251
|
Saveanu C, Fromont-Racine M, Jacquier A. 18 RNA Gene Analysis. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
252
|
Walser CB, Battu G, Hoier EF, Hajnal A. Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development. Development 2006; 133:3461-71. [PMID: 16908630 DOI: 10.1242/dev.02496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C. elegans PUF and FBF proteins regulate various aspects of germline development by selectively binding to the 3' untranslated region of their target mRNAs and repressing translation. Here, we show that puf-8, fbf-1 and fbf-2 also act in the soma where they negatively regulate vulvaI development. Loss-of-function mutations in puf-8 cause ectopic vulval differentiation when combined with mutations in negative regulators of the EGFR/RAS/MAPK pathway and suppress the vulvaless phenotype caused by mutations that reduce EGFR/RAS/MAPK signalling. PUF-8 acts cell-autonomously in the vulval cells to limit their temporal competence to respond to the extrinsic patterning signals. fbf-1 and fbf-2, however, redundantly inhibit primary vulval cell fate specification in two distinct pathways acting in the soma and in the germline. The FBFs thereby ensure that the inductive signal selects only one vulval precursor cell for the primary cell fate. Thus, translational repressors regulate various aspects of vulval cell fate specification, and they may play a conserved role in modulating signal transduction during animal development.
Collapse
Affiliation(s)
- Claudia B Walser
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | |
Collapse
|
253
|
Lublin AL, Evans TC. The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 2006; 303:635-49. [PMID: 17234175 DOI: 10.1016/j.ydbio.2006.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/25/2006] [Accepted: 12/02/2006] [Indexed: 02/04/2023]
Abstract
In metazoans, many mRNAs needed for embryogenesis are produced during oogenesis and must be tightly regulated during the complex events of oocyte development. In C. elegans, translation of the Notch receptor GLP-1 is repressed during oogenesis and is then activated specifically in anterior cells of the early embryo. The KH domain protein GLD-1 represses glp-1 translation during early stages of meiosis, but the factors that repress glp-1 during late oogenesis are not known. Here, we provide evidence that the PUF domain protein PUF-5 and two nearly identical PUF proteins PUF-6 and PUF-7 function during a specific period of oocyte differentiation to repress glp-1 and other maternal mRNAs. Depletion of PUF-5 and PUF-6/7 together caused defects in oocyte formation and early embryonic cell divisions. Loss of PUF-5 and PUF-6/7 also caused inappropriate expression of GLP-1 protein in oocytes, but GLP-1 remained repressed in meiotic germ cells. PUF-5 and PUF-6/7 function was required directly or indirectly for translational repression through elements of the glp-1 3' untranslated region. Oogenesis and embryonic defects could not be rescued by loss of GLP-1 activity, suggesting that PUF-5 and PUF-6/7 regulate other mRNAs in addition to glp-1. PUF-5 and PUF-6/7 depletion, however, did not perturb repression of the maternal factors GLD-1 and POS-1, suggesting that subsets of maternal gene products may be regulated by distinct pathways. Interestingly, PUF-5 protein was detected exclusively during mid to late oogenesis but became undetectable prior to completion of oocyte differentiation. These results reveal a previously unknown maternal mRNA control system that is specific to late stages of oogenesis and suggest new functions for PUF family proteins in post-mitotic differentiation. Multiple sets of RNA-binding complexes function in different domains of the C. elegans germ line to maintain silencing of Notch/glp-1 and other mRNAs.
Collapse
Affiliation(s)
- Alex L Lublin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Mail Stop 8108, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
254
|
Luu VD, Brems S, Hoheisel JD, Burchmore R, Guilbride DL, Clayton C. Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol 2006; 150:340-9. [PMID: 17052765 DOI: 10.1016/j.molbiopara.2006.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 12/01/2022]
Abstract
The genomes of Trypanosoma brucei, Leishmania major and Trypanosoma cruzi each encode 10 proteins with PUF domains. PUF domain proteins from yeast and metazoa have been shown to bind RNA and to regulate mRNA stability and translation. Phylogenetic analysis suggested that the PUF proteins were duplicated and diverged early in evolution, and that most PUF proteins were lost during the evolution of mammals. Depletion of any of the first nine T. brucei PUF protein mRNAs by RNA interference had no effect on cell growth; combined depletion of PUF1 and PUF3, PUF3 and PUF4, and PUF1 and PUF4 mRNAs also had no effect. In conflict with a previous report, procyclic trypanosomes lacking PUF1 genes grew normally and we could find no evidence that PUF1 is required for growth of trypanosomes in culture. Depletion or elimination of PUF1 mRNA did not affect the abundances of any other mRNAs, as detected in microarray analysis, and also had minimal effects on the proteome. (In control experiments, treatment of bloodstream and procyclic cells with 100 ng/ml tetracycline also had no detectable effects on the transcriptome and proteome.) PUF1 preferentially bound to retroposon RNAs and was not associated with polysomes. We suggest that, as in yeast, there may be functional redundancy among the Kinetoplastid PUF proteins, or they may be involved in fine-tuning gene expression together with other proteins. Alternatively, PUF proteins may be needed in differentiating trypanosomes or in non-culturable life-cycle stages.
Collapse
Affiliation(s)
- Van-Duc Luu
- ZMBH, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
255
|
Suh N, Jedamzik B, Eckmann CR, Wickens M, Kimble J. The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proc Natl Acad Sci U S A 2006; 103:15108-12. [PMID: 17012378 PMCID: PMC1622784 DOI: 10.1073/pnas.0607050103] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
mRNA regulation is crucial for many aspects of metazoan development and physiology, including regulation of stem cells and synaptic plasticity. In the nematode germ line, RNA regulators control stem cell maintenance, the sperm/oocyte decision, and progression through meiosis. Of particular importance to this work are three GLD (germ-line development) regulatory proteins, each of which promotes entry into the meiotic cell cycle: GLD-1 is a STAR/Quaking translational repressor, GLD-2 is a cytoplasmic poly(A) polymerase, and GLD-3 is a homolog of Bicaudal-C. Here we report that the gld-1 mRNA is a direct target of the GLD-2 poly(A) polymerase: polyadenylation of gld-1 mRNA depends on GLD-2, the abundance of GLD-1 protein is dependent on GLD-2, and the gld-1 mRNA coimmunoprecipitates with both GLD-2 and GLD-3 proteins. We suggest that the GLD-2 poly(A) polymerase enhances entry into the meiotic cell cycle at least in part by activating GLD-1 expression. The importance of this conclusion is twofold. First, the activation of gld-1 mRNA by GLD-2 identifies a positive regulatory step that reinforces the decision to enter the meiotic cell cycle. Second, gld-1 mRNA is initially repressed by FBF (for fem-3 binding factor) to maintain stem cells but then becomes activated by the GLD-2 poly(A) polymerase once stem cells begin to make the transition into the meiotic cell cycle. Therefore, a molecular switch regulates gld-1 mRNA activity to accomplish the transition from mitosis to meiosis.
Collapse
Affiliation(s)
| | - Britta Jedamzik
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Christian R. Eckmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | - Judith Kimble
- *Department of Biochemistry and
- Howard Hughes Medical Institute, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706-1544; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
256
|
Abstract
Puf domain proteins bind specific sequences in mRNAs to regulate their translation or stability, or both. Neither the mechanism of their action nor the identities of targeted mRNAs have been well defined. Recent work suggests that Puf proteins generally act by recruiting Pop2, a deadenylation enzyme that is part of a large complex. Recent work from a separate group defines a subset of the Drosophila transcriptome that is bound by the fly Puf protein, Pumilio. Together, these papers substantially increase our understanding of the biology of the Puf family of mRNA regulators.
Collapse
Affiliation(s)
- Robin P Wharton
- Howard Hughes Medical Institute and Duke University Medical School, Durham, NC 27710, USA.
| | | |
Collapse
|
257
|
Kurisaki I, Iwai T, Yamashita M, Kobayashi M, Ito E, Matsuoka I. Identification and expression analysis of rainbow trout pumilio-1 and pumilio-2. Cell Tissue Res 2006; 327:33-42. [PMID: 17024422 DOI: 10.1007/s00441-006-0260-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2006] [Accepted: 05/23/2006] [Indexed: 01/27/2023]
Abstract
Pumilio is a sequence-specific RNA-binding protein that regulates translation from the relevant mRNA. The PUF-domain, the RNA-binding motif of Pumilio, is highly conserved across species. In the present study, we have identified two pumilio genes (pumilio-1 and pumilio-2) in rainbow trout and analyzed their expression patterns in its tissues. Pumilio-1 mRNA and pumilio-2A mRNA code for typical full length Pumilio proteins that contain a PUF-domain, whereas pumilio-2B mRNA is a splice variant of pumilio-2 and encodes a protein that lacks the PUF-domain. We have also identified a novel 72-bp exon that has not been reported in other animal species but is conserved in fish species. The insertion of this novel exon leads to the expression of an isoform of the Pumilio-2 protein with a slightly altered conformation of the PUF-domain. Pumilio-1 mRNA and pumilio-2A mRNA (irrespective of the presence of the 72-bp exon) are expressed in both the brain and ovaries at high levels, whereas pumilio-2B mRNA is expressed at low levels in all the rainbow trout tissues examined. Western blot analysis also indicates that the full length Pumilio proteins are expressed predominantly in the brain and ovaries. These data suggest that the Pumilio proteins have physiological roles and are involved in regulatory mechanisms in rainbow trout.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
258
|
Abstract
Puf proteins bind RNA sequence specifically and regulate translation and stability of target mRNAs. A "code" for RNA recognition has been deduced from crystal structures of the Puf protein, human Pumilio1, where each of eight repeats binds an RNA base via a combination of three side chains at conserved positions. Here, we report the creation of seven soluble mutant proteins with predictably altered sequence specificity, including one that binds tightly to adenosine-uracil-rich element RNA. These data show that Pumilio1 can be used as a scaffold to engineer RNA-binding proteins with designed sequence specificity.
Collapse
Affiliation(s)
- Cheom-Gil Cheong
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Traci M. Tanaka Hall
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
259
|
Seay D, Hook B, Evans K, Wickens M. A three-hybrid screen identifies mRNAs controlled by a regulatory protein. RNA (NEW YORK, N.Y.) 2006; 12:1594-600. [PMID: 16809817 PMCID: PMC1524894 DOI: 10.1261/rna.145306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA-protein interactions are important in many biological contexts. Identification of the networks that connect regulatory proteins to one another and to the mRNAs they control is a critical need. Here, we use a yeast three-hybrid screening approach to identify RNAs that bind a known RNA regulatory protein, the Saccharomyces cerevisiae PUF protein, Mpt5p. The assay selects RNAs that bind in vivo using simple phenotypes and reporter genes. It enables rapid analyses of the affinity and specificity of the interaction. We show that the method identifies mRNAs that are genuinely regulated by the protein in vivo, and that it complements biochemical strategies, yielding a set of mRNAs that overlap with, but are distinct from, those obtained by biochemical means. The approach we describe facilitates construction of protein-RNA linkage maps.
Collapse
Affiliation(s)
- Daniel Seay
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706, USA
| | | | | | | |
Collapse
|
260
|
Labbé JC, Pacquelet A, Marty T, Gotta M. A genomewide screen for suppressors of par-2 uncovers potential regulators of PAR protein-dependent cell polarity in Caenorhabditis elegans. Genetics 2006; 174:285-95. [PMID: 16816419 PMCID: PMC1569778 DOI: 10.1534/genetics.106.060517] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PAR proteins play an essential role in establishing and maintaining cell polarity. While their function is conserved across species, little is known about their regulators and effectors. Here we report the identification of 13 potential components of the C. elegans PAR polarity pathway, identified in an RNAi-based, systematic screen to find suppressors of par-2(it5ts) lethality. Most of these genes are conserved in other species. Phenotypic analysis of double-mutant animals revealed that some of the suppressors can suppress lethality associated with the strong loss-of-function allele par-2(lw32), indicating that they might impinge on the PAR pathway independently of the PAR-2 protein. One of these is the gene nos-3, which encodes a homolog of Drosophila Nanos. We find that nos-3 suppresses most of the phenotypes associated with loss of par-2 function, including early cell division defects and maternal-effect sterility. Strikingly, while PAR-1 activity was essential in nos-3; par-2 double mutants, its asymmetric localization at the posterior cortex was not restored, suggesting that the function of PAR-1 is independent of its cortical localization. Taken together, our results identify conserved components that regulate PAR protein function and also suggest a role for NOS-3 in PAR protein-dependent cell polarity.
Collapse
|
261
|
Otori M, Karashima T, Yamamoto M. The Caenorhabditis elegans homologue of deleted in azoospermia is involved in the sperm/oocyte switch. Mol Biol Cell 2006; 17:3147-55. [PMID: 16641369 PMCID: PMC1483047 DOI: 10.1091/mbc.e05-11-1067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 04/03/2006] [Accepted: 04/19/2006] [Indexed: 11/11/2022] Open
Abstract
The Deleted in Azoospermia (DAZ) gene family encodes putative translational activators that are required for meiosis and other aspects of gametogenesis in animals. The single Caenorhabditis elegans homologue of DAZ, daz-1, is an essential factor for female meiosis. Here, we show that daz-1 is important for the switch from spermatogenesis to oogenesis (the sperm/oocyte switch), which is an essential step for the hermaphrodite germline to produce oocytes. RNA interference of the daz-1 orthologue in a related nematode, Caenorhabditis briggsae, resulted in a complete loss of the sperm/oocyte switch. The C. elegans hermaphrodite deficient in daz-1 also revealed a failure in the sperm/oocyte switch if the genetic background was conditional masculinization of germline. DAZ-1 could bind specifically to mRNAs encoding the FBF proteins, which are translational regulators for the sperm/oocyte switch and germ stem cell proliferation. Expression of the FBF proteins seemed to be lowered in the daz-1 mutant at the stage for the sperm/oocyte switch. Conversely, a mutation in gld-3, a gene that functionally counteracts FBF, could partially restore oogenesis in the daz-1 mutant. Together, we propose that daz-1 plays a role upstream of the pathway for germ cell sex determination.
Collapse
Affiliation(s)
- Muneyoshi Otori
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Karashima
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Masayuki Yamamoto
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
262
|
Hasegawa E, Karashima T, Sumiyoshi E, Yamamoto M. C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development. Dev Biol 2006; 295:689-99. [PMID: 16678151 DOI: 10.1016/j.ydbio.2006.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 03/14/2006] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
Cytoplasmic polyadenylation element-binding proteins (CPEBs) are well-conserved RNA-binding proteins, which regulate mRNA translation mainly through control of poly(A) elongation. Here, we show that CPB-3, one of the four CPEB homologs in C. elegans, positively regulates multiple aspects of oocyte production. CPB-3 protein was highly expressed in early meiotic regions of the hermaphrodite gonad. Worms deficient in cpb-3 were apparently impaired in germ cell proliferation and differentiation including sperm/oocyte switching and progression of female meiosis. We also show that cpb-3 is likely to promote the meiotic entry in parallel with gld-3, a component of one of the redundant but essential genetic pathways for the entry to and progression through meiosis. Taken together, CPEB appears to have a conserved role in the early phase of meiosis and in the sperm/oocyte specification, in addition to its reported function during meiotic progression.
Collapse
Affiliation(s)
- Eri Hasegawa
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
263
|
Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M. A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 2006; 12:945-51. [PMID: 16244662 DOI: 10.1038/nsmb1010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/28/2005] [Indexed: 11/09/2022]
Abstract
Regulation of messenger RNA is crucial in many contexts, including development, memory and cell growth. The 3' untranslated region is a rich repository of regulatory elements that bind proteins and microRNAs. Here we focus on PUF proteins, an important family of mRNA regulatory proteins crucial in stem-cell proliferation, pattern formation and synaptic plasticity. We show that two Caenorhabditis elegans PUF proteins, FBF and PUF-8, differ in RNA-binding specificity. FBF requires the presence of a single 'extra' nucleotide in the middle of an eight-nucleotide site, whereas PUF-8 requires its absence. A discrete protein segment is responsible for the difference. We propose that a structural distortion in the central region of FBF imposes the requirement for the additional nucleotide and that this mode of PUF specificity may be common. We suggest that new specificities can be designed and selected using the PUF scaffold.
Collapse
Affiliation(s)
- Laura Opperman
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
264
|
Hill RC, de Carvalho CE, Salogiannis J, Schlager B, Pilgrim D, Haag ES. Genetic flexibility in the convergent evolution of hermaphroditism in Caenorhabditis nematodes. Dev Cell 2006; 10:531-8. [PMID: 16580997 DOI: 10.1016/j.devcel.2006.02.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/25/2006] [Accepted: 02/01/2006] [Indexed: 11/28/2022]
Abstract
The self-fertile hermaphrodites of C. elegans and C. briggsae evolved from female ancestors by acquiring limited spermatogenesis. Initiation of C. elegans hermaphrodite spermatogenesis requires germline translational repression of the female-promoting gene tra-2, which allows derepression of the three male-promoting fem genes. Cessation of hermaphrodite spermatogenesis requires fem-3 translational repression. We show that C. briggsae requires neither fem-2 nor fem-3 for hermaphrodite development, and that XO Cb-fem-2/3 animals are transformed into hermaphrodites, not females as in C. elegans. Exhaustive screens for Cb-tra-2 suppressors identified another 75 fem-like mutants, but all are self-fertile hermaphrodites rather than females. Control of hermaphrodite spermatogenesis therefore acts downstream of the fem genes in C. briggsae. The outwardly similar hermaphrodites of C. elegans and C. briggsae thus achieve self-fertility via intervention at different points in the core sex determination pathway. These findings are consistent with convergent evolution of hermaphroditism, which is marked by considerable developmental genetic flexibility.
Collapse
Affiliation(s)
- Robin Cook Hill
- Department of Biology, University of Maryland, College Park, 20742, USA
| | | | | | | | | | | |
Collapse
|
265
|
Holt SJ. Staying alive in adversity: transcriptome dynamics in the stress-resistant dauer larva. Funct Integr Genomics 2006; 6:285-99. [PMID: 16636823 DOI: 10.1007/s10142-006-0024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 01/23/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
In response to food depletion and overcrowding, the soil nematode Caenorhabditis elegans can arrest development and form an alternate third larval stage called the dauer. Though nonfeeding, the dauer larva is long lived and stress resistant. Metabolic and transcription rates are lowered but the transcriptome of the dauer is complex. In this study, distribution analysis of transcript profiles generated by Serial Analysis of Gene Expression (SAGE) in dauer larvae and in mixed developmental stages is presented. An inverse relationship was observed between frequency and abundance/copy number of SAGE tag types (transcripts) in both profiles. In the dauer profile, a relatively greater proportion of highly abundant transcripts was counterbalanced by a smaller fraction of low to moderately abundant transcripts. Comparisons of abundant tag counts between the two profiles revealed relative enrichment in the dauer profile of transcripts with predicted or known involvement in ribosome biogenesis and protein synthesis, membrane transport, and immune responses. Translation-coupled mRNA decay is proposed as part of an immune-like stress response in the dauer larva. An influence of genomic region on transcript level may reflect the coordination of transcription and mRNA turnover.
Collapse
|
266
|
Caro F, Bercovich N, Atorrasagasti C, Levin MJ, Vázquez MP. Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Exp Parasitol 2006; 113:112-24. [PMID: 16460732 DOI: 10.1016/j.exppara.2005.12.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/20/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The members of the PUF family of RNA-binding proteins regulate the fate of mRNAs by binding to their 3'UTR sequence elements in eukaryotes. In trypanosomes, for which gene expression is polycistronic and controlled almost exclusively by post-transcriptional processes, PUF proteins could play a crucial role. We report here the complete analysis of the PUF protein family of Trypanosoma cruzi composed of 10 members. In silico analysis predicts the existence of at least three major groups within the T. cruzi family, based on their putative binding specificity. Using yeast three hybrid assays, we tested some of these predictions for TcPUF1, TcPUF3, TcPUF5, and TcPUF8 as representatives of these groups. Data mining of the T. cruzi genome led us to describe putative binding targets for the TcPUFs of the most conserved group, TcPUF1 and TcPUF2. The targets include genes for mitochondrial proteins and protein kinases. Finally, immunolocalization experiments showed that TcPUF1 is localized in multiple discrete foci in the cytoplasm supporting its proposed function.
Collapse
Affiliation(s)
- Florence Caro
- Laboratorio de Biología Molecular de la Enfermedad de Chagas--INGEBI--CONICET, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
267
|
An SH, Shang JY, Liu YH, Kumar VS, Guo ZJ, Wang D, Yang ZN, Zhang CX. Characterization of a Unique Gene ORF135 from Helicoverpa Armigera Single Nucleocapsid Nucleopolyhedrovirus. Virus Genes 2006; 32:21-6. [PMID: 16525731 DOI: 10.1007/s11262-005-5841-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/17/2005] [Accepted: 05/19/2005] [Indexed: 11/25/2022]
Abstract
The ORF135 of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearSNPV)(Ha135) is one of the 20 genes that are unique to HearSNPV. Computer-assisted analysis revealed that four potential post translation modification sites, four transcription factor associated domains and a DNA binding protein domain were found in Ha135 amino acid sequence. Northern blot analysis of Ha135 indicated that Ha135 transcript was detected at 12 h.p.i. and remained detectable at up to 122 h.p.i. RT-PCR method was used to understand the temporal regulation of the transcript at earlier stages, the result showed that the Ha135 transcript was detected as early as 3 h p.i. suggesting that Ha135 was an early gene, which is in agreement with the early promoter motifs. The Ha135 protein was also detected at 12 h.p.i and remained detectable until 122 h.p.i. by western blot using an anti-Ha135 antiserum. The product of Ha135 was found to be about 29 kDa, bigger than the predicted 24 kDa molecular weight, suggesting that post translational modification of the Ha135 protein occur in host cells. The subcellular location was studied using EGFP-Ha135, which suggested that the Ha135 protein is primarily localized in the nucleus, which is compatible with several functional domains present in Ha135 amino acid sequence. Together, these results suggest the possibility that HearSNPV ORFI35 might be involved in viral DNA transcription and/or replication.
Collapse
Affiliation(s)
- Shi-Heng An
- Institute of Applied Entomology, Zhejiang University, 310029, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
The regulatory mechanisms that orchestrate the developmental acquisition of electrical properties in embryonic neurons are poorly understood. Progress in this important area is dependent on the availability of preparations that allow electrophysiology to be married with genetics. The powerful genetics of the fruitfly Drosophila melanogaster has long been exploited to describe fundamental mechanisms associated with structural neuronal development (i.e. axon guidance). It has not, however, been fully employed to study the final stages of embryonic neural development and in particular the acquisition of electrical activity. This review focuses on the recent development of a Drosophila preparation that allows central neurons to be accessed by patch electrodes at both embryonic and larval stages. This preparation, which allows electrophysiology to be coupled with genetics, offers the prospect of making significant advances in our understanding of functional neuron development.
Collapse
Affiliation(s)
- Richard A Baines
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
269
|
Abstract
Germline stem cells (GSCs), which can self-renew and generate differentiated progeny, are unique stem cells in that they are solely dedicated to reproduction and transmit genetic information from generation to generation. Through the use of genetic techniques in Drosophila, Caenorhabditis elegans, and mouse, exciting progress has been made in understanding molecular mechanisms underlying interactions between stem cells and niches. The knowledge gained from studying GSCs has provided an intellectual framework for defining niches and molecular regulatory mechanisms for other adult stem cells. In this review, we summarize recent progress and discuss conserved mechanisms underlying GSC self-renewal and differentiation by comparing three GSC systems. Because GSCs and other adult stem cells share "stemness," we hope this review will help define fundamental principles of stem cell regulation and provide further guidance for future studies of other adult stem cells.
Collapse
Affiliation(s)
- Marco D Wong
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
270
|
Thompson BE, Lamont LB, Kimble J. Germ-line induction of the Caenorhabditis elegans vulva. Proc Natl Acad Sci U S A 2006; 103:620-5. [PMID: 16407099 PMCID: PMC1334682 DOI: 10.1073/pnas.0510264103] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Development of the Caenorhabditis elegans vulva serves as a paradigm for intercellular signaling during animal development. In wild-type animals, the somatic gonadal anchor cell generates the LIN-3/EGF ligand to induce vulval fates in the underlying hypodermis, whereas FBF, FOG-1, and FOG-3 control germ-line development. Here we report that FBF functions redundantly with FOG-1 and FOG-3 to control vulval induction: animals lacking FBF and either FOG-1 or FOG-3 have multiple vulvae, the Muv phenotype. The fog; fbf Muv phenotype is generated by aberrant induction of vulval precursor cells (VPCs): in wild-type animals, three VPCs are induced to form a single vulva, but, in fog; fbf mutants, four or five VPCs are typically induced, resulting in ectopic vulvae. Laser ablation experiments and mosaic analyses demonstrate that the germ line is critical for the fog; fbf Muv phenotype. Consistent with that site of action, we detect FBF and FOG-1 in the germ line but not in the VPCs. The simplest interpretation is that FOG-1, FOG-3, and FBF act in the germ line to influence vulval fates. The LIN-3/EGF ligand may be the germ-line signal to the VPCs: the fog; fbf Muv phenotype depends on LIN-3 activity, and the lin-3 3' UTR possesses an FBF binding element. Our findings reveal new insights into germ line-to-soma signals and the role of PUF proteins in animal development.
Collapse
Affiliation(s)
- Beth E Thompson
- Cellular and Molecular Biology Program, Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
271
|
Hansen D, Schedl T. The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 2006; 76:185-215. [PMID: 17118267 DOI: 10.1016/s0070-2153(06)76006-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The germ line of sexually reproducing animals, at some point in development, consists of both proliferating and differentiating cells. Proliferation is needed to increase cell number, ensuring that a sufficient quantity of gametes is produced. Meiotic development is needed to produce gametes that can support embryogenesis, each with half the ploidy of the somatic cells. For the reproductive strategy of a given species, regulating the timing and number of gametes, and thus controlling the timing of differentiation and the extent of proliferation, is very important for reproductive fitness. Therefore, animals have evolved regulatory mechanisms that tightly control and balance the proliferation-initiation of meiotic development (meiotic entry) decision. Genetic analysis has identified signaling mechanisms involved in controlling this balance in some animals, including mice, Drosophila, and Caenorhabditis elegans. In this chapter, we present our understanding of the genetic hierarchy controlling the proliferation-meiotic entry decision in C. elegans. A core regulatory network controls the decision under all known conditions (developmental stage, sex, and growth temperature). It consists of a canonical Notch signaling pathway promoting proliferation by inhibiting two redundant mRNA regulatory pathways, the GLD-1 and GLD-2 pathways, which promote meiotic entry. Superimposed on the core network is a complex set of factors, some yet to be identified, and many with regulatory relationships still poorly understood, which control the activities of the GLD-1 and GLD-2 pathways and possibly parallel pathways. Some of the complexity arises from these regulators acting only under certain conditions. We also highlight major areas where we lack knowledge. For example, it is unknown if the entire population of proliferating cells are stem cells capable of self-renewal or if only a small portion are stem cells and the rest are transit amplifying cells.
Collapse
Affiliation(s)
- Dave Hansen
- Department of Biological Sciences, University of Calgary Calgary, Alberta, Canada T2N-1N4
| | | |
Collapse
|
272
|
Chan CS, Elemento O, Tavazoie S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput Biol 2005; 1:e69. [PMID: 16355253 PMCID: PMC1309705 DOI: 10.1371/journal.pcbi.0010069] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 11/02/2005] [Indexed: 01/09/2023] Open
Abstract
We used network-level conservation between pairs of fly (Drosophila melanogaster/D. pseudoobscura) and worm (Caenorhabditis elegans/C. briggsae) genomes to detect highly conserved mRNA motifs in 3' untranslated regions. Many of these elements are complementary to the 5' extremity of known microRNAs (miRNAs), and likely correspond to their target sites. We also identify known targets of RNA-binding proteins, and many novel sites not yet known to be functional. Coherent sets of genes with similar function often bear the same conserved elements, providing new insights into their cellular functions. We also show that target sites for distinct miRNAs are often simultaneously conserved, suggesting combinatorial regulation by multiple miRNAs. A genome-wide search for conserved stem-loops, containing complementary sequences to the novel sites, revealed many new candidate miRNAs that likely target them. We also provide evidence that posttranscriptional networks have undergone extensive rewiring across distant phyla, despite strong conservation of regulatory elements themselves.
Collapse
Affiliation(s)
- Chang S Chan
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Olivier Elemento
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Saeed Tavazoie
- Department of Molecular Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
273
|
Lee MH, Hook B, Lamont LB, Wickens M, Kimble J. LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 2005; 25:88-96. [PMID: 16319922 PMCID: PMC1351240 DOI: 10.1038/sj.emboj.7600901] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/15/2005] [Indexed: 01/10/2023] Open
Abstract
Caenorhabditis elegans germline cells are maintained in an undifferentiated and mitotically dividing state by Notch signaling and the FBF (for fem-3 binding factor) RNA-binding protein. Here, we report that the LIP-1 phosphatase, a proposed homolog of mitogen-activated protein (MAP) kinase phosphatases, is required for the normal extent of germline proliferation, and that lip-1 controls germline proliferation by regulating MAP kinase activity. In wild-type germ lines, LIP-1 protein is present in the proximal third of the mitotic region, consistent with its effect on germline proliferation. We provide evidence that lip-1 expression in the germline mitotic region is controlled by a combination of GLP-1/Notch signaling and FBF repression. Unexpectedly, FBF controls the accumulation of lip-1 mRNA, and therefore is likely to control its stability or 3'-end formation. In a sensitized mutant background, LIP-1 can function as a pivotal regulator of the decision between proliferation and differentiation. The control of germline proliferation by LIP-1 has intriguing parallels with the control of stem cells and progenitor cells in vertebrates.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Brad Hook
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Liana B Lamont
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel.: +1 608 262 6188; Fax: +1 608 265 5820; E-mail:
| |
Collapse
|
274
|
Ohkuni K, Kikuchi Y, Hara K, Taneda T, Hayashi N, Kikuchi A. Suppressor analysis of the mpt5/htr1/uth4/puf5 deletion in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 275:81-8. [PMID: 16328373 DOI: 10.1007/s00438-005-0064-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 10/16/2005] [Indexed: 10/25/2022]
Abstract
The MPT5/HTR1/UTH4/PUF5 gene encodes an RNA-binding Puf-family protein in Saccharomyces cerevisiae. The Deltampt5 cells exhibit pleiotropic phenotypes, including the G2/M arrest of the cell cycle and weakened cell wall at high temperatures. The Deltampt5 disruptant was also hydroxyurea (HU) sensitive. In this study we screened deletion suppressors to rescue the temperature sensitivity of Deltampt5, and identified dsf1 (YEL070W), dsf2 (YBR007C), sir2, sir3, sir4 and swe1. Multicopy suppressors identified were PKC1 and its upstream genes, but not the downstream MAPK cascade genes. The overexpression of PKC1, however, did not suppress the HU sensitivity of Deltampt5. In contrast, both the HU- and temperature-sensitivities of a-type Deltampt5 cells were suppressed by each sir deletion or a multicopy of MATalpha2, suggesting that a diploid-type expression is involved. We found that a diploid-specific IME4 gene encoding an RNA-modifying protein was responsible for the suppression of the temperature sensitivity, but not of the HU sensitivity. Furthermore, the suppression of the HU sensitivity depended on PUF4, another Puf-family gene, and overexpression of PUF4 suppressed only the HU sensitivity of Deltampt5. The protein level of Puf4 was not affected by the sir mutation. Thus, these Ime4 and Puf4 proteins play complementary roles to rescue the defects in Deltampt5 Deltasir cells.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Division of Molecular Mycology and Medicine, Center for Neurological Disease and Cancer, Graduate School of Medicine, Nagoya University, 466-8550 Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
275
|
Houshmandi SS, Olivas WM. Yeast Puf3 mutants reveal the complexity of Puf-RNA binding and identify a loop required for regulation of mRNA decay. RNA (NEW YORK, N.Y.) 2005; 11:1655-66. [PMID: 16244132 PMCID: PMC1370852 DOI: 10.1261/rna.2168505] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The eukaryotic Puf proteins regulate mRNA translation and degradation by binding the 3' untranslated regions of target mRNAs. Crystal structure analysis of a human Puf bound to RNA suggested a modular mode of binding, with specific amino acids within each of eight repeat domains contacting a single nucleotide of the target RNA. Here we study the mechanism by which the yeast Puf3p binds and stimulates the degradation of COX17 mRNA. Mutation of the predicted RNA-binding positions of Puf3p to those found in Puf5p demonstrated that a single amino acid change in Puf3p abolished detectable binding to COX17. Since this amino acid position in both Puf3p and Puf5p is predicted to contact an adenine in the respective target RNAs, the amino acid in Puf3p must play a more critical role in promoting COX17 interaction. In contrast, an amino acid change in the third repeat of Puf3p, which interacts with the only divergent nucleotide between the Puf3p and Puf5p targets, had no effect on binding COX17. These results argue that a simple set of rules cannot reliably link specific amino acid positions with target specificity. Each of these amino acid changes in Puf3p enhanced binding to the Puf5p target HO RNA, suggesting a different mode of binding to this target. Finally, we identified an outer surface loop that was dispensable for binding but was required to promote both rapid deadenylation and subsequent decapping of the COX17 mRNA, most likely as a point of protein-protein interactions.
Collapse
Affiliation(s)
- S Sean Houshmandi
- Department of Biology, University of Missouri-St. Louis, 63121-4499, USA
| | | |
Collapse
|
276
|
Urano J, Fox MS, Reijo Pera RA. Interaction of the conserved meiotic regulators, BOULE (BOL) and PUMILIO-2 (PUM2). Mol Reprod Dev 2005; 71:290-8. [PMID: 15806553 DOI: 10.1002/mrd.20270] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Germ cell development is complex; it encompasses specification of germ cell fate, mitotic replication of early germ cell populations, and meiotic and postmeiotic development. Meiosis alone may require several hundred genes, including homologs of the BOULE (BOL) and PUMILIO (PUM) gene families. Both BOL and PUM homologs encode germ cell specific RNA binding proteins in diverse organisms where they are required for germ cell development. Here, we demonstrate that human BOL forms homodimers and is able to interact with a PUMILIO homolog, PUM2. We mapped the domain of BOL that is required for dimerization and for interaction with PUM2. We also show that BOL and PUM2 can form a complex on a subset of PUM2 RNA targets that is distinct from targets bound by PUM2 and another deleted in azoospermia (DAZ) family member, DAZ-like (DAZL). This suggests that RNA sequences bound by PUM2 may be determined by protein interactions. This data also suggests that although the BOL, DAZ, and DAZL proteins are all members of the same gene family, they may function in distinct molecular complexes during human germ cell development.
Collapse
Affiliation(s)
- Jun Urano
- Program in Human Stem Cell Biology, Department of Obstetrics, Center for Reproductive Sciences, and Program in Human Genetics, University of California, San Francisco, California 94143-0556, USA.
| | | | | |
Collapse
|
277
|
Bachorik JL, Kimble J. Redundant control of the Caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. Proc Natl Acad Sci U S A 2005; 102:10893-7. [PMID: 16037210 PMCID: PMC1182444 DOI: 10.1073/pnas.0504593102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PUF proteins control both growth and differentiation in the C. elegans germ line. These conserved RNA-binding proteins inhibit expression of target mRNAs, either by repressing translation or promoting degradation. Previous studies showed that PUF-8, a PUF protein with striking similarity to human Pumilio, prevents return of primary spermatocytes to the mitotic cell cycle [Subramaniam, K. & Seydoux, G. (2003) Curr. Biol. 13, 134-139]. We now report that PUF-8 is also critical for the hermaphrodite sperm/oocyte switch. Most puf-8 mutant hermaphrodites make both sperm and oocytes and are self-fertile, but some make a vast excess of sperm and fail to switch into oogenesis. This puf-8 defect is dramatically enhanced by removal of another puf gene called fbf-1: all fbf-1 puf-8 double mutants fail in the hermaphrodite sperm/oocyte switch. Therefore, puf-8 and fbf-1 act redundantly to control this decision. Epistasis analyses place puf-8 and fbf-1 upstream of fog-2, a gene near the top of the germ-line sex determination pathway. Furthermore, the abundance of FOG-2 increases dramatically in the distal region of fbf-1 puf-8 double mutants. We suggest that PUF-8 and FBF-1 may control fog-2 expression, and that the sperm/oocyte decision occurs in the distal germ line.
Collapse
Affiliation(s)
- Jennifer L Bachorik
- Program in Cellular and Molecular Biology, Department of Biochemistry, and Howard Hughes Medical Institute, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
278
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
279
|
Scott RE, White-Grindley E, Ruley HE, Chesler EJ, Williams RW. P2P-R expression is genetically coregulated with components of the translation machinery and with PUM2, a translational repressor that associates with the P2P-R mRNA. J Cell Physiol 2005; 204:99-105. [PMID: 15617101 DOI: 10.1002/jcp.20263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
P2P-R is a nuclear protein with potential functional roles in the control of gene expression and mitosis. The P2P-R protein also interacts with the p53 and Rb1 tumor suppressor proteins. To search for additional functional associations of P2P-R, we employed the WebQTL database that contains the results of cDNA microarray analysis on forebrain, cerebellum, and hematopoietic stem cell (HSC) specimens of multiple BXD recombinant inbred strains of mice. Using WebQTL, gene products were identified that show genetically based coexpression with P2P-R. Initial studies identified general groups of mRNAs that share common functional roles and high covariation in expression with P2P-R. These functional groups involved the regulation of transcription, nucleotide binding, translation control, and ion transport. The findings related to translational mechanisms were further evaluated. In HSCs, expression of P2P-R mRNA demonstrates an impressive expression correlation with a group of gene products associated with translation; high expression of P2P-R specifically was associated with decreased expression of 29 ribosomal protein mRNAs. In all three tissues that were screened using the WebQTL database, a strong positive expression covariance between P2P-R and the Pum2 gene product also was observed. PUM2 is a member of the highly conserved Puf family of RNA binding proteins that often function as gene-specific translation regulators. The ability of Puf proteins to repress translation is mediated by their binding to specific elements located in the 3' untranslated region (UTR) of their target mRNAs. To assess the functional significance of the strong genetic correlation in expression of P2P-R and PUM2, the 3' UTR of the P2P-R mRNA was analyzed and found to contain one perfect consensus and two near-perfect consensus PUM2 binding sequences. PUM2 pull-down methods combined with reverse transcription and RT-PCR confirmed that PUM2 does indeed bind P2P-R mRNA. These results suggest that P2P-R expression may be translationally regulated by PUM2 and that P2P-R may modulate translation by influencing ribosomal protein gene expression. This study represents the first description of a RNA target for mammalian Puf proteins and the first molecular confirmation of information obtained using the WebQTL database.
Collapse
Affiliation(s)
- Robert E Scott
- Department of Pathology, University of Tennessee Health Science Center, Memphis Tennessee, USA.
| | | | | | | | | |
Collapse
|
280
|
Islam S, Montgomery RK, Fialkovich JJ, Grand RJ. Developmental and regional expression and localization of mRNAs encoding proteins involved in RNA translocation. J Histochem Cytochem 2005; 53:1501-9. [PMID: 16009965 PMCID: PMC3957543 DOI: 10.1369/jhc.5a6655.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA localization is a regulated component of gene expression of fundamental importance in development and differentiation. Several RNA binding proteins involved in RNA localization during development in Drosophila have been identified, of which Y14, Mago, Pumilio, and IMP-1 are known to be expressed in adult mammalian intestine. The present study was undertaken to define the developmental and regional expression of these proteins, as well as Staufen-1, in mouse intestinal cells and in other tissues and cell lines using RT-PCR, and localization using in situ hybridization and immunohistochemistry. Staufen-1, Y14, Mago-m, and Pumilio-1 were expressed in intestinal epithelial cells of both villus and crypt and in Caco-2 and IEC-6 cells. In contrast, expression of IMP-1 was age- and region-specific, showing clear expression in distal fetal and newborn intestine, but very low or no expression in adult. The mRNAs were cytosolic, with more apical than basal expression in enterocytes. Staufen protein showed a similar localization pattern to that of its cognate mRNA. Overall, the data suggest an essential role for these proteins in intestinal cells. Age and regional expression of IMP-1 may indicate a role in regulation of site-specific translation of intestinal genes or in RNA localization.
Collapse
Affiliation(s)
| | | | | | - Richard J. Grand
- Correspondence to: Richard J. Grand, MD, Division of Gastroenterology and Nutrition, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115. E-mail:
| |
Collapse
|
281
|
Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J. Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 2005; 132:3471-81. [PMID: 16000383 PMCID: PMC1350643 DOI: 10.1242/dev.01921] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA-binding proteins control germline development in metazoans. This work focuses on control of the C. elegans germline by two RNA-binding proteins: FOG-1, a CPEB homolog; and FBF, a PUF family member. Previous studies have shown that FOG-1 specifies the sperm fate and that FBF promotes proliferation. Here, we report that FOG-1 also promotes proliferation. Whereas fbf-1 fbf-2 double mutants make approximately 120 germ cells, fog-1; fbf-1 fbf-2 triple mutants make only approximately 10 germ cells. The triple mutant germline divides normally until early L2, when germ cells prematurely enter meiosis and begin oogenesis. Importantly, fog-1/+; fbf-1 fbf-2 animals make more germ cells than fbf-1 fbf-2 double mutants, demonstrating that one dose of wild-type fog-1 promotes proliferation more effectively than two doses - at least in the absence of FBF. FOG-1 protein is barely detectable in proliferating germ cells, but abundant in germ cells destined for spermatogenesis. Based on fog-1 dose effects, together with the gradient of FOG-1 protein abundance, we suggest that low FOG-1 promotes proliferation and high FOG-1 specifies spermatogenesis. FBF binds specifically to regulatory elements in the fog-1 3'UTR, and FOG-1 increases in animals lacking FBF. Therefore, FBF represses fog-1 expression. We suggest that FBF promotes continued proliferation, at least in part, by maintaining FOG-1 at a low level appropriate for proliferation. The dose-dependent control of proliferation and cell fate by FOG-1 has striking parallels with Xenopus CPEB, suggesting a conserved mechanism in animal development.
Collapse
Affiliation(s)
- Beth E Thompson
- Cellular and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
282
|
Dallagiovanna B, Pérez L, Sotelo-Silveira J, Smircich P, Duhagon MA, Garat B. Trypanosoma cruzi: molecular characterization of TcPUF6, a Pumilio protein. Exp Parasitol 2005; 109:260-4. [PMID: 15755425 DOI: 10.1016/j.exppara.2005.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
In trypanosomes regulation of gene expression occurs mainly at the post-transcriptional level. Pumilio proteins are RNA-binding proteins that modulate gene expression in lower and higher eukaryotes. Here we present the characterization of TcPUF6, a member of the Pumilio family in Trypanosoma cruzi. TcPUF6 is expressed in the different life cycle forms of the parasite showing no clear stage specific regulation and it is localized to multiple discrete foci in the cytoplasm of epimastigotes. The recombinant TcPUF6 fusion protein specifically binds to the Drosophila hunchback NRE (nanos response element). TcPUF6 conserves functional properties that characterize the Pumilio family throughout evolution.
Collapse
Affiliation(s)
- Bruno Dallagiovanna
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
283
|
Eckmann CR, Crittenden SL, Suh N, Kimble J. GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 2005; 168:147-60. [PMID: 15454534 PMCID: PMC1448115 DOI: 10.1534/genetics.104.029264] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Germ cells can divide mitotically to replenish germline tissue or meiotically to produce gametes. In this article, we report that GLD-3, a Caenorhabditis elegans Bicaudal-C homolog, promotes the transition from mitosis to meiosis together with the GLD-2 poly(A) polymerase. GLD-3 binds GLD-2 via a small N-terminal region present in both GLD-3S and GLD-3L isoforms, and GLD-2 and GLD-3 can be co-immunoprecipitated from worm extracts. The FBF repressor binds specifically to elements in the gld-3S 3'-UTR, and FBF regulates gld-3 expression. Furthermore, FBF acts largely upstream of gld-3 in the mitosis/meiosis decision. By contrast, GLD-3 acts upstream of FBF in the sperm/oocyte decision, and GLD-3 protein can antagonize FBF binding to RNA regulatory elements. To address the relative importance of these two regulatory mechanisms in the mitosis/meiosis and sperm/oocyte decisions, we isolated a deletion mutant, gld-3(q741), that removes the FBF-binding site from GLD-3L, but leaves the GLD-2-binding site intact. Animals homozygous for gld-3(q741) enter meiosis, but are feminized. Therefore, GLD-3 promotes meiosis primarily via its interaction with GLD-2, and it promotes spermatogenesis primarily via its interaction with FBF.
Collapse
Affiliation(s)
- Christian R Eckmann
- Howard Hughes Medical Institute, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
284
|
Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M. Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA (NEW YORK, N.Y.) 2005; 11:447-58. [PMID: 15769874 PMCID: PMC1370734 DOI: 10.1261/rna.7255805] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/11/2005] [Indexed: 05/19/2023]
Abstract
Sequence-specific RNA-protein interactions underlie regulation of many mRNAs. Here we analyze the RNA sequence specificity of Caenorhabditis elegans FBF-1, a founding member of the PUF protein family. Like other PUF proteins, FBF-1 binds to the 3' UTR of target mRNAs and decreases expression of those target genes. Here, we show that FBF-1 and its close relative, FBF-2, bind with similar affinity to multiple RNA sites. We use mutagenesis and in vivo selection experiments to identify nucleotides that are essential for FBF-1 binding. The binding elements comprise a "core" central region and flanking sequences. The core region is similar but distinct from the binding sites of other PUF proteins. We combine the identification of binding elements with informatics to predict new FBF-1 binding sites in a C. elegans 3' UTR database. These data identify a set of new candidate mRNA targets of FBF-1 and FBF-2.
Collapse
Affiliation(s)
- David Bernstein
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
285
|
Maine EM, Hansen D, Springer D, Vought VE. Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics 2005; 168:817-30. [PMID: 15514056 PMCID: PMC1448847 DOI: 10.1534/genetics.104.029355] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the Caenorhabditis elegans germline, proliferation is induced by Notch-type signaling. Entry of germ cells into meiosis is triggered by activity of the GLD-1 and GLD-2 pathways, which function redundantly to promote meiosis and/or inhibit proliferation. Activation of the germline Notch-type receptor, GLP-1, ultimately inhibits the activities of the GLD-1 and GLD-2 pathways. We previously identified several ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we show that atx-2 is an ego gene. Our data suggest that ATX-2 is not a positive regulator of the GLP-1 signaling pathway and GLP-1 signaling is not the sole positive regulator of ATX-2 activity. Moreover, our data indicate that GLP-1 must have an additional function, which may be to repress activity of a third meiotic entry pathway that would work in parallel with the GLD-1 and GLD-2 pathways. In addition to its role in proliferation, ATX-2 acts downstream of FOG-2 to promote the female germline fate.
Collapse
Affiliation(s)
- Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | |
Collapse
|
286
|
Good PJ, Abler L, Herring D, Sheets MD. Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 2005; 38:166-75. [PMID: 15083517 DOI: 10.1002/gene.20015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.
Collapse
Affiliation(s)
- Peter J Good
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | | | |
Collapse
|
287
|
Hook B, Bernstein D, Zhang B, Wickens M. RNA-protein interactions in the yeast three-hybrid system: affinity, sensitivity, and enhanced library screening. RNA (NEW YORK, N.Y.) 2005; 11:227-33. [PMID: 15613539 PMCID: PMC1370711 DOI: 10.1261/rna.7202705] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 11/17/2004] [Indexed: 05/18/2023]
Abstract
The yeast three-hybrid system has become a useful tool in analyzing RNA-protein interactions. An RNA sequence is tested in combination with an RNA-binding protein linked to a transcription activation domain (AD). A productive RNA-protein interaction activates a reporter gene in vivo. The system has been used to test candidate RNA-protein pairs, to isolate mutations in each interacting partner, and to identify proteins that bind a given RNA sequence. However, the relationship between reporter gene activation and in vitro affinity of an RNA-protein interaction has not been examined systematically. This limits interpretation of the data and complicates the development of new strategies. Here, we analyze several key parameters of the three-hybrid system, using as a model the interaction of a PUF protein, FBF-1, with a range of RNA targets. We compare activation of two reporter genes as a function of the in vitro affinity of the interaction. HIS3 and LacZ expression levels are directly related to affinity over a 10-fold range of Kd. Expression of the reporter genes also is directly related to the abundance of the activation domain fusion protein. We describe a new yeast strain, YBZ1, that simplifies screening of cDNA/AD libraries. This strain possesses a tandem, head-to-tail dimer of a high-affinity variant of MS2 coat protein, fused to a monomer of the LexA DNA-binding protein. We show that the use of this strain in cDNA library screens increases the number of genuine, sequence-specific positives detected, and at the same time reduces the background of false, RNA-independent positives.
Collapse
Affiliation(s)
- Brad Hook
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
288
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
289
|
Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 2004; 7:697-707. [PMID: 15525531 DOI: 10.1016/j.devcel.2004.09.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 08/03/2004] [Accepted: 08/30/2004] [Indexed: 11/24/2022]
Abstract
In the C. elegans germline, GLP-1/Notch signaling and two nearly identical RNA binding proteins, FBF-1 and FBF-2, promote proliferation. Here, we show that the fbf-1 and fbf-2 genes are largely redundant for promoting mitosis but that they have opposite roles in fine-tuning the size of the mitotic region. The mitotic region is smaller than normal in fbf-1 mutants but larger than normal in fbf-2 mutants. Consistent with gene-specific roles, fbf-2 expression is limited to the distal germline, while fbf-1 expression is broader. The fbf-2 gene, but apparently not fbf-1, is controlled by GLP-1/Notch signaling, and the abundance of FBF-1 and FBF-2 proteins is limited by reciprocal 3'UTR repression. We propose that the divergent fbf genes and their regulatory subnetwork enable a precise control over size of the mitotic region. Therefore, fbf-1 and fbf-2 provide a paradigm for how recently duplicated genes can diverge to fine-tune patterning during animal development.
Collapse
Affiliation(s)
- Liana B Lamont
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
290
|
Fan Q, Li J, Kariuki M, Cui L. Characterization of PfPuf2, Member of the Puf Family RNA-Binding Proteins from the Malaria ParasitePlasmodium falciparum. DNA Cell Biol 2004; 23:753-60. [PMID: 15585133 DOI: 10.1089/dna.2004.23.753] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Puf proteins are a family of evolutionarily conserved translational regulators in eukaryotes. The malaria parasite has two Puf proteins (PfPuf1 and PfPuf2) that share 25% homology in the RNA binding domain. Here we confirmed the preferential expression of PfPuf2 in gametocyte stages using Northern analysis. The transcriptional initiation site of this gene, mapped using RNA ligase-mediated rapid amplification of cDNA end and primer extension, is located approximately 300 bp upstream from the translational start codon. The 3' end of PfPuf2 is located approximately 250 bp downstream from the stop codon. The total length of the RNA is approximately 2.1 kb, consistent with the mRNA size determined by Northern analysis. Recombinant PfPuf2 proteins expressed in bacteria were purified and used to produce polyclonal antibodies. Western blot further established the preferential synthesis of PfPuf2 in gametocyte stages. Using the Nanos-responsive elements (NRE) in the Hunchback mRNA of Drosophila melanogaster as an artificial target sequence, we tested the binding of PfPuf2 Puf domain to this sequence using the yeast three-hybrid system. The results showed that PfPuf2 Puf domain bound specifically to NRE, suggesting that PfPuf2 may be involved in translational regulation of target genes using a conserved mechanism of the Puf family proteins.
Collapse
Affiliation(s)
- Qi Fan
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | |
Collapse
|
291
|
Jackson JS, Houshmandi SS, Lopez Leban F, Olivas WM. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. RNA (NEW YORK, N.Y.) 2004; 10:1625-36. [PMID: 15337848 PMCID: PMC1370648 DOI: 10.1261/rna.7270204] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/24/2004] [Indexed: 05/21/2023]
Abstract
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.
Collapse
Affiliation(s)
- John S Jackson
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA
| | | | | | | |
Collapse
|
292
|
Gu W, Deng Y, Zenklusen D, Singer RH. A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 2004; 18:1452-65. [PMID: 15198983 PMCID: PMC423195 DOI: 10.1101/gad.1189004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In yeast Saccharomyces cerevisiae, Ash1p, a protein determinant for mating-type switching, is segregated within the daughter cell nucleus to establish asymmetry of HO expression. The accumulation of Ash1p results from ASH1 mRNA that is sorted as a ribonucleoprotein particle (mRNP or locasome) to the distal tip of the bud where translation occurs. To study the mechanism regulating ASH1 mRNA translation, we isolated the ASH1 locasome and characterized the associated proteins by MALDI-TOF. One of these proteins was Puf6p, a new member of the PUF family of highly conserved RNA-binding proteins such as Pumilio in Drosophila, responsible for translational repression, usually to effect asymmetric expression. Puf6p-bound PUF consensus sequences in the 3'UTR of ASH1 mRNA and repressed the translation of ASH1 mRNA both in vivo and in vitro. In the puf6 Delta strain, asymmetric localization of both Ash1p and ASH1 mRNA were significantly reduced. We propose that Puf6p is a protein that functions in the translational control of ASH1 mRNA, and this translational inhibition is necessary before localization can proceed.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
293
|
Tadauchi T, Inada T, Matsumoto K, Irie K. Posttranscriptional regulation of HO expression by the Mkt1-Pbp1 complex. Mol Cell Biol 2004; 24:3670-81. [PMID: 15082763 PMCID: PMC387745 DOI: 10.1128/mcb.24.9.3670-3681.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of budding yeast give rise to mother and daughter cells, which differ in that only mother cells express the HO endonuclease gene and are thereby able to switch mating types. In this study, we identified the MKT1 gene as a positive regulator of HO expression. The MKT1 gene encodes a protein with two domains, XPG-N and XPG-I, which are conserved among a family of nucleases, including human XPG endonuclease. Loss of MKT1 had little effect on HO mRNA levels but resulted in decreased protein levels. This decrease was dependent on the 3' untranslated region of the HO transcript. We screened for proteins that associate with Mkt1 and isolated Pbp1, a protein that is known to associate with Pab1, a poly(A)-binding protein. Loss of PBP1 resembles an mkt1 Delta deletion, causing decreased expression of HO at the posttranscriptional level. Mkt1 and Pbp1 cosedimented with polysomes in sucrose gradients, with Mkt1 distribution in the polysomes dependent on Pbp1, but not vice versa. These observations suggest that a complex of Mkt1 and Pbp1 regulates the translation of HO mRNA.
Collapse
Affiliation(s)
- Tomofumi Tadauchi
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, and CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | | | | | | |
Collapse
|
294
|
Gerber AP, Herschlag D, Brown PO. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2004; 2:E79. [PMID: 15024427 PMCID: PMC368173 DOI: 10.1371/journal.pbio.0020079] [Citation(s) in RCA: 526] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 01/09/2004] [Indexed: 11/19/2022] Open
Abstract
Genes encoding RNA-binding proteins are diverse and abundant in eukaryotic genomes. Although some have been shown to have roles in post-transcriptional regulation of the expression of specific genes, few of these proteins have been studied systematically. We have used an affinity tag to isolate each of the five members of the Puf family of RNA-binding proteins in Saccharomyces cerevisiae and DNA microarrays to comprehensively identify the associated mRNAs. Distinct groups of 40-220 different mRNAs with striking common themes in the functions and subcellular localization of the proteins they encode are associated with each of the five Puf proteins: Puf3p binds nearly exclusively to cytoplasmic mRNAs that encode mitochondrial proteins; Puf1p and Puf2p interact preferentially with mRNAs encoding membrane-associated proteins; Puf4p preferentially binds mRNAs encoding nucleolar ribosomal RNA-processing factors; and Puf5p is associated with mRNAs encoding chromatin modifiers and components of the spindle pole body. We identified distinct sequence motifs in the 3'-untranslated regions of the mRNAs bound by Puf3p, Puf4p, and Puf5p. Three-hybrid assays confirmed the role of these motifs in specific RNA-protein interactions in vivo. The results suggest that combinatorial tagging of transcripts by specific RNA-binding proteins may be a general mechanism for coordinated control of the localization, translation, and decay of mRNAs and thus an integral part of the global gene expression program.
Collapse
Affiliation(s)
- André P Gerber
- 1Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Daniel Herschlag
- 1Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Patrick O Brown
- 1Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
- 2Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| |
Collapse
|
295
|
Abstract
Technical advances combined with the deciphering of the human genome have facilitated the identification of the molecular nature of human minor histocompatibility (H) antigens. To date, it is believed that minor H antigens result from just any polymorphic protein, regardless of their functional properties. A closer look at the first series of autosomally encoded human minor H proteins reveals a striking functional relationship. Here, we propose that T cells generated after HLA-identical stem cell transplantation (SCT) for malignancies are likely to be directed towards peptides derived from minor H proteins involved in tumourigenesis. This novel insight has important consequences in the search for, and the use of, minor H antigens as immunotherapeutics in stem-cell-based immunotherapy of haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Eric Spierings
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
296
|
Abstract
Hepatitis E virus (HEV) is a major human pathogen in much of the developing world. It is a plus-strand RNA virus with a 7.2-kb polyadenylated genome consisting of three open reading frames, ORF1, ORF2, and ORF3. Of these, ORF2 encodes the major capsid protein of the virus and ORF3 encodes a small protein of unknown function. Using the yeast three-hybrid system and traditional biochemical techniques, we have studied the RNA binding activities of ORF2 and ORF3, two proteins encoded in the 3' structural part of the genome. Since the genomic RNA from HEV has been postulated to contain secondary structures at the 5' and 3' ends, we used these two terminal regions, besides other regions within the genome, in this study. Experiments were designed to test for interactions between the genomic RNA fusion constructs with ORF2 and ORF3 hybrid proteins in a yeast cellular environment. We show here that the ORF2 protein contains RNA binding activity. The ORF2 protein specifically bound the 5' end of the HEV genome. Deletion analysis of this protein showed that its RNA binding activity was lost when deletions were made beyond the N-terminal 111 amino acids. Finer mapping of the interacting RNA revealed that a 76-nucleotide (nt) region at the 5' end of the HEV genome was responsible for binding the ORF2 protein. This 76-nt region included the 51-nt HEV sequence, conserved across alphaviruses. Our results support the requirement of this conserved sequence for interaction with ORF2 and also indicate an increase in the strength of the RNA-protein interaction when an additional 44 bases downstream of this 76-nt region were included. Secondary-structure predictions and the location of the ORF2 binding region within the HEV genome indicate that this interaction may play a role in viral encapsidation.
Collapse
Affiliation(s)
- Milan Surjit
- Virology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi 110067, India
| | | | | |
Collapse
|
297
|
Ryder SP, Frater LA, Abramovitz DL, Goodwin EB, Williamson JR. RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 2003; 11:20-8. [PMID: 14718919 DOI: 10.1038/nsmb706] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 10/22/2003] [Indexed: 12/20/2022]
Abstract
The post-transcriptional regulation of gene expression underlies several critical developmental phenomena. In metazoa, gene products that are expressed, silenced and packaged during oogenesis govern early developmental processes prior to nascent transcription activation. Furthermore, tissue-specific alternative splicing of several transcription factors controls pattern formation and organ development. A highly conserved family of proteins containing a STAR/GSG RNA-binding domain is essential to both processes. Here, we identify the consensus STAR-binding element (SBE) required for specific mRNA recognition by GLD-1, a key regulator of Caenorhabditis elegans germline development. We have identified and verified new GLD-1 repression targets containing this sequence. The results suggest additional functions of GLD-1 in X-chromosome silencing and early embryogenesis. The SBE is present in Quaking and How mRNA targets, suggesting that STAR protein specificity is highly conserved. Similarities between the SBE and the branch-site signal indicate a possible competition mechanism for STAR/GSG regulation of splicing variants.
Collapse
Affiliation(s)
- Sean P Ryder
- Department of Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Mail Stop MB-33, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
298
|
Abstract
In 1996, a new method, termed the yeast three-hybrid system, dedicated to selection of RNA binding proteins using a hybrid RNA molecule as bait was described. In this minireview, we summarize the results that have been obtained using this method. Indeed, approximately 20 unknown proteins have been characterized so far. The three-hybrid strategy has also been used as a tool to dissect RNA-protein interactions. The example of such a study on human histone HBP interaction with its target mRNA is described. Problems that can be encountered are addressed in a troubleshooting section. Especially, our results with tRNA binding proteins are discussed.
Collapse
Affiliation(s)
- Sophie Jaeger
- Institut de Biologie Moléculaire et Cellulaire, UPR No. 9002 du CNRS, 15 rue René Descartes, 67084 Cedex, Strasbourg, France
| | | | | |
Collapse
|
299
|
Gonsalvez GB, Lehmann KA, Ho DK, Stanitsa ES, Williamson JR, Long RM. RNA-protein interactions promote asymmetric sorting of the ASH1 mRNA ribonucleoprotein complex. RNA (NEW YORK, N.Y.) 2003; 9:1383-99. [PMID: 14561888 PMCID: PMC1287060 DOI: 10.1261/rna.5120803] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 08/11/2003] [Indexed: 05/18/2023]
Abstract
In Saccharomyces cerevisiae, ASH1 mRNA is localized to the tip of daughter cells during anaphase of the cell cycle. ASH1 mRNA localization is dependent on four cis-acting localization elements as well as Myo4p, She2p, and She3p. Myo4p, She2p, and She3p are hypothesized to form a heterotrimeric protein complex that directly transports ASH1 mRNA to daughter cells. She2p is an RNA-binding protein that directly interacts with ASH1 cis-acting localization elements and associates with She3p. Here we report the identification of seven She2p mutants-N36S, R43A, R44A, R52A, R52K, R63A, and R63K-that result in the delocalization of ASH1 mRNA. These mutants are defective for RNA-binding activity but retain the ability to interact with She3p, indicating that a functional She2p RNA-binding domain is not a prerequisite for association with She3p. Furthermore, the nuclear/cytoplasmic distribution for the N36S and R63K She2p mutants is not altered, indicating that nuclear/cytoplasmic trafficking of She2p is independent of RNA-binding activity. Using the N36S and R63K She2p mutants, we observed that in the absence of She2p RNA-binding activity, neither Myo4p nor She3p is asymmetrically sorted to daughter cells. However, in the absence of She2p, Myo4p and She3p can be asymmetrically segregated to daughter cells by artificially tethering mRNA to She3p, implying that the transport and/or anchoring of the Myo4p/She3p complex is dependent on the presence of associated mRNA.
Collapse
Affiliation(s)
- Graydon B Gonsalvez
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
300
|
Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J. Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci 2003; 358:1359-62. [PMID: 14511482 PMCID: PMC1693240 DOI: 10.1098/rstb.2003.1333] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During the development of multicellular organisms, the processes of growth and differentiation are kept in balance to generate and maintain tissues and organs of the correct size, shape and cellular composition. We have investigated the molecular controls of growth and differentiation in the Caenorhabditis elegans germline. A single somatic cell, called the distal tip cell, promotes mitotic proliferation in the adjacent germline by GLP-1/Notch signalling. Within the germline, the decisions between mitosis and meiosis and between spermatogenesis and oogenesis are controlled by a group of conserved RNA regulators. FBF, a member of the PUF (for Pumilio and FBF) family of RNA-binding proteins, promotes mitosis by repressing gld-1 mRNA activity; the GLD-1, GLD-2, GLD-3 and NOS-3 proteins promote entry into meiosis by regulating mRNAs that remain unknown. The regulatory balance between opposing FBF and GLD activities is crucial for controlling the extent of germline proliferation. PUF proteins regulate germline stem cells in both Drosophila and C. elegans and are localized to germline stem cells of the mammalian testis. Therefore, this post-transcriptional regulatory switch may be an ancient mechanism for controlling maintenance of stem cells versus differentiation.
Collapse
|