251
|
Solski PA, Wilder RS, Rossman KL, Sondek J, Cox AD, Campbell SL, Der CJ. Requirement for C-terminal sequences in regulation of Ect2 guanine nucleotide exchange specificity and transformation. J Biol Chem 2004; 279:25226-33. [PMID: 15073184 DOI: 10.1074/jbc.m313792200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ect2 was identified originally as a transforming protein and a member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs). Like all Dbl family proteins, Ect2 contains a tandem Dbl homology (DH) and pleckstrin homology (PH) domain structure. Previous studies demonstrated that N-terminal deletion of sequences upstream of the DH domain created a constitutively activated, transforming variant of Ect2 (designated DeltaN-Ect2 DH/PH/C), indicating that the N terminus served as a negative regulator of DH domain function in vivo. The role of sequences C-terminal to the DH domain has not been established. Therefore, we assessed the consequences of mutation of C-terminal sequences on Ect2-transforming activity. Surprisingly, in contrast to observations with other Dbl family proteins, we found that mutation of the invariant tryptophan residue in the PH domain did not impair DeltaN-Ect2 DH/PH/C transforming activity. Furthermore, although the sequences C-terminal to the PH domain lack any known functional domains or motifs, deletion of these sequences (DeltaN-Ect2 DH/PH) resulted in a dramatic reduction in transforming activity. Whereas DeltaN-Ect2 caused formation of lamellipodia, DeltaN-Ect2 DH/PH enhanced actin stress fiber formation, suggesting that C-terminal sequences influenced Ect2 Rho GTPase specificity. Consistent with this possibility, we determined that DeltaN-Ect2 DH/PH activated RhoA, but not Rac1 or Cdc42, whereas DeltaN-Ect2 DH/PH/C activated all three Rho GTPases in vivo. Taken together, these observations suggest that regions of Ect2 C-terminal to the DH domain alter the profile of Rho GTPases activated in vivo and consequently may contribute to the enhanced transforming activity of DeltaN-Ect2 DH/PH/C.
Collapse
Affiliation(s)
- Patricia A Solski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
252
|
Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T, Luo J, Thompson JA, Schraven BL, Philips MR, Neel BG. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 2004; 13:341-55. [PMID: 14967142 DOI: 10.1016/s1097-2765(04)00050-4] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 12/10/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The protein-tyrosine phosphatase Shp2 plays an essential role in growth factor and integrin signaling, and Shp2 mutations cause developmental defects and/or malignancy. Previous work has placed Shp2 upstream of Ras. However, the mechanism of Shp2 action and its substrate(s) are poorly defined. Additional Shp2 functions downstream of, or parallel to, Ras/Erk activation also are proposed. Here, we show that Shp2 promotes Src family kinase (SFK) activation by regulating the phosphorylation of the Csk regulator PAG/Cbp, thereby controlling Csk access to SFKs. In Shp2-deficient cells, SFK inhibitory C-terminal tyrosines are hyperphosphorylated, and the tyrosyl phosphorylation of multiple SFK substrates, including Plcgamma1, is decreased. Decreased Plcgamma1 phosphorylation leads to defective Ras activation on endomembranes, and may help account for impaired Erk activation in Shp2-deficient cells. Decreased phosphorylation/activation of other SFK substrates may explain additional consequences of Shp2 deficiency, including altered cell spreading, stress fibers, focal adhesions, and motility.
Collapse
Affiliation(s)
- Si Qing Zhang
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, MA 02115 USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Abstract
There is now considerable evidence for the involvement of aberrant Rho GTPase activation in breast cancer development. Like Ras, Rho GTPases function as signaling nodes regulated by diverse extracellular stimuli. Rho GTPase activation is facilitated by multiple regulatory proteins, in particular guanine nucleotide exchange factors (GEFs) such as Dbl family proteins. Activated Rho GTPases in turn interact with and regulate a spectrum of functionally diverse downstream effectors, initiating a network of cytoplasmic and nuclear signaling cascades. Thus, Rho GTPases represent points of signaling convergence as well as relay switches that disseminate signaling divergence. In this review, we highlight issues relating to the structural basis by which Dbl family GEFs facilitate signaling convergence and Rho GTPase activation, and how Rho GTPases promote signal dissemination through downstream effectors.
Collapse
Affiliation(s)
- Antoine E Karnoub
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
254
|
Shimada Y, Wiget P, Gulli MP, Bi E, Peter M. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J 2004; 23:1051-62. [PMID: 14988726 PMCID: PMC380979 DOI: 10.1038/sj.emboj.7600124] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 01/19/2004] [Indexed: 11/09/2022] Open
Abstract
Site-specific activation of the Rho-type GTPase Cdc42p by its guanine-nucleotide exchange factor (GEF) Cdc24p is critical for the establishment of cell polarity. Here we show that binding of Cdc24p to the small GTPase Rsr1p/Bud1p is required for its recruitment to the incipient bud site. Rsr1p/Bud1p binds to the CH-domain of Cdc24p, which is essential for its function in vivo. We have identified a cdc24-mutant allele, which is specifically defective for bud-site selection. Our results suggest that Cdc24p is auto-inhibited by an intramolecular interaction with its carboxy-terminal PB1-domain. Rsr1p/Bud1p appears to activate the GEF activity of Cdc24p in vivo, possibly by triggering a conformational change that dissociates the PB1-domain from its intramolecular binding site. Genetic experiments suggest that Bem1p functions as a positive regulator of Cdc24p by binding to the PB1-domain of Cdc24p, thereby preventing its re-binding to the intramolecular inhibitory site. Taken together, our results support a two-step molecular mechanism for the site-specific activation of Cdc24p, which involves Rsr1p/Bud1p and the adaptor protein Bem1p.
Collapse
Affiliation(s)
- Yukiko Shimada
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
| | - Philippe Wiget
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
| | - Marie-Pierre Gulli
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges/VD, Switzerland
| | - Efrei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthias Peter
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, Zurich, Switzerland
- Swiss Federal Institute of Technology Zurich (ETH), Institute of Biochemistry, ETH Hoenggerberg HPM G 6.2, 8093 Zurich, Switzerland. Tel.: +41 1 632 3134; Fax: +41 1 632 1269; E-mail:
| |
Collapse
|
255
|
Guo F, Zheng Y. Involvement of Rho family GTPases in p19Arf- and p53-mediated proliferation of primary mouse embryonic fibroblasts. Mol Cell Biol 2004; 24:1426-38. [PMID: 14729984 PMCID: PMC321455 DOI: 10.1128/mcb.24.3.1426-1438.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho family GTPases Rac1, RhoA, and Cdc42 function as molecular switches that transduce intracellular signals regulating gene expression and cell proliferation as well as cell migration. p19(Arf) and p53, on the other hand, are tumor suppressors that act both independently and sequentially to regulate cell proliferation. To investigate the functional interaction and cooperativeness of Rho GTPases with the p19(Arf)-p53 pathway, we examined the contribution of Rho GTPases to the gene transcription and cell proliferation unleashed by deletion of p19Arf or p53 in primary mouse embryo fibroblasts. We found that (i) p19(Arf) or p53 deficiency led to a significant increase in PI 3-kinase activity, which in turn upregulated RhoA and Rac1 activities; (ii) deletion of p19Arf or p53 led to an increase in cell growth rate that was in part dependent on RhoA, Rac1, and Cdc42 activities; (iii) p19(Arf) or p53 deficiency caused an enhancement of the growth-related transcription factor NF-kappa B and cyclin D1 activities that are partly dependent on RhoA or Cdc42 but not on Rac1; (iv) forced expression of the activating mutants of Rac1, RhoA, or Cdc42 caused a hyperproliferative phenotype of the p19Arf(-/-) and p53(-/-) cells and promoted transformation of both cells; (v) RhoA appeared to contribute to p53-regulated cell proliferation by modulating cell cycle machinery, while hyperactivation of RhoA further suppressed a p53-independent apoptotic signal; and (vi) multiple pathways regulated by RhoA, including that of Rho-kinase, were required for RhoA to fully promote the transformation of p53(-/-) cells. Taken together, these results provide strong evidence indicating that signals through the Rho family GTPases can both contribute to cell growth regulation by p19Arf and p53 and cooperate with p19Arf or p53 deficiency to promote primary cell transformation.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
256
|
Toenjes KA, Simpson D, Johnson DI. Separate membrane targeting and anchoring domains function in the localization of the S. cerevisiae Cdc24p guanine nucleotide exchange factor. Curr Genet 2004; 45:257-64. [PMID: 14872283 DOI: 10.1007/s00294-004-0485-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 12/18/2003] [Accepted: 12/20/2003] [Indexed: 11/27/2022]
Abstract
The Saccharomyces cerevisiae Cdc24p guanine nucleotide exchange factor (GEF) activates the Cdc42p GTPase to a GTP-bound state. Cdc42p and Cdc24p co-localize at polarized growth sites during the cell cycle; and analysis of Cdc24p carboxyl-terminal truncation and site-specific mutations identified a 56-amino-acid domain as being necessary and sufficient for localization to these sites. This domain, however, was unable to anchor Cdc24p at these sites. Anchoring was restored by fusing the targeting domain to either the Cdc24p carboxyl-terminal PC domain that interacts with the Bem1p scaffold protein or the Cdc42p KKSKKCTIL membrane-anchoring domain. Mutant analysis and protein solubilization data indicated that anchoring required Bem1p, the Rsr1p/Bud1p GTPase, and the potential transmembrane protein YGR221Cp/Tos2p. These data are consistent with Cdc24p localization being a function of both membrane-specific targeting and subsequent anchoring within a multi-protein complex. Given the highly conserved roles of GEFs in Cdc42p signaling pathways, it is likely that similar targeting and anchoring mechanisms exist for Rho GEFs in other eukaryotes.
Collapse
Affiliation(s)
- Kurt A Toenjes
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
257
|
Abstract
Rho GTPases control signal transduction pathways that link cell surface receptors to a variety of intracellular responses. They are best known as regulators of the actin cytoskeleton, but in addition they control cell polarity, gene expression, microtubule dynamics and vesicular trafficking. Through these diverse functions, Rho GTPases influence many aspects of cell behavior. This review will focus specifically on their role in cell migration.
Collapse
Affiliation(s)
- Myrto Raftopoulou
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
258
|
Miyakoshi A, Ueno N, Kinoshita N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 2004; 72:48-55. [PMID: 15008826 DOI: 10.1111/j.1432-0436.2004.07201004.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During Xenopus development, embryonic cells dramatically change their shape and position. Rho family small GTPases, such as RhoA, Rac, and Cdc42, play important roles in this process. These GTPases are generally activated by guanine nucleotide exchange factors (GEFs); however, the roles of RhoGEFs in Xenopus development have not yet been elucidated. We therefore searched for RhoGEF genes in our Xenopus EST database, and we identified several genes expressed during embryogenesis. Among them, we focused on one gene, designated xNET1. It is similar to mammalian NET1, a RhoA-specific GEF. An in vitro binding assay revealed that xNET1 bound to RhoA, but not to Rac or Cdc42. In addition, transient expression of xNET1 activated endogenous RhoA. These results indicated that xNET1 is a GEF for RhoA. Epitope-tagged xNET1 was localized mainly to the nucleus, and the localization was regulated by nuclear localization signals in the N-terminal region of xNET1. Overexpression of either wild-type or a mutant form of xNET1 severely inhibited gastrulation movements. We demonstrated that xNET1 was co-immunoprecipitated with the Dishevelled protein, which is an essential signaling component in the non-canonical Wnt pathway. This pathway has been shown to activate RhoA and regulate gastrulation movements. We propose that xNET1 or a similar RhoGEF may mediate Dishevelled signaling to RhoA in the Wnt pathway.
Collapse
Affiliation(s)
- Akira Miyakoshi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji Okazaki, Aichi 444-8585, Japan
| | | | | |
Collapse
|
259
|
Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 2004; 23:233-40. [PMID: 14712228 DOI: 10.1038/sj.onc.1207012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PDZ-RhoGEF, LARG, and p115RhoGEF are members of a newly identified family of Rho-guanine nucleotide exchange factors (GEFs) exhibiting a unique structural feature consisting of the presence of an area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a functional motif by which Galpha(12) and Galpha(13) can bind and regulate the activity of these RhoGEFs, thus providing a direct link from these heterotrimeric G proteins to Rho. PDZ-RhoGEF and LARG can also be phosphorylated by tyrosine kinases, including FAK, and associate with Plexin B, a semaphorin receptor, which controls axon guidance during development, through their PDZ domain, thereby stimulating Rho. Interestingly, while characterizing a PDZ-RhoGEF antiserum, we found that a transfected PDZ-RhoGEF construct associated with the endogenous PDZ-RhoGEF. Indeed, we observed that PDZ-RhoGEF and LARG can form homo- and hetero-oligomers, whereas p115RhoGEF can only homo-oligomerize, and that this intermolecular interaction was mediated by their unique C-terminal regions. Deletion of the C-terminal tail of PDZ-RhoGEF had no significant effect on the GEF catalytic activity towards Rho in vitro, but resulted in a drastic increase in the ability to stimulate a serum response element reporter and the accumulation of the GTP-bound Rho in vivo. Furthermore, removal of the C-termini of each of the three RGL-containing GEFs unleashed their full transforming potential. Together, these findings suggest the existence of a novel mechanism controlling the activity of PDZ-RhoGEF, LARG, and p115RhoGEF, which involves homo- and hetero-oligomerization through their inhibitory C-terminal region.
Collapse
Affiliation(s)
- Hiroki Chikumi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | | | | | |
Collapse
|
260
|
Banerjee J, Wedegaertner PB. Identification of a novel sequence in PDZ-RhoGEF that mediates interaction with the actin cytoskeleton. Mol Biol Cell 2004; 15:1760-75. [PMID: 14742719 PMCID: PMC379273 DOI: 10.1091/mbc.e03-07-0527] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small GTPases of the Rho family are crucial regulators of actin cytoskeleton rearrangements. Rho is activated by members of the Rho guanine-nucleotide exchange factor (GEF) family; however, mechanisms that regulate RhoGEFs are not well understood. This report demonstrates that PDZ-RhoGEF, a member of a subfamily of RhoGEFs that contain regulator of G protein signaling domains, is partially localized at or near the plasma membranes in 293T, COS-7, and Neuro2a cells, and this localization is coincident with cortical actin. Disruption of the cortical actin cytoskeleton in cells by using latrunculin B prevents the peri-plasma membrane localization of PDZ-RhoGEF. Coimmunoprecipitation and F-actin cosedimentation assays demonstrate that PDZ-RhoGEF binds to actin. Extensive deletion mutagenesis revealed the presence of a novel 25-amino acid sequence in PDZ-RhoGEF, located at amino acids 561-585, that is necessary and sufficient for localization to the actin cytoskeleton and interaction with actin. Last, PDZ-RhoGEF mutants that fail to interact with the actin cytoskeleton display enhanced Rho-dependent signaling compared with wild-type PDZ-RhoGEF. These results identify interaction with the actin cytoskeleton as a novel function for PDZ-RhoGEF, thus implicating actin interaction in organizing PDZ-RhoGEF signaling.
Collapse
Affiliation(s)
- Jayashree Banerjee
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
261
|
Debreceni B, Gao Y, Guo F, Zhu K, Jia B, Zheng Y. Mechanisms of Guanine Nucleotide Exchange and Rac-mediated Signaling Revealed by a Dominant Negative Trio Mutant. J Biol Chem 2004; 279:3777-86. [PMID: 14597635 DOI: 10.1074/jbc.m308282200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rho family GTPases play important roles in a variety of cellular processes, including actin cytoskeleton reorganization, transcription activation, and DNA synthesis. Dominant negative mutants of Rho GTPases, such as T17NRac1, that block the endogenous Rho protein activation by sequestering upstream guanine nucleotide exchange factors (GEFs) have been widely used to implicate specific members of the Rho family in various signaling pathways. We show here that such an approach could produce potentially misleading results since many Rho GEFs can interact with multiple Rho proteins promiscuously, and overexpression of one dominant negative Rho protein mutant may affect the activity of other members of the Rho family. Based on the available structural information, we have identified the highly conserved amino acid pairing of Asn(1406)Trio-Asp(65)Rac1 of the GEF-Rho GTPase interaction as the critical catalytic machinery required for the Rac1 GDP/GTP exchange reaction. The N1406A/D1407A mutant of Trio acted dominant negatively in vitro by retaining Rac1 binding activity but losing GEF catalytic activity and competitively inhibited Rac1 activation by wild type Trio. It readily blocked the platelet-derived growth factor (PDGF)-induced lamellipodia formation and inhibited the wild type Trio-induced serum response factor activation. Moreover the mutant was able to selectively inhibit Dbl-induced Rac1 activation without affecting RhoA activity in cells. In contrast to the non-discriminative inhibitory effect displayed by T17NRac1, the Trio mutant was ineffective in inhibiting PDGF-stimulated DNA synthesis and Dbl-induced transformation, revealing the Rac-independent functions of PDGF and Dbl. These studies identify a conserved pair of amino acid residues of the Trio-Rac interaction that is likely to be essential to the GEF catalysis of Rho family GTPases and demonstrate that a dominant negative mutant derived from a Rho GTPase regulator constitutes a new generation of specific inhibitors of Rho GTPase signaling pathways.
Collapse
Affiliation(s)
- Balazs Debreceni
- Division of Experimental Hematology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
262
|
Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JGN, Verin AD. Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 2004; 67:64-77. [PMID: 14709404 DOI: 10.1016/j.mvr.2003.09.007] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thrombin-induced barrier dysfunction of pulmonary endothelial monolayer is associated with dramatic cytoskeletal reorganization, activation of actomyosin contraction, and gap formation. Phosphorylation of regulatory myosin light chains (MLC) is a key mechanism of endothelial cell (EC) contraction and barrier dysfunction, which is triggered by Ca(2+)/calmodulin-dependent MLC kinase (MLCK) and Rho-associated kinase (Rho-kinase). The role of MLCK in EC barrier regulation has been previously described; however, Rho-mediated pathway in thrombin-induced pulmonary EC dysfunction is not yet precisely characterized. Here, we demonstrate that thrombin-induced decreases in transendothelial electrical resistance (TER) indicating EC barrier dysfunction are universal for human and bovine pulmonary endothelium, and involve membrane translocation and direct activation of small GTPase Rho and its downstream target Rho-kinase. Transient Rho membrane translocation coincided with translocation of upstream Rho activator, guanosine nucleotide exchange factor p115-RhoGEF. Rho mediated activation of downstream target, Rho-kinase induced phosphorylation of the EC MLC phosphatase (MYPT1) at Thr(686) and Thr(850), resulting in MYPT1 inactivation, accumulation of diphospho-MLC, actin remodeling, and cell contraction. The specific Rho-kinase inhibitor, Y27632, abolished MYPT1 phosphorylation, MLC phosphorylation, significantly attenuated stress fiber formation and thrombin-induced TER decrease. Furthermore, expression of dominant-negative Rho and Rho-kinase abolished thrombin-induced stress fiber formation and MLC phosphorylation. Our data, which provide comprehensive analysis of Rho-mediated signal transduction in pulmonary EC, demonstrate involvement of guanosine nucleotide exchange factor, p115-RhoGEF, in thrombin-mediated Rho regulation, and suggest Rho, Rho-kinase, and MYPT1 as potential pharmacological and gene therapy targets critical for prevention of thrombin-induced EC barrier disruption and pulmonary edema associated with acute lung injury.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
263
|
Brecht M, Steenvoorden ACM, Collard JG, Luf S, Erz D, Bartram CR, Janssen JWG. Activation ofgef-h1, a guanine nucleotide exchange factor for RhoA, by DNA transfection. Int J Cancer 2004; 113:533-40. [PMID: 15455375 DOI: 10.1002/ijc.20626] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several oncogenes isolated by the NIH/3T3 transformation assay, i.e., dbl, dbs, lbc, lfc, lsc, net, ost and tim, contain a Dbl homology (DH) and a pleckstrin-homology (PH) domain and act as GEFs (guanine nucleotide exchange factors) for Rho-like GTPases. In a search for genes with oncogenic potential in DNA from the monocytic leukaemia cell line U937, we identified an amino-terminal truncated form of gef-h1, a gene encoding a GEF for RhoA. These data support the idea that a systematic search for mutations and/or deletions of GEFs in human cancer is promising.
Collapse
Affiliation(s)
- Marcus Brecht
- University of Heidelberg, Institute of Human Genetics, Im Neunheimer Feld 366, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
264
|
Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva I, Garcia JGN, Verin AD. Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: Role of Rho-dependent mechanisms. J Cell Physiol 2004; 201:55-70. [PMID: 15281089 DOI: 10.1002/jcp.20055] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Barrier dysfunction of pulmonary endothelial monolayer is associated with dramatic cytoskeletal reorganization, activation of actomyosin contractility, and gap formation. The linkage between the microtubule (MT) network and the contractile cytoskeleton has not been fully explored, however, clinical observations suggest that intravenous administration of anti-cancer drugs and MT inhibitors (such as the vinca alkaloids) can lead to the sudden development of pulmonary edema in breast cancer patients. In this study, we investigated the crosstalk between MT and actomyosin cytoskeleton and characterized specific molecular mechanisms of endothelial cells (EC) barrier dysfunction induced by MT inhibitor nocodazole (ND). Our results demonstrate that MT disassembly by ND induced rapid decreases in transendothelial electrical resistance (TER) and actin cytoskeletal remodeling, indicating EC barrier dysfunction. These effects involved ND-induced activation of Rho GTPase. Rho-mediated activation of its downstream target, Rho-kinase, induced phosphorylation of Rho-kinase effector EC MLC phosphatase (MYPT1) at Thr(696) and Thr(850) resulting in MYPT1 inactivation. Phosphatase inhibition leaded to accumulation of diphospho-MLC, which induced acto-myosin polymerization, stress fiber formation and gap formation. Inhibition of Rho-kinase by Y27632 abolished ND-induced MYPT1 phosphorylation, MLC phosphorylation, and stress fiber formation. In addition, MT preservation via the MT stabilizer paclitaxel, Rho inhibition (via C3 exotoxin, or dominant negative (DN)-Rho, or DN-Rho-kinase) attenuated ND-induced TER decreases, stress fiber formation and MLC phosphorylation. Collectively, our results demonstrate a leading role for Rho-dependent mechanisms in crosstalk between the MT and actomyosin cytoskeleton, and suggest Rho-kinase and MYPT1 as major Rho effectors mediating pulmonary EC barrier disruption in response to ND-induced MT disassembly.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
|
266
|
Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR. Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem 2003; 279:7098-104. [PMID: 14660612 DOI: 10.1074/jbc.m311911200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Rho-ROCK pathway modulates the phosphorylation level of a variety of important signaling proteins and is thereby involved in miscellaneous cellular processes including cell migration, neurite outgrowth, and smooth muscle contraction. The observation of the involvement of the Rho-ROCK pathway in tumor invasion and in diseases such as hypertension and bronchial asthma makes it an interesting target for drug development. We herein present the crystal structure of the complex between active RhoA and the Rho-binding domain of ROCKI. The Rho-binding domain structure forms a parallel alpha-helical coiled-coil dimer and, in contrast to the published Rho-protein kinase N structure, binds exclusively to the switch I and II regions of the guanosine 5'-(beta,gamma-imido)triphosphate-bound RhoA. The switch regions of two different RhoA molecules form a predominantly hydrophobic patch, which is complementarily bound by two identical short helices of 13 residues (amino acids 998-1010). The identified ROCK-binding site of RhoA strikingly supports the assumption of a common consensus-binding site for effector recognition.
Collapse
Affiliation(s)
- Radovan Dvorsky
- Max-Planck-Institute fuer Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
267
|
Abstract
PURPOSE The prognosis of patients with bladder cancer is strongly dependent on whether the lesion is superficial or invasive at initial presentation. In addition, a significant fraction of patients presenting with superficial disease have invasive tumor during followup. Understanding how superficial bladder cancer progresses to invasive forms of the disease is of paramount importance for early diagnosis and successful treatment. Molecular mechanisms underlying bladder cancer progression are being elucidated. We reviewed the roles that members of the Ras superfamily of monomeric G proteins, an important class of cellular regulator, have in bladder cancer and its progression. MATERIALS AND METHODS We performed MEDLINE searches focusing on members of the Ras superfamily of monomeric G proteins and their involvement in transitional cell carcinoma, which is the most common form of bladder cancer. General involvement in cancer of key superfamily members, focusing on mechanisms and downstream pathways, was also reviewed through MEDLINE and manual bibliographic searches. RESULTS With more than 100 members in humans the Ras superfamily is a diverse group of monomeric G proteins. These proteins regulate many cellular processes, such as cell cycle progression, actin cytoskeletal dynamics and membrane traffic. Members of the Ras and Rho family are also known to be involved in human cancer through mutation, over expression and dysregulation. In this review we focus on bladder cancer. In particular we focus on how H-Ras, RalA/B and RhoGDI2, a regulator of Rho family members, participate in bladder cancer progression and how their participation may be related to other molecules associated with bladder cancer progression, such as epidermal growth factor receptor, p53 and PTEN (phosphatase and tensin homologue deleted on chromosome 10). CONCLUSIONS The findings discussed offer the hopeful possibility that signaling pathways mediated by Ras superfamily members may offer new opportunities for diagnostic and therapeutic interventions in bladder cancer.
Collapse
Affiliation(s)
- Gary Oxford
- Department of Urology, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | | |
Collapse
|
268
|
Jacobson JR, Dudek SM, Birukov KG, Ye SQ, Grigoryev DN, Girgis RE, Garcia JGN. Cytoskeletal activation and altered gene expression in endothelial barrier regulation by simvastatin. Am J Respir Cell Mol Biol 2003; 30:662-70. [PMID: 14630613 DOI: 10.1165/rcmb.2003-0267oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The statins, a class of HMG-CoA reductase inhibitors, directly affect multiple vascular processes via inhibition of geranylgeranylation, a covalent modification essential for Rho GTPase interaction with cell membrane-bound activators. We explored simvastatin effects on endothelial cell actomyosin contraction, gap formation, and barrier dysfunction produced by the edemagenic agent, thrombin. Human pulmonary artery endothelial cells exposed to prolonged simvastatin treatment (5 microM, 16 h) demonstrated significant reductions in thrombin-induced (1 U/ml) barrier dysfunction ( approximately 70% inhibition) with accelerated barrier recovery, as measured by transendothelial resistance. Furthermore, simvastatin attenuated basal and thrombin-stimulated (1 U/ml, 5 min) myosin light chain diphosphorylation and stress fiber formation while dramatically increasing peripheral immunostaining of actin and cortactin, an actin-binding protein, in conjunction with increased Rac GTPase activity. As both simvastatin-induced Rac activation and barrier protection were delayed (maximal after 16 h), we assessed the role of gene expression and protein translation in the simvastatin response. Simultaneous treatment with cycloheximide (10 microg/ml, 16 h) abolished simvastatin-mediated barrier protection. Robust alterations were noted in the expression of cytoskeletal proteins (caldesmon, integrin beta4), thrombin regulatory elements (PAR-1, thrombomodulin), and signaling genes (guanine nucleotide exchange factors) in response to simvastatin by microarray analysis. These novel observations have broad clinical implications in numerous vascular pathobiologies characterized by alterations in vascular integrity including inflammation, angiogenesis, and acute lung injury.
Collapse
Affiliation(s)
- Jeffrey R Jacobson
- Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
269
|
Wang L, Yang L, Luo Y, Zheng Y. A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells. J Biol Chem 2003; 278:44617-25. [PMID: 12939257 DOI: 10.1074/jbc.m308929200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Rho family GTPases RhoA, RhoB, and RhoC regulate the actin cytoskeleton, cell movement, and cell growth. Unlike Ras, up-regulation or overexpression of these GDP/GTP binding molecular switches, but not activating point mutations, has been associated with human cancer. Although they share over 85% sequence identity, RhoA, RhoB, and RhoC appear to play distinct roles in cell transformation and metastasis. In NIH 3T3 cells, RhoA or RhoB overexpression causes transformation whereas RhoC increases the cell migration rate. To specifically target RhoA, RhoB, or RhoC function, we have generated a set of chimeric molecules by fusing the RhoGAP domain of p190, a GTPase-activating protein that accelerates the intrinsic GTPase activity of all three Rho GTPases, with the C-terminal hypervariable sequences of RhoA, RhoB, or RhoC. The p190-Rho chimeras were active as GTPase-activating proteins toward RhoA in vitro, co-localized with the respective active Rho proteins, and specifically down-regulated Rho protein activities in cells depending on which Rho GTPase sequences were included in the chimeras. In particular, the p190-RhoA-C chimera specifically inhibited RhoA-induced transformation whereas p190-RhoC-C specifically reversed the migration phenotype induced by the active RhoC. In human mammary epithelial-RhoC breast cancer cells, p190-RhoC-C, but not p190-RhoA-C or p190-RhoB-C, reversed the anchorage-independent growth and invasion phenotypes caused by RhoC overexpression. In the highly metastatic A375-M human melanoma cells, p190-RhoC-C specifically reversed migration, and invasion phenotypes attributed to RhoC up-regulation. Thus, we have developed a novel strategy utilizing RhoGAP-Rho chimeras to specifically down-regulate individual Rho activity and demonstrate that this approach may be applied to multiple human tumor cells to reverse the growth and/or invasion phenotypes associated with disregulation of a distinct subtype of Rho GTPase.
Collapse
Affiliation(s)
- Lei Wang
- Division of Experimental Hematology and Molecular Developmental Biology Program, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
270
|
Gupta S, Fanzo JC, Hu C, Cox D, Jang SY, Lee AE, Greenberg S, Pernis AB. T cell receptor engagement leads to the recruitment of IBP, a novel guanine nucleotide exchange factor, to the immunological synapse. J Biol Chem 2003; 278:43541-9. [PMID: 12923183 DOI: 10.1074/jbc.m308960200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reorganization of the actin cytoskeleton is crucial to the formation and function of the immunological synapse. Rho GTPases are critical mediators of cytoskeletal reorganization, and their activity at the synapse is likely to be stringently regulated. Guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins represent one major class of proteins that regulate the activity of Rho GTPases. Here we demonstrate that IBP, a homologue of SWAP-70, is a novel GEF for Rac1 and Cdc42 in T lymphocytes, which is recruited to the immunological synapse upon engagement of the antigen receptor. Mutational analysis supports a model whereby IBP is inactive in unstimulated cells. Upon engagement of the T cell receptor, its GEF activity is enhanced by tyrosine phosphorylation, as well as by binding newly generated phosphatidylinositol 3,4,5-trisphosphate. Although it is known that T cell receptor engagement leads to the recruitment of Vav to the immunological synapse, these findings indicate that other GEFs, such as IBP, also relocalize to this intercellular region. The recruitment and activation of distinct classes of GEFs may allow for precise control of Rho GTPase function at the crucial interface between T cells and antigen presenting cells.
Collapse
Affiliation(s)
- Sanjay Gupta
- Departments of Medicine and Medicine and Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
271
|
Niu J, Profirovic J, Pan H, Vaiskunaite R, Voyno-Yasenetskaya T. G Protein βγ Subunits Stimulate p114RhoGEF, a Guanine Nucleotide Exchange Factor for RhoA and Rac1. Circ Res 2003; 93:848-56. [PMID: 14512443 DOI: 10.1161/01.res.0000097607.14733.0c] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GTPases integrate the intracellular signaling in a wide range of cellular processes. Activation of these G proteins is tightly controlled by a number of guanine nucleotide exchange factors (GEFs). In this study, we addressed the functional role of the recently identified p114RhoGEF in in vivo experiments. Activation of endogenous G protein-coupled receptors with lysophosphatidic acid resulted in activation of a transcription factor, serum response element (SRE), that was enhanced by p114RhoGEF. This stimulation was inhibited by the functional scavenger of Gβγ subunits, transducin. We have determined that Gβγ subunits but not Gα subunits of heterotrimeric G proteins stimulated p114RhoGEF-dependent SRE activity. Using coimmunoprecipitation assay, we have determined that Gβγ subunits interacted with full-length and DH/PH domain of p114RhoGEF. Similarly, Gβγ subunits stimulated SRE activity induced by full-length and DH/PH domain of p114RhoGEF. Using in vivo pull-down assays and dominant-negative mutants of Rho GTPases, we have determined that p114RhoGEF activated RhoA and Rac1 but not Cdc42 proteins. Functional significance of RhoA activation was established by the ability of p114RhoGEF to induce actin stress fibers and cell rounding. Functional significance of Rac1 activation was established by the ability of p114RhoGEF to induce production of reactive oxygen species (ROS) followed by activation of NADPH oxidase enzyme complex. In summary, our data showed that the novel guanine nucleotide exchange factor p114RhoGEF regulates the activity of RhoA and Rac1, and that Gβγ subunits of heterotrimeric G proteins are activators of p114RhoGEF under physiological conditions. The findings help to explain the integrated effects of LPA and other G-protein receptor-coupled agonists on actin stress fiber formation, cell shape change, and ROS production.
Collapse
Affiliation(s)
- Jiaxin Niu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Ill 60612, USA
| | | | | | | | | |
Collapse
|
272
|
Shin EY, Woo KN, Lee CS, Koo SH, Kim YG, Kim WJ, Bae CD, Chang SI, Kim EG. Basic fibroblast growth factor stimulates activation of Rac1 through a p85 betaPIX phosphorylation-dependent pathway. J Biol Chem 2003; 279:1994-2004. [PMID: 14557270 DOI: 10.1074/jbc.m307330200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In a previous study (Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., Bokoch, G. M., and Kim, E. G. (2002) J. Biol. Chem. 277, 44417-44430) we reported that phosphorylation of p85 betaPIX, a guanine nucleotide exchange factor (GEF) for Rac1/Cdc42, is a signal for translocation of the PIX complex to neuronal growth cones and is associated with basic fibroblast growth factor (bFGF)-induced neurite outgrowth. However, the issue of whether p85 betaPIX phosphorylation affects GEF activity on Rac1/Cdc42 is yet to be explored. Here we show that Rac1 activation occurs in a p85 betaPIX phosphorylation-dependent manner. A GST-PBD binding assay reveals that Rac1 is activated in a dose- and time-dependent manner in PC12 cells in response to bFGF. Inhibition of ERK or PAK2, the kinases upstream of p85 betaPIX in the bFGF signaling, prevents Rac1 activation, suggesting that phosphorylation of p85 betaPIX functions upstream of Rac1 activation. To directly address this issue, transfection studies with wild-type and mutant p85 betaPIX (S525A/T526A, a non-phosphorylatable form) were performed. Expression of mutant PIX markedly inhibits both bFGF- and nerve growth factor (NGF)-induced activation of Rac1, indicating that phosphorylation of p85 betaPIX is responsible for activation of this G protein. Both wild-type and mutant p85 betaPIX displaying negative GEF activity (L238R/L239S) are similarly recruited to growth cones, suggesting that Rac1 activation is not essential for translocation of the PIX complex (PAK2-p85 betaPIX-Rac1). However, expression of mutant p85 betaPIX (L238R/L239S) results in retraction of the pre-existing neurites. Our results provide evidence that bFGF- and NGF-induced phosphorylation of p85 betaPIX mediates Rac1 activation, which in turn regulates cytoskeletal reorganization at growth cones, but not translocation of the PIX complex.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, College of Medicine, Medical Research Institute and Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, San 48, Gaesin-dong, Heungduk-ku, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Verhoeven K, De Jonghe P, Van de Putte T, Nelis E, Zwijsen A, Verpoorten N, De Vriendt E, Jacobs A, Van Gerwen V, Francis A, Ceuterick C, Huylebroeck D, Timmerman V. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am J Hum Genet 2003; 73:926-32. [PMID: 14508709 PMCID: PMC1180612 DOI: 10.1086/378159] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 06/23/2003] [Indexed: 12/11/2022] Open
Abstract
Slowed nerve-conduction velocities (NCVs) are a biological endophenotype in the majority of the hereditary motor and sensory neuropathies (HMSN). Here, we identified a family with autosomal dominant segregation of slowed NCVs without the clinical phenotype of HMSN. Peripheral-nerve biopsy showed predominantly thinly myelinated axons. We identified a locus at 8p23 and a Thr109Ile mutation in ARHGEF10, encoding a guanine-nucleotide exchange factor (GEF) for the Rho family of GTPase proteins (RhoGTPases). Rho GEFs are implicated in neural morphogenesis and connectivity and regulate the activity of small RhoGTPases by catalyzing the exchange of bound GDP by GTP. Expression analysis of ARHGEF10, by use of its mouse orthologue Gef10, showed that it is highly expressed in the peripheral nervous system. Our data support a role for ARHGEF10 in developmental myelination of peripheral nerves.
Collapse
Affiliation(s)
- Kristien Verhoeven
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Peter De Jonghe
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Tom Van de Putte
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Eva Nelis
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - An Zwijsen
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Nathalie Verpoorten
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Els De Vriendt
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - An Jacobs
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Veerle Van Gerwen
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Annick Francis
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Chantal Ceuterick
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| | - Vincent Timmerman
- Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology, and Laboratory of Neuropathology and Electronmicroscopy, Born-Bunge Foundation (BBS), University of Antwerp, and Division of Neurology, University Hospital of Antwerp, Antwerp; and Developmental Biology Department, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Leuven, Belgium
| |
Collapse
|
274
|
Prieto-Sánchez RM, Bustelo XR. Structural basis for the signaling specificity of RhoG and Rac1 GTPases. J Biol Chem 2003; 278:37916-25. [PMID: 12805377 DOI: 10.1074/jbc.m301437200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RhoG is a new GTPase that has high sequence similarity with members of the Rac subfamily (Rac1, Rac2, and Rac3), including the regions involved in effector recognition and binding. To characterize its biological properties, we have compared the activity of RhoG and Rac1 in a number of experimental systems, including the study of their subcellular localization, oncogenic potential, activation of effectors, and effect on F-actin dynamics. Our study indicates that RhoG and Rac1 share overlapping, but not identical, signal transduction pathways. In contrast to previous results, we also provide evidence that RhoG works in parallel to Rac1 rather than as a Rac1 upstream activator. Using an extensive collection of Rho/Rac1 chimeras and point mutants, we demonstrate that the different biological properties of RhoG and Rac1 can be traced to specific amino acid variations in their switch I, beta2/beta3 hairpin, alpha5 helix, and C-terminal polybasic regions. Taken collectively, our results highlight the complexity of the signal transduction pathways activated by Rho/Rac GTPases and provide insight into the structural determinants that mediate the differential engagement of biological responses by GTPases of very similar structure.
Collapse
Affiliation(s)
- Rosario M Prieto-Sánchez
- Centro de Investigación del Cáncer, University of Salamanca-Consejo Superior de Investigaciones Científicas, Campus Unamuno, Salamanca E-37007, Spain
| | | |
Collapse
|
275
|
Servitja JM, Marinissen MJ, Sodhi A, Bustelo XR, Gutkind JS. Rac1 function is required for Src-induced transformation. Evidence of a role for Tiam1 and Vav2 in Rac activation by Src. J Biol Chem 2003; 278:34339-46. [PMID: 12810717 DOI: 10.1074/jbc.m302960200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proto-oncogene c-Src has been implicated in the development and progression of a number of human cancers including those of colon and breast. Accumulating evidence indicates that activated alleles of Src may induce cell transformation through Ras-ERK-dependent and -independent pathways. Here we show that Rac1 activity is strongly elevated in Src-transformed cells and that this small G protein is a critical component of the pathway connecting oncogenic Src with cell transformation. We further show that Vav2 and the ubiquitously expressed Rac1 guanine nucleotide exchange factor Tiam1 are phosphorylated in tyrosine residues in cells transfected with active and oncogenic Src. Moreover, phosphorylation of Tiam1 in cells treated with pervanadate, a potent inhibitor of tyrosine phosphatases, was partially inhibited by the Src inhibitor SU6656. Using truncated mutants of Tiam1, we demonstrate that multiple sites can be tyrosine-phosphorylated by Src. Furthermore, Tiam1 cooperated with Src to induce activation of Rac1 in vivo and the formation of membrane ruffles. Similarly, activation of JNK and the c-jun promoter by Src were also potently increased by Tiam1. Together, these results suggest that Vav2 and Tiam1 may act as downstream effectors of Src, thereby regulating Rac1-dependent pathways that participate in Src-induced cell transformation.
Collapse
Affiliation(s)
- Joan-Marc Servitja
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
276
|
Billadeau DD. Cell growth and metastasis in pancreatic cancer: is Vav the Rho'd to activation? INTERNATIONAL JOURNAL OF GASTROINTESTINAL CANCER 2003; 31:5-13. [PMID: 12622410 DOI: 10.1385/ijgc:31:1-3:5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The best-known family of low molecular weight GTP-binding proteins is Ras, owing to their high incidence of gain of function mutations in a variety of human cancers including pancreatic cancer. Unlike Ras, no activating mutations have been observed thus far for Rho family GTP-binding proteins in cancer, yet there is increasing evidence that overexpression of Rho family members and/or dysregulation of the GDP-->GTP cycle play an important role in cancer development and progression. The activation of Rho family GTPases downstream of cell surface receptors results in the induction of several intracellular signaling cascades that have been shown to impact on such diverse cellular responses as reorganization of the actin cytoskeleton, gene transcription, cell survival, and cell proliferation. One family of guanine nucleotide exchange factors (GEFs) that have the potential to couple the activation of Rho family members to upstream growth factor receptor tyrosine kinases (RTKs) is the Vav family of proto-oncogenes. Recent experimental evidence has implicated Vav in the regulation of numerous Rho-mediated pathways downstream of RTKs and other cell surface receptors. In this review, we will discuss our current understanding of how Vav proteins are regulated, and how Vav and their target GTP-binding proteins participate in tumorigenesis.
Collapse
Affiliation(s)
- Daniel D Billadeau
- Division of Developmental Oncology Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
277
|
Schlumberger MC, Friebel A, Buchwald G, Scheffzek K, Wittinghofer A, Hardt WD. Amino acids of the bacterial toxin SopE involved in G nucleotide exchange on Cdc42. J Biol Chem 2003; 278:27149-59. [PMID: 12719429 DOI: 10.1074/jbc.m302475200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements. This suggests that they have emerged by convergent evolution. Nevertheless, both families of G nucleotide exchange factors also share some similarities: (a) both rearrange the G nucleotide binding site of RhoGTPases into virtually identical conformations, and (b) two SopE residues (Gln-109SopE and Asp-124SopE) engage Cdc42 in a similar way as equivalent residues of Dbl-like G nucleotide exchange factors (i.e. Asn-810Dbs and Glu-639Dbs). The functional importance of these observations has remained unclear. Here, we have analyzed the effect of amino acid substitutions at selected SopE residues implicated in catalysis (Asp-124SopE, Gln-109SopE, Asp-103SopE, Lys-198SopE, and Gly-168SopE) on in vitro catalysis of G nucleotide release from Cdc42 and on in vivo activity. Substitutions at Asp-124SopE, Gln-109SopE, and Gly-168SopE severely reduced the SopE activity. Slight defects were observed with Asp-103SopE variants, whereas Lys-198SopE was not found to be required in vitro or in vivo. Our results demonstrate that G nucleotide exchange by SopE involves both catalytic elements unique to the SopE family (i.e. 166GAGA169 loop, Asp-103SopE) and amino acid contacts resembling those of key residues of Dbl-like guanine nucleotide exchange factors. Therefore, besides all of the differences, the catalytic mechanisms of the SopE and the Dbl families share some key functional aspects.
Collapse
Affiliation(s)
- Markus C Schlumberger
- Institute of Microbiology, ETH Zürich, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
278
|
Oinuma I, Katoh H, Harada A, Negishi M. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J Biol Chem 2003; 278:25671-7. [PMID: 12730235 DOI: 10.1074/jbc.m303047200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plexins are receptors for the axon guidance molecule semaphorins, and several lines of evidence suggest that Rho family small GTPases are implicated in the downstream signaling of Plexins. Recent studies have demonstrated that Plexin-B1 activates RhoA and induces growth cone collapse through Rho-specific guanine nucleotide exchange factor PDZ-RhoGEF. Here we show that Rnd1, a member of Rho family GTPases, directly interacted with the cytoplasmic domain of Plexin-B1. In COS-7 cells, coexpression of Rnd1 and Plexin-B1 induced cell contraction in response to semaphorin 4D (Sema4D), a ligand for Plexin-B1, whereas expression of Plexin-B1 alone or coexpression of Rnd1 and a Rnd1 interaction-defective mutant of Plexin-B1 did not. The Sema4D-induced contraction in Plexin-B1/Rnd1-expressing COS-7 cells was suppressed by dominant negative RhoA, a Rho-associated kinase inhibitor, a dominant negative form of PDZ-RhoGEF, or deletion of the carboxyl-terminal PDZ-RhoGEF-binding region of Plexin-B1, indicating that the PDZ-RhoGEF/RhoA/Rho-associated kinase pathway is involved in this morphological effect. We also found that Rnd1 promoted the interaction between Plexin-B1 and PDZ-RhoGEF and thereby dramatically potentiated the Plexin-B1-mediated RhoA activation. We propose that Rnd1 plays an important role in the regulation of Plexin-B1 signaling, leading to Rho activation during axon guidance and cell migration.
Collapse
Affiliation(s)
- Izumi Oinuma
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
279
|
Fuentes EJ, Karnoub AE, Booden MA, Der CJ, Campbell SL. Critical role of the pleckstrin homology domain in Dbs signaling and growth regulation. J Biol Chem 2003; 278:21188-96. [PMID: 12637530 DOI: 10.1074/jbc.m211792200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl family proteins act as guanine nucleotide exchange factors and positive regulators of Rho GTPase function by stimulating formation of the active, GTP-bound state. All Dbl family Rho guanine nucleotide exchange factors possess an invariant tandem domain structure consisting of a Dbl homology (DH) catalytic domain followed by a pleckstrin homology (PH) regulatory domain. We determined previously that the PH domain of Dbs was critical for the intrinsic catalytic activity of the DH domain in vitro and for Dbs transformation in vivo. In this study, we evaluated the role of phosphoinositide binding to the PH domain in regulating the DH domain function of Dbs in vitro and in vivo. We determined that mutation of basic amino acids located within the beta1-beta2 and beta3-beta4 loops of the PH domain resulted in impaired phospholipid binding in vitro, yet full guanine nucleotide exchange activity in vitro was retained for RhoA and Cdc42. Surprisingly, these mutants were compromised in their ability to activate Rho GTPases in vivo and to cause transformation of NIH 3T3 cells. However, Dbs subcellular localization was impaired by these PH domain mutations, supporting a role for phospholipid interactions in facilitating membrane association. Despite the importance of phospholipid binding for Dbs function in vivo, we found that Dbs signaling and transforming activity was not stimulated by phosphatidylinositol 3-kinase activation. We suggest that the PH domain of Dbs facilitates two distinct roles in the regulation of DH domain function, one critical for GTPase association and activation in vitro and one critical for phosphoinositide binding and GTPase interaction in vivo, that together promote Dbs association with membranes.
Collapse
Affiliation(s)
- Ernesto J Fuentes
- Department of Biochemistry and Biophysics, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
280
|
Abstract
During development, the nervous system is confronted with a problem of enormous complexity; to progress from a large number of 'disconnected' neurons to a network of neuronal circuitry that is able to dynamically process sensory information and generate an appropriate output. To form these circuits, growing axons must make synapses with targets, usually the dendrites of postsynaptic neurons. Although a significant amount is known about the signals that regulate and guide developing axons, we are only now starting to understand how environmental cues like growth factors and activity regulate the formation and maintenance of dendrites in the developing and mature nervous system.
Collapse
Affiliation(s)
- Freda D Miller
- Developmental Biology and Cancer Research Program, 555 University Avenue, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | | |
Collapse
|
281
|
Zheng Y, Quilliam LA. Activation of the Ras superfamily of small GTPases. Workshop on exchange factors. EMBO Rep 2003; 4:463-8. [PMID: 12717452 PMCID: PMC1319186 DOI: 10.1038/sj.embor.embor831] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 03/20/2003] [Indexed: 01/26/2023] Open
Affiliation(s)
- Yi Zheng
- Division of Experimental Hematology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
- Tel: +1 513 636 0595; Fax: +1 513 636 3768
| | - Lawrence A. Quilliam
- Department of Biochemistry and Molecular Biology, and Walther Cancer Institute, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA
- Tel: +1 317 274 8550; Fax: +1 317 274 4686
| |
Collapse
|
282
|
Guo F, Gao Y, Wang L, Zheng Y. p19Arf-p53 tumor suppressor pathway regulates cell motility by suppression of phosphoinositide 3-kinase and Rac1 GTPase activities. J Biol Chem 2003; 278:14414-9. [PMID: 12578823 DOI: 10.1074/jbc.m300341200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p19(Arf)-p53 tumor suppressor pathway plays a critical role in cell-cycle checkpoint control and apoptosis, whereas Rho family small GTPases are key regulators of actin structure and cell motility. By using primary mouse embryonic fibroblasts that lack Arf, p53, or both, we studied the involvement of the p19(Arf)-p53 pathway in the regulation of cell motility and its relationship with Rho GTPases. Deletion of Arf and/or p53 led to actin cytoskeleton reorganization and a significant increase in cell motility. The endogenous phosphoinositide (PI) 3- kinase and Rac1 activities were elevated in Arf(-/-) and p53(-/-) cells, and these activities are required for p19(Arf)- and p53-regulated migration. Reintroduction of the wild type Arf or p53 genes into Arf(-/-) or p53(-/-) cells reversed the PI 3-kinase and Rho GTPase activities as well as the migration phenotype. These results suggest a functional relationship between an established tumor suppressor pathway and a signaling module that controls actin structure and cell motility and show that p19(Arf) and p53 negatively regulate cell migration by suppression of PI 3-kinase and Rac1 activities.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology, Children's Hospital Research Foundation, University of Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
283
|
Guo X, Stafford LJ, Bryan B, Xia C, Ma W, Wu X, Liu D, Songyang Z, Liu M. A Rac/Cdc42-specific exchange factor, GEFT, induces cell proliferation, transformation, and migration. J Biol Chem 2003; 278:13207-15. [PMID: 12547822 DOI: 10.1074/jbc.m208896200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho family of small GTPases, including Rho, Rac, and Cdc42, play essential roles in diverse cellular functions. The ability of Rho family GTPases to participate in signaling events is determined by the ratio of inactive (GDP-bound) and active (GTP-bound) forms in the cell. The activation of Rho family proteins requires the exchange of bound GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors (GEFs). The GEFs have high affinity for the guanine nucleotide-free state of the GTPases and are thought to promote GDP release by stabilizing an intermediate transition state. In this study, we have identified and characterized a new Rac/Cdc42-specific Dbl family guanine nucleotide exchange factor, named GEFT. GEFT is highly expressed in the excitable tissues, including brain, heart, and muscle. Low or very little expression was detected in other nonexcitable tissues. GEFT has specific exchange activity for Rac and Cdc42 in our in vitro GTPase exchange assays and glutathione S-transferase-PAK pull-down assays with GTP-bound Rac1 and Cdc42. Overexpression of GEFT leads to changes in cell morphology and actin cytoskeleton re-organization, including the formation of membrane microspikes, filopodia, and lamilliopodia. Furthermore, expression of GEFT in NIH3T3 cells promotes foci formation, cell proliferation, and cell migration, possibly through the activation of transcriptional factors involved in cell growth and proliferation. Together, our data suggest that GEFT is a Rac/Cdc42-specific GEF protein that regulates cell morphology, cell proliferation, and transformation.
Collapse
Affiliation(s)
- Xiangrong Guo
- Center for Cancer Biology and Nutrition, Alkek Institute of Biosciences and Technology, and Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
284
|
Gupta S, Lee A, Hu C, Fanzo J, Goldberg I, Cattoretti G, Pernis AB. Molecular cloning of IBP, a SWAP-70 homologous GEF, which is highly expressed in the immune system. Hum Immunol 2003; 64:389-401. [PMID: 12651066 DOI: 10.1016/s0198-8859(03)00024-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rho GTPases play a fundamental role in a variety of biological processes ranging from the reorganization of the actin cytoskeleton to the regulation of cell proliferation. The activation of Rho GTPases is regulated by guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins. The hallmark of this large family of GEFs is the presence of a tandem DH-PH module in which a pleckstrin-homology (PH) domain is located at the C-terminus of a Dbl-homology (DH) domain. Recent studies have demonstrated that SWAP-70 constitutes a novel class of Rac-GEF, in which the PH domain is located at the N-terminus, rather than the C terminus, of the DH domain. Here we report the molecular cloning of human IBP (IRF-4 binding protein), a new member of this novel family of GEFs. The IBP gene maps to human chromosome 6p21.31 centromeric to the MHC locus. Isolation of the murine IBP cDNA reveals a very high degree of homology with the human IBP cDNA suggesting that IBP is evolutionarily conserved. The 5' portion of the murine IBP cDNA is furthermore identical to the Def-6 cDNA fragment, which was identified in the course of a search for genes differentially expressed in the murine hematopoietic system. IBP is broadly expressed in the immune system and can be detected in both T and B cell compartments in contrast to SWAP-70 whose expression is primarily restricted to B cells. Taken together these findings indicate that IBP is a novel type of GEF, which participates in the activation of Rho GTPases in lymphoid tissues.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
285
|
Zamanian JL, Kelly RB. Intersectin 1L guanine nucleotide exchange activity is regulated by adjacent src homology 3 domains that are also involved in endocytosis. Mol Biol Cell 2003; 14:1624-37. [PMID: 12686614 PMCID: PMC153127 DOI: 10.1091/mbc.e02-08-0494] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intersectin 1L is a scaffolding protein involved in endocytosis that also has guanine nucleotide exchange activity for Cdc42. In the context of the full-length protein, the catalytic exchange activity of the DH domain is repressed. Here we use biochemical methods to dissect the mechanism for this inhibition. We demonstrate that the intersectin 1L SH3 domains, which bind endocytic proteins, directly inhibit the activity of the DH domain in assays for both binding and exchange of Cdc42. This inhibitory mechanism seems to act through steric hindrance of Cdc42 binding by an intramolecular interaction between the intersectin 1L SH3 domain region and the adjacent DH domain. Surprisingly, the mode of SH3 domain binding is other than through the proline peptide binding pocket. The dual role of the SH3 domains in endocytosis and repression of exchange activity suggests that the intersectin 1L exchange activity is regulated by endocytosis. We show that the endocytic protein, dynamin, competes for binding to the SH3 domains with the neural Wiskott-Aldrich Syndrome protein, an actin filament nucleation protein that is a substrate for activated Cdc42. Swapping of SH3 domain binding partners might act as a switch controlling the actin nucleation activity of intersectin 1L.
Collapse
Affiliation(s)
- Jennifer L Zamanian
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0407, USA
| | | |
Collapse
|
286
|
Baumeister MA, Martinu L, Rossman KL, Sondek J, Lemmon MA, Chou MM. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. J Biol Chem 2003; 278:11457-64. [PMID: 12525493 DOI: 10.1074/jbc.m211901200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.
Collapse
Affiliation(s)
- Mark A Baumeister
- Department of Biochemistry & Biophysics and the Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
287
|
Illenberger D, Walliser C, Strobel J, Gutman O, Niv H, Gaidzik V, Kloog Y, Gierschik P, Henis YI. Rac2 regulation of phospholipase C-beta 2 activity and mode of membrane interactions in intact cells. J Biol Chem 2003; 278:8645-52. [PMID: 12509427 DOI: 10.1074/jbc.m211971200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase C-beta (PLCbeta) isozymes play important roles in transmembrane signaling. Their activity is regulated by heterotrimeric G proteins. The PLCbeta(2) isozyme is unique in being stimulated also by Rho GTPases (Rac and Cdc42). However, the mechanism(s) of this stimulation are still unclear. Here, we employed fluorescence recovery after photobleaching to investigate the interaction of green fluorescent protein (GFP)-PLCbeta(2) with the plasma membrane. For either GFP-PLCbeta(2) or GFP-PLCbeta(2)Delta, a C-terminal deletion mutant lacking the region required for stimulation by Galpha(q), these interactions were characterized by a mixture of exchange with a cytoplasmic pool and lateral diffusion. Constitutively active Rac2(12V) stimulated the activity of both GFP-PLCbeta(2) and GFP-PLCbeta(2)Delta in live cells, and enhanced their membrane association as evidenced by the marked reduction in their fluorescence recovery rates. Both effects required the putative N-terminal pleckstrin homology (PH) domain of PLCbeta(2). Importantly, Rac2(12V) dramatically increased the contribution of exchange to the fluorescence recovery of GFP-PLCbeta(2), but had the opposite effect on GFP-PLCbeta(2)Delta, where lateral diffusion became dominant. Our results demonstrate for the first time the regulation of membrane association of a PLCbeta isozyme by a GTP-binding protein and assign a novel function to the PLCbeta(2) C-terminal region, regulating its exchange between membrane-bound and cytosolic states.
Collapse
Affiliation(s)
- Daria Illenberger
- Department of Pharmacology and Toxicology, University of Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Fransson A, Ruusala A, Aspenström P. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 2003; 278:6495-502. [PMID: 12482879 DOI: 10.1074/jbc.m208609200] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human genomic sequencing effort has revealed the presence of a large number of Rho GTPases encoded by the human genome. Here we report the characterization of a new family of Rho GTPases with atypical features. These proteins, which were called Miro-1 and Miro-2 (for mitochondrial Rho), have tandem GTP-binding domains separated by a linker region containing putative calcium-binding EF hand motifs. Genes encoding Miro-like proteins were found in several eukaryotic organisms from Saccharomyces cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster to mammals, indicating that these genes evolved early during evolution. Immunolocalization experiments, in which transfected NIH3T3 and COS 7 cells were stained for ectopically expressed Miro as well as for the endogenous Miro-1 protein, showed that Miro was present in mitochondria. Interestingly, overexpression of a constitutively active mutant of Miro-1 (Miro-1/Val-13) induced an aggregation of the mitochondrial network and resulted in an increased apoptotic rate of the cells expressing activated Miro-1. These data indicate a novel role for Rho-like GTPases in mitochondrial homeostasis and apoptosis.
Collapse
Affiliation(s)
- Asa Fransson
- Ludwig Institute for Cancer Research, Biomedical Center, Box 595, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
289
|
Sigal N, Gorzalczany Y, Sarfstein R, Weinbaum C, Zheng Y, Pick E. The guanine nucleotide exchange factor trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange on Rac. "The emperor's nw clothes". J Biol Chem 2003; 278:4854-61. [PMID: 12475976 DOI: 10.1074/jbc.m211011200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The superoxide-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome b(559) and four cytosolic components as follows: p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). Activation of the oxidase is the result of assembly of the cytosolic components with cytochrome b(559) and can be mimicked in vitro by mixtures of membrane and cytosolic components exposed to an anionic amphiphile, serving as activator. We reported that prenylation of Rac1 endows it with the ability to support oxidase activation in conjunction with p67(phox) but in the absence of amphiphile and p47(phox). We now show the following 6 points. 1) The Rac guanine nucleotide exchange factor Trio markedly potentiates oxidase activation by prenylated Rac1-GDP. 2) This occurs in the absence of exogenous GTP or any other source of GTP generation, demonstrating that the effect of Trio does not involve GDP to GTP exchange on Rac1. 3) Trio does not potentiate oxidase activation by prenylated Rac1-GTP, by nonprenylated Rac1-GDP in the presence or absence of amphiphile, and by a prenylated [p67(phox)-Rac1] chimera in GDP-bound form. 4) Rac1 mutants defective in the ability to bind Trio or to respond to Trio by nucleotide exchange fail to respond to Trio by enhanced oxidase activation. 5) A Trio mutant with conserved Rac1-binding ability but lacking nucleotide exchange activity fails to enhance oxidase activation. 6) The effect of Trio is mimicked by displacement of Mg(2+) from Rac1-GDP. These results reveal the existence of a novel mechanism of Rac activation by a guanine nucleotide exchange factor and suggest that the induction by Trio of a conformational change in Rac1, in the absence of nucleotide exchange, is sufficient for enhancing its effector function.
Collapse
Affiliation(s)
- Natalia Sigal
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
290
|
Moon SY, Zang H, Zheng Y. Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP. J Biol Chem 2003; 278:4151-9. [PMID: 12454018 DOI: 10.1074/jbc.m207789200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rho GTPase-activating proteins (RhoGAPs) are a family of multifunctional molecules that transduce diverse intracellular signals by regulating Rho GTPase activities. A novel RhoGAP family member, p200RhoGAP, is cloned in human and mouse. The murine p200RhoGAP shares 86% sequence identity with the human homolog. In addition to a conserved RhoGAP domain at the N terminus, multiple proline-rich motifs are found in the C-terminal region of the molecules. Northern blot analysis revealed a brain-specific expression pattern of p200RhoGAP. The RhoGAP domain of p200RhoGAP stimulated the GTPase activities of Rac1 and RhoA in vitro and in vivo, and the conserved catalytic arginine residue (Arg-58) contributed to the GAP activity. Expression of the RhoGAP domain of p200RhoGAP in Swiss 3T3 fibroblasts inhibited actin stress fiber formation stimulated by lysophosphatidic acid and platelet-derived growth factor-induced membrane ruffling but not Bradykinin-induced filopodia formation. Endogenous p200RhoGAP was localized to cortical actin in naive N1E-115 neuroblastoma cells and to the edges of extended neurites of differentiated N1E-115 cells. Transient expression of the RhoGAP domain and the full-length molecule, but not the catalytic arginine mutants, readily induced a differentiation phenotype in N1E-115 cells. Finally, p200RhoGAP was capable of binding to the Src homology 3 domains of Src, Crk, and phospholipase Cgamma in vitro and became tyrosine-phosphorylated upon association with activated Src in cells. These results suggest that p200RhoGAP is involved in the regulation of neurite outgrowth by exerting its RhoGAP activity and that its cellular activity may be regulated through interaction with Src-like tyrosine kinases.
Collapse
Affiliation(s)
- Sun Young Moon
- Division of Experimental Hematology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
291
|
Wieland T, Mittmann C. Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system. Pharmacol Ther 2003; 97:95-115. [PMID: 12559385 DOI: 10.1016/s0163-7258(02)00326-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulator of G-protein signalling (RGS) proteins form a superfamily of at least 25 proteins, which are highly diverse in structure, expression patterns, and function. They share a 120 amino acid homology domain (RGS domain), which exhibits GTPase accelerating activity for alpha-subunits of heterotrimeric G-proteins, and thus, are negative regulators of G-protein-mediated signalling. Based on the organisation of the Rgs genes, structural similarities, and differences in functions, they can be divided into at least six subfamilies of RGS proteins and three more families of RGS-like proteins. Many of these proteins regulate signalling processes within cells, not only via interaction with G-protein alpha-subunits, but are G-protein-regulated effectors, Gbetagamma scavenger, or scaffolding proteins in signal transduction complexes as well. The expression of at least 16 different RGS proteins in the mammalian or human myocardium have been described. A subgroup of at least eight was detected in a single atrial myocyte. The exact functions of these proteins remain mostly elusive, but RGS proteins such as RGS4 are involved in the regulation of G(i)-protein betagamma-subunit-gated K(+) channels. An up-regulation of RGS4 expression has been consistently found in human heart failure and some animal models. Evidence is increasing that the enhanced RGS4 expression counter-regulates the G(q/11)-induced signalling caused by hypertrophic stimuli. In the vascular system, RGS5 seems to be an important signalling regulator. It is expressed in vascular endothelial cells, but not in cultured smooth muscle cells. Its down-regulation, both in a model of capillary morphogenesis and in an animal model of stroke, render it a candidate gene, which may be involved in the regulation of capillary growth, angiogenesis, and in the pathophysiology of stroke.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.
| | | |
Collapse
|
292
|
Abstract
Semaphorins constitute one of the largest families of repulsive and attractive growth cone guidance proteins. They affect the growth cone's actin cytoskeleton through interactions with receptor complexes composed of ligand-binding, signal-transducing, and modulatory subunits. Our understanding of the intracellular signal transduction machinery linking semaphorins to actin dynamics is limited; however, recent advances provide a more comprehensive view of the molecular basis of neuronal semaphorin signaling.
Collapse
Affiliation(s)
- R Jeroen Pasterkamp
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
293
|
Coll PM, Trillo Y, Ametzazurra A, Perez P. Gef1p, a new guanine nucleotide exchange factor for Cdc42p, regulates polarity in Schizosaccharomyces pombe. Mol Biol Cell 2003; 14:313-23. [PMID: 12529446 PMCID: PMC140247 DOI: 10.1091/mbc.e02-07-0400] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Schizosaccharomyces pombe cdc42(+) regulates cell morphology and polarization of the actin cytoskeleton. Scd1p/Ral1p is the only described guanine nucleotide exchange factor (GEF) for Cdc42p in S. pombe. We have identified a new GEF, named Gef1p, specifically regulating Cdc42p. Gef1p binds to inactive Cdc42p but not to other Rho GTPases in two-hybrid assays. Overexpression of gef1(+) increases specifically the GTP-bound Cdc42p, and Gef1p is capable of stimulating guanine nucleotide exchange of Cdc42p in vitro. Overexpression of gef1(+) causes changes in cell morphology similar to those caused by overexpression of the constitutively active cdc42G12V allele. Gef1p localizes to the septum. gef1(+) deletion is viable but causes a mild cell elongation and defects in bipolar growth and septum formation, suggesting a role for Gef1p in the control of cell polarity and cytokinesis. The double mutant gef1delta scd1delta is not viable, indicating that they share an essential function as Cdc42p activators. However, both deletion and overexpression of either gef1(+) or scd1(+) causes different morphological phenotypes, which suggest different functions. Genetic evidence revealed a link between Gef1p and the signaling pathway of Shk1/Orb2p and Orb6p. In contrast, no genetic interaction between Gef1p and Shk2p-Mkh1p pathway was observed.
Collapse
Affiliation(s)
- Pedro M Coll
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas/Departamento de Microbiologia y Genetica, Universidad de Salamanca, Edificio Departamental, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
294
|
Rossman KL, Worthylake DK, Snyder JT, Cheng L, Whitehead IP, Sondek J. Functional analysis of cdc42 residues required for Guanine nucleotide exchange. J Biol Chem 2002; 277:50893-8. [PMID: 12401782 DOI: 10.1074/jbc.m208580200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) directly engage small GTPases to facilitate the exchange of bound GDP for GTP, leading to GTPase activation. Several recent crystal structures of GEFs in complex with Rho family GTPases highlight the conserved interactions and conformational alterations necessary for catalyzing exchange. In the present study, functional roles were defined for specific residues within Cdc42 implicated by the crystal structures as important for physiological exchange of guanine nucleotides within Rho GTPases. In particular, this study highlights the paramount importance of the phosphate-binding loop and interactions with the magnesium co-factor as critical for proper regulation of RhoGEF-catalyzed exchange. Other conformational alterations of the GTPases affecting interactions with the sugar and base of guanine nucleotides are also important but are secondary. Of particular note, substitution of alanine for cysteine at position 18 of Cdc42 leads to a fast cycling phenotype for Cdc42 with heightened affinity for RhoGEFs and produces a dominant negative form of Cdc42 capable of inhibiting RhoGEFs both in vitro and in vivo.
Collapse
Affiliation(s)
- Kent L Rossman
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
295
|
Kuner R, Swiercz JM, Zywietz A, Tappe A, Offermanns S. Characterization of the expression of PDZ-RhoGEF, LARG and G(alpha)12/G(alpha)13 proteins in the murine nervous system. Eur J Neurosci 2002; 16:2333-41. [PMID: 12492428 DOI: 10.1046/j.1460-9568.2002.02402.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small GTPases of the Rho-family, like Rho, Rac and Cdc42, are involved in neuronal morphogenesis by regulating growth cone morphology or dendritic spine formation. G-proteins of the G12-family, G12 and G13, couple G-protein-coupled receptors (GPCRs) to the activation of RhoA. Recently, two novel Rho-specific guanine nucleotide exchange factors (RhoGEFs), PDZ-RhoGEF and LARG, have been identified to interact with the activated alpha-subunits of G12/G13 and are thus believed to mediate GPCR-induced Rho activation. Although studies in neuronal cell lines have shown that G12/G13 and PDZ-RhoGEF mediate GPCR-induced neurite retraction, the role, as well as the expression of this signalling pathway, in intact brain has not been adequately studied. In the present study, we have characterized systematically the expression of G(alpha)12, G(alpha)13, PDZ-RhoGEF and LARG in various murine tissues as well as their subcellular localization in the central and peripheral nervous systems. By performing immunohistochemistry, using polyclonal antibodies raised against the above proteins, we observed that G(alpha)12, G(alpha)13 and their RhoGEF-effectors are distributed widely in the mammalian nervous system. Moreover, these proteins localize to distinct morphological compartments within neurons. While LARG and G(alpha)12 were mainly found in somata of the neurons, PDZ-RhoGEF and G(alpha)13 were predominantly localized in the neuropil of central neurons. Interestingly, PDZ-RhoGEF is a neural-specific protein, whereas LARG is nearly ubiqoutous. Our data provide evidence that the G12/13-RhoGEF-mediated pathway is present throughout the adult brain and may be involved in regulation of neuronal morphogenesis and function via GPCRs.
Collapse
Affiliation(s)
- R Kuner
- Department of Molecular Pharmacology, Institute for Pharmacology, Im Neuenheimer Feld 366, University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
296
|
Tan YC, Wu H, Wang WN, Zheng Y, Wang ZX. Characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors. Anal Biochem 2002; 310:156-62. [PMID: 12423633 DOI: 10.1016/s0003-2697(02)00382-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel spectrophotometric method to study the kinetics of the guanine nucleotide exchange factors-catalyzed reactions is presented. The method incorporates two coupling enzyme systems: (a). GTPase-activating protein which stimulates the intrinsic GTP hydrolysis reaction of small GTPases and (b). purine nucleotide phosphorylase and its chromophoric substrate, 7-methyl-6-thioguanosine, for quantitation of the resultant inorganic phosphate. The continuous coupled enzyme system was used for characterization of the interactions between the small GTPase RhoA and its guanine nucleotide exchange factors, Lbc and Dbl. Kinetic parameters obtained here show that there is no significant difference in kinetic mechanism of these GEFs in interaction with RhoA. The Michaelis-Menten constants were determined to be around 1micro M, and the rate constants k(cat) were around 0.1s(-1).
Collapse
Affiliation(s)
- Ying-Cai Tan
- National Laboratory of Biomacromolecules, Center for Molecular Biology, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
297
|
Shin EY, Shin KS, Lee CS, Woo KN, Quan SH, Soung NK, Kim YG, Cha CI, Kim SR, Park D, Bokoch GM, Kim EG. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 2002; 277:44417-30. [PMID: 12226077 DOI: 10.1074/jbc.m203754200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Perrot V, Vazquez-Prado J, Gutkind JS. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J Biol Chem 2002; 277:43115-20. [PMID: 12183458 DOI: 10.1074/jbc.m206005200] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plexins represent a novel family of transmembrane receptors that transduce attractive and repulsive signals mediated by the axon-guiding molecules semaphorins. Emerging evidence implicates Rho GTPases in these biological events. However, Plexins lack any known catalytic activity in their conserved cytoplasmic tails, and how they transduce signals from semaphorins to Rho is still unknown. Here we show that Plexin B2 associates directly with two members of a recently identified family of Dbl homology/pleckstrin homology containing guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and Leukemia-associated Rho GEF (LARG). This physical interaction is mediated by their PDZ domains and a PDZ-binding motif found only in Plexins of the B family. In addition, we show that ligand-induced dimerization of Plexin B is sufficient to stimulate endogenous RhoA potently and to induce the reorganization of the cytoskeleton. Moreover, overexpression of the PDZ domain of PDZ-RhoGEF but not its regulator of G protein signaling domain prevents cell rounding and neurite retraction of differentiated PC12 cells induced by activation of endogenous Plexin B1 by semaphorin 4D. The association of Plexins with LARG and PDZ-RhoGEF thus provides a direct molecular mechanism by which semaphorins acting on Plexin B can control Rho, thereby regulating the actin-cytoskeleton during axonal guidance and cell migration.
Collapse
Affiliation(s)
- Valerie Perrot
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4340, USA
| | | | | |
Collapse
|
299
|
Zhao J, Wang WN, Tan YC, Zheng Y, Wang ZX. Effect of Mg(2+) on the kinetics of guanine nucleotide binding and hydrolysis by Cdc42. Biochem Biophys Res Commun 2002; 297:653-8. [PMID: 12270144 DOI: 10.1016/s0006-291x(02)02257-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cell. Mg(2+) ions play key roles in guanine nucleotide binding and in preserving the structural integrity of GTPases. We describe here the kinetics of the interaction of GTP with the Rho family small GTPase Cdc42 in the absence and presence of Mg(2+). In contrast to the cases of Ras and Rab proteins, which require Mg(2+) for the nucleotide binding and intrinsic hydrolysis of GTP, our results show that in the absence of Mg(2+), the binding affinity of GTP to Cdc42 is in the submicromolar concentration, and the Mg(2+) cofactor has only a minor effect on the Cdc42-catalyzed intrinsic hydrolysis rate of GTP. These results suggest that the intrinsic GTPase reaction mechanism of Cdc42 may differ significantly from that of other subfamily members of the Ras superfamily.
Collapse
Affiliation(s)
- Ju Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
300
|
Meyer G, Feldman EL. Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 2002; 83:490-503. [PMID: 12390511 DOI: 10.1046/j.1471-4159.2002.01185.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.
Collapse
Affiliation(s)
- Gary Meyer
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|