251
|
Zhang B, Zhang Y, Wang Z, Zheng Y. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J Biol Chem 2000; 275:25299-307. [PMID: 10843989 DOI: 10.1074/jbc.m001027200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.
Collapse
Affiliation(s)
- B Zhang
- Department of Biochemistry, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
252
|
Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y, Higuchi O, Akiyama T. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 2000; 289:1194-7. [PMID: 10947987 DOI: 10.1126/science.289.5482.1194] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. Here the APC gene product is shown to bind through its armadillo repeat domain to a Rac-specific guanine nucleotide exchange factor (GEF), termed Asef. Endogenous APC colocalized with Asef in mouse colon epithelial cells and neuronal cells. Furthermore, APC enhanced the GEF activity of Asef and stimulated Asef-mediated cell flattening, membrane ruffling, and lamellipodia formation in MDCK cells. These results suggest that the APC-Asef complex may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function.
Collapse
Affiliation(s)
- Y Kawasaki
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | |
Collapse
|
253
|
Crompton AM, Foley LH, Wood A, Roscoe W, Stokoe D, McCormick F, Symons M, Bollag G. Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands. J Biol Chem 2000; 275:25751-9. [PMID: 10835422 DOI: 10.1074/jbc.m002050200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho family GTPases play roles in cytoskeletal organization and cellular transformation. Tiam1 is a member of the Dbl family of guanine nucleotide exchange factors that activate Rho family GTPases. These exchange factors have in common a catalytic Dbl homology and adjacent pleckstrin homology domain. Previous structural studies suggest that the pleckstrin domain, a putative phosphoinositide-binding site, may serve a regulatory function. We identified ascorbyl stearate as a compound that binds to the pleckstrin domain of p120 Ras GTPase-activating protein. Furthermore, ascorbyl stearate appears to be a general pleckstrin domain ligand, perhaps by mimicking an endogenous amphiphilic ligand. Tiam1 nucleotide exchange activity was greatly stimulated by ascorbyl stearate. Certain phosphoinositides also stimulated Tiam1 activity but were less potent than ascorbyl stearate. Tiam1 contains an additional N-terminal pleckstrin domain, but only the C-terminal pleckstrin domain was required for activation. Our results suggest that the pleckstrin domains of Dbl-type proteins may not only be involved in subcellular localization but may also directly regulate the nucleotide exchange activity of an associated Dbl homology domain. In addition, this paper introduces ascorbyl stearate as a pleckstrin domain ligand that can modulate the activity of certain pleckstrin domain-containing proteins.
Collapse
Affiliation(s)
- A M Crompton
- Onyx Pharmaceuticals, Richmond, California 94806, USA
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Billadeau DD, Mackie SM, Schoon RA, Leibson PJ. The Rho family guanine nucleotide exchange factor Vav-2 regulates the development of cell-mediated cytotoxicity. J Exp Med 2000; 192:381-92. [PMID: 10934226 PMCID: PMC2193212 DOI: 10.1084/jem.192.3.381] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 05/23/2000] [Indexed: 11/04/2022] Open
Abstract
Previous pharmacologic and genetic studies have demonstrated a critical role for the low molecular weight GTP-binding protein RhoA in the regulation of cell-mediated killing by cytotoxic lymphocytes. However, a specific Rho family guanine nucleotide exchange factor (GEF) that activates this critical regulator of cellular cytotoxicity has not been identified. In this study, we provide evidence that the Rho family GEF, Vav-2, is present in cytotoxic lymphocytes, and becomes tyrosine phosphorylated after the cross-linking of activating receptors on cytotoxic lymphocytes and during the generation of cell-mediated killing. In addition, we show that overexpression of Vav-2 in cytotoxic lymphocytes enhances cellular cytotoxicity, and this enhancement requires a functional Dbl homology and Src homology 2 domain. Interestingly, the pleckstrin homology domain of Vav-2 was found to be required for enhancement of killing through some, but not all activating receptors on cytotoxic lymphocytes. Lastly, although Vav and Vav-2 share significant structural homology, only Vav is able to enhance nuclear factor of activated T cells-activator protein 1-mediated gene transcription downstream of the T cell receptor. These data demonstrate that Vav-2, a Rho family GEF, differs from Vav in the control of certain lymphocyte functions and participates in the control of cell-mediated killing by cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Daniel D. Billadeau
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Stacy M. Mackie
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Renee A. Schoon
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| | - Paul J. Leibson
- Department of Immunology, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
255
|
Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galán JE, Mellman I. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 2000; 102:325-34. [PMID: 10975523 DOI: 10.1016/s0092-8674(00)00038-6] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) developmentally regulate antigen uptake by controlling their endocytic capacity. Immature DCs actively internalize antigen. However, mature DCs are poorly endocytic, functioning instead to present antigens to T cells. We have found that endocytic downregulation reflects a decrease in endocytic activity controlled by Rho family GTPases, especially Cdc42. Blocking Cdc42 function by Toxin B treatment or injection of dominant-negative inhibitors of Cdc42 abrogates endocytosis in immature DCs. In mature DCs, injection of constitutively active Cdc42 or microbial delivery of a Cdc42 nucleotide exchange factor reactivates endocytosis. DCs regulate endogenous levels of Cdc42-GTP with activated Cdc42 detectable only in immature cells. We conclude that DCs developmentally regulate endocytosis at least in part by controlling levels of activated Cdc42.
Collapse
Affiliation(s)
- W S Garrett
- Department of Cell Biology, Ludwig Institute for Cancer Research, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
256
|
Gorski JL, Estrada L, Hu C, Liu Z. Skeletal-specific expression of Fgd1 during bone formation and skeletal defects in faciogenital dysplasia (FGDY; Aarskog syndrome). Dev Dyn 2000; 218:573-86. [PMID: 10906777 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1015>3.0.co;2-f] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42; FGD1 mutations result in Faciogenital Dysplasia (FGDY, Aarskog syndrome), an X-linked developmental disorder that adversely affects the formation of multiple skeletal structures. To further define the role of FGD1 in skeletal development, we examined its expression in developing mouse embryos and correlated this pattern with FGDY skeletal defects. In this study, we show that Fgd1, the mouse FGD1 ortholog, is initially expressed during the onset of ossification during embryogenesis. Fgd1 is expressed in regions of active bone formation in the trabeculae and diaphyseal cortices of developing long bones. The onset of Fgd1 expression correlates with the expression of bone sialo-protein, a protein specifically expressed in osteoblasts at the onset of matrix mineralization; an analysis of serial sections shows that Fgd1 is expressed in tissues containing calcified and mineralized extracellular matrix. Fgd1 protein is specifically expressed in cultured osteoblast and osteoblast-like cells including MC3T3-E1 cells and human osteosarcoma cells but not in other mesodermal cells; immunohistochemical studies confirm the presence of Fgd1 protein in mouse calvarial cells. Postnatally, Fgd1 is expressed more broadly in skeletal tissue with expression in the perichondrium, resting chondrocytes, and joint capsule fibroblasts. The data indicate that Fgd1 is expressed in a variety of regions of incipient and active endochondral and intramembranous ossification including the craniofacial bones, vertebrae, ribs, long bones and phalanges. The observed pattern of Fgd1 expression correlates with FGDY skeletal manifestations and provides an embryologic basis for the prevalence of observed skeletal defects. The observation that the induction of Fgd1 expression coincides with the initiation of ossification strongly suggests that FGD1 signaling plays a role in ossification and bone formation; it also suggests that FGD1 signaling does not play a role in the earlier phases of skeletogenesis. With the observation that FGD1 mutations result in the skeletal dysplasia FGDY, accumulated data indicate that FGD1 signaling plays a critical role in ossification and skeletal development.
Collapse
Affiliation(s)
- J L Gorski
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0688, USA.
| | | | | | | |
Collapse
|
257
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
258
|
Hall A, Nobes CD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 2000; 355:965-70. [PMID: 11128990 PMCID: PMC1692798 DOI: 10.1098/rstb.2000.0632] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The actin cytoskeleton plays a fundamental role in all eukaryotic cells it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.
Collapse
Affiliation(s)
- A Hall
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, UK.
| | | |
Collapse
|
259
|
Pucharcos C, Estivill X, de la Luna S. Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett 2000; 478:43-51. [PMID: 10922467 DOI: 10.1016/s0014-5793(00)01793-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Intersectin 1 (ITSN1) is a binding partner of dynamin that has been shown to participate in clathrin-mediated endocytosis. Here we report the characterization of a new human gene, ITSN2, highly similar to ITSN1. Alternative splicing of ITSN2 generates a short isoform with two EH domains, a coiled-coil region and five SH3 domains, and a longer isoform containing extra carboxy domains (DH, PH and C2 domains), suggesting that it could act as a guanine nucleotide exchange factor for Rho-like GTPases. ITSN2 expression analysis indicates that it is widely expressed in human tissues. Intersectin 2 isoforms show a subcellular distribution similar to other components of the endocytic machinery and co-localize with Eps15. Moreover, their overexpression, as well as the corresponding ITSN1 protein forms, inhibits transferrin internalization.
Collapse
Affiliation(s)
- C Pucharcos
- Down Syndrome Research Group, Medical and Molecular Genetics Center, IRO, Hospital Duran i Reynals, Avia. de Castelldefels Km 2.7, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | | | | |
Collapse
|
260
|
Palmieri G, de Franciscis V, Casamassimi A, Romano G, Torino A, Pingitore P, Califano D, Santelli G, Eva A, Vecchio G, D'Urso M, Ciccodicola A. Human dbl proto-oncogene in 85 kb of xq26, and determination of the transcription initiation site. Gene 2000; 253:107-15. [PMID: 10925207 DOI: 10.1016/s0378-1119(00)00212-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The dbl oncogene is generated by substitution of the 5' portion of its normal counterpart with an unrelated human sequence. To analyze the genomic structure and transcriptional regulation of the dbl proto-oncogene, we have isolated human genomic clones containing the entire human proto-dbl gene, localized in Xq26. Restriction mapping of a 600kb YAC clone (yWXD311) placed proto-dbl about 50kb telomeric to the coagulation Factor IX gene. The genomic DNA fragment containing the 5' end of proto-dbl was subcloned into plasmid vectors and the nucleotide sequences of exon 1, the flanking intronic region and genomic DNA 5' of the first codon were determined. Sequence analysis of 85119bp from the region revealed the genomic structure of proto-dbl. It contains 25 exons coding for a 4.7kb transcript including large 5'- and 3'- (1218bp and 701bp, respectively) untranslated regions (UTRs). RNase protection and primer extension assays on RNA from medullary thyroid carcinoma (TT) cells, which normally express dbl, revealed a transcription start site 1218bp upstream of the ATG of the first exon. A 1.6kb genomic 5' of the translation start sites drives the expression of a CAT-reporter in transient transfections in the TT cell line, though lacking TATA or CAAT boxes.
Collapse
Affiliation(s)
- G Palmieri
- International Institute of Genetics and Biophysics, C.N.R., Via Marconi 10, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 2000; 68:459-86. [PMID: 10872457 DOI: 10.1146/annurev.biochem.68.1.459] [Citation(s) in RCA: 792] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Members of the Rho family of small Ras-like GTPases--including RhoA, -B, and -C, Rac1 and -2, and Cdc42--exhibit guanine nucleotide-binding activity and function as molecular switches, cycling between an inactive GDP-bound state and an active GTP-bound state. The Rho family GTPases participate in regulation of the actin cytoskeleton and cell adhesion through specific targets. Identification and characterization of these targets have begun to clarify how the Rho family GTPases act to regulate cytoskeletal structure and cell-cell and cell-substratum contacts in mammalian cells. The Rho family GTPases are also involved in regulation of smooth muscle contraction, cell morphology, cell motility, neurite retraction, and cytokinesis. However, the molecular mechanisms by which the Rho family GTPases participate in the regulation of such processes are not well established.
Collapse
Affiliation(s)
- K Kaibuchi
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma, Japan.
| | | | | |
Collapse
|
262
|
Abstract
Ligation of the T cell antigen receptor (TCR) stimulates protein tyrosine kinases (PTKs), which regulate intracellular calcium and control the activity of protein kinase C (PKC) isozymes. PTKs activated by antigen receptors and costimulatory molecules also couple to phosphatidylinositol-3 kinase (PI3K) and control the activity of Ras- and Rho-family GTPases. T cell signal transduction is triggered physiologically by antigen in the context of antigen presenting cells (APC). The formation of stable and prolonged contacts between T cells and APCs is not necessary to initiate T cell signaling but is required for effective T cell proliferation and differentiation. The stabilization of the T cell/ APC conjugate is regulated by intracellular signals induced by antigen receptors and costimulators. These coordinate the regulation of the actin and microtubule cytoskeleton and organize a specialized signaling zone that allows sustained TCR signaling.
Collapse
Affiliation(s)
- O Acuto
- Molecular Immunology Unit, Department of Immunology, Pasteur Institute, 75724, Paris, France.
| | | |
Collapse
|
263
|
Johnson RC, Penzes P, Eipper BA, Mains RE. Isoforms of kalirin, a neuronal Dbl family member, generated through use of different 5'- and 3'-ends along with an internal translational initiation site. J Biol Chem 2000; 275:19324-33. [PMID: 10777487 DOI: 10.1074/jbc.m000676200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kalirin is a neuron-specific GDP/GTP exchange factor for Rho subfamily GTP-binding proteins. The major Kalirin transcripts in adult rat brain were identified. Most include a Sec14p-like putative lipid-binding motif followed by nine spectrin-like repeats and a Dbl homology/pleckstrin homology (DH-PH) domain. Kalirin proteins with four different NH(2) termini are generated through the use of five different 5'-ends; three of the proteins differ only at the extreme NH(2) terminus, and one is truncated because translation is initiated at a methionine in the 5th spectrin repeat. Four different 3'-ends yield Kalirin proteins with additional functional domains. Kalirin-7 (7-kilobase pair mRNA) terminates with a PDZ-binding motif, which in Kalirin-8 is replaced by an SH3 domain. Kalirin-9 contains another pair of DH-PH and SH3 domains. Kalirin-12 additionally encodes a putative Ser/Thr protein kinase. Antisera specific for different COOH termini established Kalirin-7 as the most abundant in cortex, with significant amounts of Kalirin-9 and Kalirin-12; Kalirin-7 was less prevalent in cerebellum and olfactory bulb. Kalirin proteins lacking the Sec14p-like domain and first four spectrin-like repeats were much less prevalent. Form-specific antisera demonstrated that different forms of Kalirin were localized to distinct subcellular regions of cultured neurons. Members of the family of Kalirin proteins may subserve different functions at these different locations.
Collapse
Affiliation(s)
- R C Johnson
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
264
|
Ono Y, Nakanishi H, Nishimura M, Kakizaki M, Takahashi K, Miyahara M, Satoh-Horikawa K, Mandai K, Takai Y. Two actions of frabin: direct activation of Cdc42 and indirect activation of Rac. Oncogene 2000; 19:3050-8. [PMID: 10871857 DOI: 10.1038/sj.onc.1203631] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Frabin is an actin filament-binding protein which shows GDP/GTP exchange activity specific for Cdc42 small G protein and induces filopodium-like microspike formation and c-Jun N-terminal kinase (JNK) activation presumably through the activation of Cdc42. Frabin has one actin filament-binding (FAB) domain, one Dbl homology (DH) domain, first pleckstrin homology (PH) domain adjacent to the DH domain, one cysteine-rich FYVE domain, and second PH domain from the N-terminus to the C-terminus in this order. Different domains of frabin are involved in the microspike formation and the JNK activation, and the association of frabin with the actin cytoskeleton through the FAB domain is necessary for the microspike formation, but not for the JNK activation. We have found here that frabin induces the formation of not only filopodium-like microspikes but also lamellipodium-like structures in NIH3T3 and L fibroblasts. We have analysed the mechanism of frabin in these two actions and found that frabin induces filopodium-like microspike formation through the direct activation of Cdc42 and lamellipodium-like structure formation through the Cdc42-independent indirect activation of Rac small G protein. The FAB domain of frabin in addition to the DH domain and the first PH domain is necessary for the filopodium-like microspike formation, but not for the lamellipodium-like structure formation. The FYVE domain and the second PH domain in addition to the DH domain and the first PH domain are necessary for the lamellipodium-like structure formation. We show here these two actions of frabin in the regulation of cell morphology.
Collapse
Affiliation(s)
- Y Ono
- Takai Biotimer Project, ERATO, Japan Science and Technology Corporation, c/o JCR Pharmaceuticals Co. Ltd., 2-2-10 Murotani, Nishi-ku, Kobe 651-2241, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Shimizu T, Ihara K, Maesaki R, Kuroda S, Kaibuchi K, Hakoshima T. An open conformation of switch I revealed by the crystal structure of a Mg2+-free form of RHOA complexed with GDP. Implications for the GDP/GTP exchange mechanism. J Biol Chem 2000; 275:18311-7. [PMID: 10748207 DOI: 10.1074/jbc.m910274199] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mg(2+) ions are essential for guanosine triphosphatase (GTPase) activity and play key roles in guanine nucleotide binding and preserving the structural integrity of GTP-binding proteins. We determined the crystal structure of a small GTPase RHOA complexed with GDP in the absence of Mg(2+) at 2.0-A resolution. Elimination of a Mg(2+) ion induces significant conformational changes in the switch I region that opens up the nucleotide-binding site. Similar structural changes have been observed in the switch regions of Ha-Ras bound to its guanine nucleotide exchange factor, Sos. This RHOA-GDP structure reveals an important regulatory role for Mg(2+) and suggests that guanine nucleotide exchange factor may utilize this feature of switch I to produce an open conformation in GDP/GTP exchange.
Collapse
Affiliation(s)
- T Shimizu
- Division of Strucural Biology and Signal Transduction, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
266
|
Kimura K, Tsuji T, Takada Y, Miki T, Narumiya S. Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem 2000; 275:17233-6. [PMID: 10837491 DOI: 10.1074/jbc.c000212200] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a new pull-down assay for GTP-Rho and examined its level during cell cycle. HeLa cells were arrested in the S phase by thymidine and were enriched in the prometaphase, metaphase, telophase, and G(1) phase by collecting at 0, 45, 90, and 180 min after the release from the nocodazole arrest, respectively. The level of GTP-Rho did not change significantly from the S phase to the prometaphase, but increased thereafter, peaking in the telophase, and returned to the original level in the G(1) phase. The GDP-GTP exchange activity for Rho measured in cell lysates in parallel increased also during the mitosis with a peak in the metaphase. Using this system, we examined a role of ECT2, an exchanger for Rho GTPases, suggested to be involved in cytokinesis (Tatsumoto, T., Xie, X., Blumenthal, R., Okamoto, I., and Miki., T. (1999) J. Cell. Biol. , 147, 921-928). Expression of the dominant negative form of ECT2 completely suppressed both the rise of GTP-Rho in the telophase and the increased GDP-GTP exchange activity in the mitotic cell extracts. These results suggest a critical role of ECT2 in Rho activation during cytokinesis.
Collapse
Affiliation(s)
- K Kimura
- Department of Pharmacology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
267
|
Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, Di Fiore PP. Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J 2000; 19:2393-8. [PMID: 10835338 PMCID: PMC212757 DOI: 10.1093/emboj/19.11.2393] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2000] [Revised: 04/06/2000] [Accepted: 04/06/2000] [Indexed: 11/12/2022] Open
Abstract
Members of a family of intracellular molecular switches, the small GTPases, sense modifications of the extracellular environment and transduce them into a variety of homeostatic signals. Among small GTPases, Ras and the Rho family of proteins hierarchically and/or coordinately regulate signaling pathways leading to phenotypes as important as proliferation, differentiation and apoptosis. Ras and Rho-GTPases are organized in a complex network of functional interactions, whose molecular mechanisms are being elucidated. Starting from the simple concept of linear cascades of events (GTPase-->activator--> GTPase), the work of several laboratories is uncovering an increasingly complex scenario in which upstream regulators of GTPases also function as downstream effectors and influence the precise biological outcome. Furthermore, small GTPases assemble into macromolecular machineries that include upstream activators, downstream effectors, regulators and perhaps even final biochemical targets. We are starting to understand how these macromolecular complexes work and how they are regulated and targeted to their proper subcellular localization. Ultimately, the acquisition of a cogent picture of the various levels of integration and regulation in small GTPase-mediated signaling should define the physiology of early signal transduction events and the pathological implication of its subversion.
Collapse
Affiliation(s)
- G Scita
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti, 435, 20141 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field.
Collapse
|
269
|
Geissler H, Ullmann R, Soldati T. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions. Traffic 2000; 1:399-410. [PMID: 11208126 DOI: 10.1034/j.1600-0854.2000.010505.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- H Geissler
- Department of Molecular Cell Research, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
270
|
Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M. Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11:1709-25. [PMID: 10793146 PMCID: PMC14878 DOI: 10.1091/mbc.11.5.1709] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial-mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial-mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.
Collapse
Affiliation(s)
- I Royal
- Molecular Oncology Group, McGill University Hospital Center, McGill University, Montreal, Quebec, Canada, H3A 1A1
| | | | | | | | | |
Collapse
|
271
|
Kamikura DM, Khoury H, Maroun C, Naujokas MA, Park M. Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3'-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol Cell Biol 2000; 20:3482-96. [PMID: 10779338 PMCID: PMC85641 DOI: 10.1128/mcb.20.10.3482-3496.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Met-hepatocyte growth factor receptor oncoprotein, Tpr-Met, generated by chromosomal rearrangement, fuses a protein dimerization motif with the cytoplasmic domain of the Met receptor, producing a cytosolic, constitutively activated tyrosine kinase. Although both the Met receptor and the Tpr-Met oncoprotein associate with the same substrates, activating mutations of the Met receptor in hereditary papillary renal carcinomas have different signaling requirements for transformation than Tpr-Met. This suggests differential activation of membrane-localized pathways by oncogenic forms of the membrane-bound Met receptor but not by the cytoplasmic Tpr-Met oncoprotein. To establish which pathways might be differentially regulated, we have localized the constitutively activated Tpr-Met oncoprotein to the membrane using the c-src myristoylation signal. Membrane localization enhances cellular transformation, focus formation, and anchorage-independent growth and induces tumors with a distinct myxoid phenotype. This correlates with the induction of hyaluronic acid (HA) and the presence of a distinct form of its receptor, CD44. A pharmacological inhibitor of phosphoinositide 3' kinase (PI3'K), inhibits the production of HA, and conversely, an activated, plasma membrane-targeted form of PI3'K is sufficient to enhance HA production. Furthermore, the multisubstrate adapter protein Gab-1, which couples the Met receptor with PI3'K, enhances Met receptor-dependent HA synthesis in a PI3'K-dependent manner. These results provide a positive link to a role for HA and CD44 in Met receptor-mediated oncogenesis and implicate PI3'K in these events.
Collapse
Affiliation(s)
- D M Kamikura
- Molecular Oncology Group, Departments of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada H3A-1A1
| | | | | | | | | |
Collapse
|
272
|
Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 2000; 275:10141-9. [PMID: 10744696 DOI: 10.1074/jbc.275.14.10141] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav and Vav2 are members of the Dbl family of proteins that act as guanine nucleotide exchange factors (GEFs) for Rho family proteins. Whereas Vav expression is restricted to cells of hematopoietic origin, Vav2 is widely expressed. Although Vav and Vav2 share highly related structural similarities and high sequence identity in their Dbl homology domains, it has been reported that they are active GEFs with distinct substrate specificities toward Rho family members. Whereas Vav displayed GEF activity for Rac1, Cdc42, RhoA, and RhoG, Vav2 was reported to exhibit GEF activity for RhoA, RhoB, and RhoG but not for Rac1 or Cdc42. Consistent with their distinct substrate targets, it was found that constitutively activated versions of Vav and Vav2 caused distinct transformed phenotypes when expressed in NIH 3T3 cells. In contrast to the previous findings, we found that Vav2 can act as a potent GEF for Cdc42, Rac1, and RhoA in vitro. Furthermore, we found that NH(2)-terminally truncated and activated Vav and Vav2 caused indistinguishable transforming actions in NIH 3T3 cells that required Cdc42, Rac1, and RhoA function. In addition, like Vav and Rac1, we found that Vav2 activated the Jun NH(2)-terminal kinase cascade and also caused the formation of lamellipodia and membrane ruffles in NIH 3T3 cells. Finally, Vav2-transformed NIH 3T3 cells showed up-regulated levels of Rac-GTP. We conclude that Vav2 and Vav share overlapping downstream targets and are activators of multiple Rho family proteins. Therefore, Vav2 may mediate the same cellular consequences in nonhematopoietic cells as Vav does in hematopoietic cells.
Collapse
Affiliation(s)
- K Abe
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A, Rhee SG. Platelet-derived growth factor-induced H(2)O(2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 2000; 275:10527-31. [PMID: 10744745 DOI: 10.1074/jbc.275.14.10527] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophosphorylation of the platelet-derived growth factor (PDGF) receptor triggers intracellular signaling cascades as a result of recruitment of Src homology 2 domain-containing enzymes, including phosphatidylinositol 3-kinase (PI3K), the GTPase-activating protein of Ras (GAP), the protein-tyrosine phosphatase SHP-2, and phospholipase C-gamma1 (PLC-gamma1), to specific phosphotyrosine residues. The roles of these various effectors in PDGF-induced generation of H(2)O(2) have now been investigated in HepG2 cells expressing various PDGF receptor mutants. These mutants included a kinase-deficient receptor and receptors in which various combinations of the tyrosine residues required for the binding of PI3K (Tyr(740) and Tyr(751)), GAP (Tyr(771)), SHP-2 (Tyr(1009)), or PLC-gamma1 (Tyr(1021)) were mutated to Phe. PDGF failed to increase H(2)O(2) production in cells expressing either the kinase-deficient mutant or a receptor in which the two Tyr residues required for the binding of PI3K were replaced by Phe. In contrast, PDGF-induced H(2)O(2) production in cells expressing a receptor in which the binding sites for GAP, SHP-2, and PLC-gamma1 were all mutated was slightly greater than that in cells expressing the wild-type receptor. Only the PI3K binding site was alone sufficient for PDGF-induced H(2)O(2) production. The effect of PDGF on H(2)O(2) generation was blocked by the PI3K inhibitors LY294002 and wortmannin or by overexpression of a dominant negative mutant of Rac1. These results suggest that a product of PI3K is required for PDGF-induced production of H(2)O(2) in nonphagocytic cells, and that Rac1 mediates signaling between the PI3K product and the putative NADPH oxidase.
Collapse
Affiliation(s)
- Y S Bae
- Center for Cell Signaling Research, Division of Molecular Life Sciences, and Department of Biological Sciences, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | |
Collapse
|
274
|
Rodrigues NR, Theodosiou AM, Nesbit MA, Campbell L, Tandle AT, Saranath D, Davies KE. Characterization of Ngef, a novel member of the Dbl family of genes expressed predominantly in the caudate nucleus. Genomics 2000; 65:53-61. [PMID: 10777665 DOI: 10.1006/geno.2000.6138] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified Ngef as a novel member of the family of Dbl genes. Many members of this family have been shown to function as guanine nucleotide exchange factors for the Rho-type GTPases. Ngef is predominantly expressed in brain, with the strongest signal in the caudate nucleus, a region associated with the control of movement. Ngef contains a translated trinucleotide repeat, a polyglutamic acid stretch interrupted by a glycine. We have localized the Ngef gene to mouse chromosome 1 and the human homologue of Ngef to human chromosome 2q37. We have shown in preliminary experiments that Ngef has transforming potential in cell culture and is able to induce tumors in nude mice.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Caudate Nucleus/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 2/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Gene Expression
- Guanine Nucleotide Exchange Factors
- Humans
- In Situ Hybridization, Fluorescence
- Mice
- Mice, Nude
- Molecular Sequence Data
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- N R Rodrigues
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
275
|
Buchanan FG, Elliot CM, Gibbs M, Exton JH. Translocation of the Rac1 guanine nucleotide exchange factor Tiam1 induced by platelet-derived growth factor and lysophosphatidic acid. J Biol Chem 2000; 275:9742-8. [PMID: 10734127 DOI: 10.1074/jbc.275.13.9742] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Several guanine nucleotide exchange factors for the Rho family of GTPases that induce activation by exchanging GDP for GTP have been identified. One of these is the tumor invasion gene product Tiam1, which acts on Rac1. In this study, we demonstrate that platelet-derived growth factor (PDGF) and lysophosphatidic acid induce the translocation of Tiam1 to the membrane fraction of NIH 3T3 fibroblasts in a time-dependent manner. Previously, we have shown that Tiam1 is phosphorylated by protein kinase C (PKC) and calcium/calmodulin kinase II (CaMK II) after stimulation with agonists. Here we show, by pretreatment of cells with kinase inhibitors, that CaMK II, but not PKC, is involved in the membrane translocation of Tiam1. Addition of the calcium ionophore ionomycin alone induced the translocation of Tiam1. However, the cell-permeable diacylglycerol oleoylacetylglycerol was without effect and did not enhance the effect of ionomycin. These data further indicated a role for CaMK II and not PKC. Inhibition of phosphoinositide 3-kinase by wortmannin had little effect on the translocation of Tiam1. The role of phosphorylation was further studied by comparing the phosphorylation pattern of Tiam1 in the membranes versus whole cell Tiam1. PDGF-induced phosphorylation of membrane-associated Tiam1 occurred more rapidly than that of the total Tiam1 pool, and CaMK II, but not PKC, played a significant role in this process. Furthermore, by using the p21-binding domain of PAK-3, we show that PDGF, but not lysophosphatidic acid, activates Rac1 in vivo and that this activation involves CaMK II and PKC, but not 3-phosphoinositides. Our results indicate that Tiam1 is translocated to and phosphorylated at membranes after agonist stimulation and that CaMK II, but not PKC, is involved in this process. Also, these kinases are involved in the activation of Rac in vivo.
Collapse
Affiliation(s)
- F G Buchanan
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | | | | | |
Collapse
|
276
|
Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM. Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 2000; 275:9725-33. [PMID: 10734125 DOI: 10.1074/jbc.275.13.9725] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Little is known about the role of Rho proteins in apoptosis produced by stimuli evolved specifically to produce apoptosis, such as granzymes from cytotoxic T lymphocytes (CTLs) and Fas. Here we demonstrate that all three Rho family members are involved in CTL- and Fas-induced killing. Dominant-negative mutants of each Rho family member and Clostridium difficile toxin B, an inhibitor of all family members, strongly inhibited the susceptibility of cells to CTL- and Fas-induced apoptosis. Fas-induced caspase-3 activation was inhibited by C. difficile toxin. Activated mutants of each GTPase increased susceptibility to apoptosis, and activation of Cdc42 increased within 5 min of Fas stimulation. In contrast, during the time required for CTL and Fas killing, no apoptosis was produced by dominant-negative or activated mutants or by C. difficile toxin alone. Inhibition of actin polymerization using latrunculin A reduced the ability of constitutively active GTPase mutants to stimulate apoptosis and blocked Fas-induced activation of caspase-3. Furthermore, the ability of Rac to enhance apoptosis was decreased by point mutations reported to block Rac induction of actin polymerization. Rho family proteins may regulate apoptosis through their effects on the actin cytoskeleton.
Collapse
Affiliation(s)
- M C Subauste
- Department of Cell Biology, Division of Virology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
277
|
Majidi M, Gutkind JS, Lichy JH. Deletion of the COOH terminus converts the ST5 p70 protein from an inhibitor of RAS signaling to an activator with transforming activity in NIH-3T3 cells. J Biol Chem 2000; 275:6560-5. [PMID: 10692462 DOI: 10.1074/jbc.275.9.6560] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the human protein ST5-p70 correlates with reduced tumorigenic phenotype in mammalian cells, reverts their transformed phenotype, and restores their contact-dependent growth. Furthermore, expression of p70 in COS-7 cells suppresses activation of mitogen activated protein kinase MAPK/ERK2 by the largest ST5 product, p126, in response to epidermal growth factor stimulation. Here we show that deletions of the COOH-terminal region of p70 transform NIH3T3 cells and induce their anchorage-independent growth. Analysis of signaling leading to MAPK/ERK2 stimulation revealed that in COS-7 cells, expression of either p70-DeltaC1 or p70-DeltaC2 markedly enhanced ERK2 activity in a growth factor-independent manner. Whereas wild-type p70 slightly inhibited ERK2 activation by RAS and MEK2, co-expression or p70-DeltaC1 or p70-DeltaC2 with either protein stimulated ERK2 cooperatively. This activity was completely blocked by the dominant negative mutants RAS17N or MEKAA, suggesting that p70 functions upstream of RAS. Unlike wild-type p70, expression of p70-DeltaC1 or p70-DeltaC2 mutant did not interfere with the ability of ST5-p126 to stimulate ERK2. Taken together, the data suggest that the COOH-terminal tail, residues 489-609, contains some of the critical determinants for the function of p70. Loss of this region converts the protein from an inhibitor to a constitutive activator of the RAS-ERK2 pathway.
Collapse
Affiliation(s)
- M Majidi
- Department of Cellular Pathology, Armed Forces Institute of Pathology, Washington, D. C. 20306-6000, USA.
| | | | | |
Collapse
|
278
|
Penzes P, Johnson RC, Alam MR, Kambampati V, Mains RE, Eipper BA. An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 2000; 275:6395-403. [PMID: 10692441 DOI: 10.1074/jbc.275.9.6395] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Communication between membranes and the actin cytoskeleton is an important aspect of neuronal function. Regulators of actin cytoskeletal dynamics include the Rho-like small GTP-binding proteins and their exchange factors. Kalirin is a brain-specific protein, first identified through its interaction with peptidylglycine-alpha-amidating monooxygenase. In this study, we cloned rat Kalirin-7, a 7-kilobase mRNA form of Kalirin. Kalirin-7 contains nine spectrin-like repeats, a Dbl homology domain, and a pleckstrin homology domain. We found that the majority of Kalirin-7 protein is associated with synaptosomal membranes, but a fraction is cytosolic. We also detected higher molecular weight Kalirin proteins. In rat cerebral cortex, Kalirin-7 is highly enriched in the postsynaptic density fraction. In primary cultures of neurons, Kalirin-7 is detected in spine-like structures, while other forms of Kalirin are visualized in the cell soma and throughout the neurites. Kalirin-7 and its Dbl homology-pleckstrin homology domain induce formation of lamellipodia and membrane ruffling, when transiently expressed in fibroblasts, indicative of Rac1 activation. Using Rac1, the Dbl homology-pleckstrin homology domain catalyzed the in vitro exchange of bound GDP with GTP. Kalirin-7 is the first guanine-nucleotide exchange factor identified in the postsynaptic density, where it is positioned optimally to regulate signal transduction pathways connecting membrane proteins and the actin cytoskeleton.
Collapse
Affiliation(s)
- P Penzes
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
279
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
280
|
Blangy A, Vignal E, Schmidt S, Debant A, Gauthier-Rouvière C, Fort P. TrioGEF1 controls Rac- and Cdc42-dependent cell structures through the direct activation of rhoG. J Cell Sci 2000; 113 ( Pt 4):729-39. [PMID: 10652265 DOI: 10.1242/jcs.113.4.729] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho GTPases regulate the morphology of cells stimulated by extracellular ligands. Their activation is controlled by guanine exchange factors (GEF) that catalyze their binding to GTP. The multidomain Trio protein represents an emerging class of Ρ regulators that contain two GEF domains of distinct specificities. We report here the characterization of Rho signaling pathways activated by the N-terminal GEF domain of Trio (TrioD1). In fibroblasts, TrioD1 triggers the formation of particular cell structures, similar to those elicited by RhoG, a GTPase known to activate both Rac1 and Cdc42Hs. In addition, the activity of TrioD1 requires the microtubule network and relocalizes RhoG at the active sites of the plasma membrane. Using a classical in vitro exchange assay, TrioD1 displays a higher GEF activity on RhoG than on Rac1. In fibroblasts, expression of dominant negative RhoG mutants totally abolished TrioD1 signaling, whereas dominant negative Rac1 and Cdc42Hs only led to partial and complementary inhibitions. Finally, expression of a Rho Binding Domain that specifically binds RhoG(GTP) led to the complete abolition of TrioD1 signaling, which strongly supports Rac1 not being activated by TrioD1 in vivo. These data demonstrate that Trio controls a signaling cascade that activates RhoG, which in turn activates Rac1 and Cdc42Hs.
Collapse
Affiliation(s)
- A Blangy
- Centre de Recherche en Biochimie Macromoléculaire, CRBM CNRS UPR1086, IFR24, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
281
|
Bi E, Chiavetta JB, Chen H, Chen GC, Chan CS, Pringle JR. Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol Biol Cell 2000; 11:773-93. [PMID: 10679030 PMCID: PMC14809 DOI: 10.1091/mbc.11.2.773] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, Cdc24p functions at least in part as a guanine-nucleotide-exchange factor for the Rho-family GTPase Cdc42p. A genetic screen designed to identify possible additional targets of Cdc24p instead identified two previously known genes, MSB1 and CLA4, and one novel gene, designated MSB3, all of which appear to function in the Cdc24p-Cdc42p pathway. Nonetheless, genetic evidence suggests that Cdc24p may have a function that is distinct from its Cdc42p guanine-nucleotide-exchange factor activity; in particular, overexpression of CDC42 in combination with MSB1 or a truncated CLA4 in cells depleted for Cdc24p allowed polarization of the actin cytoskeleton and polarized cell growth, but not successful cell proliferation. MSB3 has a close homologue (designated MSB4) and two more distant homologues (MDR1 and YPL249C) in S. cerevisiae and also has homologues in Schizosaccharomyces pombe, Drosophila (pollux), and humans (the oncogene tre17). Deletion of either MSB3 or MSB4 alone did not produce any obvious phenotype, and the msb3 msb4 double mutant was viable. However, the double mutant grew slowly and had a partial disorganization of the actin cytoskeleton, but not of the septins, in a fraction of cells that were larger and rounder than normal. Like Cdc42p, both Msb3p and Msb4p localized to the presumptive bud site, the bud tip, and the mother-bud neck, and this localization was Cdc42p dependent. Taken together, the data suggest that Msb3p and Msb4p may function redundantly downstream of Cdc42p, specifically in a pathway leading to actin organization. From previous work, the BNI1, GIC1, and GIC2 gene products also appear to be involved in linking Cdc42p to the actin cytoskeleton. Synthetic lethality and multicopy suppression analyses among these genes, MSB, and MSB4, suggest that the linkage is accomplished by two parallel pathways, one involving Msb3p, Msb4p, and Bni1p, and the other involving Gic1p and Gic2p. The former pathway appears to be more important in diploids and at low temperatures, whereas the latter pathway appears to be more important in haploids and at high temperatures.
Collapse
Affiliation(s)
- E Bi
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
282
|
Miller BT, Rubino DM, Driggers PH, Haddad B, Cisar M, Gray K, Segars JH. Expression of brx proto-oncogene in normal ovary and in epithelial ovarian neoplasms. Am J Obstet Gynecol 2000; 182:286-95. [PMID: 10694326 DOI: 10.1016/s0002-9378(00)70213-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We previously identified a protein, Brx, that interacted with estrogen receptor alpha. Sequence analysis determined that Brx is a novel member of the Dbl family of oncoproteins involved in signaling pathways that regulate cell growth. Because the Brx protein was found to be highly expressed in hormoneresponsive breast epithelium, the objective of this study was to determine whether Brx was expressed in both normal and neoplastic ovarian tissues. STUDY DESIGN A polyclonal antiserum directed against the Brx protein was used to perform immunolocalization on sections from 5 normal ovaries and 20 ovarian neoplasms. Chromosomal localization of the brx gene was accomplished by means of fluorescence in situ hybridization. Northern and Western blot analyses were performed on extracts prepared from human ovaries. RESULTS Brx protein was localized to the cytoplasm of granulosa cells from mature graafian follicles, the corpus luteum, and islands of hilar cells in normal ovaries. In tumors with low malignant potential and ovarian carcinomas the neoplastic epithelium stained strongly for Brx protein. Northern and Western blot analyses, respectively, confirmed expression of Brx messenger ribonucleic acid and protein in normal ovary. Finally, the brx gene was localized to 15q25. CONCLUSION The proto-oncogene brx is expressed in specific normal human ovarian tissues and is also present in ovarian epithelial neoplasms.
Collapse
Affiliation(s)
- B T Miller
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
283
|
Pasteris NG, Nagata K, Hall A, Gorski JL. Isolation, characterization, and mapping of the mouse Fgd3 gene, a new Faciogenital Dysplasia (FGD1; Aarskog Syndrome) gene homologue. Gene 2000; 242:237-47. [PMID: 10721717 DOI: 10.1016/s0378-1119(99)00518-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
FGD1 gene mutations result in faciogenital dysplasia (FGDY, Aarskog syndrome), an X-linked developmental disorder that adversely affects the formation of multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42. By way of Cdc42, FGD1 regulates the actin cytoskeleton and activates the c-Jun N-terminal kinase signaling cascade to regulate cell growth and differentiation. Previous work shows that FGD1 is the founding member of a family of related genes including the mouse Fgd2 gene and the rat Frabin gene. Here, we report on the isolation, characterization, and mapping of the mouse Fgd3 gene, a new and novel member of the FGD1 gene family. Fgd3 cDNA encodes a 733-amino-acid protein with a predicted mass of 81 kDa. Fgd3 and FGD1 share a high degree of sequence identity that spans >560 contiguous amino acid residues. Like FGD1, Fgd3 contains adjacent RhoGEF and pleckstrin homology (PH) domains, a second carboxy-terminal PH domain, and a distinctive FYVE domain. Together, these domains appear to form a canonical core structure for FGD1 family members. In addition, compared to other FGD1 family members, Fgd3 contains different structural regions that may be involved in distinct signaling interactions. Microinjection studies show that Fgd3 stimulates fibroblasts to form filopodia, actin microspikes formed upon the stimulation of Cdc42. Fgd3 transcripts are present in several diverse tissues and during mouse embryogenesis, suggesting a developmentally regulated pattern of expression and a potential role in embryonic development. Genetic linkage and radiation hybrid mapping data show that Fgd3 and the human FGD3 ortholog map to syntenic regions of murine chromosome 13 and human chromosome 9q22, respectively. We conclude that Fgd3 is a new and novel member of the FGD1 family of RhoGEF proteins.
Collapse
MESH Headings
- 3T3 Cells
- Abnormalities, Multiple/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosomes/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Facial Bones/abnormalities
- Gene Expression Regulation, Developmental
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/physiology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rho Guanine Nucleotide Exchange Factors
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Urogenital Abnormalities/genetics
- cdc42 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- N G Pasteris
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor 48109-0688, USA
| | | | | | | |
Collapse
|
284
|
Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG. Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci U S A 2000; 97:185-9. [PMID: 10618392 PMCID: PMC26637 DOI: 10.1073/pnas.97.1.185] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1999] [Accepted: 11/12/1999] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled cell proliferation is a major feature of cancer. Experimental cellular models have implicated some members of the Rho GTPase family in this process. However, direct evidence for active Rho GTPases in tumors or cancer cell lines has never been provided. In this paper, we show that endogenous, hyperactive Rac3 is present in highly proliferative human breast cancer-derived cell lines and tumor tissues. Rac3 activity results from both its distinct subcellular localization at the membrane and altered regulatory factors affecting the guanine nucleotide state of Rac3. Associated with active Rac3 was deregulated, persistent kinase activity of two isoforms of the Rac effector p21-activated kinase (Pak) and of c-Jun N-terminal kinase (JNK). Introducing dominant-negative Rac3 and Pak1 fragments into a breast cancer cell line revealed that active Rac3 drives Pak and JNK kinase activities by two separate pathways. Only the Rac3-Pak pathway was critical for DNA synthesis, independently of JNK. These findings identify Rac3 as a consistently active Rho GTPase in human cancer cells and suggest an important role for Rac3 and Pak in tumor growth.
Collapse
Affiliation(s)
- J P Mira
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
285
|
|
286
|
Kins S, Betz H, Kirsch J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci 2000; 3:22-9. [PMID: 10607391 DOI: 10.1038/71096] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of postsynaptic GABAA and glycine receptor clusters requires the receptor-associated peripheral membrane protein gephyrin. Here we describe two splice variants of a novel gephyrin-binding protein, termed collybistin I and II, which belong to the family of dbl-like GDP/GTP exchange factors (GEFs). Co-expression of collybistin II with gephyrin induced the formation of submembrane gephyrin aggregates that accumulate hetero-oligomeric glycine receptors. Our data suggest that collybistin II regulates the membrane deposition of gephyrin by activating a GTPase of the Rho/Rac family. Therefore, this protein may be an important determinant of inhibitory postsynaptic membrane formation and plasticity.
Collapse
Affiliation(s)
- S Kins
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstr. 46, D-60528 Frankfurt, Germany
| | | | | |
Collapse
|
287
|
Abstract
Rho GTPases regulate many important processes in all eukaryotic cells, including the organization of the actin cytoskeleton, gene transcription, cell cycle progression, and membrane trafficking. Their activity is regulated by signals originating from different classes of surface receptors including G-protein-coupled receptors, tyrosine kinase receptors, cytokine receptors, and adhesion receptors. Recent work has identified multiple mechanisms by which receptors can signal to Rho GTPases and this will be the major focus of this review. In addition, there is growing evidence for cross-talk within the Rho GTPase family as well as between the Rho and Ras GTPase families. These signaling networks are thought to provide the cooperative and coordinated interactions that are crucial for regulating complex biological processes such as cell migration.
Collapse
Affiliation(s)
- L Kjoller
- CRC Oncogene and Signal Transduction Group, Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
288
|
Movilla N, Bustelo XR. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 1999; 19:7870-85. [PMID: 10523675 PMCID: PMC84867 DOI: 10.1128/mcb.19.11.7870] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report here the identification and characterization of a novel Vav family member, Vav-3. Signaling experiments demonstrate that Vav-3 participates in pathways activated by protein tyrosine kinases. Vav-3 promotes the exchange of nucleotides on RhoA, on RhoG and, to a lesser extent, on Rac-1. During this reaction, Vav-3 binds physically to the nucleotide-free states of those GTPases. These functions are stimulated by tyrosine phosphorylation in wild-type Vav-3 and become constitutively activated upon deletion of the entire calponin-homology region. Expression of truncated versions of Vav-3 leads to drastic actin relocalization and to the induction of stress fibers, lamellipodia, and membrane ruffles. Moreover, expression of Vav-3 alters cytokinesis, resulting in the formation of binucleated cells. All of these responses need only the expression of the central region of Vav-3 encompassing the Dbl homology (DH), pleckstrin homology (PH), and zinc finger (ZF) domains but do not require the presence of the C-terminal SH3-SH2-SH3 regions. Studies conducted with Vav-3 proteins containing loss-of-function mutations in the DH, PH, and ZF regions indicate that only the DH and ZF regions are essential for Vav-3 biological activity. Finally, we show that one of the functions of the Vav-3 ZF region is to work coordinately with the catalytic DH region to promote both the binding to GTP-hydrolases and their GDP-GTP nucleotide exchange. These results highlight the role of Vav-3 in signaling and cytoskeletal pathways and identify a novel functional cross-talk between the DH and ZF domains of Vav proteins that is imperative for the binding to, and activation of, Rho GTP-binding proteins.
Collapse
Affiliation(s)
- N Movilla
- Department of Pathology, State University of New York at Stony Brook, University Hospital, Stony Brook, New York 11794-7025, USA
| | | |
Collapse
|
289
|
Whitehead IP, Lambert QT, Glaven JA, Abe K, Rossman KL, Mahon GM, Trzaskos JM, Kay R, Campbell SL, Der CJ. Dependence of Dbl and Dbs transformation on MEK and NF-kappaB activation. Mol Cell Biol 1999; 19:7759-70. [PMID: 10523665 PMCID: PMC84831 DOI: 10.1128/mcb.19.11.7759] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbs was identified initially as a transforming protein and is a member of the Dbl family of proteins (>20 mammalian members). Here we show that Dbs, like its rat homolog Ost and the closely related Dbl, exhibited guanine nucleotide exchange activity for the Rho family members RhoA and Cdc42, but not Rac1, in vitro. Dbs transforming activity was blocked by specific inhibitors of RhoA and Cdc42 function, demonstrating the importance of these small GTPases in Dbs-mediated growth deregulation. Although Dbs transformation was dependent upon the structural integrity of its pleckstrin homology (PH) domain, replacement of the PH domain with a membrane localization signal restored transforming activity. Thus, the PH domain of Dbs (but not Dbl) may be important in modulating association with the plasma membrane, where its GTPase substrates reside. Both Dbs and Dbl activate multiple signaling pathways that include activation of the Elk-1, Jun, and NF-kappaB transcription factors and stimulation of transcription from the cyclin D1 promoter. We found that Elk-1 and NF-kappaB, but not Jun, activation was necessary for Dbl and Dbs transformation. Finally, we have observed that Dbl and Dbs regulated transcription from the cyclin D1 promoter in a NF-kappaB-dependent manner. Previous studies have dissociated actin cytoskeletal activity from the transforming potential of RhoA and Cdc42. These observations, when taken together with those of the present study, suggest that altered gene expression, and not actin reorganization, is the critical mediator of Dbl and Rho family protein transformation.
Collapse
Affiliation(s)
- I P Whitehead
- Department of Microbiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Gold MR. Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol 1999; 245:77-134. [PMID: 10533311 DOI: 10.1007/978-3-642-57066-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
291
|
Rudolph MG, Weise C, Mirold S, Hillenbrand B, Bader B, Wittinghofer A, Hardt WD. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J Biol Chem 1999; 274:30501-9. [PMID: 10521431 DOI: 10.1074/jbc.274.43.30501] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGTPases are key regulators of eukaryotic cell physiology. The bacterial enteropathogen Salmonella typhimurium modulates host cell physiology by translocating specific toxins into the cytoplasm of host cells that induce responses such as apoptotic cell death in macrophages, the production of proinflammatory cytokines, the rearrangement of the host cell actin cytoskeleton (membrane ruffling), and bacterial entry into host cells. One of the translocated toxins is SopE, which has been shown to bind to RhoGTPases of the host cell and to activate RhoGTPase signaling. SopE is sufficient to induce profuse membrane ruffling in Cos cells and to facilitate efficient bacterial internalization. We show here that SopE belongs to a novel class of bacterial toxins that modulate RhoGTPase function by transient interaction. Surface plasmon resonance measurements revealed that the kinetics of formation and dissociation of the SopE.CDC42 complex are in the same order of magnitude as those described for complex formation of GTPases of the Ras superfamily with their cognate guanine nucleotide exchange factors (GEFs). In the presence of excess GDP, dissociation of the SopE.CDC42 complex was accelerated more than 1000-fold. SopE-mediated guanine nucleotide exchange was very efficient (e.g. exchange rates almost 10(5)-fold above the level of the uncatalyzed reaction; substrate affinity), and the kinetic constants were similar to those described for guanine nucleotide exchange mediated by CDC25 or RCC1. Far-UV CD spectroscopy revealed that SopE has a high content of alpha-helical structure, a feature also found in Dbl homology domains, Sec7-like domains, and the Ras-GEF domain of Sos. Despite the lack of any obvious sequence similarity, our data suggest that SopE may closely mimic eukaryotic GEFs.
Collapse
Affiliation(s)
- M G Rudolph
- Max von Pettenkofer-Institut, Ludwig Maximilians Universität, Pettenkoferstrasse 9a, 80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
292
|
Abe K, Whitehead IP, O'Bryan JP, Der CJ. Involvement of NH(2)-terminal sequences in the negative regulation of Vav signaling and transforming activity. J Biol Chem 1999; 274:30410-8. [PMID: 10521418 DOI: 10.1074/jbc.274.43.30410] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deletion of the NH(2)-terminal 65 amino acids of proto-Vav (to form onco-Vav) activates its transforming activity, suggesting that these sequences serve a negative regulatory role in Vav function. However, the precise role of these NH(2)-terminal sequences and whether additional NH(2)-terminal sequences are also involved in negative regulation have not been determined. Therefore, we generated additional NH(2)-terminal deletion mutants of proto-Vav that lack the NH(2)-terminal 127, 168, or 186 amino acids, and assessed their abilities to cause focus formation in NIH 3T3 cells and to activate different signaling pathways. Since Vav mutants lacking 168 or 186 NH(2)-terminal residues showed a several 100-fold greater focus forming activity than that seen with deletion of 65 residues, residues spanning 66 to 187 also contribute significantly to negative regulation of Vav transforming activity. The increase in Vav transforming activity correlated with the activation of the c-Jun, Elk-1, and NF-kappaB transcription factors, as well as increased transcription from the cyclin D1 promoter. Tyrosine 174 is a key site of phosphorylation by Lck in vitro and Lck-mediated phosphorylation has been shown to be essential for proto-Vav GEF function in vitro. However, we found that an NH(2)-terminal Vav deletion mutant lacking this tyrosine residue (DeltaN-186 Vav) retained the ability to be phosphorylated by Lck in vivo and Lck still caused enhancement of DeltaN-186 Vav signaling and transforming activity. Thus, Lck can stimulate Vav via a mechanism that does not involve Tyr(174) or removal of NH(2)-terminal regulatory activity. Finally, we found that NH(2)-terminal deletion enhanced the degree of Vav association with the membrane-containing particulate fraction and that an isolated NH(2)-terminal fragment (residues 1-186) could impair DeltaN-186 Vav signaling. Taken together, these observations suggest that the NH(2) terminus may serve as a negative regulator of Vav by intramolecular interaction with COOH-terminal sequences to modulate efficient membrane association.
Collapse
Affiliation(s)
- K Abe
- Department of Pharmacology, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
293
|
Movilla N, Crespo P, Bustelo XR. Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene 1999; 18:5860-9. [PMID: 10557073 DOI: 10.1038/sj.onc.1202968] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TC21 is a Ras-like GTPase with high oncogenic potential that is found mutated in some human tumors and overexpressed in breast cancer cell lines. We have conducted cellular and biochemical studies in order to understand the role of this protein in signal transduction and to unveil the signaling elements that participate in the TC21 pathway. Using gene transfer experiments, we demonstrate here that the TC21 oncogene can induce both cellular transformation in mouse fibroblasts and neuronal-like differentiation in rat PC12 cells. Interestingly, the proto-oncogenic version of TC21 shows also a lower, but significant, activity in both biological processes. We also demonstrate that the similarity of the cellular responses induced by TC21 and Ras derive from the utilization of overlapping pathways. Thus, the exchange of guanosine nucleotides in wild type TC21 is catalyzed by Ras exchange factors. Moreover, TC21 binds physically to c-Raf-1 in a GTP-dependent manner. Finally, overexpression of TC21G23V in NIH3T3 cells results in the activation of c-Raf-1 and the MAPK and the JNK branches of serine/threonine cascades. From these results, we conclude that TC21 promotes Ras-like responses in diverse cell types due to the use of overlapping, if not identical, signaling elements of the Ras oncogenic pathway.
Collapse
Affiliation(s)
- N Movilla
- Department of Pathology, State University of New York at Stony Brook, University Hospital, Level 2, Room 718-B, Stony Brook, New York, NY 11794-7025, USA
| | | | | |
Collapse
|
294
|
Rümenapp U, Blomquist A, Schwörer G, Schablowski H, Psoma A, Jakobs KH. Rho-specific binding and guanine nucleotide exchange catalysis by KIAA0380, a dbl family member. FEBS Lett 1999; 459:313-8. [PMID: 10526156 DOI: 10.1016/s0014-5793(99)01270-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several guanine nucleotide exchange factors (GEFs) for Rho-GTPases have been identified, all of them containing a Dbl homology (DH) and pleckstrin homology (PH) domain, but exhibiting different specificities to the Rho family members, Rho, Rac and Cdc42. We report here that KIAA0380, a protein with a tandem DH/PH domain, an amino-terminal PDZ domain and a regulator of G protein signalling (RGS) homology domain, is a specific GEF for RhoA, but not for Rac1 and Cdc42, as determined by GDP release, guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding and protein binding assays. When expressed in J82 cells, DH/PH domain-containing forms of KIAA0380 induced actin stress fibers, whereas expression of the RGS homology domain prevented lysophosphatidic acid (LPA)-induced stress fiber formation.
Collapse
Affiliation(s)
- U Rümenapp
- Institut für Pharmakologie, Universitätsklinikum Essen, Hufelandstr. 55, D-45122, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
295
|
Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 1999; 11:591-6. [PMID: 10508646 DOI: 10.1016/s0955-0674(99)00014-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reports in the past two years have shown that Cdc42, Rac1, and Rho - belonging to the Rho small GTPase family - participate in the regulation of cadherin-mediated cell-cell adhesion. IQGAP1, an effector of Cdc42 and Rac1, interacts with cadherin and beta-catenin and induces the dissociation of alpha-catenin from the cadherin-catenins complex leading to disruption of cell-cell adhesion: activated Cdc42 and Rac1 counteract the effect of IQGAP1. Thus, Cdc42 and Rac1 appear to regulate cadherin-mediated cell-cell adhesion acting through IQGAP1.
Collapse
Affiliation(s)
- K Kaibuchi
- Division of Signal Transduction Nara Institute of Science and Technology 8916-5, Takayama, Ikoma, 630-0101, Japan. kaibuchi@bs. aist-nara.ac.jp
| | | | | | | |
Collapse
|
296
|
Abstract
Regulators of G-protein signalling (RGS proteins) are a family of highly diverse, multifunctional signalling proteins that share a conserved 120 amino acid domain (RGS domain). RGS domains bind directly to activated Galpha subunits and act as GTPase-activating proteins (GAPs) to attenuate and/or modulate hormone and neurotransmitter receptor-initiated signalling by both Galpha-GTP and Gbetagamma. Apart from this structural domain, which is shared by all known RGS proteins, these proteins differ widely in their overall size and amino acid identity and possess a remarkable variety of structural domains and motifs. These biochemical features impart signalling functions and/or enable RGS proteins to interact with a growing list of unexpected protein-binding partners with diverse cellular roles. New appreciation for the broader cellular functions of RGS proteins challenges established models of G-protein signalling and serves to identify these proteins as central participants in receptor signalling and cell physiology.
Collapse
Affiliation(s)
- J R Hepler
- Department of Pharmacology, Emory University School of Medicine, 5009 Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
297
|
Benard V, Bokoch GM, Diebold BA. Potential drug targets: small GTPases that regulate leukocyte function. Trends Pharmacol Sci 1999; 20:365-70. [PMID: 10462759 DOI: 10.1016/s0165-6147(99)01367-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Leukocytes are not only important mediators of innate immunity, but they also induce and perpetuate inflammatory responses that are harmful to the host. Although inflammatory mediators activate leukocytes through a common heterotrimeric G protein (Gi) signalling intermediate, many downstream inflammatory functions are regulated by distinct small GTPases, which suggests that pharmacological modulation of small GTPase activity would be useful in developing specific anti-inflammatory therapies. The recent identification of multiple small GTPase effectors, the recognition of the role of GTPase regulatory proteins in directing downstream signalling from small GTPases, and detailed structural information on the GTPases themselves suggests new possibilities for the development of effective and selective anti-inflammatory drugs.
Collapse
Affiliation(s)
- V Benard
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
298
|
Pasteris NG, Gorski JL. Isolation, characterization, and mapping of the mouse and human Fgd2 genes, faciogenital dysplasia (FGD1; Aarskog syndrome) gene homologues. Genomics 1999; 60:57-66. [PMID: 10458911 DOI: 10.1006/geno.1999.5903] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase Cdc42. FGD1 gene mutations result in faciogenital dysplasia (FGDY, Aarskog syndrome), an X-linked developmental disorder that adversely affects the formation of multiple skeletal structures. Database searches show that the Caenorhabditis elegans genome contains an FGD1 homologue. Since C. elegans genes often have multiple vertebrate homologues, we hypothesized the existence of multiple mammalian FGD1-related sequences. Here we report the use of degenerate PCR to isolate and characterize the mouse and human Fgd2 genes, new members of the FGD1 gene family. Fgd2 cDNA encodes a 727-amino-acid protein with a predicted mass of 82 kDa. Fgd2 and FGD1 share a high degree of sequence identity that spans >560 contiguous amino acid residues. Fgd2, like FGD1, contains adjacent RhoGEF and PH domains, a second carboxy-terminal PH domain, and a distinctive FYVE domain. Genomic PCR studies indicate some degree of conserved gene structure between Fgd2 and FGD1. Fgd2 transcripts are present in several diverse tissues and during mouse embryogenesis, suggesting a role in embryonic development. Genetic linkage and radiation hybrid mapping data show that Fgd2 and the human FGD2 ortholog map to syntenic regions of murine chromosome 17 and human chromosome 6p21.2, respectively. The observation that all FGD1 gene family members contain equivalent signaling domains and a conserved structural organization strongly suggests that these signaling domains form a canonical core structure for members of the FGD1 family of RhoGEF proteins.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Chromosome Mapping
- Chromosomes/genetics
- Chromosomes, Human, Pair 6/genetics
- Cloning, Molecular
- DNA Primers
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Facial Bones/abnormalities
- Facial Bones/metabolism
- GTP-Binding Proteins/genetics
- Guanine Nucleotide Exchange Factors
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Sequence Data
- Muridae
- Polymerase Chain Reaction
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Urogenital Abnormalities/genetics
Collapse
Affiliation(s)
- N G Pasteris
- Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, Michigan, 48109-0688, USA
| | | |
Collapse
|
299
|
Lin R, Cerione RA, Manor D. Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem 1999; 274:23633-41. [PMID: 10438546 DOI: 10.1074/jbc.274.33.23633] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl is a representative prototype of a growing family of oncogene products that contain the Dbl homology/pleckstrin homology elements in their primary structures and are associated with a variety of neoplastic pathologies. Members of the Dbl family have been shown to function as physiological activators (guanine nucleotide exchange factors) of the Rho-like small GTPases. Although the expression of GTPase-defective versions of Rho proteins has been shown to induce a transformed phenotype under different conditions, their transformation capacity has been typically weak and incomplete relative to that exhibited by dbl-like oncogenes. Moreover, in some cases (e.g. NIH3T3 fibroblasts), expression of GTPase-defective Cdc42 results in growth inhibition. Thus, in attempting to reconstitute dbl-induced transformation of NIH3T3 fibroblasts, we have generated spontaneously activated ("fast-cycling") mutants of Cdc42, Rac1, and RhoA that mimic the functional effects of activation by the Dbl oncoprotein. When stably expressed in NIH3T3 cells, all three mutants caused the loss of serum dependence and showed increased saturation density. Furthermore, all three stable cell lines were tumorigenic when injected into nude mice. Our data demonstrate that all three Dbl targets need to be activated to promote the full complement of Dbl effects. More importantly, activation of each of these GTP-binding proteins contributes to a different and distinct facet of cellular transformation.
Collapse
Affiliation(s)
- R Lin
- Department of Molecular Medicine, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
300
|
Abstract
Cadherins belong to a superfamily of cell-cell adhesion receptors that bind to the same type of molecules (homotypic interaction) in a calcium dependent manner. Different members of the family are found in a wide variety of cell types and cadherin adhesive function plays a role in cell fate, segregation, and differentiation, which ensures the higher order of organisation found in many tissues. This review will focus on the role that cadherin adhesiveness plays in the differentiation of epithelial cells, and how cadherin function can be regulated by proteins of the small GTPase family. In the text, readers are referred to recent reviews and other chapters covering important topics that are not discussed here because of space limitation.
Collapse
Affiliation(s)
- V M Braga
- MRC Laboratory for Molecular Cell Biology, University College London, UK.
| |
Collapse
|