251
|
Abstract
Although most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the BM, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and postirradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function.
Collapse
Affiliation(s)
- Daniel A Zlotoff
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
252
|
Hosoya T, Maillard I, Engel JD. From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 2010; 238:110-25. [PMID: 20969588 PMCID: PMC2965564 DOI: 10.1111/j.1600-065x.2010.00954.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GATA family transcription factors play multiple vital roles in hematopoiesis in many cell lineages, and in particular, T cells require GATA-3 for execution of several developmental steps. Transcriptional activation of the Gata3 gene is observed throughout T-cell development and differentiation in a stage-specific fashion. GATA-3 has been described as a master regulator of T-helper 2 (Th2) cell differentiation in mature CD4(+) T cells. During T-cell development in the thymus, its roles in the CD4 versus CD8 lineage choice and at the β-selection checkpoint are the best characterized. In contrast, its importance prior to β-selection has been obscured both by the developmental heterogeneity of double negative (DN) 1 thymocytes and the paucity of early T-lineage progenitors (ETPs), a subpopulation of DN1 cells that contains the most immature thymic progenitors that retain potent T-lineage developmental potential. By examining multiple lines of in vivo evidence procured through the analysis of Gata3 mutant mice, we have recently demonstrated that GATA-3 is additionally required at the earliest stage of thymopoiesis for the development of the ETP population. Here, we review the characterized functions of GATA-3 at each stage of T-cell development and discuss hypothetical molecular pathways that mediate these functions.
Collapse
Affiliation(s)
- Tomonori Hosoya
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ivan Maillard
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
253
|
|
254
|
Zandi S, Bryder D, Sigvardsson M. Load and lock: the molecular mechanisms of B-lymphocyte commitment. Immunol Rev 2010; 238:47-62. [DOI: 10.1111/j.1600-065x.2010.00950.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
255
|
Gwin K, Frank E, Bossou A, Medina KL. Hoxa9 regulates Flt3 in lymphohematopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2010; 185:6572-83. [PMID: 20971928 DOI: 10.4049/jimmunol.0904203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early B cell factor (EBF) is a transcription factor essential for specification and commitment to the B cell fate. In this study, we show downregulation of a developmentally regulated cluster of hoxa genes, notably hoxa9, coincides with induction of EBF at the Pro-B cell stage of B cell differentiation. Analysis of the hematopoietic progenitor compartment in Hoxa9(-/-) mice revealed significantly reduced frequencies and expression levels of Flt3, a cytokine receptor important for lymphoid priming and the generation of B cell precursors (BCPs). We show that Hoxa9 directly regulates the flt3 gene. Chromatin immunoprecipitation analysis revealed binding of Hoxa9 to the flt3 promoter in a lymphoid progenitor cell line. Knockdown of Hoxa9 significantly reduced Flt3 transcription and expression. Conversely, forced expression of Hoxa9 increased Flt3 transcription and expression in a Pro-B cell line that expressed low levels of Flt3. Hoxa9 inversely correlated with ebf1 in ex vivo-isolated bone marrow progenitors and BCPs, suggesting that EBF might function to silence a Hoxa9 transcriptional program. Restoration of EBF function in an EBF(-/-) cell line induced B lineage gene expression but did not directly suppress hoxa9 transcription, revealing alternate mechanisms of Hoxa9 regulation in BCPs. These data provide new insight into Hoxa9 function and regulation during lymphoid and B cell development. Furthermore, they suggest that failure to upregulate Flt3 provides a molecular basis for the lymphoid/early B cell deficiencies in Hoxa9(-/-) mice.
Collapse
Affiliation(s)
- Kimberly Gwin
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
256
|
Fernandes MS, Reddy MM, Croteau NJ, Walz C, Weisbach H, Podar K, Band H, Carroll M, Reiter A, Larson RA, Salgia R, Griffin JD, Sattler M. Novel oncogenic mutations of CBL in human acute myeloid leukemia that activate growth and survival pathways depend on increased metabolism. J Biol Chem 2010; 285:32596-605. [PMID: 20622007 PMCID: PMC2952262 DOI: 10.1074/jbc.m110.106161] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/24/2010] [Indexed: 11/06/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by multiple mutagenic events that affect proliferation, survival, as well as differentiation. Recently, gain-of-function mutations in the α helical structure within the linker sequence of the E3 ubiquitin ligase CBL have been associated with AML. We identified four novel CBL mutations, including a point mutation (Y371H) and a putative splice site mutation in AML specimens. Characterization of these two CBL mutants revealed that coexpression with the receptor tyrosine kinases FLT3 (Fms-like tyrosine kinase 3) or KIT-induced ligand independent growth or ligand hyperresponsiveness, respectively. Growth of cells expressing mutant CBL required expression and kinase activity of FLT3. In addition to the CBL-dependent phosphorylation of FLT3 and CBL itself, transformation was associated with activation of Akt and STAT5 and required functional expression of the small GTPases Rho, Rac, and Cdc42. Furthermore, the mutations led to constitutively elevated intracellular reactive oxygen species levels, which is commonly linked to increased glucose metabolism in cancer cells. Inhibition of hexokinase with 2-deoxyglucose blocked the transforming activity of CBL mutants and reduced activation of signaling mechanisms. Overall, our data demonstrate that mutations of CBL alter cellular biology at multiple levels and require not only the activation of receptor proximal signaling events but also an increase in cellular glucose metabolism. Pathways that are activated by CBL gain-of-function mutations can be efficiently targeted by small molecule drugs.
Collapse
Affiliation(s)
- Margret S. Fernandes
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mamatha M. Reddy
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Nicole J. Croteau
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Christoph Walz
- the Pathologisches Institut and
- III Medizinische Klinik, Universitätsmedizin Mannheim, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Henry Weisbach
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
| | - Klaus Podar
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- the National Center for Tumor Diseases (NCT), Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hamid Band
- the Eppley Institute and Departments of Genetics, Cell Biology & Anatomy and Biochemistry & Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Martin Carroll
- the Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and
| | - Andreas Reiter
- III Medizinische Klinik, Universitätsmedizin Mannheim, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Richard A. Larson
- the Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Ravi Salgia
- the Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - James D. Griffin
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Martin Sattler
- From the Department of Medical Oncology, Dana-Farber Cancer Institute, and
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
257
|
An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell 2010; 7:101-13. [PMID: 20621054 DOI: 10.1016/j.stem.2010.06.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/26/2010] [Accepted: 06/09/2010] [Indexed: 12/18/2022]
Abstract
In this study, we describe an in vivo RNA interference functional genetics approach to evaluate the role of 20 different conserved polarity factors and fate determinants in mouse hematopoietic stem cell (HSC) activity. In total, this screen revealed three enhancers and one suppressor of HSC-derived reconstitution. Pard6a, Prkcz, and Msi2 shRNA-mediated depletion significantly impaired HSC repopulation. An in vitro promotion of differentiation was observed after the silencing of these genes, consistent with their function in regulating HSC self-renewal. Conversely, Prox1 knockdown led to in vivo accumulation of primitive and differentiated cells. HSC activity was also enhanced in vitro when Prox1 levels were experimentally reduced, identifying it as a potential antagonist of self-renewal. HSC engineered to overexpress Msi2 or Prox1 showed the reverse phenotype to those transduced with corresponding shRNA vectors. Gene expression profiling studies identified a number of known HSC and cell cycle regulators as potential downstream targets to Msi2 and Prox1.
Collapse
|
258
|
Ichii M, Shimazu T, Welner RS, Garrett KP, Zhang Q, Esplin BL, Kincade PW. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol Rev 2010; 237:10-21. [PMID: 20727026 PMCID: PMC2928143 DOI: 10.1111/j.1600-065x.2010.00933.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technical advances have made it possible to separate hematopoietic tissues such as the bone marrow into ever smaller populations, complicating our understanding of immune system replenishment. Patterns of surface marker expression and transcription profiles as well as results obtained with reporter mice suggest that lymphopoietic cells are not closely synchronized, and there is considerable cell to cell variation. Loss of differentiation options is gradual, and ultimate fate can be established at different stages of lineage progression. For example, individual hematopoietic stem cells can be biased such that some are very poor sources of lymphocytes as contrasted to ones with balanced outputs. Still other hematopoietic stem cells are effective at generating B and T cells but are defective with respect to expansion and difficult to distinguish from early lymphoid progenitors. That diversity carries forward to later events, and similar appearing cells in the immune system can arise from alternate differentiation pathways. In fact, new categories of lymphoid progenitors are still being discovered. Heterogeneity provides adaptability as hematopoiesis can be dramatically altered during infections, influencing numbers and types of cells that are produced.
Collapse
Affiliation(s)
- Michiko Ichii
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | |
Collapse
|
259
|
Will B, Steidl U. Multi-parameter fluorescence-activated cell sorting and analysis of stem and progenitor cells in myeloid malignancies. Best Pract Res Clin Haematol 2010; 23:391-401. [PMID: 21112038 PMCID: PMC3052971 DOI: 10.1016/j.beha.2010.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Owing to the discovery that rare leukemia-initiating cells (or leukemia stem cells, LSC) give origin to and propagate a hierarchical cellular organization of variably differentiated leukemic blasts, the analysis of precisely defined stem and progenitor cells have increasingly gained importance. Emergence of multi-parameter high-speed fluorescence-activated cell sorting (FACS) for the subfractionation of hematopoietic progenitor cells has allowed research on the biology of the cell-of-origin for LSCs and of LSCs as potential (or essential) therapeutic targets that may escape chemotherapy and consequently contribute to disease relapse. This review introduces the current state-of-the-art methods for the fractionation of hematopoietic stem and progenitor cells, with particular focus on myeloid malignancies. As many aspects of human normal and malignant hematopoiesis are frequently modeled in animal studies, we also provide an overview of hematopoietic stem and progenitor cell purification methods that are commonly utilized for research in murine models of disease.
Collapse
Affiliation(s)
- Britta Will
- Albert Einstein College of Medicine, Department of Cell Biology & Albert Einstein Cancer Center, Chanin Institute for Cancer Research, Rm. #606, 1300 Morris Park Avenue, NY 10461, USA
| | | |
Collapse
|
260
|
Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T. The Essential Functions of Adipo-osteogenic Progenitors as the Hematopoietic Stem and Progenitor Cell Niche. Immunity 2010; 33:387-99. [DOI: 10.1016/j.immuni.2010.08.017] [Citation(s) in RCA: 619] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/12/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022]
|
261
|
Shima H, Takubo K, Tago N, Iwasaki H, Arai F, Takahashi T, Suda T. Acquisition of G₀ state by CD34-positive cord blood cells after bone marrow transplantation. Exp Hematol 2010; 38:1231-40. [PMID: 20800645 DOI: 10.1016/j.exphem.2010.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 08/04/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Hematopoietic stem cells are kept in a quiescent state in the hypoxic area of the bone marrow, which is essential for hematopoietic stem cell maintenance. However, when and how hematopoietic stem cells acquire their hypoxic state and maintain quiescence has not been fully elucidated. The aim of this study was to understand this process in human hematopoietic stem cells after bone marrow transplantation. MATERIALS AND METHODS Human CD34-positive cord blood cells were transplanted into nonobese diabetic/severe combined immunodeficient interleukin-2 receptor γ chain knockout mice. Cell cycle and hypoxia assay analyses were performed, to identify changes in the characteristics of human hematopoietic stem cells following transplantation. Quantitative real-time reverse transcription polymerase chain reaction analysis was used to analyze the transcriptional changes accompanying this transition. RESULTS Engrafted primitive lineage-negative CD34-positive CD38-negative cells acquired hypoxic state and quiescence in the recipient bone marrow between 4 and 8 weeks, and between 8 and 12 weeks after transplantation, respectively. During 4 and 8 weeks after transplantation, changes in the transcription levels of G₀ regulatory factors, such as CCNC and RBL1, and stem cell regulators, such as Flt3, were also seen, which may be related to the characteristic changes in the cell cycle or oxygenation state. CONCLUSIONS Behavioral changes of hematopoietic stem cells in their cell cycle and oxygenation state during and after bone marrow engraftment may provide insights into hematopoietic stem cell regulation, mediating the improvement of clinical hematopoietic stem cell transplantation protocols and the eradication of leukemia stem cells.
Collapse
Affiliation(s)
- Haruko Shima
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
262
|
Schlenner SM, Rodewald HR. Early T cell development and the pitfalls of potential. Trends Immunol 2010; 31:303-10. [PMID: 20634137 DOI: 10.1016/j.it.2010.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 02/08/2023]
Abstract
The long-standing model for hematopoiesis, which features a dichotomy into separate lymphoid and myeloid branches, predicts that progenitor T cells arise from a lymphocyte-restricted pathway. However, experiments that have detected myeloid potential in progenitor T cells have been reported as evidence to question this model. Mapping physiological differentiation pathways has now led to opposite conclusions, by showing that T cells and thymic myeloid cells have distinct origins and that, in vivo, T cell progenitors lack significant potential for myeloid lineages including dendritic cells. Here, we review the underlying experiments that have led to such fundamentally different conclusions. The current controversy might reflect a need to distinguish between cell fates that are possible experimentally from physiological fate choices, to build a map of immunological differentiation pathways.
Collapse
Affiliation(s)
- Susan M Schlenner
- Department for Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
263
|
Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 2010; 116:375-85. [DOI: 10.1182/blood-2009-07-233437] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Hematopoietic stem cell (HSC) niches have been reported at the endosteum or adjacent to bone marrow (BM) vasculature. To investigate functional attributes of these niches, mice were perfused with Hoechst 33342 (Ho) in vivo before BM cell collection in presence of pump inhibitors and antibody stained. We report that the position of phenotypic HSCs, multipotent and myeloid progenitors relative to blood flow, follows a hierarchy reflecting differentiation stage, whereas mesenchymal stromal cells are perivascular. Furthermore, during granulocyte colony-stimulating factor–induced mobilization, HSCs migrated closer to blood flow, whereas stromal cells did not. Interestingly, phenotypic Lin−Sca1+KIT+CD41−CD48−CD150+ HSCs segregated into 2 groups (Honeg or Homed), based on degree of blood/Ho perfusion of their niche. HSCs capable of serial transplantation and long-term bromodeoxyuridine label retention were enriched in Honeg HSCs, whereas Homed HSCs cycled more frequently and only reconstituted a single host. This suggests that the most potent HSC niches are enriched in locally secreted factors and low oxygen tension due to negligible blood flow. Importantly, blood perfusion of niches correlates better with HSC function than absolute distance from vasculature. This technique enables prospective isolation of serially reconstituting HSCs distinct from other less potent HSCs of the same phenotype, based on the in vivo niche in which they reside.
Collapse
|
264
|
Vicente R, Swainson L, Marty-Grès S, De Barros SC, Kinet S, Zimmermann VS, Taylor N. Molecular and cellular basis of T cell lineage commitment. Semin Immunol 2010; 22:270-5. [PMID: 20630771 DOI: 10.1016/j.smim.2010.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/23/2010] [Indexed: 12/16/2022]
Abstract
The thymus forms as an alymphoid thymic primordium with T cell differentiation requiring the seeding of this anlage. This review will focus on the characteristics of the hematopoietic progenitors which colonize the thymus and their subsequent commitment/differentiation, both in mice and men. Within the thymus, the interplay between Notch1 and IL-7 signals is crucial for the orchestration of T cell development, but the precise requirements for these factors in murine and human thympoeisis are not synonymous. Recent advances in our understanding of the mechanisms regulating precursor entry and their maintenance in the thymus will also be presented.
Collapse
Affiliation(s)
- Rita Vicente
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535/IFR 122, 34293 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
265
|
A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood 2010; 116:1678-84. [PMID: 20522713 DOI: 10.1182/blood-2010-03-273862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250a(E2E3/E2E3) mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250a(E2E3/E2E3) HSC is equivalent to that of the wild-type counterparts. The Baf250a(E2E3/E2E3) FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations.
Collapse
|
266
|
Sultana DA, Bell JJ, Zlotoff DA, De Obaldia ME, Bhandoola A. Eliciting the T cell fate with Notch. Semin Immunol 2010; 22:254-60. [PMID: 20627765 DOI: 10.1016/j.smim.2010.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
Multipotent progenitors arrive at the thymus via the blood. Constraining the non-T cell fates of these progenitors while promoting the T cell fate is a major task of the thymus. Notch appears to be the initial trigger for a developmental program that eventually results in T cell lineage commitment. Several downstream targets of Notch are known, but the specific roles of each are poorly understood. A greater understanding of how Notch and other thymic signals direct progenitors to a T cell fate could be useful for translational work. For example, such work could eventually allow for the generation of fully competent T cells in vitro that could supplement the waning T cell numbers and function in the elderly and boost T cell-mediated immunity in patients with immunodeficiency and after stem cell transplantation.
Collapse
Affiliation(s)
- Dil Afroz Sultana
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
267
|
Belyaev NN, Brown DE, Diaz AIG, Rae A, Jarra W, Thompson J, Langhorne J, Potocnik AJ. Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nat Immunol 2010; 11:477-85. [PMID: 20431620 DOI: 10.1038/ni.1869] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/23/2010] [Indexed: 12/24/2022]
Abstract
Although the relationship between hematopoietic stem cells and progenitor populations has been investigated extensively under steady-state conditions, the dynamic response of the hematopoietic compartment during acute infection is largely unknown. Here we show that after infection of mice with Plasmodium chabaudi, a c-Kit(hi) progenitor subset positive for interleukin 7 receptor-alpha (IL-7Ralpha) emerged that had both lymphoid and myeloid potential in vitro. After being transferred into uninfected alymphoid or malaria-infected hosts, IL-7Ralpha(+)c-Kit(hi) progenitors generated mainly myeloid cells that contributed to the clearance of infected erythrocytes in infected hosts. The generation of these infection-induced progenitors was critically dependent on interferon-gamma (IFN-gamma) signaling in hematopoietic progenitors. Thus, IFN-gamma is a key modulator of hematopoiesis and innate and adaptive immunity during acute malaria infection.
Collapse
Affiliation(s)
- Nikolai N Belyaev
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Lescale C, Dias S, Maës J, Cumano A, Szabo P, Charron D, Weksler ME, Dosquet C, Vieira P, Goodhardt M. Reduced EBF expression underlies loss of B-cell potential of hematopoietic progenitors with age. Aging Cell 2010; 9:410-9. [PMID: 20331442 DOI: 10.1111/j.1474-9726.2010.00566.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aging is accompanied by a reduction in the generation of B lymphocytes leading to impaired immune responses. In this study, we have investigated whether the decline in B lymphopoiesis is due to age-related defects in the hematopoietic stem cell compartment. The ability of hematopoietic stem cells from old mice to generate B cells, as measured in vitro, is decreased 2-5-fold, while myeloid potential remains unchanged. This age-related decrease in B-cell potential is more marked in common lymphoid progenitors (CLP) and was associated with reduced expression of the B-lineage specifying factors, EBF and Pax5. Notably, retrovirus-mediated expression of EBF complemented the age-related loss of B-cell potential in CLP isolated from old mice. Furthermore, transduction of CLP from old mice with a constitutively active form of STAT5 restored both EBF and Pax5 expression and increased B-cell potential. These results are consistent with a mechanism, whereby reduced expression of EBF with age decreases the frequency with which multipotent hematopoietic progenitors commit to a B-cell fate, without altering their potential to generate myeloid cells.
Collapse
Affiliation(s)
- Chloé Lescale
- Institut Universitaire d'Hématologie, Université Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
Samitas K, Lötvall J, Bossios A. B Cells: From Early Development to Regulating Allergic Diseases. Arch Immunol Ther Exp (Warsz) 2010; 58:209-25. [DOI: 10.1007/s00005-010-0073-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 10/27/2009] [Indexed: 01/22/2023]
|
270
|
Czechowicz A, Weissman IL. Purified hematopoietic stem cell transplantation: the next generation of blood and immune replacement. Immunol Allergy Clin North Am 2010; 30:159-71. [PMID: 20493393 PMCID: PMC3071240 DOI: 10.1016/j.iac.2010.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Replacement of disease-causing stem cells with healthy ones has been achieved clinically via hematopoietic cell transplantation (HCT) for the last 40 years, as a treatment modality for a variety of cancers and immunodeficiencies with moderate, but increasing, success. This procedure has traditionally included transplantation of mixed hematopoietic populations that include hematopoietic stem cells (HSC) and other cells, such as T cells. This article explores and delineates the potential expansion of this technique to treat a variety of inherited diseases of immune function, the current barriers in HCT and pure HSC transplantation, and the up-and-coming strategies to combat these obstacles.
Collapse
Affiliation(s)
- Agnieszka Czechowicz
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | | |
Collapse
|
271
|
Long-term “in vitro” proliferating mouse hematopoietic progenitor cell lines. Immunol Lett 2010; 130:32-5. [DOI: 10.1016/j.imlet.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/21/2009] [Accepted: 11/30/2009] [Indexed: 01/07/2023]
|
272
|
Morita Y, Ema H, Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. ACTA ACUST UNITED AC 2010; 207:1173-82. [PMID: 20421392 PMCID: PMC2882827 DOI: 10.1084/jem.20091318] [Citation(s) in RCA: 332] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cells (HSCs) have been extensively characterized based on functional definitions determined by experimental transplantation into lethally irradiated mice. In mice, HSCs are heterogeneous with regard to self-renewal potential, in vitro colony-forming activity, and in vivo behavior. We attempted prospective isolation of HSC subsets with distinct properties among CD34(-/low) c-Kit+Sca-1+Lin- (CD34-KSL) cells. CD34-KSL cells were divided, based on CD150 expression, into three fractions: CD150high, CD150med, and CD150neg cells. Compared with the other two fractions, CD150high cells were significantly enriched in HSCs, with great self-renewal potential. In vitro colony assays revealed that decreased expression of CD150 was associated with reduced erythroblast/megakaryocyte differentiation potential. All three fractions were regenerated only from CD150high cells in recipient mice. Using single-cell transplantation studies, we found that a fraction of CD150high cells displayed latent and barely detectable myeloid engraftment in primary-recipient mice but progressive and multilineage reconstitution in secondary-recipient mice. These findings highlight the complexity and hierarchy of reconstitution capability, even among HSCs in the most primitive compartment.
Collapse
Affiliation(s)
- Yohei Morita
- Division of Stem Cell Therapy and FACS Core Laboratory, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
273
|
Yan Q, Yao D, Wei LL, Huang Y, Myers J, Zhang L, Xin W, Shim J, Man Y, Petryniak B, Gerson S, Lowe JB, Zhou L. O-fucose modulates Notch-controlled blood lineage commitment. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2921-34. [PMID: 20363915 DOI: 10.2353/ajpath.2010.090702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Notch receptors are cell surface molecules essential for cell fate determination. Notch signaling is subject to tight regulation at multiple levels, including the posttranslational modification of Notch receptors by O-linked fucosylation, a reaction that is catalyzed by protein O-fucosyltransferase-1 (Pofut1). Our previous studies identified a myeloproliferative phenotype in mice conditionally deficient in cellular fucosylation that is attributable to a loss of Notch-dependent suppression of myelopoiesis. Here, we report that hematopoietic stem cells deficient in cellular fucosylation display decreased frequency and defective repopulating ability as well as decreased lymphoid but increased myeloid developmental potential. This phenotype may be attributed to suppressed Notch ligand binding and reduced downstream signaling of Notch activity in hematopoietic stem cells. Consistent with this finding, we further demonstrate that mouse embryonic stem cells deficient in Notch1 (Notch1(-/-)) or Pofut1 (Pofut1(-/-)) fail to generate T lymphocytes but differentiate into myeloid cells while coculturing with Notch ligand-expressing bone marrow stromal cells in vitro. Moreover, in vivo hematopoietic reconstitution of CD34(+) progenitor cells derived from either Notch1(-/-) or Pofut1(-/-) embryonic stem cells show enhanced granulopoiesis with depressed lymphoid lineage development. Together, these results indicate that Notch signaling maintains hematopoietic lineage homeostasis by promoting lymphoid development and suppressing overt myelopoiesis, in part through processes controlled by O-linked fucosylation of Notch receptors.
Collapse
Affiliation(s)
- Quanjian Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Guzylack-Piriou L, Alves MP, McCullough KC, Summerfield A. Porcine Flt3 ligand and its receptor: generation of dendritic cells and identification of a new marker for porcine dendritic cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:455-464. [PMID: 20015454 DOI: 10.1016/j.dci.2009.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 05/28/2023]
Abstract
Based on the known importance of Flt3 ligand (Flt3L) for the development of mouse dendritic cells (DCs), the present study compared the phenotype and function of DC derived from porcine bone marrow haematopoietic cells using either granulocyte-macrophage colony-stimulating factor or Flt3L (GMCSF-DC and Flt3L-DC, respectively). To this end, porcine Flt3L was cloned resulting in the identification of three isoforms of Flt3L. Compared to GMCSF-DC which were uniformly CD14(+), Flt3L-DC had a more diverse phenotype comprised of CD172a(-)CD11a(-) progenitor cells, CD172a(+)CD14(-)CD163(-) DC and CD172a(+)CD14(+)CD163(+) DC. In addition, only the Flt3L-DC contained interferon-producing plasmacytoid DC, although their frequency was low. Only the CD14(-) Flt3L-DC responded to TLR2, -3, -4, -7 and -9 agonists by upregulating CD80/86. This population of DC was also more potent in T-cell stimulation assays when compared to the CD14(+) counterpart. Interestingly, Flt3 was not only highly expressed on DC precursors, but also found on Flt3L-DC but not on GMCSF-DC or monocyte-derived DC. Furthermore, also DC circulating in the blood but not monocytes or other leukocytes expressed this receptor. Taken together, our study demonstrates that Flt3L-DCs are more suitable to study the interaction of pathogens with DC. Moreover, we show that also in the pig Flt3 remains expressed in a restricted manner on DC originating from a bone marrow DC precursors, typically representing steady-state DC in lymphoid tissue and blood.
Collapse
Affiliation(s)
- Laurence Guzylack-Piriou
- INRA, Unité de Pharmacologie-Toxicologie, 180 chemin de Tournefeuille, 31931 Toulouse cedex 9, France
| | | | | | | |
Collapse
|
275
|
Papathanasiou P, Attema JL, Karsunky H, Hosen N, Sontani Y, Hoyne GF, Tunningley R, Smale ST, Weissman IL. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 2010; 27:3082-92. [PMID: 19816952 DOI: 10.1002/stem.232] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cells (HSCs) are rare, ancestral cells that underlie the development, homeostasis, aging, and regeneration of the blood. Here we show that the chromatin-associated protein Ikaros is a crucial self-renewal regulator of the long-term (LT) reconstituting subset of HSCs. Ikaros, and associated family member proteins, are highly expressed in self-renewing populations of stem cells. Ikaros point mutant mice initially develop LT-HSCs with the surface phenotype cKit+Thy1.1(lo)Lin(-/lo)Sca1+Flk2-CD150+ during fetal ontogeny but are unable to maintain this pool, rapidly losing it within two days of embryonic development. A synchronous loss of megakaryocyte/erythrocyte progenitors results, along with a fatal, fetal anemia. At this time, mutation of Ikaros exerts a differentiation defect upon common lymphoid progenitors that cannot be rescued with an ectopic Notch signal in vitro, with hematopoietic cells preferentially committing to the NK lineage. Althoughdispensable for the initial embryonic development of blood, Ikaros is clearly needed for maintenance of this tissue. Achieving successful clinical tissue regeneration necessitates understanding degeneration, and these data provide a striking example by a discrete genetic lesion in the cells underpinning tissue integrity during a pivotal timeframe of organogenesis.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Challen GA, Boles NC, Chambers SM, Goodell MA. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. Cell Stem Cell 2010; 6:265-78. [PMID: 20207229 PMCID: PMC2837284 DOI: 10.1016/j.stem.2010.02.002] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/11/2009] [Accepted: 02/02/2010] [Indexed: 02/06/2023]
Abstract
The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased HSCs (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers. These phenotypes are stable under natural (aging) or artificial (serial transplantation) stress and are exacerbated in the presence of competing HSCs. My- and Ly-HSCs respond differently to TGF-beta1, presenting a possible mechanism for differential regulation of HSC subtype activation. This study demonstrates definitive isolation of lineage-biased HSC subtypes and contributes to the fundamental change in view that the hematopoietic system is maintained by a continuum of HSC subtypes, rather than a functionally uniform pool.
Collapse
Affiliation(s)
- Grant A. Challen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, Australia, 3800
| | - Nathan C. Boles
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Stuart M. Chambers
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Margaret A. Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA, 77030
- Center For Cell And Gene Therapy, Baylor College of Medicine, Houston, TX, USA, 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
277
|
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6:48-58. [PMID: 20074534 DOI: 10.1016/j.stem.2009.11.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage consisted of "short-term" reconstituting cells able to sustain clones of differentiating cells for only 4-6 weeks. Here we expand evidence for a numerically dominant "intermediate-term" multipotent HSC stage in mice whose clones persist for 6-8 months before becoming extinct and that are separable from both short-term as well as permanently reconstituting "long-term" HSCs. The findings suggest that the first step in stem cell differentiation consists not in loss of initial capacity for serial self-renewal divisions, but rather in loss of mechanisms that stabilize self-renewing behavior throughout successive future stem cell divisions.
Collapse
|
278
|
Wang CQ, Jacob B, Nah GSS, Osato M. Runx family genes, niche, and stem cell quiescence. Blood Cells Mol Dis 2010; 44:275-86. [PMID: 20144877 DOI: 10.1016/j.bcmd.2010.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
279
|
Kenins L, Gill JW, Holländer GA, Wodnar-Filipowicz A. Flt3 ligand-receptor interaction is important for maintenance of early thymic progenitor numbers in steady-state thymopoiesis. Eur J Immunol 2010; 40:81-90. [PMID: 19830725 DOI: 10.1002/eji.200839213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-cell production throughout life depends on efficient colonization and intrathymic expansion of BM-derived hematopoietic precursors. After irradiation-induced thymic damage, thymic recovery is facilitated by Flt3 ligand (FL), expressed by perivascular fibroblasts surrounding the thymic entry site of Flt3 receptor-positive progenitor cells. Whether intrathymic FL-Flt3 interactions play a role in steady-state replenishment of T cells remains unknown. Here, using competitive BM transplantation studies and fetal thymic organ cultures we demonstrated the continued numerical advantage of Flt3+ intrathymic T-cell precursors. Sub-kidney capsule thymic transplantation experiments, in which WT and FL-/- thymic lobes were grafted into FL-/- recipients, revealed that FL expression by the thymic microenvironment plays a role in steady-state thymopoiesis. The deficiency of the most immature thymic T-cell precursors correlated to upregulation of FL by thymic MTS15+ fibroblasts, suggesting that the number of Flt3+ progenitor cells may regulate the thymic expression of this cytokine. Together, these results show that FL expression by thymic stromal fibroblasts interacting with Flt3+ T-cell progenitors is important for the physiological maintenance of early T-cell development.
Collapse
Affiliation(s)
- Linda Kenins
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
280
|
Comparative gene expression analysis of zebrafish and mammals identifies common regulators in hematopoietic stem cells. Blood 2010; 115:e1-9. [DOI: 10.1182/blood-2009-07-232322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Hematopoiesis in teleost fish is maintained in the kidney. We previously reported that Hoechst dye efflux activity of hematopoietic stem cells (HSCs) is highly conserved in vertebrates, and that Hoechst can be used to purify HSCs from teleost kidneys. Regulatory molecules that are strongly associated with HSC activity may also be conserved in vertebrates. In this study, we identified evolutionarily conserved molecular components in HSCs by comparing the gene expression profiles of zebrafish, murine, and human HSCs. Microarray data of zebrafish kidney side population cells (zSPs) showed that genes involved in cell junction and signal transduction tended to be up-regulated in zSPs, whereas genes involved in DNA replication tended to be down-regulated. These properties of zSPs were similar to those of mammalian HSCs. Overlapping gene expression analysis showed that 40 genes were commonly up-regulated in these 3 HSCs. Some of these genes, such as egr1, gata2, and id1, have been previously implicated in the regulation of HSCs. In situ hybridization in zebrafish kidney revealed that expression domains of egr1, gata2, and id1 overlapped with that of abcg2a, a marker for zSPs. These results suggest that the overlapping genes identified in this study are regulated in HSCs and play important roles in their functions.
Collapse
|
281
|
Avagyan S, Amrani YM, Snoeck HW. Identification and in vivo analysis of murine hematopoietic stem cells. Methods Enzymol 2010; 476:429-47. [PMID: 20691879 DOI: 10.1016/s0076-6879(10)76023-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) can self-renew and give rise to all the cells of the blood and the immune system. As they differentiate, HSCs progressively lose their self-renewal capacity and generate lineage-restricted multipotential progenitor cells that in turn give rise to mature cells. The development of rigorous quantitative in vivo assays for HSC activity combined with multicolor flow cytometry and high-speed sorting have resulted in the phenotypic definition of HSCs to virtual purity. Here, we describe the isolation and identification of HSCs by flow cytometry and the use of competitive repopulation to assess HSC number and function.
Collapse
Affiliation(s)
- Serine Avagyan
- Department of Gene and Cell Medicine, Mount Sinai of School of Medicine, New York, USA
| | | | | |
Collapse
|
282
|
Eliasson P, Jönsson JI. The hematopoietic stem cell niche: Low in oxygen but a nice place to be. J Cell Physiol 2010; 222:17-22. [DOI: 10.1002/jcp.21908] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
283
|
Fossati V, Kumar R, Snoeck HW. Progenitor cell origin plays a role in fate choices of mature B cells. THE JOURNAL OF IMMUNOLOGY 2009; 184:1251-60. [PMID: 20038638 DOI: 10.4049/jimmunol.0901922] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cells, the Ab-producing cells of the immune system, develop from hematopoietic stem cells (HSCs) through well-defined stages during which Ig genes are rearranged to generate a clonal BCR. Signaling through the BCR plays a role in the subsequent cell fate decisions leading to the generation of three distinct types of B cells: B1, marginal zone, and follicular B cells. Common lymphoid progenitors (CLPs) are descended from HSCs, and although recent observations suggest that CLPs may not be physiological T cell precursors, it is generally accepted that CLPs are obligate progenitors for B cells. In addition, a CLP-like progenitor of unknown significance that lacks expression of c-kit (kit(-)CLP) was recently identified in the mouse model. In this study, we show that CLPs, kit(-)CLPs and a population within the lin(-)Sca1(+)kit(+)flt3(-) HSC compartment generate mature B cell types in different proportions: CLPs and kit(-)CLPs show a stronger marginal zone/follicular ratio than lin(-)Sca1(+)kit(+)flt3(-) cells, whereas kit(-)CLPs show a stronger B1 bias than any other progenitor population. Furthermore, expression of Sca1 on B cells depends on their progenitor origin as B cells derived from CLPs and kit(-)CLPs express more Sca1 than those derived from lin(-)Sca1(+)kit(+)flt3(-) cells. These observations indicate a role for progenitor origin in B cell fate choices and suggest the existence of CLP-independent B cell development.
Collapse
Affiliation(s)
- Valentina Fossati
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
284
|
Abstract
T-cell development in the thymus depends on continuous supply of T-cell progenitors from bone marrow (BM). Several extrathymic candidate progenitors have been described that range from multipotent cells to lymphoid cell committed progenitors and even largely T-lineage committed precursors. However, the nature of precursors seeding the thymus under physiologic conditions has remained largely elusive and it is not known whether there is only one physiologic T-cell precursor population or many. Here, we used a competitive in vivo assay based on depletion rather than enrichment of classes of BM-derived precursor populations, thereby only minimally altering physiologic precursor ratios to assess the contribution of various extrathymic precursors to T-lineage differentiation. We found that under these conditions multiple precursors, belonging to both multipotent progenitor (MPP) and common lymphoid progenitor (CLP) subsets have robust T-lineage potential. However, differentiation kinetics of different precursors varied considerably, which might ensure continuous thymic output despite gated importation of extrathymic precursors. In conclusion, our data suggest that the thymus functions to impose T-cell fate on any precursor capable of filling the limited number of progenitor niches.
Collapse
|
285
|
Abstract
T lymphopoiesis requires settling of the thymus by bone marrow-derived precursors throughout adult life. Progenitor entry into the thymus is selective, but the molecular basis of this selectivity is incompletely understood. The chemokine receptor CCR9 has been demonstrated to be important in this process. However, progenitors lacking CCR9 can still enter the thymus, suggesting a role for additional molecules. Here we report that the chemokine receptor CCR7 is also required for efficient thymic settling. CCR7 is selectively expressed on bone marrow progenitors previously shown to have the capacity to settle the thymus, and CCR7(-/-) progenitors are defective in settling the thymus. We further demonstrate that CCR7 sustains thymic settling in the absence of CCR9. Mice deficient for both CCR7 and CCR9 have severe reductions in the number of early thymic progenitors, and in competitive assays CCR7(-/-)CCR9(-/-) double knockout progenitors are almost completely restricted from thymic settling. However, these mice possess near-normal thymic cellularity. Compensatory expansion of intrathymic populations can account for at least a part of this recovery. Together our results illustrate the critical role of chemokine receptor signaling in thymic settling and help to clarify the cellular identity of the physiologic thymic settling progenitors.
Collapse
|
286
|
gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis. Blood 2009; 115:2380-90. [PMID: 19965672 DOI: 10.1182/blood-2009-07-233031] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Integrins contribute to lymphopoiesis, whereas Toll-like receptors (TLRs) facilitate the myeloid replenishment during inflammation. The combined role of TLRs and integrin on hematopoiesis remains unclear. gp96 (grp94, HSP90b1) is an endoplasmic reticulum master chaperone for multiple TLRs. We report herein that gp96 is also essential for expression of 14 hematopoietic system-specific integrins. Genetic deletion of gp96 thus enables us to determine the collective roles of gp96, integrins, and TLRs in hematopoiesis. We found that gp96-null hematopoietic stem cells could support long-term myelopoiesis. B- and T-cell development, however, was severely compromised with transitional block from pro-B to pre-B cells and the inability of thymocytes to develop beyond the CD4(-)CD8(-) stage. These defects were cell-intrinsic and could be recapitulated on bone marrow stromal cell culture. Furthermore, defective lymphopoiesis correlated strongly with failure of hematopoietic progenitors to form close contact with stromal cell niche and was not the result of the defect in the assembly of antigen receptor or interleukin-7 signaling. These findings define gp96 as the only known molecular chaperone to specifically regulate T- and B-cell development.
Collapse
|
287
|
Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:7084-94. [PMID: 19890044 DOI: 10.4049/jimmunol.0900196] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytotoxic antineoplastic therapy is widely used in the clinic as a treatment for malignant diseases. The treatment itself, however, leads to long-term depletion of the adaptive immune system, which is more pronounced in older patients, predominantly due to thymic atrophy. We and others have previously shown that withdrawal of sex steroids is able to regenerate the aged thymus and enhance recovery from autologous and allogeneic hematopoietic stem cell transplant. In this study we have examined the effects of sex steroid ablation (SSA) on the recovery of lymphopoiesis in the bone marrow (BM) and thymus following treatment with the chemotherapeutic agent cyclophosphamide (Cy) in middle-aged and old mice. Furthermore, we have also examined the impact of this regeneration on peripheral immunity. SSA enhanced the recovery of BM resident hematopoietic stem cells and lymphoid progenitors and promoted lymphopoiesis. Interestingly, Cy alone caused a profound increase in the recently described common lymphoid progenitor 2 (CLP-2) population in the BM. In the thymus, SSA caused a profound increase in cellularity as well as all intrathymic T-lineage progenitors including early T-lineage progenitors (ETPs) and non-canonical T cell progenitors such as the CLP-2. We also found that these transferred into numerical increases in the periphery with enhanced B and T cell numbers. Furthermore, these lymphocytes were found to have an enhanced functional capacity with no perturbation of the TCR repertoire. Taken together, these results provide the basis for the use of SSA in the clinic to enhance treatment outcomes from cytotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immune Regeneration Laboratory, Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton VIC 3800, Australia.
| | | | | | | | | | | |
Collapse
|
288
|
Abstract
To understand the mechanism in lymphoid development, it is critical to identify developmental intermediates downstream of hematopoietic stem cells, including cells responsible for seeding the thymus. Although early studies showed that hematopoietic stem cells choose either the myeloid-erythroid or the lymphoid pathway, recent data suggest that myelo-lymphoid precursors lacking erythroid potential exist in early hematopoiesis before cells are fully committed to the lymphoid lineage. We here summarize the phenotype and functional properties of such progenitors and the current developmental map for the lymphoid lineage.
Collapse
Affiliation(s)
- Koichi Akashi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
289
|
Abstract
Hematopoietic stem cells (HSC) have been defined by their ability to establish long-term hematopoiesis in myelo-ablated hosts. Prospective isolation using combinations of cell-surface markers and/or dye exclusion can yield highly purified and nearly homogeneous phenotypically defined cells that repopulate irradiated hosts. Although highly informative, these types of analyses may not necessarily reflect ongoing homeostatic hematopoiesis. HSCs are also described as being quiescent. This has been demonstrated by cell cycle analysis of phenotypically defined HSCs. Some studies have challenged the existence of truly quiescent HSCs, suggesting that they continuously cycle, albeit with very slow kinetics. Here we present a pulse-chase system based on the controllable incorporation of H2B-GFP into nucleosomes, which allows the identification, purification, and functional analysis of viable label-retaining cells. Our data complement and extend recent studies using similar strategies. These, together with our present studies, find a rare, quiescent or dormant subset within the population of stringently defined HSC phenotypes. To date, three types of niches, endosteal, vascular, and reticular, have been described; herein we review the cellular and spatial nature of these microenvironments. We propose that HSC label-retention combined with genetically manipulated stem cell niches will allow us to determine their anatomical architecture, to address HSC cell fate proliferation kinetics, and to begin to dissect the molecular cross talk among stem cells and niche cells in vivo during both normal and perturbed homeostasis.
Collapse
Affiliation(s)
- Christoph Schaniel
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
290
|
Abstract
The Wnt signaling pathway has been implicated in regulation of hematopoiesis through a plethora of studies from many different laboratories. However, different inducible gain- and loss-of-function approaches retrieved controversial and sometimes contradictory results. Different levels of activation of the pathway, dosages of Wnt signaling required, and the interference by other signals in the context of Wnt activation collectively explain these controversies. Gain-of-function or in vitro exposure to WNT proteins and more specifically WNT3a was shown to enhance hematopoietic stem cell (HSC) activity, but its exact role was still not completely understood. In a recent study we analyzed the hematopoietic system of mice deficient for this specific Wnt gene. Wnt3a deficiency results in early embryonic lethality around embryonic day 12.5 (E12.5), precluding analysis in adult mice, but allowing hematopoiesis to be studied in fetal liver (FL) and in the just colonized thymic rudiment. Notably, we showed that long-term HSCs and multipotent progenitors are reduced in FL and have severely reduced long-term reconstitution capacity as observed in serial transplantation assays. Of interest, deficiency in Wnt3a leads to complete abolition of canonical Wnt signaling in FL hematopoietic stem and progenitor cells. This HSC deficiency is not explained by altered cell cycle or survival and is irreversible, since it cannot be restored by transplantation into Wnt3a-competent mice. In addition, Wnt3a deficiency differentially affects myeloid and B-lymphoid lineages, with myeloid cells being affected at the progenitor level, while B lymphopoiesis is apparently unaffected. Immature thymocytes, however, were reduced in cell numbers due to lack of Wnt3a production by the thymic microenvironment. Our results show that while in the thymus Wnt3a provides cytokine-like, proliferative stimuli to developing thymocyte Wnt3a regulates cell fate decisions of FL HSC in a nonredundant way.
Collapse
Affiliation(s)
- Tiago C Luis
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
291
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
292
|
Papathanasiou P, Attema JL, Karsunky H, Xu J, Smale ST, Weissman IL. Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150. Stem Cells 2009; 27:2498-508. [PMID: 19593793 PMCID: PMC2783507 DOI: 10.1002/stem.170] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood is a tissue with a high cell turnover rate that is constantly being replenished by bone marrow hematopoietic stem cells (HSCs) seeded during fetal ontogeny from the liver. Here we show that the long-term (LT) reconstituting subset of cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) HSCs is CD150(+). HSCs sourced from the fetal liver show LT, multilineage engraftment from E14.5 onward, and the CD150 cell surface molecule can readily substitute Thy1.1 as a positive marker of LT-HSCs in this tissue. From both fetal liver and adult bone marrow, cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) CD150(+) cells exhibit robust LT competitive engraftment, self-renewal, multilineage differentiation capacity, and an accessible chromatin configuration consistent with high expression of erythroid/megakaryoid genes in purified cell subsets. Our data show that, with appropriate combinations of cell surface markers, stem cells can be accurately isolated to high purity and characterized. This is important for the clarification of lineage relationships and the identification of bona fide regulators of stem cell self-renewal and differentiation both in normal and neoplastic tissues.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|
293
|
Weber C, Krueger A, Münk A, Bode C, Van Veldhoven PP, Gräler MH. Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:4292-301. [PMID: 19748984 DOI: 10.4049/jimmunol.0901724] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulation of lymphocytes through peripheral lymphoid tissues as well as progenitor entry into the thymus and its output of mature T cells are critical for normal immune function. Egress of lymphocytes from both peripheral lymphoid organs and thymus is dependent on sphingosine 1-phosphate (S1P) gradients. S1P-lyase 1 (SGPL1) deficiency leads to accumulation of S1P in lymphoid tissues, which blocks lymphocyte egress and induces thymus atrophy. In this study, we investigated thymocyte development in SGPL1-deficient mice (SGPL1(-/-)), which exhibited postnatal discontinuation of early thymocytopoiesis starting at 2 wk after birth. SGPL(-/-) thymi showed a loss of developing thymocytes in the thymic cortex between 2 and 4 wk of age, whereas mature thymocytes accumulated in the medulla. Detailed analysis demonstrated a deficit in thymic early T cell progenitors (ETP) as the principal reason for discontinued thymocyte development. This developmental block was accompanied by accumulation of ceramides, resulting in enhanced apoptosis of developing T cells. Lack of immigration or settlement of ETP completely halted thymocyte development. We conclude that increased ceramide levels in the thymus of SGPL1(-/-) mice abrogate thymic development postnatally by enhanced thymocyte apoptosis and depletion of thymic ETP. Our findings indicate that potentially therapeutic immunosuppression by SGPL1 inhibition should benefit from monitoring ceramides to prevent their increase to apoptosis- inducing levels.
Collapse
Affiliation(s)
- Claudia Weber
- Institute for Immunology, Hannover Medical School, Hanover 30625, Germany
| | | | | | | | | | | |
Collapse
|
294
|
In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood 2009; 114:4054-63. [PMID: 19726721 DOI: 10.1182/blood-2009-03-205823] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microenvironmental signals can determine hematopoietic stem cell (HSC) fate choices both directly and through stimulation of niche cells. In the bone marrow, prostaglandin E(2) (PGE(2)) is known to affect both osteoblasts and osteoclasts, whereas in vitro it expands HSCs and affects differentiation of hematopoietic progenitors. We hypothesized that in vivo PGE(2) treatment could expand HSCs through effects on both HSCs and their microenvironment. PGE(2)-treated mice had significantly decreased number of bone trabeculae, suggesting disruption of their microarchitecture. In addition, in vivo PGE(2) increased lineage(-) Sca-1(+) c-kit(+) bone marrow cells without inhibiting their differentiation. However, detailed immunophenotyping demonstrated a PGE(2)-dependent increase in short-term HSCs/multipotent progenitors (ST-HSCs/MPPs) only. Bone marrow cells transplanted from PGE(2) versus vehicle-treated donors had superior lymphomyeloid reconstitution, which ceased by 16 weeks, also suggesting that ST-HSCs were preferentially expanded. This was confirmed by serial transplantation studies. Thus in vivo PGE(2) treatment, probably through a combination of direct and microenvironmental actions, preferentially expands ST-HSCs in the absence of marrow injury, with no negative impact on hematopoietic progenitors or long-term HSCs. These novel effects of PGE(2) could be exploited clinically to increase donor ST-HSCs, which are highly proliferative and could accelerate hematopoietic recovery after stem cell transplantation.
Collapse
|
295
|
Estrov Z. Stem Cells and Somatic Cells: Reprogramming and Plasticity. CLINICAL LYMPHOMA AND MYELOMA 2009; 9:S319-S328. [DOI: 10.3816/clm.2009.s.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
296
|
Preffer F, Dombkowski D. Advances in complex multiparameter flow cytometry technology: Applications in stem cell research. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2009; 76:295-314. [PMID: 19492350 PMCID: PMC2728153 DOI: 10.1002/cyto.b.20480] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Flow cytometry and cell sorting are critical tools in stem cell research. Recent advances in flow cytometric hardware, reagents, and software have synergized to permit the stem cell biologist to more fully identify and isolate rare cells based on their immunofluorescent and light scatter characteristics. Some of these improvements include physically smaller air-cooled lasers, new designs in optics, new fluorescent conjugate-excitation pairs, and improved software to visualize data, all which combine to open up new horizons in the study of stem cells, by enhancing the resolution and specificity of inquiry. In this review, these recent improvements in technology will be outlined and important cell surface and functional antigenic markers useful for the study of stem cells described.
Collapse
Affiliation(s)
- Frederic Preffer
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
297
|
Jeong M, Piao ZH, Kim MS, Lee SH, Yun S, Sun HN, Yoon SR, Chung JW, Kim TD, Jeon JH, Lee J, Kim HN, Choi JY, Choi I. Thioredoxin-interacting protein regulates hematopoietic stem cell quiescence and mobilization under stress conditions. THE JOURNAL OF IMMUNOLOGY 2009; 183:2495-505. [PMID: 19625652 DOI: 10.4049/jimmunol.0804221] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signals. The mechanisms regulating the quiescence and mobilization of HSCs, however, remain unclear. In this study, we report that the expression of thioredoxin-interacting protein (TXNIP) is decreased during HSC activation. In Txnip(-/-) mice, the long-term reconstituting HSC population is decreased and exhausted, and its capacity to repopulate is rapidly lost. These effects are associated with hyperactive Wnt signaling, an active cell cycle, and reduced p21 expression under conditions of stress. TXNIP deficiency reduced the CXCL12- and osteopontin-mediated interaction between HSCs and the bone marrow, and impaired homing and retention in the osteoblastic niche, resulting in mobilized HSCs. Therefore, we propose that TXNIP is essential for maintaining HSC quiescence and the interaction between HSCs and the BM niche.
Collapse
Affiliation(s)
- Mira Jeong
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Masson K, Rönnstrand L. Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 2009; 21:1717-26. [PMID: 19540337 DOI: 10.1016/j.cellsig.2009.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 01/01/2023]
Abstract
Signal transduction in response to growth factors is a strictly controlled process with networks of feedback systems, highly selective interactions and finely tuned on-and-off switches. In the context of cancer, detailed signaling studies have resulted in the development of some of the most frequently used means of therapy, with several well established examples such as the small molecule inhibitors imatinib and dasatinib in the treatment of chronic myeloid leukemia. Impaired function of receptor tyrosine kinases is implicated in various types of tumors, and much effort is put into mapping the many interactions and downstream pathways. Here we discuss the hematopoietic growth factor receptors c-Kit and Flt3 and their downstream signaling in normal as well as malignant cells. Both receptors are members of the same family of tyrosine kinases and crucial mediators of stem-and progenitor-cell proliferation and survival in response to ligand stimuli from the surrounding microenvironment. Gain-of-function mutations/alterations render the receptors constitutively and ligand-independently activated, resulting in aberrant signaling which is a crucial driving force in tumorigenesis. Frequently found mutations in c-Kit and Flt3 are point mutations of aspartic acid 816 and 835 respectively, in the activation loop of the kinase domains. Several other point mutations have been identified, but in the case of Flt3, the most common alterations are internal tandem duplications (ITDs) in the juxtamembrane region, reported in approximately 30% of patients with acute myeloid leukemia (AML). During the last couple of years, the increasing understanding of c-Kit and Flt3 signaling has also revealed the complexity of these receptor systems. The impact of gain-of-function mutations of c-Kit and Flt3 in different malignancies is well established and shown to be of clinical relevance in both prognosis and therapy. Many inhibitors of both c-Kit or Flt3 or of their downstream substrates are in clinical trials with encouraging results, and targeted therapy using a combination of such inhibitors is considered a promising approach for future treatments.
Collapse
Affiliation(s)
- Kristina Masson
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Malmö University Hospital, Lund University, 20502 Malmö, Sweden
| | | |
Collapse
|
299
|
Simonnet AJ, Nehmé J, Vaigot P, Barroca V, Leboulch P, Tronik-Le Roux D. Phenotypic and Functional Changes Induced in Hematopoietic Stem/Progenitor Cells After Gamma-Ray Radiation Exposure. Stem Cells 2009; 27:1400-9. [DOI: 10.1002/stem.66] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
300
|
Liuba K, Pronk CJH, Stott SRW, Jacobsen SEW. Polyclonal T-cell reconstitution of X-SCID recipients after in utero transplantation of lymphoid-primed multipotent progenitors. Blood 2009; 113:4790-8. [PMID: 19074736 DOI: 10.1182/blood-2007-12-129056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although successful in utero hematopoietic cell transplantation (IUHCT) of X-linked severe combined immune deficiency (X-SCID) with enriched stem and progenitor cells was achieved more than a decade ago, it remains applied only in rare cases. Although this in part reflects that postnatal transplantations have overall given good results, there are no direct comparisons between IUHCT and postnatal transplantations of X-SCID. The proposed tolerance of the fetal immune system to foreign human leukocyte antigen early in gestation, a main rationale behind IUHCT, has recently been challenged by evidence for a considerable immune barrier against in utero transplanted allogeneic bone marrow cells. Consequently, there is need for further exploring the application of purified stem and progenitor cells to overcome this barrier also in IUHCT. Herein, we demonstrate in a congenic setting that recently identified lymphoid-primed multipotent progenitors are superior to hematopoietic stem cells in providing rapid lymphoid reconstitution after IUHCT of X-SCID recipients, and sustain in the long-term B cells, polyclonal T cells, as well as short-lived B-cell progenitors and thymic T-cell precursors. We further provide evidence for IUHCT of hematopoietic stem cells giving superior B- and T-cell reconstitution in fetal X-SCID recipients compared with neonatal and adolescent recipients.
Collapse
Affiliation(s)
- Karina Liuba
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell, Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|