polarized motility is restored in Xpk-perturbed explants but not in Xstbm- or Xfz7-perturbed explants cultured on fibronectin surfaces. The PCP complex, including Xpk, first regulates polarized surface assembly of the fibronectin matrix, which is necessary for mediolaterally polarized motility, and then, without Xpk, has an additional and necessary function in polarizing motility. These results show that the PCP complex regulates several cell polarities (radial, planar) and several processes (matrix deposition, motility), by indirect and direct mechanisms, and acts in several modes, either with all or a subset of its components, during vertebrate morphogenesis.
Collapse
Affiliation(s)
- Toshiyasu Goto
- International Cooperative Research Project, Japan Science and Technology Corporation
| | | | | | | |
Collapse
|
271
|
Povelones M, Howes R, Fish M, Nusse R. Genetic evidence that Drosophila frizzled controls planar cell polarity and Armadillo signaling by a common mechanism. Genetics 2005; 171:1643-54. [PMID: 16085697 PMCID: PMC1456092 DOI: 10.1534/genetics.105.045245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The frizzled (fz) gene in Drosophila controls two distinct signaling pathways: it directs the planar cell polarization (PCP) of epithelia and it regulates cell fate decisions through Armadillo (Arm) by acting as a receptor for the Wnt protein Wingless (Wg). With the exception of dishevelled (dsh), the genes functioning in these two pathways are distinct. We have taken a genetic approach, based on a series of new and existing fz alleles, for identifying individual amino acids required for PCP or Arm signaling. For each allele, we have attempted to quantify the strength of signaling by phenotypic measurements. For PCP signaling, the defect was measured by counting the number of cells secreting multiple hairs in the wing. We then examined each allele for its ability to participate in Arm signaling by the rescue of fz mutant embryos with maternally provided fz function. For both PCP and Arm signaling we observed a broad range of phenotypes, but for every allele there is a strong correlation between its phenotypic strength in each pathway. Therefore, even though the PCP and Arm signaling pathways are genetically distinct, the set of signaling-defective fz alleles affected both pathways to a similar extent. This suggests that fz controls these two different signaling activities by a common mechanism. In addition, this screen yielded a set of missense mutations that identify amino acids specifically required for fz signaling function.
Collapse
Affiliation(s)
- Michael Povelones
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
272
|
Ren N, Zhu C, Lee H, Adler PN. Gene expression during Drosophila wing morphogenesis and differentiation. Genetics 2005; 171:625-38. [PMID: 15998724 PMCID: PMC1456776 DOI: 10.1534/genetics.105.043687] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Cancer Center and Morphogenesis and Regenerative Medicine Institute, University of Virginia, Charlottesville, 22903, USA
| | | | | | | |
Collapse
|
273
|
Djiane A, Yogev S, Mlodzik M. The apical determinants aPKC and dPatj regulate Frizzled-dependent planar cell polarity in the Drosophila eye. Cell 2005; 121:621-631. [PMID: 15907474 DOI: 10.1016/j.cell.2005.03.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/26/2005] [Accepted: 03/11/2005] [Indexed: 12/18/2022]
Abstract
Planar cell polarity (PCP) is a common feature of many vertebrate and invertebrate epithelia and is perpendicular to their apical/basal (A/B) polarity axis. While apical localization of PCP determinants such as Frizzled (Fz1) is critical for their function, the link between A/B polarity and PCP is poorly understood. Here, we describe a direct molecular link between A/B determinants and Fz1-mediated PCP establishment in the Drosophila eye. We demonstrate that dPatj binds the cytoplasmic tail of Fz1 and propose that it recruits aPKC, which in turn phosphorylates and inhibits Fz1. Accordingly, components of the aPKC complex and dPatj produce PCP defects in the eye. We also show that during PCP signaling, aPKC and dPatj are downregulated, while Bazooka is upregulated, suggesting an antagonistic effect of Bazooka on dPatj/aPKC. We propose a model whereby the dPatj/aPKC complex regulates PCP by inhibiting Fz1 in cells where it should not be active.
Collapse
Affiliation(s)
- Alexandre Djiane
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Shaul Yogev
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Marek Mlodzik
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, New York 10029.
| |
Collapse
|
274
|
Jenny A, Reynolds-Kenneally J, Das G, Burnett M, Mlodzik M. Diego and Prickle regulate Frizzled planar cell polarity signalling by competing for Dishevelled binding. Nat Cell Biol 2005; 7:691-7. [PMID: 15937478 DOI: 10.1038/ncb1271] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 05/05/2005] [Indexed: 11/08/2022]
Abstract
Epithelial planar cell polarity (PCP) is evident in the cellular organization of many tissues in vertebrates and invertebrates. In mammals, PCP signalling governs convergent extension during gastrulation and the organization of a wide variety of structures, including the orientation of body hair and sensory hair cells of the inner ear. In Drosophila melanogaster, PCP is manifest in adult tissues, including ommatidial arrangement in the compound eye and hair orientation in wing cells. PCP establishment requires the conserved Frizzled/Dishevelled PCP pathway. Mutations in PCP-pathway-associated genes cause aberrant orientation of body hair or inner-ear sensory cells in mice, or misorientation of ommatidia and wing hair in D. melanogaster. Here we provide mechanistic insight into Frizzled/Dishevelled signalling regulation. We show that the ankyrin-repeat protein Diego binds directly to Dishevelled and promotes Frizzled signalling. Dishevelled can also be bound by the Frizzled PCP antagonist Prickle. Strikingly, Diego and Prickle compete with one another for Dishevelled binding, thereby modulating Frizzled/Dishevelled activity and ensuring tight control over Frizzled PCP signalling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Binding Sites/genetics
- Binding, Competitive
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Carrier Proteins/physiology
- Cell Polarity/genetics
- Cell Polarity/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dishevelled Proteins
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/genetics
- Drosophila melanogaster/physiology
- Eye/cytology
- Eye/embryology
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Frizzled Receptors
- Gene Expression Regulation, Developmental
- Immunoprecipitation
- LIM Domain Proteins
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Models, Biological
- Mutation
- Phenotype
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Phosphorylation
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/embryology
- Photoreceptor Cells, Invertebrate/metabolism
- Protein Binding
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, G-Protein-Coupled
- Signal Transduction/genetics
- Signal Transduction/physiology
- Two-Hybrid System Techniques
- Wings, Animal/cytology
- Wings, Animal/embryology
- Wings, Animal/metabolism
Collapse
Affiliation(s)
- Andreas Jenny
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cellular and Developmental Biology, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
275
|
Abstract
Orchestrated cell movements marshalled by proper cell polarity in the developing body axes are fundamental to the elongation of the notochord during chordate embryogenesis. A recent study shows that, in ascidians, the planar cell polarity gene prickle regulates sequential establishment of cell polarity during two phases of notochord morphogenesis.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
276
|
Jiang D, Munro EM, Smith WC. Ascidian prickle regulates both mediolateral and anterior-posterior cell polarity of notochord cells. Curr Biol 2005; 15:79-85. [PMID: 15700379 DOI: 10.1016/j.cub.2004.12.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ascidian notochord follows a morphogenetic program that includes convergent extension (C/E), followed by anterior-posterior (A/P) elongation [1-4]. As described here, developing notochord cells show polarity first in the mediolateral (M/L) axis during C/E, and subsequently in the A/P axis during elongation. Previous embryological studies [3] have shown that contact with neighboring tissues is essential for directing M/L polarity of ascidian notochord cells. During C/E, the planar cell polarity (PCP) gene products prickle (pk) and dishevelled (dsh) show M/L polarization. pk and dsh colocalize at the notochord cell membranes, with the exception of those in contact with neighboring muscle cells. In the mutant aimless (aim), which carries a deletion in pk, notochord morphogenesis is disrupted, and cell polarization is lost. After C/E, there is a dynamic relocalization of PCP proteins in the notochord cells with dsh localized to the lateral edges of the membrane, and pk and strabismus (stbm) at the anterior edges. An A/P polarity is present in the extending notochord cells and is evident by the position of the nuclei, which in normal embryos are invariably found at the posterior edge of each cell. In the aim mutant, all appearances of A/P polarity in the notochord are lost.
Collapse
Affiliation(s)
- Di Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
277
|
De Calisto J, Araya C, Marchant L, Riaz CF, Mayor R. Essential role of non-canonical Wnt signalling in neural crest migration. Development 2005; 132:2587-97. [PMID: 15857909 DOI: 10.1242/dev.01857] [Citation(s) in RCA: 229] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Migration of neural crest cells is an elaborate process that requires the delamination of cells from an epithelium and cell movement into an extracellular matrix. In this work, it is shown for the first time that the non-canonical Wnt signalling [planar cell polarity (PCP) or Wnt-Ca2+] pathway controls migration of neural crest cells. By using specific Dsh mutants, we show that the canonical Wnt signalling pathway is needed for neural crest induction, while the non-canonical Wnt pathway is required for neural crest migration. Grafts of neural crest tissue expressing non-canonical Dsh mutants, as well as neural crest cultured in vitro, indicate that the PCP pathway works in a cell-autonomous manner to control neural crest migration. Expression analysis of non-canonical Wnt ligands and their putative receptors show that Wnt11 is expressed in tissue adjacent to neural crest cells expressing the Wnt receptor Frizzled7 (Fz7). Furthermore, loss- and gain-of-function experiments reveal that Wnt11 plays an essential role in neural crest migration. Inhibition of neural crest migration by blocking Wnt11 activity can be rescued by intracellular activation of the non-canonical Wnt pathway. When Wnt11 is expressed opposite its normal site of expression, neural crest migration is blocked. Finally, time-lapse analysis of cell movement and cell protrusion in neural crest cultured in vitro shows that the PCP or Wnt-Ca2+ pathway directs the formation of lamellipodia and filopodia in the neural crest cells that are required for their delamination and/or migration.
Collapse
Affiliation(s)
- Jaime De Calisto
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
278
|
Adler PN, Zhu C, Stone D. Inturned localizes to the proximal side of wing cells under the instruction of upstream planar polarity proteins. Curr Biol 2005; 14:2046-51. [PMID: 15556868 DOI: 10.1016/j.cub.2004.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 09/23/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Planar polarity development in the Drosophila wing is under the control of the frizzled (fz) pathway. Recent work has established that the planar polarity (PP) proteins become localized to either the distal, proximal, or both sides of wing cells. Fz and Dsh distal accumulation is thought to locally activate the cytoskeleton to form a hair . Planar polarity effector (PPE) genes such as inturned (in) are not required for the asymmetric accumulation of PP proteins, but they are required for this to influence hair polarity. in mutations result in abnormal hair polarity and are epistatic to mutations in the PP genes. We report that In localizes to the proximal side of wing cells in a PP-dependent and PP-instructive manner. We further show that the function of two other PPE genes (fuzzy and fritz) is essential for In protein localization, a finding consistent with previous genetic data that suggested these three genes function in a common process. These data indicate that accumulation of proteins at the proximal side of wing cells is a key event for the distal activation of the cytoskeleton to form a hair.
Collapse
Affiliation(s)
- Paul N Adler
- Biology Department, Morphogenesis and Regenerative Medicine, Institute and Cancer Center, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | | | |
Collapse
|
279
|
Abstract
Although it is well established that the Frizzled receptor is involved in the transmission of polarity information from cell to cell in the Drosophila cuticle, its precise role is still unclear. A recent paper by presents a mathematical model of a feedback loop-based mechanism for propagation of polarity between cells that can account for the known functions of Frizzled.
Collapse
Affiliation(s)
- David Strutt
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
280
|
Venema DR, Zeev-Ben-Mordehai T, Auld VJ. Transient apical polarization of Gliotactin and Coracle is required for parallel alignment of wing hairs in Drosophila. Dev Biol 2005; 275:301-14. [PMID: 15501220 DOI: 10.1016/j.ydbio.2004.07.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 07/12/2004] [Accepted: 07/16/2004] [Indexed: 11/22/2022]
Abstract
In Drosophila, wing hairs are aligned in a distally oriented, parallel array. The frizzled pathway determines proximal-distal cell polarity in the wing; however, in frizzled pathway mutants, wing hairs remain parallel. How wing hairs align has not been determined. We have demonstrated a novel role for the septate junction proteins Gliotactin (Gli) and Coracle (Cora) in this process. Prior to prehair extension, Gli and Cora were restricted to basolateral membranes. During pupal prehair development, Gli and Cora transiently formed apical ribbons oriented from the distal wing tip to the proximal hinge. These ribbons were aligned beneath prehair bases and persisted for several hours. During this time, Gli was lost entirely from the basolateral domain. A Gliotactin mutation altered the apical polarization Gli and Cora and induced defects in hair alignment in pupal and adult stages. Genetic and cell biological assays demonstrated that Gli and Cora function to align hairs independently of frizzled. Taken together, our results indicate that Gli and Cora function as the first-identified members of a long-predicted, frizzled-independent parallel alignment mechanism. We propose a model whereby the apical polarization of Gli and Cora functions to stabilize and align prehairs relative to anterior-posterior cell boundaries during pupal wing development.
Collapse
Affiliation(s)
- Dennis R Venema
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
281
|
Amonlirdviman K, Khare NA, Tree DRP, Chen WS, Axelrod JD, Tomlin CJ. Mathematical Modeling of Planar Cell Polarity to Understand Domineering Nonautonomy. Science 2005; 307:423-6. [PMID: 15662015 DOI: 10.1126/science.1105471] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Planar cell polarity (PCP) signaling generates subcellular asymmetry along an axis orthogonal to the epithelial apical-basal axis. Through a poorly understood mechanism, cell clones that have mutations in some PCP signaling components, including some, but not all, alleles of the receptor frizzled, cause polarity disruptions of neighboring wild-type cells, a phenomenon referred to as domineering nonautonomy. Here, a contact-dependent signaling hypothesis, derived from experimental results, is shown by reaction-diffusion, partial differential equation modeling and simulation to fully reproduce PCP phenotypes, including domineering nonautonomy, in the Drosophila wing. The sufficiency of this model and the experimental validation of model predictions reveal how specific protein-protein interactions produce autonomy or domineering nonautonomy.
Collapse
Affiliation(s)
- Keith Amonlirdviman
- Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035, USA
| | | | | | | | | | | |
Collapse
|
282
|
Collier S, Lee H, Burgess R, Adler P. The WD40 repeat protein fritz links cytoskeletal planar polarity to frizzled subcellular localization in the Drosophila epidermis. Genetics 2005; 169:2035-45. [PMID: 15654087 PMCID: PMC1449578 DOI: 10.1534/genetics.104.033381] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much of our understanding of the genetic mechanisms that control planar cell polarity (PCP) in epithelia has derived from studies of the formation of polarized cell hairs during Drosophila wing development. The correct localization of an F-actin prehair to the distal vertex of the pupal wing cell has been shown to be dependent upon the polarized subcellular localization of Frizzled and other core PCP proteins. However, the core PCP proteins do not organize actin cytoskeletal polarity directly but require PCP effector proteins such as Fuzzy and Inturned to mediate this process. Here we describe the characterization of a new PCP effector gene, fritz, that encodes a novel but evolutionarily conserved coiled-coil WD40 protein. We show that the fritz gene product functions cell-autonomously downstream of the core PCP proteins to regulate both the location and the number of wing cell prehair initiation sites.
Collapse
Affiliation(s)
- Simon Collier
- Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755, USA.
| | | | | | | |
Collapse
|
283
|
Pilot F, Lecuit T. Compartmentalized morphogenesis in epithelia: From cell to tissue shape. Dev Dyn 2005; 232:685-94. [PMID: 15712202 DOI: 10.1002/dvdy.20334] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During development, embryonic tissues are shaped in a species-specific manner. Yet, across species, general classes of tissue remodeling events occur, such as tissue infolding and tissue elongation. The spatiotemporal control of these morphogenetic processes is responsible for the organization of different body plans, as well as for organogenesis. Cell morphogenesis in a mesenchyme contributes to the shaping of embryonic tissues. Epithelial cells, despite that they need to maintain an apicobasal organization, play an equally important role during morphogenesis. Moving from apical to basal, we review compartmentalized cellular rearrangements underlying tissue remodeling in Drosophila and compare them with those found in other organisms. Contractile activity at the apical surface triggers tissue folding and invagination. The regulation of adhesion at adherens junctions controls polarized neighbor exchange during intercalation and tissue elongation. Basolateral protrusive activity underlies other cases of intercalation. These localized cell shape changes are spatially regulated by developmental signals. Some signals define a local change in cell behavior (e.g., apical constriction), others orient a dynamic process in the plane of the tissue (e.g., junction remodeling).
Collapse
Affiliation(s)
- Fanny Pilot
- Laboratoire de Génétique et de Physiologie du Développement (LGPD), UMR 6545 CNRS-Université de la Méditerranée, Institut de Biologie du Développement de Marseille (IBDM), Marseille, France
| | | |
Collapse
|
284
|
Abstract
The mechanisms by which cells become polarised in the plane of an epithelium have been studied in Drosophila for many years. Work has focussed on two key questions: firstly, how individual cells adopt a defined polarity, and secondly how the polarity of each cell within a tissue is aligned with its neighbours. It has been established that asymmetric subcellular localisation of a number of polarity proteins is an essential mechanism underlying polarisation of single cells. The process by which this polarity is coordinated between cells however is less well understood, but is thought to involve gradients of activity of the atypical cadherins Dachsous and Fat. Subsequently, this long-range polarity signal is refined by local cell-cell interactions involving the transmembrane molecules Frizzled, Strabismus and Flamingo. The role of these factors in coordinating polarity will be discussed.
Collapse
Affiliation(s)
- Helen Strutt
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
285
|
Davies A, Formstone C, Mason I, Lewis J. Planar polarity of hair cells in the chick inner ear is correlated with polarized distribution of c-flamingo-1 protein. Dev Dyn 2005; 233:998-1005. [PMID: 15830377 DOI: 10.1002/dvdy.20376] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hair cells of the vertebrate inner ear are directional mechanosensors: they have a polarity, defined by a vector in the plane of the sensory epithelium. It has been suggested that this polarity might be controlled by genes homologous to those that control planar cell polarity (PCP) in Drosophila, and vertebrate homologues of the Drosophila PCP genes Van Gogh/strabismus and flamingo/starry night are indeed essential for normal hair cell PCP. The underlying molecular mechanism is unclear, however. Although the PCP protein Flamingo shows a polarized intracellular distribution in the fly, it is unknown whether this is necessary for its function. Here, we describe the expression pattern of a flamingo homologue, c-flamingo-1 (c-fmi-1), in the developing chick ear and show that its protein product, like that of flamingo in the fly, has a polarized distribution in each hair cell, defining an axis that corresponds to the structural PCP axis. This conservation between fly and vertebrate suggests that the polarized protein localization is functionally important. In the basilar papilla, the same localization is seen in supporting cells also, suggesting that supporting cells are cryptically polarized, despite having no overt structural polarity; they may thus participate in PCP signal transmission across the sensory patch.
Collapse
Affiliation(s)
- Alexander Davies
- Vertebrate Development Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | | | | | | |
Collapse
|
286
|
Abstract
Cell-adhesion molecules localized at adherens junctions (AJs) maintain the polarized architecture of epithelial cells but limit their movements. The morphogenesis of a developing epithelium is associated with the control of both cell shape and cell contacts. Epithelial cells remodel their contacts, and intercellular adhesion controlled by cadherin molecules is spatially and temporally regulated. Cell shape depends, in part, on the regulation of cell adhesion between different groups of cells. Patterned epithelial cell movements such as those that occur during cell intercalation--a universal process whereby cells exchange neighbors--rely on the polarized remodeling of AJs. Recent studies show that the understanding of adhesion will benefit from studies of developing organisms in which adhesion is regulated.
Collapse
Affiliation(s)
- Thomas Lecuit
- Laboratoire de Génétique et de Physiologie du Développement, UMR 6545 CNRS-Université de la Méditerranée, Institut de Biologie du Développement de Marseille, Campus de Luminy case 907, 13288 Marseille cedex 09, France.
| |
Collapse
|
287
|
Abstract
Wnt proteins are secreted glycoprotein ligands that regulate critical aspects of development, including cell proliferation, apoptosis, and cell fate. For those pathways downstream from the "canonical" Wnt/beta-catenin signaling, from the "non-canonical" or planar cell polarity (PCP), and from the Wnt-Ca(2+)/cyclic guanosine monophosphate (cGMP) pathway, Wnt activation of its cellular receptor, a member of the superfamily of G-protein-coupled receptor Frizzled family, requires both heterotrimeric G proteins and the phosphoprotein Dishevelled. Our understanding of the roles of Dishevelled proteins in development is evolving and most recent observations suggest that Dishevelled proteins act as scaffolds essential for Wnt signaling, providing docking sites for a diverse and interesting set of protein kinases, phosphatases, adaptor proteins, G proteins, and other scaffolds such as Axin. The protein-protein interactions of Dishevelled are dynamic, as is the spatial localization of this "toolbox" of signaling molecules involved in development. Much excitement awaits the elucidation of the complete set of tools in the toolbox and of the dynamic regulation of Dishevelled proteins and their interacting proteins.
Collapse
Affiliation(s)
- Craig C Malbon
- Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
288
|
Simon MA. Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development 2004; 131:6175-84. [PMID: 15548581 DOI: 10.1242/dev.01550] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planar cell polarity (PCP) occurs when the cells of an epithelium are polarized along a common axis lying in the epithelial plane. During the development of PCP, cells respond to long-range directional signals that specify the axis of polarization. In previous work on the Drosophilaeye, we proposed that a crucial step in this process is the establishment of graded expression of the cadherin Dachsous (Ds) and the Golgi-associated protein Four-jointed (Fj). These gradients were proposed to specify the direction of polarization by producing an activity gradient of the cadherin Fat within each ommatidium. In this report, I test and confirm the key predictions of this model by altering the patterns of Fj, Ds and Fat expression. It is shown that the gradients of Fj and Ds expression provide partially redundant positional information essential for specifying the polarization axis. I further demonstrate that reversing the Fj and Ds gradients can lead to reversal of the axis of polarization. Finally, it is shown that an ectopic gradient of Fat expression can re-orient PCP in the eye. In contrast to the eye, the endogenous gradients of Fj and Ds expression do not play a major role in directing PCP in the wing. Thus, this study reveals that the two tissues use different strategies to orient their PCP.
Collapse
Affiliation(s)
- Michael A Simon
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
289
|
Kida Y, Shiraishi T, Ogura T. Identification of chick and mouse Daam1 and Daam2 genes and their expression patterns in the central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:143-50. [PMID: 15464228 DOI: 10.1016/j.devbrainres.2004.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/25/2022]
Abstract
Genes controlling the planar cell polarity (PCP) pathway have recently been described in Drosophila. Although a number of PCP-related genes were identified, it remains unknown whether the same genetic programs found in invertebrate embryos operate in vertebrate embryos, especially with regard to central nervous system development. To gain insights into the roles played by vertebrate PCP-related genes, we cloned and examined the expression patterns of chick and mouse homologues of the Xenopus Daam gene, an essential component of the PCP pathway and involved in the convergent extension movement of cells. The observed expression patterns in developing central nervous tissues suggested that vertebrate Daam genes were involved in pivotal steps in neuronal cell differentiation and movement.
Collapse
Affiliation(s)
- Yasuyuki Kida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| | | | | |
Collapse
|
290
|
Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis ofDrosophila. Development 2004; 131:4651-64. [PMID: 15329345 DOI: 10.1242/dev.01351] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integument of the Drosophila adult abdomen bears oriented hairs and bristles that indicate the planar polarity of the epidermal cells. We study four polarity genes, frizzled (fz), prickle (pk), Van gogh/strabismus(Vang/stbm) and starry night/flamingo (stan/fmi),and note what happens when these genes are either removed or overexpressed in clones of cells. The edges of the clones are interfaces between cells that carry different amounts of gene products, interfaces that can cause reversals of planar polarity in the clone and wild-type cells outside them. To explain,we present a model that builds on our earlier picture of a gradient of X, the vector of which specifies planar polarity and depends on two cadherin proteins, Dachsous and Fat. We conjecture that the X gradient is read out,cell by cell, as a scalar value of Fz activity, and that Pk acts in this process, possibly to determine the sign of the Fz activity gradient.We discuss evidence that cells can compare their scalar readout of the level of X with that of their neighbours and can set their own readout towards an average of those. This averaging, when it occurs near the edges of clones,changes the scalar response of cells inside and outside the clones, leading to new vectors that change polarity. The results argue that Stan must be present in both cells being compared and acts as a conduit between them for the transfer of information. And also that Vang assists in the receipt of this information. The comparison between neighbours is crucial, because it gives the vector that orients hairs – these point towards the neighbour cell that has the lowest level of Fz activity.Recently, it has been shown that, for a limited period shortly before hair outgrowth in the wing, the four proteins we study, as well as others, become asymmetrically localised in the cell membrane, and this process is thought to be instrumental in the acquisition of cell polarity. However, some results do not fit with this view – we suggest that these localisations may be more a consequence than a cause of planar polarity.
Collapse
Affiliation(s)
- Peter A Lawrence
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
291
|
Torban E, Wang HJ, Groulx N, Gros P. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J Biol Chem 2004; 279:52703-13. [PMID: 15456783 DOI: 10.1074/jbc.m408675200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Vangl1 and Vangl2 are highly conserved membrane proteins that have evolved from a single ancestral protein Strabismus/Van Gogh found in Drosophila. Mutations in the Vangl2 gene cause a neural tube defect (craniorachischisis) characteristic of the looptail (Lp) mouse. Studies in model organisms indicate that Vangl proteins play a key developmental role in establishing planar cell polarity (PCP) and in regulating convergent extension (CE) movements during embryogenesis. The role of Vangl1 in these processes is virtually unknown, and the molecular function of Vangl1 and Vangl2 in PCP and CE is poorly understood. Using a yeast two-hybrid system, glutathione S-transferase pull-down and co-immunoprecipitation assays, we show that both mouse Vangl1 and Vangl2 physically interact with the three members of the cytoplasmic Dishevelled (Dvl) protein family. This interaction is shown to require both the predicted cytoplasmic C-terminal half of Vangl1/2 and a portion of the Dvl protein containing PDZ and DIX domains. In addition, we show that the two known Vangl2 loss-of-function mutations identified in two independent Lp alleles associated with neural tube defects impair binding to Dvl1, Dvl2, and Dvl3. These findings suggest a molecular mechanism for the neural tube defect seen in Lp mice. Our observations indicate that Vangl1 biochemical properties parallel those of Vangl2 and that Vangl1 might, therefore, participate in PCP and CE either in concert with Vangl2 or independently of Vangl2 in discrete cell types.
Collapse
Affiliation(s)
- Elena Torban
- Department of Biochemistry, Center for Host Resistance and McGill Cancer Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
292
|
Abstract
The complex cross-regulation between Wnt signaling, cell-cell adhesion, and cell-matrix adhesion has revealed a number of regulatory components important in development and cancer progression. In the following, we would like to highlight and summarize some of the steps where pathways converge or diverge in regulating Wnt activity, matrix-induced pathways, and cell adhesion. We would like to focus on the involvement of heparan sulfate proteoglycan-rich proteins (HSPGs), integrin-mediated outside-in signaling, and cadherin-mediated cell-cell adhesion on Wnt pathways and the transcriptional regulation of extracellular matrix components and cell adhesion molecules by Wnt signaling.
Collapse
Affiliation(s)
- Alexandra Schambony
- Universität Karlsruhe, Zoologisches Institut II, Kaiserstrasse 12, D-76128 Karlsruhe, Germany.
| | | | | |
Collapse
|
293
|
Morel V, Arias AM. Armadillo/beta-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 2004; 131:3273-83. [PMID: 15226252 DOI: 10.1242/dev.01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.
Collapse
Affiliation(s)
- Véronique Morel
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
294
|
Das G, Jenny A, Klein TJ, Eaton S, Mlodzik M. Diego interacts with Prickle and Strabismus/Van Gogh to localize planar cell polarity complexes. Development 2004; 131:4467-76. [PMID: 15306567 DOI: 10.1242/dev.01317] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planar cell polarity (PCP) in the Drosophila eye is established by the distinct fate specifications of photoreceptors R3 and R4, and is regulated by the Frizzled (Fz)/PCP signaling pathway. Before the PCP proteins become asymmetrically localized to opposite poles of the cell in response to Fz/PCP signaling, they are uniformly apically colocalized. Little is known about how the apical localization is maintained. We provide evidence that the PCP protein Diego (Dgo) promotes the maintenance of apical localization of Flamingo (Fmi), an atypical Cadherin-family member, which itself is required for the apical localization of the other PCP factors. This function of Dgo is redundant with Prickle (Pk) and Strabismus (Stbm), and only appreciable in double mutant tissue. We show that the initial membrane association of Dgo depends on Fz, and that Dgo physically interacts with Stbm and Pk through its Ankyrin repeats, providing evidence for a PCP multiprotein complex. These interactions suggest a positive feedback loop initiated by Fz that results in the apical maintenance of other PCP factors through Fmi.
Collapse
Affiliation(s)
- Gishnu Das
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
295
|
Unterseher F, Hefele JA, Giehl K, De Robertis EM, Wedlich D, Schambony A. Paraxial protocadherin coordinates cell polarity during convergent extension via Rho A and JNK. EMBO J 2004; 23:3259-69. [PMID: 15297873 PMCID: PMC514506 DOI: 10.1038/sj.emboj.7600332] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 06/22/2004] [Indexed: 11/10/2022] Open
Abstract
Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements.
Collapse
Affiliation(s)
- Frank Unterseher
- Universität Karlsruhe, Zoologisches Institut II, Karlsruhe, Germany
| | - Joerg A Hefele
- Universität Karlsruhe, Zoologisches Institut II, Karlsruhe, Germany
| | - Klaudia Giehl
- Universität Ulm, Abteilung Pharmakologie und Toxikologie, Ulm, Germany
| | - Eddy M De Robertis
- Howard Hughes Medical Institute, University of California, Los Angeles, CA, USA
| | - Doris Wedlich
- Universität Karlsruhe, Zoologisches Institut II, Karlsruhe, Germany
| | - Alexandra Schambony
- Universität Karlsruhe, Zoologisches Institut II, Karlsruhe, Germany
- Universität Karlsruhe, Zoologisches Institut II, Kaiserstrasse 12, 76128 Karlsruhe, Germany. Tel.: +49 721 608 4195; Fax: +49 721 608 3992; E-mail:
| |
Collapse
|
296
|
|
297
|
Matakatsu H, Blair SS. Interactions between Fat and Dachsous and the regulation of planar cell polarity in theDrosophila wing. Development 2004; 131:3785-94. [PMID: 15240556 DOI: 10.1242/dev.01254] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It was recently suggested that a proximal to distal gradient of the protocadherin Dachsous (Ds) acts as a cue for planar cell polarity (PCP) in the Drosophila wing, orienting cell-cell interactions by inhibiting the activity of the protocadherin Fat (Ft). This Ft-Ds signaling model is based on mutant loss-of-function phenotypes, leaving open the question of whether Ds is instructive or permissive for PCP. We developed tools for misexpressing ds and ft in vitro and in vivo, and have used these to test aspects of the model. First, this model predicts that Ds and Ft can bind. We show that Ft and Ds mediate preferentially heterophilic cell adhesion in vitro, and that each stabilizes the other on the cell surface. Second, the model predicts that artificial gradients of Ds are sufficient to reorient PCP in the wing; our data confirms this prediction. Finally,loss-of-function phenotypes suggest that the gradient of dsexpression is necessary for correct PCP throughout the wing. Surprisingly,this is not the case. Uniform levels of ds drive normally oriented PCP and, in all but the most proximal regions of the wing, uniform dsrescues the ds mutant PCP phenotype. Nor are distal PCP defects increased by the loss of spatial information from the distally expressed four-jointed (fj) gene, which encodes putative modulator of Ft-Ds signaling. Thus, while our results support the existence of Ft-Ds binding and show that it is sufficient to alter PCP, ds expression is permissive or redundant with other PCP cues in much of the wing.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin, 250 North Mills Street, Madison, WI 53706, USA
| | | |
Collapse
|
298
|
Abstract
The coordination of epithelial planar polarization is a critical step in the formation of well-ordered tissues. The process has been extensively studied in Drosophila, where genetic analysis has identified a set of "tissue polarity" genes that serve to coordinate planar polarity of cells in the developing wings, bristles and eyes. In the last several years, it has emerged that six of these genes encode junctional proteins. In the wing epithelium, these proteins undergo a polarized redistribution, forming separate proximal and distal cortical domains within each cell. The mechanisms that mediate cortical polarization and cue its direction have been the subject of intense investigation. Cuing the orientation of cortical polarization appears to depend on the atypical Cadherins Fat and Dachsous, although these proteins do not become polarized themselves, nor do they colocalize with components of polarized cortical domains. Interestingly, these Cadherins also act at earlier developmental stages to polarize tissue growth along the proximal-distal axis and it will be interesting to see whether these processes are mechanistically related. Once the axis of polarization is determined, cortical polarity seems to be propagated, at least locally, by a cascade of direct cell-cell interactions mediated by the proximal and distal domains. The cell biological mechanisms leading to polarization are still unclear, but the process depends on the control of Protein Phosphatase 2A activity by its regulatory subunit, Widerborst. Interestingly, Widerborst is found on a planar web of microtubules with connections to apical junctions, suggesting that these microtubules may have an important function in polarizing the cortex.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany.
| |
Collapse
|
299
|
Lawrence N, Morel V. Dorsal closure and convergent extension: two polarised morphogenetic movements controlled by similar mechanisms? Mech Dev 2004; 120:1385-93. [PMID: 14623444 DOI: 10.1016/j.mod.2003.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coordinated cell movements contribute to the shaping of developing organisms during morphogenesis. Understanding the molecular basis of these directed movements is a crucial part of understanding the mechanisms in action during development. We present here a cellular description of two morphogenetic processes: dorsal closure of the Drosophila embryo and convergent extension in two vertebrate models, Xenopus laevis and Danio rerio. Both processes are characterised by polarised cell movements and increasing evidence suggests that they involve a common group of planar cell polarity genes. We propose that the comparison of dorsal closure and convergent extension will shed light on underlying mechanisms that are shared between the two processes.
Collapse
Affiliation(s)
- Nicola Lawrence
- Department of Genetics, University of Cambridge, Downing street, CB2 3EH Cambridge, UK.
| | | |
Collapse
|
300
|
Klein TJ, Mlodzik M. A conserved signaling cassette regulates hair patterning from Drosophila to man. Proc Natl Acad Sci U S A 2004; 101:9173-4. [PMID: 15199187 PMCID: PMC438946 DOI: 10.1073/pnas.0403301101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thomas J Klein
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|