251
|
Nogueira C, Kim KH, Sung H, Paraiso K, Dannenberg JH, Bosenberg M, Chin L, Kim M. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene 2010; 29:6222-32. [PMID: 20711233 PMCID: PMC2989338 DOI: 10.1038/onc.2010.349] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 06/10/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) and AKT pathways are frequently co-activated in melanoma through overexpression of receptor tyrosine kinases, mutations in their signaling surrogates, such as RAS and BRAF, or loss of negative regulators such as PTEN. As RAS can be a positive upstream regulator of PI3-K, it has been proposed that the loss of PTEN and the activation of RAS are redundant events in melanoma pathogenesis. Here, in genetically engineered mouse models of cutaneous melanomas, we sought to better understand the genetic interactions between HRAS activation and PTEN inactivation in melanoma genesis and progression in vivo. We showed that HRAS activation cooperates with Pten+/- and Ink4a/Arf-/- to increase melanoma penetrance and promote metastasis. Correspondingly, gain- and loss-of-function studies established that Pten loss increases invasion and migration of melanoma cells and non-transformed melanocytes, and such biological activity correlates with a shift to phosphorylation of AKT2 isoform and E-cadherin down-regulation. Thus, Pten inactivation can drive the genesis and promote the metastatic progression of RAS activated Ink4a/Arf deficient melanomas.
Collapse
Affiliation(s)
- Cristina Nogueira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Institute of Molecular Pathology and Immunology of the University of Porto, (IPATIMUP)/Medical Faculty, University of Porto, Porto, Portugal
| | - Kwan-Hyun Kim
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Hyeran Sung
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Kim Paraiso
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| | - Jan-Hermen Dannenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
| | - Marcus Bosenberg
- Department of Pathology, University of Vermont, Burlington, Vermont
| | - Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, 02115
| | - Minjung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, 02115
- Molecular Oncology Department, Comprehensive Melanoma Research Center, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612
| |
Collapse
|
252
|
Tanaka T, Rabbitts TH. Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Oncogene 2010; 29:6064-70. [PMID: 20818422 DOI: 10.1038/onc.2010.346] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/05/2010] [Accepted: 07/05/2010] [Indexed: 01/27/2023]
Abstract
RAS mutations are the most common gain-of-function change in human cancer and promise to be a critical therapy target. As a new approach, we have used a surrogate to drug the 'undruggable' (that is, RAS-effector protein-protein interactions inside cancer cells) in pre-clinical mouse models of RAS-dependent cancers. Using this novel reagent, we have specifically targeted RAS signalling in a transgenic mouse model of lung cancer by directly blockading RAS-effector interactions with an antibody fragment that binds to activated RAS, and show that the interaction of RAS and effectors, such as phosphoinositide 3-kinase and RAF, is necessary for tumour initiation. Further, interference with oncogenic RAS-effector interactions result in control of tumour growth in human cancer cells but, crucially, does not necessarily cause tumour regression. These findings support the concept that ablating RAS-dependent signalling in cancer will have chemo-preventive effects that confer a chronic state in cancer and suggest that mutant RAS-targeted therapies may require conjoint targeting of other molecules and/or current cancer therapeutic strategies (for example, radiotherapy and chemotherapy) to be curative. In this context, our findings suggest that the oncogene addiction model is not universally correct in its central thesis that cancer cell death is inevitable after loss of oncogenic protein function.
Collapse
Affiliation(s)
- T Tanaka
- Leeds Institute of Molecular Medicine, Section of Experimental Therapeutics, St James's University Hospital, University of Leeds, Leeds, UK
| | | |
Collapse
|
253
|
Vilar JMG. Noisy-threshold control of cell death. BMC SYSTEMS BIOLOGY 2010; 4:152. [PMID: 21067567 PMCID: PMC2992511 DOI: 10.1186/1752-0509-4-152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 11/10/2010] [Indexed: 01/17/2023]
Abstract
Background Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies. Results Here, I show that these typical responses arise naturally from the interplay of intracellular variability with a threshold-based control mechanism that detects cellular changes in addition to just the cellular state itself. Implementation of this mechanism in a quantitative model for T-cell apoptosis, a prototypical example of programmed cell death, captures with exceptional accuracy experimental observations for different expression levels of the oncogene Bcl-xL and directly links adaptation with noise in an ATP threshold below which cells die. Conclusions These results indicate that oncogenes like Bcl-xL, besides regulating absolute death values, can have a novel role as active controllers of cell-cell variability and the extent of adaptation.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biophysics Unit, CSIC-UPV/EHU and Department of Biochemistry and Molecular Biology, University of the Basque Country, PO Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
254
|
Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24:1967-2000. [PMID: 20844012 DOI: 10.1101/gad.1965810] [Citation(s) in RCA: 715] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Since early studies on the role of the androgen receptor that led to the advent of androgen deprivation therapy in the 1940s, there has long been intensive interest in the basic mechanisms underlying prostate cancer initiation and progression, as well as the potential to target these processes for therapeutic intervention. Here, we present an overview of major themes in prostate cancer research, focusing on current knowledge of principal events in cancer initiation and progression. We discuss recent advances, including new insights into the mechanisms of castration resistance, identification of stem cells and tumor-initiating cells, and development of mouse models for preclinical evaluation of novel therapuetics. Overall, we highlight the tremendous research progress made in recent years, and underscore the challenges that lie ahead.
Collapse
Affiliation(s)
- Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
255
|
Kuiken HJ, Beijersbergen RL. Exploration of synthetic lethal interactions as cancer drug targets. Future Oncol 2010; 6:1789-802. [DOI: 10.2217/fon.10.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In cancer research the quest continues to identify the Achilles’ heel of cancer. The ideal cancer drug targets are those that are essential in tumor cells but not in normal cells. Such targets are defined as cancer-specific vulnerabilities or as synthetic lethal interactions with cancer-specific genetic lesions. The search for synthetic lethal interactions focuses on proteins that are frequently mutated but elude pharmacological inhibition, for example, RAS, or proteins that are lost in cancer cells and by definition cannot be targeted, such as the tumor suppressor genes p53, APC and RB. These genetic interactions could yield alternative, effective targets for cancer treatment. However, it remains very difficult to predict or extrapolate these synthetic lethal interactions based on existing knowledge. With the discovery of RNAi, unbiased large-scale functional genomic screens for the identification of such targets have become possible potentially leading to major advances in the treatment of cancers. In this review we will discuss the biological basis of synthetic lethal interactions in relation to existing targeted therapeutics, lessons taught by targeted therapeutics already used in the clinic and the implementation of RNAi as tool to identify such synthetic lethal interactions.
Collapse
Affiliation(s)
- Hendrik J Kuiken
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
256
|
Mordasky Markell L, Pérez-Lorenzo R, Masiuk KE, Kennett MJ, Glick AB. Use of a TGFbeta type I receptor inhibitor in mouse skin carcinogenesis reveals a dual role for TGFbeta signaling in tumor promotion and progression. Carcinogenesis 2010; 31:2127-35. [PMID: 20852150 DOI: 10.1093/carcin/bgq191] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pharmacological inhibitors of the transforming growth factor β (TGFβ) type I receptor (ALK5) have shown promise in blocking growth of xenotransplanted cancer cell lines but the effect on a multistage cancer model is not known. To test this, we treated mouse skin with SB431542 (SB), a well-characterized ALK5 inhibitor, during a two-stage skin carcinogenesis assay. Topical SB significantly reduced the total number, incidence and size of papillomas compared with 12-O-tetradecanoylphorbol 13-acetate (TPA) promotion alone, and this was linked to increased epidermal apoptosis, decreased proliferation and decreased cutaneous inflammation during promotion. In contrast, the frequency of conversion to squamous cell carcinoma (SCC) was 2-fold higher in papillomas treated with SB. Although there was no difference in tumor cell proliferation in early premalignant lesions, those that formed after SB treatment exhibited reduced squamous differentiation and an altered inflammatory microenvironment similar to SCC. In an inducible epidermal RAS transgenic model, treatment with SB enhanced proliferation and cutaneous inflammation in skin but decreased expression of keratin 1 and increased expression of simple epithelial keratin 18, markers of premalignant progression. In agreement with increased frequency of progression in the multistage model, SB treatment resulted in increased tumor formation with a more malignant phenotype following long-term RAS induction. In contrast to the current paradigm for TGFβ in carcinogenesis, these results demonstrate that cutaneous TGFβ signaling enables promotion of benign tumors but suppresses premalignant progression through context-dependent regulation of epidermal homeostasis and inflammation.
Collapse
Affiliation(s)
- Lauren Mordasky Markell
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
257
|
Grimminger CM, Danenberg PV. Update of prognostic and predictive biomarkers in oropharyngeal squamous cell carcinoma: a review. Eur Arch Otorhinolaryngol 2010; 268:5-16. [PMID: 20827554 DOI: 10.1007/s00405-010-1369-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/12/2010] [Indexed: 01/10/2023]
Abstract
Oropharyngeal squamous cell carcinomas (OSCC) constitute about 5% of all cancers in the western world and the incidence and mortality rates of this tumor have shown little improvement over the last 30 years. Molecular targeted therapy, a promising strategy for the treatment of OSCC and other cancers, requires the understanding of specific molecular events of carcinogenesis and the different pathological, partly interrelated pathways. Extended knowledge of the prognostic or predictive value of molecular biomarkers in oropharyngeal cancer is necessary to allow a better characterization and classification of the tumor, improve the appraisal of clinical outcome and help to specify individual multimodal therapy with increased efficiency. This work affords an updated summary regarding recent data about tissue biomarkers in patients with OSCC, based on the six essential hallmarks of cancer described by Hanahan and Weinberg (Cell 100(1):57-70, 2000) providing the characterization of a malignant cell.
Collapse
Affiliation(s)
- Carolin M Grimminger
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
258
|
Inamdar GS, Madhunapantula SV, Robertson GP. Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 2010; 80:624-37. [PMID: 20450891 PMCID: PMC2897908 DOI: 10.1016/j.bcp.2010.04.029] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/19/2010] [Accepted: 04/27/2010] [Indexed: 12/19/2022]
Abstract
The Mitogen Activated Protein Kinase (MAPK) pathway plays a key role in melanoma development making it an important therapeutic target. In normal cells, the tightly regulated pathway relays extracellular signals from cell membrane to nucleus via a cascade of phosphorylation events. In melanomas, dysregulation of the MAPK pathway occurs frequently due to activating mutations in the B-RAF and RAS genes or other genetic or epigenetic modifications, leading to increased signaling activity promoting cell proliferation, invasion, metastasis, migration, survival and angiogenesis. However, identification of ideal pathway member to therapeutically target for maximal clinical benefit to melanoma patients remains a challenge. This review provides an overview of the obstacles faced targeting the MAPK pathway and why certain therapeutic approaches succeed while others fail. The review summarizes the roles played by the proteins, therapeutic potential and the drugs available to target each member of the pathway as well as concerns related to each. Potential for targeting multiple points and inhibiting other pathways along with MAPK inhibition for optimal efficacy are discussed along with explanations for development of drug resistance, which includes discussions related to cross-talk between pathways, RAF kinase isoform switching and phosphatase deregulation. Finally, the use of nanotechnology is reviewed as an approach to target the MAPK pathway using both genetic and pharmacological agents simultaneously targeting multiple points in the pathway or in combination with other cascades.
Collapse
Affiliation(s)
- Gajanan S Inamdar
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Gavin P. Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
259
|
Chua W, Kho PS, Moore MM, Charles KA, Clarke SJ. Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit Rev Oncol Hematol 2010; 79:224-50. [PMID: 20719530 DOI: 10.1016/j.critrevonc.2010.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 07/05/2010] [Accepted: 07/15/2010] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) treatment has evolved significantly over the last ten years with the use of active chemotherapeutic agents including fluoropyrimidines, oxaliplatin and irinotecan plus targeted monoclonal antibodies bevacizumab, cetuximab and panitumumab. The addition of newer chemotherapeutic agents and targeted therapies has improved patient outcomes at the cost of increased toxicity with not all patients benefiting from these treatments. It is necessary for clinicians to more accurately predict clinical outcomes particularly in the predominantly elderly CRC patient population. This review aims to summarise existing data regarding the use of clinical and laboratory variables plus molecular markers in predicting response, survival and toxicity to chemotherapy agents and targeted monoclonal antibodies currently used in the treatment of CRC.
Collapse
Affiliation(s)
- Wei Chua
- Sydney Cancer Centre, Concord Repatriation General Hospital, Hospital Road, Concord, NSW 2139, Australia
| | | | | | | | | |
Collapse
|
260
|
Chawla R, Procknow JA, Tantravahi RV, Khurana JS, Litvin J, Reddy EP. Cooperativity of Cdk4R24C and Ras in melanoma development. Cell Cycle 2010; 9:3305-14. [PMID: 20703083 DOI: 10.4161/cc.9.16.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of the CDK4 protein in human cancer first became evident following the identification of a germ line mutation in the Cdk4 locus that predisposes humans to melanoma. This mutation results in substitution of arginine with cysteine at position 24 (R24C). In an earlier study, we introduced the R24C mutation into the Cdk4 locus of mice using Cre-loxP-mediated "knock-in" technology and observed a very low incidence of spontaneous melanomas in Cdk4(R24C/R24C) mice. This suggested that additional oncogenic mutations might be required for development of melanomas. Here we report an increased incidence of spontaneous cutaneous melanoma in mice expressing the oncogene HRAS(G12V) in melanocytes on a Cdk4(R24C) background. Treatment of Tyr-HRas:Cdk4(R24C/R24C) mice with the carcinogen, DMBA/TPA resulted in a further increase in the number of nevi and melanomas developed when compared with Tyr-HRas:Cdk4(+/+) mice. In summary, in Tyr-HRas:Cdk4(R24C/R24C) mice, we observed that activated CDK4 cooperates with the oncogenic HRAS(G12V) protein to increase the susceptibility of melanoma development in vivo.
Collapse
Affiliation(s)
- Rachna Chawla
- Temple University School of Medicine, Fels Institute of Cancer Research and Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
261
|
Monahan KB, Rozenberg GI, Krishnamurthy J, Johnson SM, Liu W, Bradford MK, Horner J, Depinho RA, Sharpless NE. Somatic p16(INK4a) loss accelerates melanomagenesis. Oncogene 2010; 29:5809-17. [PMID: 20697345 PMCID: PMC3007178 DOI: 10.1038/onc.2010.314] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Loss of p16INK4a–RB and ARF–p53 tumor suppressor pathways, as well as activation of RAS–RAF signaling, is seen in a majority of human melanomas. Although heterozygous germline mutations of p16INK4a are associated with familial melanoma, most melanomas result from somatic genetic events: often p16INK4a loss and N-RAS or B-RAF mutational activation, with a minority possessing alternative genetic alterations such as activating mutations in K-RAS and/or p53 inactivation. To generate a murine model of melanoma featuring some of these somatic genetic events, we engineered a novel conditional p16INK4a-null allele and combined this allele with a melanocyte-specific, inducible CRE recombinase strain, a conditional p53-null allele and a loxP-stop-loxP activatable oncogenic K-Ras allele. We found potent synergy between melanocyte-specific activation of K-Ras and loss of p16INK4a and/or p53 in melanomagenesis. Mice harboring melanocyte-specific activated K-Ras and loss of p16INK4a and/or p53 developed invasive, unpigmented and nonmetastatic melanomas with short latency and high penetrance. In addition, the capacity of these somatic genetic events to rapidly induce melanomas in adult mice suggests that melanocytes remain susceptible to transformation throughout adulthood.
Collapse
Affiliation(s)
- K B Monahan
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center, The Center for Environmental Health and Susceptibility, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
262
|
VanBrocklin MW, Robinson JP, Lastwika KJ, Khoury JD, Holmen SL. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res 2010; 23:531-41. [PMID: 20444198 PMCID: PMC2906690 DOI: 10.1111/j.1755-148x.2010.00717.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a somatic cell gene delivery mouse model of melanoma that allows for the rapid validation of genetic alterations identified in this disease. A major advantage of this system is the ability to model the multi-step process of carcinogenesis in immune-competent mice without the generation and cross breeding of multiple strains. We have used this model to evaluate the role of RAS isoforms in melanoma initiation in the context of conditional Ink4a/Arf loss. Mice expressing the tumor virus A (TVA) receptor specifically in melanocytes under control of the dopachrome tautomerase (DCT) promoter were crossed to Ink4a/Arf(lox/lox) mice and newborn DCT-TVA/Ink4a/Arf(lox/lox) mice were injected with retroviruses containing activated KRAS, NRAS and/or Cre-recombinase. No mice injected with viruses containing KRAS and Cre or NRAS alone developed tumors; however, more than one-third of DCT-TVA/Ink4a/Arf(lox/lox) mice injected with NRAS and Cre viruses developed melanoma and two-thirds developed melanoma when NRAS and Cre expression was linked.
Collapse
|
263
|
Xie XY, Shen J, Xu LY, Li EM, Shen ZY. Bronchogenic and alveologenic tumors in mice induced by N-nitrosopiperidine. Biochem Cell Biol 2010; 88:775-82. [PMID: 20651851 DOI: 10.1139/o10-019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to explore the histogenesis and carcinogenesis of pulmonary cancer induced by N-nitrosopiperidine (NPIP) in mice. NPIP is a form of N-nitrosamine found in tobacco smoke, which has been shown to be a genotoxic chemical as well as a mutagenic compound for inducing chromosome aberrations and severe clastogenicity. In this study, 80 BALB/C strain mice were injected with 0.2 mmol/kg NPIP intraperitoneally for 8 weeks, and experiments were conducted for a further 16 weeks. For the control group, 40 mice were injected with an equal volume of 0.9% NaCl. Pulmonary tissues and tumors in the NPIP-treated group were examined by light microscopy and transmission electron microscopy and compared with the control group at 4-week intervals. The mRNA levels of p53 (mutant), bcl-2, c-myc, ras, and subunits of telomerase - telomerase reverse transcriptase (TERT) and an RNA component, TR - were assayed by mPCR or RT-PCR. Twenty-two mice in the experimental group were found to develop pulmonary tumors, but none in the control group. All tumors found in the experimental group originated from alveolar type II epithelial cells. In addition, 6 of the 22 mice also developed tumors of bronchogenic origin. The expression of p53, bcl-2, c-myc, ras, and the subunits of telomerase were found to increase in all pulmonary tissues and tumors formed thereafter upon NPIP treatment. In summary, NPIP-induced mouse lung tumors exhibited morphological changes during carcinogenesis, which may be the consequence of overexpression of some genes associated with the development of carcinoma and changes in subunits of telomerase. This mouse model of lung tumor formation may be a useful tool to delineate the histogenesis and carcinogenesis of human pulmonary cancer.
Collapse
MESH Headings
- Adenoma/chemically induced
- Adenoma/genetics
- Adenoma/pathology
- Adenoma/ultrastructure
- Animals
- Carcinoma, Bronchogenic/chemically induced
- Carcinoma, Bronchogenic/genetics
- Carcinoma, Bronchogenic/pathology
- Carcinoma, Bronchogenic/ultrastructure
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/ultrastructure
- Female
- Gene Expression Regulation, Neoplastic
- Genes, bcl-2
- Genes, myc
- Genes, p53
- Genes, ras
- Lung Neoplasms/chemically induced
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/ultrastructure
- Male
- Mice
- Mice, Inbred BALB C
- Nitrosamines
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Pulmonary Alveoli/ultrastructure
- Telomerase/genetics
- Telomerase/metabolism
Collapse
Affiliation(s)
- Xiao-Yuan Xie
- Department of Tumor Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, P.R. China.
| | | | | | | | | |
Collapse
|
264
|
Bavi P, Prabhakaran SE, Abubaker J, Qadri Z, George T, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Hussain AR, Uddin S, Al-Kuraya KS. Prognostic significance of TRAIL death receptors in Middle Eastern colorectal carcinomas and their correlation to oncogenic KRAS alterations. Mol Cancer 2010; 9:203. [PMID: 20673328 PMCID: PMC2922191 DOI: 10.1186/1476-4598-9-203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/30/2010] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumour necrosis factor cytokine family that induces apoptosis upon binding to its death domain containing receptors, TRAIL receptor 1 (DR4) and TRAIL receptor 2 (DR5). Expression of TRAIL receptors is higher in colorectal carcinoma (CRC) as compared to normal colorectal mucosa and targeted therapy with TRAIL leads to preferential killing of tumor cells sparing normal cells. METHODS We investigated the expression of TRAIL and its receptors in a tissue microarray cohort of 448 Middle Eastern CRC. We also studied the correlation between TRAIL receptors and various clinico-pathological features including key molecular alterations and overall survival. RESULTS CRC subset with TRAIL-R1 expression was associated with a less aggressive phenotype characterized by early stage (p = 0.0251) and a histology subtype of adenocarcinomas (p = 0.0355). Similarly CRC subset with TRAIL-R2 expression was associated with a well-differentiated tumors (p < 0.0001), histology subtype of adenocarcinomas (p = 0.0010) and tumors in left colon (p = 0.0009). Over expression of pro apoptotic markers: p27KIP1 and KRAS4A isoforms was significantly higher in CRC subset with TRAIL-R1 and TRAIL-R2 expression; TRAIL-R1 expression was also associated with cleaved caspase-3(p = 0.0011). Interestingly, TRAIL-R2 expression was associated with a microsatellite stable (MS--S/L) phenotype (p = 0.0003) and with absence of KRAS mutations (p = 0.0481). CONCLUSION TRAIL-R1 expression was an independent prognostic marker for better survival in all CRC samples and even in the CRC group that received adjuvant therapy. The biological effects of TRAIL in CRC models, its enhancement of chemosensitivity towards standard chemotherapeutic agents and the effect of endogenous TRAIL receptor levels on survival make TRAIL an extremely attractive therapeutic target.
Collapse
Affiliation(s)
- Prashant Bavi
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Sarita E Prabhakaran
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Jehad Abubaker
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Zeeshan Qadri
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Thara George
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Nasser Al-Sanea
- Department of Colorectal Surgery, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Alaa Abduljabbar
- Department of Colorectal Surgery, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Luai H Ashari
- Department of Colorectal Surgery, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Samar Alhomoud
- Department of Colorectal Surgery, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Azhar R Hussain
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Shahab Uddin
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| | - Khawla S Al-Kuraya
- Department of Human Cancer Genomic Research, MBC 98-16,Research Centre at KFNCCC, King Faisal Specialist Hospital and Research Centre,PO Box 3354, Riyadh 11211,Kingdom of Saudi Arabia
| |
Collapse
|
265
|
Hung SK, Hung LC, Kuo CD, Lee KY, Lee MS, Lin HY, Chen YJ, Fu SL. Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo. Int J Radiat Oncol Biol Phys 2010; 77:1232-9. [DOI: 10.1016/j.ijrobp.2010.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 09/09/2009] [Accepted: 01/07/2010] [Indexed: 01/11/2023]
|
266
|
Yang J, Splittgerber R, Yull FE, Kantrow S, Ayers GD, Karin M, Richmond A. Conditional ablation of Ikkb inhibits melanoma tumor development in mice. J Clin Invest 2010; 120:2563-74. [PMID: 20530876 PMCID: PMC2898608 DOI: 10.1172/jci42358] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/07/2010] [Indexed: 01/05/2023] Open
Abstract
Several lines of evidence suggest that tumor cells show elevated activity of the NF-kappaB transcription factor, a phenomenon often resulting from constitutive activity of IkappaB kinase beta (IKKbeta). However, others have found that loss of NF-kappaB activity or IKKbeta is tumor promoting. The role of NF-kappaB in tumor progression is therefore controversial and varies with tumor type. We sought to more extensively investigate the role IKKbeta in melanoma tumor development by specifically disrupting Ikkb in melanocytes in an established mouse model of spontaneous melanoma, whereby HRasV12 is expressed in a melanocyte-specific, doxycycline-inducible manner in mice null for the gene encoding the tumor suppressor inhibitor cyclin-dependent kinase 4/alternative reading frame (Ink4a/Arf). Our results show that Ink4a/Arf-/- mice with melanocyte-specific deletion of Ikkb were protected from HRasV12-initiated melanoma only when p53 was expressed. This protection was accompanied by cell cycle arrest, with reduced cyclin-dependent kinase 2 (Cdk2), Cdk4, Aurora kinase A, and Aurora kinase B expression. Increased p53-mediated apoptosis was also observed, with decreased expression of the antiapoptotic proteins Bcl2 and survivin. Enhanced stabilization of p53 involved increased phosphorylation at Ser15 and reduced phosphorylation of double minute 2 (Mdm2) at Ser166. Together, our findings provide genetic and mechanistic evidence that mutant HRas initiation of tumorigenesis requires Ikkbeta-mediated NF-kappaB activity.
Collapse
Affiliation(s)
- Jinming Yang
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ryan Splittgerber
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Fiona E. Yull
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sara Kantrow
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gregory D. Ayers
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Karin
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ann Richmond
- Department of Cancer Biology,
Veterans Affairs Medical Center,
Division of Dermatology, Department of Medicine,
Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
267
|
Milagre C, Dhomen N, Geyer FC, Hayward R, Lambros M, Reis-Filho JS, Marais R. A mouse model of melanoma driven by oncogenic KRAS. Cancer Res 2010; 70:5549-57. [PMID: 20516123 PMCID: PMC2896549 DOI: 10.1158/0008-5472.can-09-4254] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins KRAS and HRAS are mutated in only 2% and 1% of melanomas, respectively. We have developed a mouse model of melanoma in which Cre recombinase/LoxP technology is used to drive inducible expression of (G12V)KRAS in the melanocytic lineage. The mice develop skin hyperpigmentation, nevi, and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonize the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis.
Collapse
Affiliation(s)
- Carla Milagre
- Signal Transduction Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nathalie Dhomen
- Signal Transduction Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Felipe C Geyer
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Robert Hayward
- Signal Transduction Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Maryou Lambros
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Jorge S Reis-Filho
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Richard Marais
- Signal Transduction Team, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
268
|
Heyer J, Kwong LN, Lowe SW, Chin L. Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 2010; 10:470-80. [PMID: 20574449 PMCID: PMC4602412 DOI: 10.1038/nrc2877] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetically engineered mouse models (GEMMs) of cancer have affected virtually all areas of cancer research. However, the accelerated discovery of new cancer genes emerging from large-scale cancer genomics and new chemical entities pouring from the drug discovery pipeline have strained the capacity of traditional germline mouse models to provide crucial insights. This Review introduces new approaches to modelling cancer, with emphasis on a growing collection of non-germline GEMMs (nGEMMs). These offer flexibility, speed and uniformity at reduced costs, thus paving the way for much needed throughput and practical preclinical therapeutic testing models.
Collapse
Affiliation(s)
- Joerg Heyer
- AVEO Pharmaceuticals, 75 Sidney Street, 4th floor, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
269
|
A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter. Transgenic Res 2010; 20:421-8. [PMID: 20577802 PMCID: PMC3051065 DOI: 10.1007/s11248-010-9421-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/10/2010] [Indexed: 01/09/2023]
Abstract
We have generated a novel transgenic mouse to direct inducible and reversible transgene expression in the melanocytic compartment. The Dopachrome tautomerase (Dct) control sequences we used are active early in the development of melanocytes and so this system was designed to enable the manipulation of transgene expression during development in utero and in the melanocyte stem cells as well as mature melanocytes. We observed inducible lacZ and GFP reporter transgene activity specifically in melanocytes and melanocyte stem cells in mouse skin. This mouse model will be a useful tool for the pigment cell community to investigate the contribution of candidate genes to normal melanocyte and/or melanoma development in vivo. Deregulated expression of the proto-oncogene MYC has been observed in melanoma, however whether MYC is involved in tumorigenesis in pigment cells has yet to be directly investigated in vivo. We have used our system to over-express MYC in the melanocytic compartment and show for the first time that increased MYC expression can indeed promote melanocytic tumor formation.
Collapse
|
270
|
Felsher DW. MYC Inactivation Elicits Oncogene Addiction through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms. Genes Cancer 2010; 1:597-604. [PMID: 21037952 PMCID: PMC2965623 DOI: 10.1177/1947601910377798] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumorigenesis is generally caused by genetic changes that activate oncogenes or inactivate tumor suppressor genes. The targeted inactivation of oncogenes can be associated with tumor regression through the phenomenon of oncogene addiction. One of the most common oncogenic events in human cancer is the activation of the MYC oncogene. The inactivation of MYC may be a general and effective therapy for human cancer. Indeed, it has been experimentally shown that the inactivation of MYC can result in dramatic and sustained tumor regression in lymphoma, leukemia, osteosarcoma, hepatocellular carcinoma, squamous carcinoma, and pancreatic carcinoma through a multitude of mechanisms, including proliferative arrest, terminal differentiation, cellular senescence, induction of apoptosis, and the shutdown of angiogenesis. Cell-autonomous and cell-dependent mechanisms have both been implicated, and recent results suggest a critical role for autocrine factors, including thrombospondin-1 and TGF-β. Hence, targeting the inactivation of MYC appears to elicit oncogene addiction and, thereby, tumor regression through both tumor cell-intrinsic and host-dependent mechanisms.
Collapse
Affiliation(s)
- Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
271
|
Lu KW, Chen JC, Lai TY, Yang JS, Weng SW, Ma YS, Lu PJ, Weng JR, Chueh FS, Wood WG, Chung JG. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways. Hum Exp Toxicol 2010; 30:406-15. [PMID: 20511288 DOI: 10.1177/0960327110372405] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino, has been used as a folk medicine in the Chinese population for centuries and is known to have diverse pharmacologic effects, including anti-proliferative and anti-cancer actions. However, the effects of Gyp on prevention from invasion and migration of oral cancer cells are still unsatisfactory. The purpose of this study was to investigate effects of Gyp treatment on migration and invasion of SAS human oral cancer cells. SAS cells were cultured in the presence of 90 and 180 μg/mL Gyp for 24 and 48 hours. Gyp induced cytotoxic effects and inhibited SAS cells migration and invasion in dose- and time-dependent response. Wound-healing assay and boyden chamber assay were carried out to investigate Gyp-inhibited migration and invasion of SAS cells. Gyp decreased the abundance of several proteins, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/ 2), matrix metalloproteinase-9, -2 (MMP-9, -2), sevenless homolog (SOS), Ras, urokinase-type plasminogen activator (uPA), focal adhesion kinase (FAK) and RAC-alpha serine/threonine-protein kinase (Akt), in a time-dependent manner. In addition, Gyp decreased mRNA levels of MMP-2, MMP-7, MMP-9 but did not affect FAK and Rho A mRNA levels in SAS cells. These results provide evidences for the role of Gyp as a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of oral cancer cells. The inhibition of NF-κB and MMP-2, -7 and -9 signaling may be one of the mechanisms that is present in Gyp-inhibited cancer cell invasion and migration.
Collapse
Affiliation(s)
- Kung-Wen Lu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
272
|
Vicente-Dueñas C, Cobaleda C, Pérez-Losada J, Sánchez-García I. The evolution of cancer modeling: the shadow of stem cells. Dis Model Mech 2010; 3:149-55. [PMID: 20212083 DOI: 10.1242/dmm.002774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer is a complex and highly dynamic process. Genetically engineered mouse models (GEMs) that develop cancer are essential systems for dissecting the processes that lead to human cancer. These animal models provide a means to determine the causes of malignancy and to develop new treatments, thus representing a resource of immense potential for medical oncology. The sophistication of modeling cancer in mice has increased to the extent that now we can induce, study and manipulate the cancer disease process in a manner that is impossible to perform in human patients. However, all GEMs described so far have diverse shortcomings in mimicking the hierarchical structure of human cancer tissues. In recent years, a more detailed picture of the cellular and molecular mechanisms determining the formation of cancer has emerged. This Commentary addresses new experimental approaches toward a better understanding of carcinogenesis and discusses the impact of new animal models.
Collapse
Affiliation(s)
- Carolina Vicente-Dueñas
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. Unamuno s/n, 37007-Salamanca, Spain
| | | | | | | |
Collapse
|
273
|
Molecular mechanisms underlying tumor dormancy. Cancer Lett 2010; 294:139-46. [PMID: 20363069 DOI: 10.1016/j.canlet.2010.03.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 12/15/2022]
Abstract
Evidence suggests that dormant, microscopic tumors are not only common, but are highly prevalent in otherwise healthy individuals. Due to their small size and non-invasive nature, these dormant tumors remain asymptomatic and, in most cases, undetected. With advances in diagnostic imaging and molecular biology, it is now becoming clear that such neoplasms can remain in an asymptomatic, dormant stage for considerable periods of time without expanding in size. Although a number of processes may play a role in thwarting the expansion of microscopic tumors, one critical mechanism behind tumor dormancy is the ability of the tumor population to induce angiogenesis. Although cancer can arise through multiple pathways, it is assumed that essentially most tumors begin as microscopic, non-angiogenic neoplasms which cannot expand in size until vasculature is established. It is now becoming clear that cancer does not progress through a continuous exponential growth and mass expansion. Clinical cancer is usually manifested only in late, unavoidably symptomatic stages of the disease when tumors are sufficiently large to be readily detected. While dormancy in primary tumors is best defined as the time between the carcinogenic transformation event and the onset of inexorable progressive growth, it can also occur as minimal residual or occult disease from treated tumors or as micro-metastases. The existence of dormant tumors has important implications for the early detection and treatment of cancer. Elucidating the regulatory machinery of these processes will be instrumental in identifying novel early cancer biomarkers and could provide a rationale for the development of dormancy-promoting tumor therapies. Despite the high prevalence of microscopic, dormant tumors in humans and the significant clinical implications of their early detection, this area in cancer research has, to date, been under-investigated. In this mini review observations, models and experimental approaches to study tumor dormancy are summarized. Additionally, analogies and distinctions between the concepts of "tumor dormancy" and that of the "cellular dormancy" of tumor cells, as well as between the "exit from tumor dormancy" and the "onset of the angiogenic switch" are discussed.
Collapse
|
274
|
Ji Z, Flaherty KT, Tsao H. Molecular therapeutic approaches to melanoma. Mol Aspects Med 2010; 31:194-204. [DOI: 10.1016/j.mam.2010.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 02/16/2010] [Indexed: 02/01/2023]
|
275
|
MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J Invest Dermatol 2010; 130:2062-70. [PMID: 20357817 DOI: 10.1038/jid.2010.63] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malignant cutaneous melanoma is a highly aggressive form of skin cancer. Despite improvements in early melanoma diagnosis, the 5-year survival rate remains low in advanced disease. Therefore, novel biomarkers are urgently needed to devise new means of detection and treatment. In this study, we aimed to improve our understanding of microRNA (miRNA) deregulation in melanoma development and their impact on patient survival. Global miRNA expression profiles of a set of melanoma lymph node metastases, melanoma cell lines, and melanocyte cultures were determined using Agilent array. Deregulated miRNAs were evaluated in relation with clinical characteristics, patient survival, and mutational status for BRAF and NRAS. Several miRNAs were differentially expressed between melanocytes and melanomas as well as melanoma cell lines. In melanomas, miR-193a, miR-338, and miR-565 were underexpressed in cases with a BRAF mutation. Furthermore, low expression of miR-191 and high expression of miR-193b were associated with poor melanoma-specific survival. In conclusion, our findings show miRNA dysregulation in malignant melanoma and its relation to established molecular backgrounds of BRAF and NRAS oncogenic mutations. The identification of an miRNA classifier for poor survival may lead to the development of miRNA detection as a complementary prognostic tool in clinical practice.
Collapse
|
276
|
Sotillo R, Schvartzman JM, Socci ND, Benezra R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 2010; 464:436-40. [PMID: 20173739 PMCID: PMC2841716 DOI: 10.1038/nature08803] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/07/2010] [Indexed: 12/12/2022]
Abstract
Inhibition of an initiating oncogene often leads to extensive tumour cell death, a phenomenon known as oncogene addiction. This has led to the search for compounds that specifically target and inhibit oncogenes as anticancer agents. However, there has been no systematic exploration of whether chromosomal instability generated as a result of deregulation of the mitotic checkpoint pathway, a frequent characteristic of solid tumours, has any effect on oncogene addiction. Here we show that induction of chromosome instability by overexpression of the mitotic checkpoint gene Mad2 in mice does not affect the regression of Kras-driven lung tumours when Kras is inhibited. However, tumours that experience transient Mad2 overexpression and consequent chromosome instability recur at markedly elevated rates. The recurrent tumours are highly aneuploid and have varied activation of pro-proliferative pathways. Thus, early chromosomal instability may be responsible for tumour relapse after seemingly effective anticancer treatments.
Collapse
Affiliation(s)
- Rocio Sotillo
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Juan-Manuel Schvartzman
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Nicholas D. Socci
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
277
|
|
278
|
López-Fauqued M, Gil R, Grueso J, Hernandez-Losa J, Pujol A, Moliné T, Recio JA. The dual PI3K/mTOR inhibitor PI-103 promotes immunosuppression, in vivo tumor growth and increases survival of sorafenib-treated melanoma cells. Int J Cancer 2010; 126:1549-61. [PMID: 19810100 DOI: 10.1002/ijc.24926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Melanoma is the most lethal human skin cancer. If metastatic, it becomes very aggressive and resistant to standard modalities of anticancer treatment. During the last 10 years, several therapeutic strategies have been tested including the use of single and combined small drugs. Experimental results indicate that RAS and PI3K pathways are important for the development and maintenance of melanoma. In this study, we assessed the in vitro and in vivo inhibition potential of PI-103, a PI3K (p110alpha)/mTOR inhibitor and sorafenib, a BRAF inhibitor, as single agents and in combination in primary melanoma cell lines. Although PI-103 and sorafenib inhibited melanoma in vitro cell proliferation and viability, the inhibition of RAS pathway appeared to be more effective. The combination of the two agents in in vitro showed a synergistic effect inhibiting RAS and PI3K pathways in a cell line dependent manner. However, no cooperative effect was observed in blocking in vivo tumor growth in immunocompetent mice. In contrary to the expected, the data indicate that PI-103 induced immunosuppression promoting in vivo tumor growth and inhibiting apoptosis. Furthermore, in vitro studies examining the effects of the PI3K/mTOR inhibitor in tumor derived cell lines indicated that PI-103 induced the anti-apoptotic BH3 family proteins Mcl1, Bcl2 and Bcl(xL) favoring, the in vitro survival of sorafenib treated melanoma cells. These data certainly makes an argument for investigating unexpected effects of rational drug combinations on immunocompetent animal models prior to conducting clinical studies.
Collapse
Affiliation(s)
- Marta López-Fauqued
- Medical Oncology Research Program, Vall d'Hebron Research Institute, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital, Barcelona 08035, Spain
| | | | | | | | | | | | | |
Collapse
|
279
|
Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence. Proc Natl Acad Sci U S A 2010; 107:2616-21. [PMID: 20133782 DOI: 10.1073/pnas.0914356107] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) gene amplification is the most common genetic alteration in high-grade glioma, and approximately 50% of EGFR-amplified tumors also harbor a constitutively active mutant form of the receptor, DeltaEGFR. Although DeltaEGFR greatly enhances tumor growth and is thus an attractive target for anti-glioma therapies, recent clinical experiences with EGFR kinase inhibitors have been disappointing, because resistance is common and tumors eventually recur. Interestingly, it has not been established whether DeltaEGFR is required for maintenance of glioma growth in vivo, and, by extension, if it truly represents a rational therapeutic target. Here, we demonstrate that in vivo silencing of regulatable DeltaEGFR with doxycycline attenuates glioma growth and, therefore, that it is crucial for maintenance of enhanced tumorigenicity. Similar to the clinical experience, tumors eventually regained aggressive growth after a period of stasis, but interestingly, without re-expression of DeltaEGFR. To determine how tumors acquired this ability, we found that a unique gene, KLHDC8, herein referred to as SDeltaE (Substitute for DeltaEGFR Expression)-1, is highly expressed in these tumors, which have escaped dependence on DeltaEGFR. SDeltaE-1 is also expressed in human gliomas and knockdown of its expression in DeltaEGFR-independent "escaper" tumors suppressed tumor growth. Taken together, we conclude that DeltaEGFR is required for both glioma establishment and maintenance, and that gliomas undergo selective pressure in vivo to employ alternative compensatory pathways to maintain aggressiveness in the event of EGFR silencing. Such alternative pathways function as substitutes for DeltaEGFR signaling and should therefore be considered as potential targets for additional therapy.
Collapse
|
280
|
The power of reversibility regulating gene activities via tetracycline-controlled transcription. Methods Enzymol 2010; 477:429-53. [PMID: 20699154 DOI: 10.1016/s0076-6879(10)77022-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetracycline-controlled transcriptional activation systems are widely used to control gene expression in transgenic animals in a truly conditional manner. By this we refer to the capability of these expression systems to control gene activities not only in a tissue specific and temporal defined but also reversible manner. This versatility has made the Tet regulatory systems to a preeminent tool in reverse mouse genetics. The development of the technology in the past 15 years will be reviewed and guidelines will be given for its implementation in creating transgenic rodents. Finally, we highlight some recent exciting applications of the Tet technology as well as its foreseeable combination with other emerging technologies in mouse transgenesis.
Collapse
|
281
|
Castellano E, Downward J. Role of RAS in the regulation of PI 3-kinase. Curr Top Microbiol Immunol 2010; 346:143-69. [PMID: 20563706 DOI: 10.1007/82_2010_56] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ras proteins are key regulators of signalling cascades, controlling many processes such as proliferation, differentiation and apoptosis. Mutations in these proteins or in their effectors, activators and regulators are associated with pathological conditions, particularly the development of various forms of human cancer. RAS proteins signal through direct interaction with a number of effector enzymes, one of the best characterized being type I phosphatidylinositol (PI) 3-kinases. Although the ability of RAS to control PI 3-kinase has long been well established in cultured cells, evidence for a role of the interaction of endogenous RAS with PI 3-kinase in normal and malignant cell growth in vivo has only been obtained recently. Mice with mutations in the PI 3-kinase catalytic p110a isoform that block its ability to interact with RAS are highly resistant to endogenous KRAS oncogene induced lung tumourigenesis and HRAS oncogene induced skin carcinogenesis. Cells from these mice show proliferative defects and selective disruption of signalling from certain growth factors to PI 3-kinase, while the mice also display delayed development of the lymphatic vasculature. The interaction of RAS with p110a is thus required in vivo for some normal growth factor signalling and also for RAS-driven tumour formation. RAS family members were among the first oncogenes identified over 40 years ago. In the late 1960s, the rat-derived Harvey and Kirsten murine sarcoma retroviruses were discovered and subsequently shown to promote cancer formation through related oncogenes, termed RAS (from rat sarcoma virus). The central role of RAS proteins in human cancer is highlighted by the large number of tumours in which they are activated by mutation: approximately 20% of human cancers carry a mutation in RAS proteins. Because of the complex signalling network in which RAS operates, with multiple activators and effectors, each with a different pattern of tissue-specific expression and a distinct set of intracellular functions, one of the critical issues concerns the specific role of each effector in RAS-driven oncogenesis. In this chapter, we summarize current knowledge about how RAS regulates one of its best-known effectors, phosphoinositide 3-kinase (PI3K).
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, WC2A 3PX, UK
| | | |
Collapse
|
282
|
Chimeric mouse tumor models reveal differences in pathway activation between ERBB family- and KRAS-dependent lung adenocarcinomas. Nat Biotechnol 2009; 28:71-8. [PMID: 20023657 DOI: 10.1038/nbt.1595] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/16/2009] [Indexed: 11/08/2022]
Abstract
To recapitulate the stochastic nature of human cancer development, we have devised a strategy for generating mouse tumor models that involves stepwise genetic manipulation of embryonic stem (ES) cells and chimera generation. Tumors in the chimeric animals develop from engineered cells in the context of normal tissue. Adenocarcinomas arising in an allelic series of lung cancer models containing HER2 (also known as ERBB2), KRAS or EGFR oncogenes exhibit features of advanced malignancies. Treatment of EGFR(L858R) and KRAS(G12V) chimeric models with an EGFR inhibitor resulted in near complete tumor regression and no response to the treatment, respectively, accurately reflecting previous clinical observations. Transcriptome and immunohistochemical analyses reveal that PI3K pathway activation is unique to ERBB family tumors whereas KRAS-driven tumors show activation of the JNK/SAP pathway, suggesting points of therapeutic intervention for this difficult-to-treat tumor category.
Collapse
|
283
|
Vereide D, Sugden B. Proof for EBV's sustaining role in Burkitt's lymphomas. Semin Cancer Biol 2009; 19:389-93. [PMID: 19628040 PMCID: PMC2789873 DOI: 10.1016/j.semcancer.2009.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 07/10/2009] [Indexed: 12/14/2022]
Abstract
We have found that not all Epstein-Barr viral (EBV) plasmids are duplicated each cell cycle. This inefficiency is intrinsic to EBV's mechanism of DNA synthesis in latently infected cells and necessarily leads to a loss of EBV plasmids from proliferating cells. If EBV provides its host cells advantages that allow those cells that retain EBV to outgrow those that lose it, then such proliferating populations will be EBV-positive. EBV-associated human tumors are EBV-positive. Thus, the presence of EBV plasmids in most cells of a tumor demonstrates that EBV sustains these tumors in vivo. The virus can provide multiple selective advantages to tumor cells, including promoting cell proliferation and inhibiting cell death. In the case of Burkitt's lymphomas (BL), most current evidence indicates that the tumor requires the virus minimally to block apoptosis.
Collapse
Affiliation(s)
- David Vereide
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Ave., Madison, WI 53706, USA
| | | |
Collapse
|
284
|
Synergism of BARF1 with Ras induces malignant transformation in primary primate epithelial cells and human nasopharyngeal epithelial cells. Neoplasia 2009; 11:964-73. [PMID: 19724690 DOI: 10.1593/neo.09706] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 06/13/2009] [Accepted: 06/15/2009] [Indexed: 12/26/2022] Open
Abstract
Although it is well known that nasopharyngeal carcinoma (NPC) is closely related with Epstein-Barr virus (EBV), few data are available about which and how EBV-expressed gene is involved in the carcinogenesis of human nasopharyngeal epithelial cells. EBV-encoded BARF1 (BamH I-A right frame 1) gene has been shown to be oncogenic and capable of inducing malignant transformation in BALB/c3T3 and NIH3T3 cells as well as in human B-cell lines Louckes and Akata. It remains unclear, however, whether BARF1 can transform primate or human epithelial cells. Here, we have shown that overexpression of H-Ras gene transformed BARF1-immortalized PATAS cells into malignant cell line. Furthermore, we found that cooperation of BARF1 with H-Ras and SV40 T antigens was sufficient to transform nonmalignant human nasopharyngeal epithelial NP69 cells when serially introduced BARF1 and H-Ras into the SV40 T antigens-immortalized NP69 cells. Taken together, these results demonstrated that the cooperation of BARF1 with Ras suffices to transform primary primate epithelial cell PATAS. Similarly, BARF1 together with H-Ras and SV40 T can transform human epithelial cell NP69, thereby indicating that BARF1 could be involved in the NPC pathogenesis in combination with additional genetic changes.
Collapse
|
285
|
Datta D, Contreras AG, Basu A, Dormond O, Flynn E, Briscoe DM, Pal S. Calcineurin inhibitors activate the proto-oncogene Ras and promote protumorigenic signals in renal cancer cells. Cancer Res 2009; 69:8902-9. [PMID: 19903851 DOI: 10.1158/0008-5472.can-09-1404] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Collapse
Affiliation(s)
- Dipak Datta
- Division of Nephrology and Transplantation Research Center, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
286
|
O'Hayer KM, Brady DC, Counter CM. ELR+ CXC chemokines and oncogenic Ras-mediated tumorigenesis. Carcinogenesis 2009; 30:1841-7. [PMID: 19805574 DOI: 10.1093/carcin/bgp198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The small GTPase Ras is mutated to remain in the active oncogenic state in one-third of human cancers, thereby promoting tumorigenesis. It has recently come to light that one consequence of oncogenic Ras signaling is secretion of cytokines vascular endothelial growth factor (VEGF), interleukin 6 (IL6), hCXCL1 (Gro-alpha) and hCXCL8 (IL8). As the latter two belong to the ELR+ Cys-X-Cys (CXC) chemokine family, we investigated whether the entire family of ELR+ CXC chemokines plays a role in oncogenic Ras-mediated tumorigenesis. We now demonstrate that oncogenic Ras induced the expression and secretion of the ELR+ CXC chemokine family in different tumorigenic human cells and that these chemokines are elevated in tumor specimens. Moreover, genetic ablation of the common receptor for these chemokines, mCXCR2, reduced oncogenic Ras-driven tumorigenesis in mice. Taken together, we suggest that oncogenic Ras induces the secretion of the ELR+ CXC chemokine family to promote tumorigenesis. This chemokine signature may identify the presence of Ras activation in cancer and perhaps even serve as targets for oncogenic Ras-driven tumor cells.
Collapse
Affiliation(s)
- Kevin M O'Hayer
- Department of Pharmacology and Cancer Biology, DUMC, Durham, NC 27710, USA
| | | | | |
Collapse
|
287
|
Utikal J, Maherali N, Kulalert W, Hochedlinger K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 2009; 122:3502-10. [PMID: 19723802 PMCID: PMC2746132 DOI: 10.1242/jcs.054783] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2009] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been derived at low frequencies from different cell types through ectopic expression of the transcription factors Oct4 and Sox2, combined with either Klf4 and c-Myc or Lin28 and Nanog. In order to generate iPSCs more effectively, it will be crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. Here, we show that both human and mouse melanocytes give rise to iPSCs at higher efficiencies than fibroblasts. Moreover, we demonstrate that a mouse malignant melanoma cell line, which has previously been reprogrammed into embryonic stem cells by nuclear transfer, remains equally amenable to reprogramming into iPSCs by these transcription factors. In contrast to skin fibroblasts, melanocytes and melanoma cells did not require ectopic Sox2 expression for conversion into iPSCs. iPSC lines from melanocytic cells expressed pluripotency markers, formed teratomas and contributed to viable chimeric mice with germ line transmission. Our results identify skin melanocytes as an alternative source for deriving patient-specific iPSCs at increased efficiency and with fewer genetic elements. In addition, our results suggest that cancer cells remain susceptible to transcription factor-mediated reprogramming, which should facilitate the study of epigenetic changes in human cancer.
Collapse
Affiliation(s)
- Jochen Utikal
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
288
|
Abstract
Senescence is a general cellular process that occurs as a response to stress and damage. It forms an alternative response of cells to damage that might otherwise cause programmed cell death. Whereas telomere shortening leading to telomere dysfunction was the first described cause of senescence, it is now known that senescence can result from many sources of damage. Senescent cells are found in tissues in vivo, but the cause of senescence in these cells is mostly unknown. In many cases, senescence may be the result of the action of activated oncogenes in cells. By preventing activated oncogenes from initiating a clone of neoplastic cells, senescence acts as a protective mechanism against cancer development. Until recently, the fate of senescent cells in vivo was unknown, but new evidence indicates that they are cleared by components of the innate immune system. In this way, senescence and apoptosis act as parallel pathways by which severely damaged cells are eliminated from the body. Some senescent cells persist in tissues, in some cases increasing in frequency as a function of age. It is hypothesized that these persistent senescent cells have adverse effects on tissue function. If so, senescence may be an example of antagonistic pleiotropy, providing an anticancer mechanism in early life but having adverse effects on tissue function in late life. Much more research is needed to address the broader question of the overall impact of senescence on life span.
Collapse
|
289
|
Fisher EMC, Lana-Elola E, Watson SD, Vassiliou G, Tybulewicz VLJ. New approaches for modelling sporadic genetic disease in the mouse. Dis Model Mech 2009; 2:446-53. [PMID: 19726804 PMCID: PMC2737055 DOI: 10.1242/dmm.001644] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sporadic diseases, which occur as single, scattered cases, are among the commonest causes of human morbidity and death. They result in a variety of diseases, including many cancers, premature aging, neurodegeneration and skeletal defects. They are often pathogenetically complex, involving a mosaic distribution of affected cells, and are difficult to model in the mouse. Faithful models of sporadic diseases require innovative forms of genetic manipulation to accurately recreate their initiation and pathogenesis. Such modelling is crucial to understanding these diseases and, by extension, to the development of therapeutic approaches to treat them. This article focuses on sporadic diseases with a genetic aetiology, the challenges they pose to biomedical researchers, and the different current and developing approaches used to model such disorders in the mouse.
Collapse
Affiliation(s)
- Elizabeth M C Fisher
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N3BG, UK.
| | | | | | | | | |
Collapse
|
290
|
Abstract
Mutational activation of the K-ras gene is a frequent oncogenic event in human cancers, associated with poor clinical prognosis and resistance to treatment. Despite efforts to develop therapeutics that target K-ras or its downstream effector molecules, clinical benefit in this setting has not yet been achieved. An alternative approach to K-ras mutant cancers involves the identification of genes that selectively drive the maintenance of tumors that are “addicted” to or dependent on mutant K-ras. Disruption of these genes would result in “synthetic lethality” specifically in cancer cells driven by mutant K-ras, thereby potentially sparing non-tumor cells. Through this approach, three recent reports have identified PLK1, STK33, SYK, RON and integrin β6 as previously unappreciated pharmacologically tractable targets in the setting of K-ras activation, which drive growth and survival selectively in K-ras-dependent cancer cells.
Collapse
Affiliation(s)
- Anurag Singh
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129
| | - Jeff Settleman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 149 13 Street, Charlestown, MA 02129
| |
Collapse
|
291
|
Murugan AK, Hong NT, Cuc TTK, Hung NC, Munirajan AK, Ikeda MA, Tsuchida N. Detection of two novel mutations and relatively high incidence of H-RAS mutations in Vietnamese oral cancer. Oral Oncol 2009; 45:e161-6. [PMID: 19628422 DOI: 10.1016/j.oraloncology.2009.05.638] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/21/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Oral squamous cell carcinoma is the sixth most common cancer in the world and the seventh most common cancer in Vietnam. The RAS and PI3K-AKT signaling pathways play an important role in oral carcinogenesis. Our previous study on PI3K signaling pathway showed the absence of PIK3CA and PTEN gene mutations in Vietnamese oral cancer. We thus hypothesized that the RAS could be more likely activated as an upstream effector. However, the status of RAS mutations in Vietnamese oral cancer had not been studied. In the present study, Fifty six primary tumor DNA samples were screened for mutations of hot spots in exons 1 and 2 of H-RAS and a part of the samples for exon 7 of ERK2 gene in which we previously reported a mutation in an OSCC cell line. The H-RAS mutations were detected in 10 of 56 tumors (18%). Two novel mutations were found, one was an insertion of three nucleotides (GGC) between codons 10 and 11 resulting in in-frame insertion of glycine (10(Gly)11) and the other was a missense mutation in codon 62 (GAG>GGG). We also found T81C single nucleotide polymorphism in 12 of 56 tumors (22%) and there was no mutation in exon 7 of ERK2 gene. The H-RAS mutation incidence showed significant association with advanced stages of the tumor and also with well-differentiated tumor grade. Our study is the first to report H-RAS mutation from Vietnamese ethnicity, with two novel mutations and relatively high incidence of H-RAS mutations. The results suggest that RAS is an important member in the PI3K-AKT signaling and could play an important role in the tumorigenesis of oral carcinoma.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | | | | | | | | | | | | |
Collapse
|
292
|
Jechlinger M, Podsypanina K, Varmus H. Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev 2009; 23:1677-88. [PMID: 19605689 DOI: 10.1101/gad.1801809] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies for cancer has provoked interest in experimental models for the systematic study of oncogene dependence. To that end, we developed a three-dimensional (3D) culture system to analyze the responses of primary mouse mammary epithelial cells to the induction and deinduction of oncogenes. Mammary cells derived from normal virgin mice, or from tritransgenic mice (TetO-MYC;TetO-Kras(G12D);MMTV-rtTA) in which MYC and mutant Kras can be regulated by doxycycline, develop from single cells into polarized acini. Lumen formation occurs without apparent apoptosis, and the hollow spheres of cells enlarge by division, with metaphase plates oriented perpendicularly to the apical surface. When MYC and Kras(G12D) are induced, the acini enlarge and form solid, depolarized spheres. Upon deinduction of MYC and Kras(G12D) the solid structures regress, leaving a repolarized monolayer of viable cells. These cells display a phenotype consistent with progenitors of mammary epithelium: They exclude Hoechst dye 33342, and reform acini in 3D cultures and repopulate mammary fat pads more efficiently than cells harvested from uninduced acini. Moreover, cells in the surviving spheres retain the ability to respond to reinduction and thus may represent the type of cells that give rise to recurrent tumors.
Collapse
Affiliation(s)
- Martin Jechlinger
- Program in Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
293
|
Zheng Y, Xia Y, Hawke D, Halle M, Tremblay ML, Gao X, Zhou XZ, Aldape K, Cobb MH, Xie K, He J, Lu Z. FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 2009; 35:11-25. [PMID: 19595712 PMCID: PMC2715139 DOI: 10.1016/j.molcel.2009.06.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 03/31/2009] [Accepted: 06/16/2009] [Indexed: 12/22/2022]
Abstract
Activated Ras has been found in many types of cancer. However, the mechanism underlying Ras-promoted tumor metastasis remains unclear. We demonstrate here that activated Ras induces tyrosine dephosphorylation and inhibition of FAK mediated by the Ras downstream Fgd1-Cdc42-PAK1-MEK-ERK signaling cascade. ERK phosphorylates FAK S910 and recruits PIN1 and PTP-PEST, which colocalize with FAK at the lamellipodia of migrating cells. PIN1 binding and prolyl isomerization of FAK cause PTP-PEST to interact with and dephosphorylate FAK Y397. Inhibition of FAK mediated by this signal relay promotes Ras-induced cell migration, invasion, and metastasis. These findings uncover the importance of sequential modification of FAK-by serine phosphorylation, isomerization, and tyrosine dephosphorylation--in the regulation of FAK activity and, thereby, in Ras-related tumor metastasis.
Collapse
Affiliation(s)
- Yanhua Zheng
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China
| | - David Hawke
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Maxime Halle
- Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Michel L. Tremblay
- Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Xiang Gao
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China
| | - Xiao Zhen Zhou
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, NRB1030, Boston, MA 02215, USA
| | - Kenneth Aldape
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Melanie H. Cobb
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie He
- Laboratory of Thoracic Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
294
|
Karpel-Massler G, Schmidt U, Unterberg A, Halatsch ME. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res 2009; 7:1000-12. [PMID: 19584260 DOI: 10.1158/1541-7786.mcr-08-0479] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-grade gliomas account for the majority of intra-axial brain tumors. Despite abundant therapeutic efforts, clinical outcome is still poor. Thus, new therapeutic approaches are intensely being investigated. Overexpression of the epidermal growth factor receptor (HER1/EGFR) is found in various epithelial tumors and represents one of the most common molecular abnormalities seen in high-grade gliomas. Dysregulated HER1/EGFR is found in 40% to 50% of glioblastoma, the most malignant subtype of glioma. Several agents such as tyrosine kinase (TK) inhibitors, antibodies, radio-immuno conjugates, ligand-toxin conjugates, or RNA-based agents have been developed to target HER1/EGFR or its mutant form, EGFRvIII. To date, most agents are in various stages of clinical development. Clinical data are sparse but most advanced for TK inhibitors. Although data from experimental studies seem promising, proof of a significant clinical benefit is still missing. Among the problems that have to be further addressed is the prediction of the individual patient's response to HER1/EGFR-targeted therapeutics based on molecular determinants. It is quite possible that blocking HER1/EGFR alone will not sufficiently translate into a clinical benefit. Therefore, a multiple target approach concomitantly aimed at different molecular sites might be a favorable concept. This review focuses on current HER1/EGFR-targeted therapeutics and their development for high-grade gliomas.
Collapse
|
295
|
Reuter JA, Ortiz-Urda S, Kretz M, Garcia J, Scholl FA, Pasmooij AMG, Cassarino D, Chang HY, Khavari PA. Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression. Cancer Cell 2009; 15:477-88. [PMID: 19477427 PMCID: PMC3050547 DOI: 10.1016/j.ccr.2009.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/22/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022]
Abstract
To elucidate mechanisms of cancer progression, we generated inducible human neoplasia in three-dimensionally intact epithelial tissue. Gene expression profiling of both epithelia and stroma at specific time points during tumor progression revealed sequential enrichment of genes mediating discrete biologic functions in each tissue compartment. A core cancer progression signature was distilled using the increased signaling specificity of downstream oncogene effectors and subjected to network modeling. Network topology predicted that tumor development depends on specific extracellular matrix-interacting network hubs. Blockade of one such hub, the beta1 integrin subunit, disrupted network gene expression and attenuated tumorigenesis in vivo. Thus, integrating network modeling and temporal gene expression analysis of inducible human neoplasia provides an approach to prioritize and characterize genes functioning in cancer progression.
Collapse
Affiliation(s)
- Jason A Reuter
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94306, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Thurn KT, Paunesku T, Wu A, Brown EM, Lai B, Vogt S, Maser J, Aslam M, Dravid V, Bergan R, Woloschak G. Labeling TiO2 nanoparticles with dyes for optical fluorescence microscopy and determination of TiO2-DNA nanoconjugate stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1318-25. [PMID: 19242946 PMCID: PMC2787618 DOI: 10.1002/smll.200801458] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Collapse
Affiliation(s)
- Kenneth T. Thurn
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Aiguo Wu
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Eric M.B. Brown
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
| | - Barry Lai
- X-Ray Science Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439
| | - Stefan Vogt
- X-Ray Science Division, Advanced Photon source, Argonne National Laboratory, Argonne, IL, 60439
| | - Jörg Maser
- Center for Nanoscale Materials, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Mohammed Aslam
- Department of Physics, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Vinayak Dravid
- Department of Material Science and Engineering, and NUANCE Center, Northwestern University, Evanston IL 60208
| | - Raymond Bergan
- Department of Medicine, Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine Chicago, IL 60611
- Departments of Radiology, and Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
297
|
Abstract
The identification of recurrent alterations in the melanoma genome has provided key insights into the biology of melanoma genesis and progression. These discoveries have come about as a result of the systematic deployment and integration of diverse genomic technologies, including DNA sequencing, chromosomal copy number analysis, and gene expression profiling. Here, the discoveries of several key melanoma oncogenes affecting critical cell pathways are described and the role played by evolving genomics technologies in melanoma oncogene discovery is examined. These advances are being exploited to improve prognosis and treatment of melanoma patients through the development of genome-based diagnostic and targeted therapeutic avenues.
Collapse
Affiliation(s)
| | - Levi A. Garraway
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
298
|
Petrelli A, Valabrega G. Multitarget drugs: the present and the future of cancer therapy. Expert Opin Pharmacother 2009; 10:589-600. [PMID: 19284362 DOI: 10.1517/14656560902781907] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Target therapies for the treatment of human cancers have revolutionized the concept of oncological medicine. This type of therapeutic approach is directed to the inhibition of molecular targets that play a pivotal role in tumor progression -- such as tyrosine kinase receptors (TKIs) controlling cell proliferation and survival -- mainly by means of compounds able to block their activity. In the beginning, the aim of target therapies was specifically to hit a single molecule expressed in neoplastic cells. Now the prevailing idea is that inhibiting both cancer cells and cells of the stroma supporting the tumor would gain better results in fighting the disease. Therefore, the single-target therapy is fading in favor of a multitarget approach and the new generation of TKIs is selected on the basis of their ability simultaneously to target different molecules. This review summarizes the molecular basis of multitarget therapies and the most relevant results obtained in different cancer types.
Collapse
Affiliation(s)
- Annalisa Petrelli
- University of Turin Medical School, Institute for Cancer Research and Treatment (IRCC), Division of Molecular Oncology, Candiolo (Torino), Italy.
| | | |
Collapse
|
299
|
Jabbar SF, Abrams L, Glick A, Lambert PF. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 2009; 69:4407-14. [PMID: 19435895 PMCID: PMC3006677 DOI: 10.1158/0008-5472.can-09-0023] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several mucosotropic human papillomaviruses (HPV), including HPV type 16 (HPV-16), are etiologic agents of a subset of anogenital cancers and head and neck squamous cell carcinomas. In mice, HPV-16 E7 is the most potent of the papillomaviral oncogenes in the development of cervical disease. Furthermore, interfering specifically with the expression of E7 in HPV-positive cell lines derived from human cervical cancers inhibits their ability to proliferate, indicating that the expression of E7 is important in maintaining the transformed phenotype in vitro. To assess the temporal role of E7 in maintaining HPV-associated tumors and precancerous lesions in vivo, we generated Bi-L E7 transgenic mice that harbor a tetracycline-inducible transgene that expresses both HPV-16 E7 and firefly luciferase. When we crossed Bi-L E7 mice to a K5-tTA transgene-inducing line of mice, which expresses a tetracycline-responsive transactivator selectively in the stratified squamous epithelia, the resulting Bi-L E7/K5-tTA bitransgenic mice expressed E7 and luciferase in the skin and cervical epithelium, and doxycycline repressed this expression. Bitransgenic mice displayed several overt and acute epithelial phenotypes previously shown to be associated with the expression of E7, and these phenotypes were reversed on treatment with doxycycline. Repressing the expression of E7 caused the regression of high-grade cervical dysplasia and established cervical tumors, indicating that they depend on the continuous expression of E7 for their persistence. These results suggest that E7 is a relevant target not only for anticancer therapy but also for the treatment of HPV-positive dysplastic cervical lesions.
Collapse
Affiliation(s)
- Sean F. Jabbar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Linda Abrams
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam Glick
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
300
|
Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A, Gluch A, Kel A, Sangfelt O, Selivanova G. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell 2009; 15:441-53. [PMID: 19411072 DOI: 10.1016/j.ccr.2009.03.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 10/10/2008] [Accepted: 03/24/2009] [Indexed: 12/14/2022]
Abstract
Targeting "oncogene addiction" is a promising strategy for anticancer therapy. We report a potent inhibition of crucial oncogenes by p53 upon reactivation by small-molecule RITA in vitro and in vivo. RITA-activated p53 unleashes the transcriptional repression of antiapoptotic proteins Mcl-1, Bcl-2, MAP4, and survivin; blocks the Akt pathway on several levels; and downregulates c-Myc, cyclin E, and beta-catenin. p53 ablates c-Myc expression via several mechanisms at the transcriptional and posttranscriptional level. We show that the threshold for p53-mediated transrepression of survival genes is higher than for transactivation of proapoptotic targets. Inhibition of oncogenes by p53 reduces the cell's ability to buffer proapoptotic signals and elicits robust apoptosis. Our study highlights the role of transcriptional repression for p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Vera V Grinkevich
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|