251
|
Boddupalli A, Bratlie KM. Second harmonic generation microscopy of collagen organization in tunable, environmentally responsive alginate hydrogels. Biomater Sci 2019; 7:1188-1199. [PMID: 30656296 DOI: 10.1039/c8bm01535j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We fabricated photocrosslinked, environmentally responsive alginate hydrogels for tissue engineering applications. Methacrylated alginate (ALGMA) hydrogels were prepared across a variety and combination of ionic and covalent (chain growth, step growth, and mixed mode) crosslinking strategies to obtain a range of compressive moduli from 9.3 ± 0.2 kPa for the softest ionically crosslinked hydrogels to 22.6 ± 0.3 kPa for the dually crosslinked ionic mixed mode gels. The swelling behavior of the alginate hydrogels was significantly higher under basic pH conditions. Stiffer gels consistently swelled to a lesser degree compared to softer gels for all conditions. These hydrogels were stable - retaining >80% of their original mass for three weeks - when incubated in a basic solution of diluted sodium hydroxide, which mimicked accelerated degradation conditions. Encapsulated NIH/3T3 fibroblasts remained viable and proliferated significantly more in stiffer hydrogel substrates compared to softer gels. Additionally, the collagen secreted by encapsulated fibroblasts was quantifiably compared using second harmonic generation (SHG) imaging. Fibroblasts encapsulated in the softer hydrogels secreted significantly less collagen than the stiffer gels. The collagen in these softer gels was also more aligned than the stiffer gels. The ability to tune collagen organization using hydrogels has potential applications ranging from corneal wound healing where organized collagen is desired to epithelial wound scaffolds where a random organization is preferable.
Collapse
Affiliation(s)
- Anuraag Boddupalli
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Kaitlin M Bratlie
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, USA. and Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, USA and Division of Materials Sciences and Engineering, Ames National Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|
252
|
Abstract
Biomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.
Collapse
Affiliation(s)
- Buddy D. Ratner
- Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
253
|
Hu S, de Vos P. Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Front Bioeng Biotechnol 2019; 7:134. [PMID: 31214587 PMCID: PMC6558039 DOI: 10.3389/fbioe.2019.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoisolation of pancreatic islets is a technology in which islets are encapsulated in semipermeable but immunoprotective polymeric membranes. The technology allows for successful transplantation of insulin-producing cells in the absence of immunosuppression. Different approaches of immunoisolation are currently under development. These approaches involve intravascular devices that are connected to the bloodstream and extravascular devices that can be distinguished in micro- and macrocapsules and are usually implanted in the peritoneal cavity or under the skin. The technology has been subject of intense fundamental research in the past decade. It has co-evolved with novel replenishable cell sources for cure of diseases such as Type 1 Diabetes Mellitus that need to be protected for the host immune system. Although the devices have shown significant success in animal models and even in human safety studies most technologies still suffer from undesired tissue responses in the host. Here we review the past and current approaches to modulate and reduce tissue responses against extravascular cell-containing micro- and macrocapsules with a focus on rational choices for polymer (combinations). Choices for polymers but also choices for crosslinking agents that induce more stable and biocompatible capsules are discussed. Combining beneficial properties of molecules in diblock polymers or application of these molecules or other anti-biofouling molecules have been reviewed. Emerging are also the principles of polymer brushes that prevent protein and cell-adhesion. Recently also immunomodulating biomaterials that bind to specific immune receptors have entered the field. Several natural and synthetic polymers and even combinations of these polymers have demonstrated significant improvement in outcomes of encapsulated grafts. Adequate polymeric surface properties have been shown to be essential but how the surface should be composed to avoid host responses remains to be identified. Current insight is that optimal biocompatible devices can be created which raises optimism that immunoisolating devices can be created that allows for long term survival of encapsulated replenishable insulin-producing cell sources for treatment of Type 1 Diabetes Mellitus.
Collapse
Affiliation(s)
- Shuixan Hu
- Division of Medical Biology, Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
254
|
Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. ADVANCED THERAPEUTICS 2019; 2:1800157. [PMID: 31236439 PMCID: PMC6590522 DOI: 10.1002/adtp.201800157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Small alterations during early stages of innate immune response can drive large changes in how adaptive immune cells develop and function during protective immunity or disease. Controlling these events creates exciting potential in development of immune engineered vaccines and therapeutics. This progress report discusses recent biomaterial technologies exploiting innate immunity to dissect immune function and to design new vaccines and immunotherapies for infectious diseases, cancer, and autoimmunity. Across these examples, an important idea is the possibility to co-opt innate immune mechanisms to enhance immunity during infection and cancer. During inflammatory or autoimmune disease, some of these same innate immune mechanisms can be manipulated in different ways to control excess inflammation by promotion of immunological tolerance.
Collapse
Affiliation(s)
- R. S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - E. Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - C. M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, Maryland 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
255
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
256
|
Wofford KL, Cullen DK, Spiller KL. Modulation of macrophage phenotype via phagocytosis of drug-loaded microparticles. J Biomed Mater Res A 2019; 107:1213-1224. [PMID: 30672109 PMCID: PMC6499658 DOI: 10.1002/jbm.a.36617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Monocyte-derived macrophages play a critical role in directing wound pathology following injury. Depending on their phenotype, macrophages also promote tissue regeneration. However, the therapeutic administration of macrophages with a controlled phenotype is challenging because macrophages are highly plastic and quickly revert to a detrimental, inflammatory phenotype in response to the environment of a damaged tissue. To address this issue, we developed a novel strategy to modulate macrophage phenotype intracellularly through phagocytosis of drug-loaded microparticles. Poly(lactic-co-glycolic acid) microparticles loaded with the anti-inflammatory drug dexamethasone (Dex) were phagocytosed by monocytes and stored intracellularly for at least 5 days. After differentiation into macrophages, cell phenotype was characterized over time with high-throughput gene expression analysis via NanoString. We found that the microparticles modulated macrophage phenotype for up to 7 days after microparticle uptake, with decreases in inflammation-related genes at early timepoints and upregulation of homing- and phagocytosis-related genes at multiple timepoints in a manner similar to cells treated with continuous free Dex. These data suggest that intracellularly loading macrophages with Dex microparticles via phagocytosis could be a unique methodology to selectively modulate macrophage phenotype over time. This strategy would allow therapeutic administration of macrophages for the treatment of a number of inflammatory disease and disorders. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1213-1224, 2019.
Collapse
Affiliation(s)
- Kathryn L Wofford
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
257
|
Ernst AU, Wang L, Ma M. Interconnected Toroidal Hydrogels for Islet Encapsulation. Adv Healthc Mater 2019; 8:e1900423. [PMID: 31111686 DOI: 10.1002/adhm.201900423] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Islet encapsulation and transplantation promises to improve upon current treatments for type 1 diabetes mellitus, though several limitations remain. Macroscale devices have been designed for in vivo transplantation and retrieval, but traditional geometries do not support clinically adequate mass transfer of nutrients to and insulin from the encapsulated tissue. Microcapsule technologies have improved mass transfer properties, but their clinical translation remains challenging as their complete retrieval is difficult, should the graft become a safety concern. Here, the design, characterization and testing of a novel encapsulation structure, comprised of elastomer-reinforced interconnected toroidal hydrogels is reported. These donut-shaped hydrogels feature a high surface area, higher than conventional spherical capsules of the same volume, bestowing suitable mass transport conditions, while allowing interconnection and reversible deformation for intraperitoneal implantation and retrieval. Diabetes correction up to 12 weeks and complete retrieval is achieved in a diabetic mouse model, providing a proof-of-concept for the potential application as a type 1 diabetes cell replacement therapy.
Collapse
|
258
|
Fukuda S, Yabe SG, Nishida J, Takeda F, Nashiro K, Okochi H. The intraperitoneal space is more favorable than the subcutaneous one for transplanting alginate fiber containing iPS-derived islet-like cells. Regen Ther 2019; 11:65-72. [PMID: 31193869 PMCID: PMC6543182 DOI: 10.1016/j.reth.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/24/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Although immunosuppressants are required for current islet transplantation for type 1 diabetic patients, many papers have already reported encapsulation devices for islets to avoid immunological attack. The aim of this study is to determine the optimal number of cells and optimal transplantation site for human iPS-derived islet-like cells encapsulated in alginate fiber using diabetic model mice. Methods We used a suspension culture system for inducing islet-like cells from human iPS cells throughout the islet differentiation process. Islet-like spheroids were encapsulated in the alginate fiber, and cell transplantation experiments were performed with STZ-induced diabetic NOD/SCID mice. We compared the efficacy of transplanted cells between intraperitoneal and subcutaneous administration of alginate fibers by measuring blood glucose and human C-peptide levels serially in mice. Grafts were analyzed histologically, and gene expression in pancreatic β cells was also compared. Results We demonstrated the reversal of hyperglycemia in diabetic model mice after intraperitoneal administration of these fibers, but not with subcutaneous ones. Intraperitoneal fibers were easily retrieved without any adhesion. Although we detected human c-peptide in mice plasma after subcutaneous administration of these fibers, these fibers became encased by fibrous tissue. Conclusions These results suggest that the intraperitoneal space is favorable for islet-like cells derived from human iPS cells when encapsulated in alginate fiber.
Collapse
Affiliation(s)
- Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Shigeharu G Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Junko Nishida
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Fujie Takeda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kiyoko Nashiro
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
259
|
Veiseh O, Vegas AJ. Domesticating the foreign body response: Recent advances and applications. Adv Drug Deliv Rev 2019; 144:148-161. [PMID: 31491445 PMCID: PMC6774350 DOI: 10.1016/j.addr.2019.08.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/03/2023]
Abstract
The foreign body response is an immunological process that leads to the rejection of implanted devices and presents a fundamental challenge to their performance, durability, and therapeutic utility. Recent advances in materials development and device design are now providing strategies to overcome this immune-mediated reaction. Here, we briefly review our current mechanistic understanding of the foreign body response and highlight new anti-FBR technologies from this decade that have been applied successfully in biomedical applications relevant to implants, devices, and cell-based therapies. Further development of these important technologies promises to enable new therapies, diagnostics, and revolutionize the management of patient care for many intractable diseases.
Collapse
Affiliation(s)
- Omid Veiseh
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77030, USA.
| | - Arturo J Vegas
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
260
|
Fang Y, Li HY, Yin HH, Xu SH, Ren WW, Ding SS, Tang WZ, Xiang LH, Wu R, Guan X, Zhang K. Radiofrequency-Sensitive Longitudinal Relaxation Tuning Strategy Enabling the Visualization of Radiofrequency Ablation Intensified by Magnetic Composite. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11251-11261. [PMID: 30874421 DOI: 10.1021/acsami.9b02401] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a minimally invasive heat source, radiofrequency (RF) ablation still encounters potential damages to the surrounding normal tissues because of heat diffusion, high power, and long time. With a comprehensive understanding of the current state of the art on RF ablation, a magnetic composite using porous hollow iron oxide nanoparticles (HIONs) as carriers to load dl-menthol (DLM) has been engineered. This composite involves two protocols for enhancing RF ablation, that is, HION-mediated magnetothermal conversion in RF field and RF solidoid vaporation (RSV)-augmented inertial cavitation, respectively. A combined effect based on two protocols is found to improve energy transformation, and further, along with hydrophobic DLM-impeded heat diffusion, improve the energy utilization efficiency and significantly facilitate ex vivo and in vivo RF ablation. More significantly, in vitro and in vivo RSV processes and RSV-augmented inertial cavitation for RF ablation can be monitored by T1-weighted magnetic resonance imaging (MRI) via an RF-sensitive longitudinal relaxation tuning strategy because the RSV process can deplete DLM and make HION carriers permeable to water molecules, consequently improving the longitudinal relaxation rate of HIONs and enhancing T1-weighted MRI. Therefore, this RF-sensitive magnetic composite holds a great potential in lowering the power and time of RF ablation and improving its therapeutic safety.
Collapse
Affiliation(s)
- Yan Fang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Hong-Yan Li
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Hao-Hao Yin
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Shi-Hao Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Wei-Wei Ren
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Shi-Si Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Wei-Zhong Tang
- A Guangxi Collaborative Innovation Center for Biomedicine, and Affiliated Tumor Hospital of Guangxi Medical University , Guangxi Medical University , 22 Shuang Yong Road , Nanning , Guangxi 530021 , P. R. China
| | - Li-Hua Xiang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Rong Wu
- Department of Medical Ultrasound, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , 85 Wu-jin Road , Shanghai 200080 , P. R. China
| | - Xin Guan
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
| | - Kun Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine , Tongji University , 301 Yan-chang-zhong Road , Shanghai 200072 , P. R. China
- A Guangxi Collaborative Innovation Center for Biomedicine, and Affiliated Tumor Hospital of Guangxi Medical University , Guangxi Medical University , 22 Shuang Yong Road , Nanning , Guangxi 530021 , P. R. China
| |
Collapse
|
261
|
Navigating Two Roads to Glucose Normalization in Diabetes: Automated Insulin Delivery Devices and Cell Therapy. Cell Metab 2019; 29:545-563. [PMID: 30840911 DOI: 10.1016/j.cmet.2019.02.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Incredible strides have been made since the discovery of insulin almost 100 years ago. Insulin formulations have improved dramatically, glucose levels can be measured continuously, and recently first-generation biomechanical "artificial pancreas" systems have been approved by regulators around the globe. However, still only a small fraction of patients with diabetes achieve glycemic goals. Replacement of insulin-producing cells via transplantation shows significant promise, but is limited in application due to supply constraints (cadaver-based) and the need for chronic immunosuppression. Over the past decade, significant progress has been made to address these barriers to widespread implementation of a cell therapy. Can glucose levels in people with diabetes be normalized with artificial pancreas systems or via cell replacement approaches? Here we review the road ahead, including the challenges and opportunities of both approaches.
Collapse
|
262
|
Simultaneous spatiotemporal tracking and oxygen sensing of transient implants in vivo using hot-spot MRI and machine learning. Proc Natl Acad Sci U S A 2019; 116:4861-4870. [PMID: 30808810 DOI: 10.1073/pnas.1815909116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A varying oxygen environment is known to affect cellular function in disease as well as activity of various therapeutics. For transient structures, whether they are unconstrained therapeutic transplants, migrating cells during tumor metastasis, or cell populations induced by an immunological response, the role of oxygen in their fate and function is known to be pivotal albeit not well understood in vivo. To address such a challenge in the case of generation of a bioartificial pancreas, we have combined fluorine magnetic resonance imaging and unsupervised machine learning to monitor over time the spatial arrangement and the oxygen content of implants encapsulating pancreatic islets that are unconstrained in the intraperitoneal (IP) space of healthy and diabetic mice. Statistically significant trends in the postimplantation temporal dependence of oxygen content between aggregates of 0.5-mm or 1.5-mm alginate microcapsules were identified in vivo by looking at their dispersity as well as arrangement in clusters of different size and estimating oxygen content on a pixel-by-pixel basis from thousands of 2D images. Ultimately, we found that this dependence is stronger for decreased implant capsule size consistent with their tendency to also induce a larger immunological response. Beyond the bioartificial pancreas, this work provides a framework for the simultaneous spatiotemporal tracking and oxygen sensing of other cell populations and biomaterials that change over time to better understand and improve therapeutic design across diverse applications such as cellular transplant therapy, treatments preventing metastatic formation, and modulators for improving immunologic response, for all of which oxygen is a major mechanistic component.
Collapse
|
263
|
Xu L, Guo Y, Huang Y, Xu Y, Lu Y, Wang Z. Hydrogel materials for the application of islet transplantation. J Biomater Appl 2019; 33:1252-1264. [PMID: 30791850 DOI: 10.1177/0885328219831391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes mellitus is a serious disease comprising approximately 10% of all diabetes cases, and the global incidence of type 1 diabetes mellitus is steadily rising without any promise of a cure in the near future. Although islet transplantation has proven to be an effective means of treating type 1 diabetes mellitus and promoting insulin independence in patients, its widespread implementation has been severely constrained by instances of post-transplantation islet cell death, rejection, and severe adverse immune responses. Islet encapsulation is an active area of research aimed at shielding implanted islets from immunological rejection and inflammation while still allowing for effective insulin and nutrient exchange with donor cells. Given their promising physical and chemical properties, hydrogels have been a major subject of focus in the field of islet transplantation and encapsulation technology, offering promising advances towards immunologically privileged islet implants. The present review therefore summarizes the current state of research regarding the use of hydrogels in the context of islet transplantation, including both natural molecular hydrogels and artificial polymer hydrogels, with the goal of understanding the current strengths and weaknesses of this treatment strategy.
Collapse
Affiliation(s)
- Liancheng Xu
- Suqian First Hospital, Suqian, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yibing Guo
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yang Xu
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuhua Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research center of clinical medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiwei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
264
|
Huynh V, Jesmer AH, Shoaib MM, Wylie RG. Influence of Hydrophobic Cross-Linkers on Carboxybetaine Copolymer Stimuli Response and Hydrogel Biological Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1631-1641. [PMID: 30558419 DOI: 10.1021/acs.langmuir.8b03908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(carboxybetaine) (pCB) hydrogels do not elicit a foreign body response due to their low-fouling properties, making them ideal implantable materials for in vivo drug and cell delivery. Current reported pCB hydrogels are cross-linked using cytotoxic UV-initiated radical polymerization limiting clinical and in vivo translation. For clinical translation, we require in situ and biorthogonal cross-linking of pCB hydrogels that are both low-fouling and low-swelling to limit nonspecific interactions and minimize tissue damage, respectively. To this end, we synthesized carboxybetaine (CB) random copolymers (molecular weight (MW): ∼7-33 kDa; Đ: 1.1-1.36) containing azide (pCB-azide) or strained alkyne (Dibenzocyclooctyne (DBCO); pCB-DBCO) that rapidly cross-link upon mixing. Unlike CB homopolymers and other CB copolymers studied, high DBCO content pCB-DBCO30 (30% DBCO mole fraction) is thermoresponsive with a upper critical solution temperature (UCST; cloud point of ∼20 °C at 50 g/L) in water due to electrostatic associations. Due to the antipolyelectrolyte effect, pCB-DBCO30 is salt-responsive and is soluble even at low temperatures in 5 M NaCl, which prevents zwitterion electrostatic associations. pCB-azide and pCB-DBCO with 0.05 to 0.16 cross-linker mole fractions rapidly formed 10 wt % hydrogels upon mixing that were low-swelling (increase of ∼10% in wet weight) while remaining low-fouling to proteins (∼10-20 μg cm-2) and cells, making them suitable for in vivo applications. pCB-X31 hydrogels composed of pCB-azide32 and pCB-DBCO30 formed opaque gels in water and physiological conditions that shrunk to ∼70% of their original wet weight due to pCB-DBCO30's greater hydrophobicity and interchain electrostatic interactions, which promotes nonspecific protein adsorption (∼35 μg cm-2) and cell binding. Once formed, the electrostatic interactions in pCB-X31 hydrogels are not fully reversible with heat or salt. Although, pCB-X31 hydrogels are transparent when initially prepared in 5 M NaCl. This is the first demonstration of a thermo- and salt-responsive CB copolymer that can tune hydrogel protein and cell fouling properties.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Alexander H Jesmer
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Muhammad M Shoaib
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
265
|
Qin XH, Senturk B, Valentin J, Malheiro V, Fortunato G, Ren Q, Rottmar M, Maniura-Weber K. Cell-Membrane-Inspired Silicone Interfaces that Mitigate Proinflammatory Macrophage Activation and Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1882-1894. [PMID: 30153734 DOI: 10.1021/acs.langmuir.8b02292] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biofouling on silicone implants causes serious complications such as fibrotic encapsulation, bacterial infection, and implant failure. Here we report the development of antifouling, antibacterial silicones through covalent grafting with a cell-membrane-inspired zwitterionic gel layer composed of 2-methacryolyl phosphorylcholine (MPC). To investigate how substrate properties influence cell adhesion, we cultured human-blood-derived macrophages and Escherichia coli on poly(dimethylsiloxane) (PDMS) and MPC gel surfaces with a range of 0.5-50 kPa in stiffness. Cells attach to glass, tissue culture polystyrene, and PDMS surfaces, but they fail to form stable adhesions on MPC gel surfaces due to their superhydrophilicity and resistance to biofouling. Cytokine secretion assays confirm that MPC gels have a much lower potential to trigger proinflammatory macrophage activation than PDMS. Finally, modification of the PDMS surface with a long-term stable hydrogel layer was achieved by the surface-initiated atom-transfer radical polymerization (SI-ATRP) of MPC and confirmed by the decrease in contact angle from 110 to 20° and the >70% decrease in the attachment of macrophages and bacteria. This study provides new insights into the design of antifouling and antibacterial interfaces to improve the long-term biocompatibility of medical implants.
Collapse
|
266
|
Sadtler K, Wolf MT, Ganguly S, Moad CA, Chung L, Majumdar S, Housseau F, Pardoll DM, Elisseeff JH. Divergent immune responses to synthetic and biological scaffolds. Biomaterials 2019; 192:405-415. [DOI: 10.1016/j.biomaterials.2018.11.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022]
|
267
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
268
|
Huynh V, Jesmer AH, Shoaib MM, D'Angelo AD, Rullo AF, Wylie RG. Improved Efficacy of Antibody Cancer Immunotherapeutics through Local and Sustained Delivery. Chembiochem 2019; 20:747-753. [DOI: 10.1002/cbic.201800579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Alexander H. Jesmer
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Muhammad M. Shoaib
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Anthony D. D'Angelo
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Anthony F. Rullo
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
- McMaster Immunology Research CenterDepartment of Pathology and Molecular MedicineMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Ryan G. Wylie
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|
269
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
270
|
Orive G, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Vela Ramirez JE, Dolatshahi-Pirouz A, Khademhosseini A, Peppas NA, Emerich DF. 3D cell-laden polymers to release bioactive products in the eye. Prog Retin Eye Res 2019; 68:67-82. [PMID: 30342088 DOI: 10.1016/j.preteyeres.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
|
271
|
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2018; 11:E1. [PMID: 30959985 PMCID: PMC6401776 DOI: 10.3390/polym11010001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
Soft tissue reconstructs require materials that form three-dimensional (3-D) structures supportive to cell proliferation and regenerative processes. Polysaccharides, due to their hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological signaling, and tunable tissue response have been achieved through chemical modification of polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of the scaffold to a targeted site. With the advent of newer technologies, these preparations can be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli. In this review, we discuss the developmental and biological aspects of scaffolds prepared from four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX). Clinical studies on these scaffolds are also discussed.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Rahul Patil
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat 394350, Gujarat, India.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India.
| |
Collapse
|
272
|
Li Z, Behrens AM, Ginat N, Tzeng SY, Lu X, Sivan S, Langer R, Jaklenec A. Biofilm-Inspired Encapsulation of Probiotics for the Treatment of Complex Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803925. [PMID: 30328144 DOI: 10.1002/adma.201803925] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/25/2018] [Indexed: 05/18/2023]
Abstract
The emergence of antimicrobial resistance poses a major challenge to healthcare. Probiotics offer a potential alternative treatment method but are often incompatible with antibiotics themselves, diminishing their overall therapeutic utility. This work uses biofilm-inspired encapsulation of probiotics to confer temporary antibiotic protection and to enable the coadministration of probiotics and antibiotics. Probiotics are encapsulated within alginate, a crucial component of pseudomonas biofilms, based on a simple two-step alginate cross-linking procedure. Following exposure to the antibiotic tobramycin, the growth and metabolic activity of encapsulated probiotics are unaffected by tobramycin, and they show a four-log survival advantage over free probiotics. This results from tobramycin sequestration on the periphery of alginate beads which prevents its diffusion into the core but yet allows probiotic byproducts to diffuse outward. It is demonstrated that this approach using tobramycin combined with encapsulated probiotic has the ability to completely eradicate methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in coculture, the two most widely implicated bacteria in chronic wounds.
Collapse
Affiliation(s)
- Zhihao Li
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Adam M Behrens
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Nitzan Ginat
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Stephany Y Tzeng
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Xueguang Lu
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Sarit Sivan
- Department of Biotechnology Engineering, Ort Braude College, P.O. Box 78, Karmiel, 21982, Israel
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology 500 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
273
|
De Mesmaeker I, Robert T, Suenens KG, Stangé GM, Van Hulle F, Ling Z, Tomme P, Jacobs-Tulleneers-Thevissen D, Keymeulen B, Pipeleers DG. Increase Functional β-Cell Mass in Subcutaneous Alginate Capsules With Porcine Prenatal Islet Cells but Loss With Human Adult Islet Cells. Diabetes 2018; 67:2640-2649. [PMID: 30305364 DOI: 10.2337/db18-0709] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022]
Abstract
Alginate (Alg)-encapsulated porcine islet cell grafts are developed to overcome limitations of human islet transplantation. They can generate functional implants in animals when prepared from fetal, perinatal, and adult pancreases. Implants have not yet been examined for efficacy to establish sustained, metabolically adequate functional β-cell mass (FBM) in comparison with human islet cells. This study in immune-compromised mice demonstrates that subcutaneous implants of Alg-encapsulated porcine prenatal islet cells with 4 × 105 β-cells form, over 10 weeks, a FBM that results in glucose-induced plasma C-peptide >2 ng/mL and metabolic control over the following 10 weeks, with higher efficiency than nonencapsulated, while failing in peritoneum. This intracapsular FBM formation involves β-cell replication, increasing number fourfold, and maturation toward human adult β-cells. Subcutaneous Alg-encapsulated human islet cells with similar β-cell number establish implants with plasma C-peptide >2 ng/mL for the first 10 weeks, with nonencapsulated cells failing; their β-cells do not replicate but progressively die (>70%), explaining C-peptide decline and insufficient metabolic control. An Alg matrix thus helps establish β-cell functions in subcutis. It allows formation of sustained metabolically adequate FBM by immature porcine β-cells with proliferative activity but not by human adult islet cells. These findings define conditions for evaluating its immune-protecting properties.
Collapse
Affiliation(s)
- Ines De Mesmaeker
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Robert
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Krista G Suenens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert M Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Freya Van Hulle
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Daniel Jacobs-Tulleneers-Thevissen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- University Hospital Brussels-Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
274
|
Abstract
Biologics now constitute a significant element of available medical treatments. Owing to their clinical and commercial success, biologics are a rapidly growing class and have become a dominant therapeutic modality. Although most of the successful biologics to date are drugs that bear a peptidic backbone, ranging from small peptides to monoclonal antibodies (~500 residues; 150 kDa), new biologic modalities, such as nucleotide-based therapeutics and viral gene therapies, are rapidly maturing towards widespread clinical use. Given the rise of peptides and proteins in the pharmaceutical landscape, tremendous research and development interest exists in developing less-invasive or non-invasive routes for the systemic delivery of biologics, including subcutaneous, transdermal, oral, inhalation, nasal and buccal routes. This Review summarizes the current status, latest updates and future prospects for such delivery of peptides, proteins and other biologics.
Collapse
|
275
|
Latfi ASA, Pramanik S, Poon CT, Gumel AM, Lai KW, Annuar MSM, Pingguan-Murphy B. Structural and bone marrow stem cell biocompatibility studies of hydrogel synthesized via chemo-enzymatic route. J Biomater Appl 2018; 33:854-865. [PMID: 30458659 DOI: 10.1177/0885328218812490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self)fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
Collapse
Affiliation(s)
- Ahmad Safwan Ahmad Latfi
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Sumit Pramanik
- 2 Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Chi Tat Poon
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Mohammed Gumel
- 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khin Wee Lai
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Belinda Pingguan-Murphy
- 1 Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
276
|
Ciriza J, Saenz Del Burgo L, Gurruchaga H, Borras FE, Franquesa M, Orive G, Hernández RM, Pedraz JL. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv 2018; 25:1147-1160. [PMID: 29781340 PMCID: PMC6058697 DOI: 10.1080/10717544.2018.1474966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.
Collapse
Affiliation(s)
- Jesús Ciriza
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Laura Saenz Del Burgo
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Haritz Gurruchaga
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Francesc E Borras
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- d Department of Cell Biology, Physiology and Immunology , Universitat Autònoma de Barcelona , Bellaterra , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Marcella Franquesa
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Gorka Orive
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Rosa Maria Hernández
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
277
|
Bochenek MA, Veiseh O, Vegas AJ, McGarrigle JJ, Qi M, Marchese E, Omami M, Doloff JC, Mendoza-Elias J, Nourmohammadzadeh M, Khan A, Yeh CC, Xing Y, Isa D, Ghani S, Li J, Landry C, Bader AR, Olejnik K, Chen M, Hollister-Lock J, Wang Y, Greiner DL, Weir GC, Strand BL, Rokstad AMA, Lacik I, Langer R, Anderson DG, Oberholzer J. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat Biomed Eng 2018; 2:810-821. [PMID: 30873298 PMCID: PMC6413527 DOI: 10.1038/s41551-018-0275-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/12/2018] [Indexed: 12/29/2022]
Abstract
The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials. Although one month post-implantation all formulations elicited significant FBR and PFO, three chemically modified, immune-modulating alginate formulations elicited reduced FBR. In conjunction with a minimally invasive transplantation technique into the bursa omentalis of NHPs, the most promising chemically modified alginate derivative (Z1-Y15) protected viable and glucose-responsive allogeneic islets for 4 months without the need for immunosuppression. Chemically modified alginate formulations may enable the long-term transplantation of islets for the correction of insulin deficiency.
Collapse
Affiliation(s)
- Matthew A Bochenek
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Omid Veiseh
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Arturo J Vegas
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Chemistry Department, Boston University, Boston, MA, USA
| | - James J McGarrigle
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Meirigeng Qi
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Enza Marchese
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Mustafa Omami
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Joshua C Doloff
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Joshua Mendoza-Elias
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Nourmohammadzadeh
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Arshad Khan
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Chun-Chieh Yeh
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuan Xing
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Douglas Isa
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Sofia Ghani
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- CellTrans Inc., Chicago, IL, USA
| | - Jie Li
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Casey Landry
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Andrew R Bader
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Karsten Olejnik
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Sigilon Therapeutics, Inc., Cambridge, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael Chen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Yong Wang
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gordon C Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Berit Løkensgard Strand
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Obesity, Clinic of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Igor Lacik
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
- Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jose Oberholzer
- Division of Transplantation, Department of Surgery, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Surgery and Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
278
|
Renz AF, Reichmuth AM, Stauffer F, Thompson-Steckel G, Vörös J. A guide towards long-term functional electrodes interfacing neuronal tissue. J Neural Eng 2018; 15:061001. [DOI: 10.1088/1741-2552/aae0c2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
279
|
Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Hydrogels as Emerging Materials for Translational Biomedicine. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800088] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kun Xue
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xiaoyuan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Pei Wern Yong
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
| | - David James Young
- Faculty of Science; Health, Education and Engineering; University of the Sunshine Coast; Maroochydore Queensland 4558 Australia
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences; Xiamen University; Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; Agency for Science,; Technology and Research; 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
- Department of Materials Science and Engineering; National University of Singapore; 9 Engineering Drive 1 Singapore 117575 Singapore
- Singapore Eye Research Institute; 11 Third Hospital Avenue Singapore 168751 Singapore
| |
Collapse
|
280
|
Xu T, Zhang J, Zhu Y, Zhao W, Pan C, Ma H, Zhang L. A poly(hydroxyethyl methacrylate)-Ag nanoparticle porous hydrogel for simultaneous in vivo prevention of the foreign-body reaction and bacterial infection. NANOTECHNOLOGY 2018; 29:395101. [PMID: 29989569 DOI: 10.1088/1361-6528/aad257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of implants or indwelling medical devices has greatly enhanced the quality and efficacy of health care. However, foreign-body reactions (FBRs) and infections can lead to potential failure or removal of the devices, or increased morbidity and mortality of patients. Herein, we develop a silver nanoparticle (AgNP) loaded poly(hydroxyethyl methacrylate) hydrogel with spherical, interconnected 40 μm pores. The resulting hydrogels displayed good antibacterial properties regarding both gram positive bacteria (Staphylococcus aureus) and gram negative bacteria (Escherichia coli (E. coli)) in vitro and were highly efficient at inhibiting bacterial cell growth. Moreover, they exhibited an in vivo resistance to FBRs by reducing the immune responses, and completely prevented the formation of collagen capsules. Finally, in vivo studies of the E. coli infected mouse model demonstrated that the AgNP loaded porous hydrogels were highly efficient at resisting the bacterial FBRs and infections, while they promoted cell mitigation and infiltration. Findings from this work suggest that AgNP loaded porous hydrogels hold promise in various biomedical applications including in the new generation of implantable biomedical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tong Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, People's Republic of China. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
281
|
Kowalski PS, Bhattacharya C, Afewerki S, Langer R. Smart Biomaterials: Recent Advances and Future Directions. ACS Biomater Sci Eng 2018; 4:3809-3817. [DOI: 10.1021/acsbiomaterials.8b00889] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Piotr S. Kowalski
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Chandrabali Bhattacharya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Samson Afewerki
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
282
|
Abstract
β cell replacement with either pancreas or islet transplantation has progressed immensely over the last decades with current 1- and 5-year insulin independence rates of approximately 85% and 50%, respectively. Recent advances are largely attributed to improvements in immunosuppressive regimen, donor selection, and surgical technique. However, both strategies are compromised by a scarce donor source. Xenotransplantation offers a potential solution by providing a theoretically unlimited supply of islets, but clinical application has been limited by concerns for a potent immune response against xenogeneic tissue. β cell clusters derived from embryonic or induced pluripotent stem cells represent another promising unlimited source of insulin producing cells, but clinical application is pending further advances in the function of the β cell like clusters. Exciting developments and rapid progress in all areas of β cell replacement prompted a lively debate by members of the young investigator committee of the International Pancreas and Islet Transplant Association at the 15th International Pancreas and Islet Transplant Association Congress in Melbourne and at the 26th international congress of The Transplant Society in Hong Kong. This international group of young investigators debated which modality of β cell replacement would predominate the landscape in 10 years, and their arguments are summarized here.
Collapse
|
283
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
284
|
Southard SM, Kotipatruni RP, Rust WL. Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PLoS One 2018; 13:e0203126. [PMID: 30183752 PMCID: PMC6124757 DOI: 10.1371/journal.pone.0203126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) technology enables the creation and selection of pluripotent cells with specific genetic traits. This report describes a pluripotent cell line created specifically to form replacement pancreatic cells as a therapy for insulin-dependent diabetes. Beginning with primary pancreatic tissue acquired through organ donation, cells were isolated, re-programmed using non-integrating vectors and exposed to a four day differentiation protocol to generate definitive endoderm, a developmental precursor to pancreas. The best performing iPSC lines were then subjected to a 12-day basic differentiation protocol to generate endocrine pancreas precursors. The line that most consistently generated highly pure populations was selected for further development. This approach created an iPSC-variant cell line, SR1423, with a genetic profile correlated with preferential differentiation toward endodermal lineage at the loss of mesodermal potential. This report further describes an improved differentiation protocol that, coupled with SR1423, generated populations of greater than 60% insulin-expressing cells that secrete insulin in response to glucose and are capable of reversing diabetes in rodents. Created and banked following cGMP guidelines, SR1423 is a candidate cell line for the production of insulin-producing cells useful for the treatment of diabetes.
Collapse
|
285
|
Youngblood RL, Truong NF, Segura T, Shea LD. It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Mol Ther 2018; 26:2087-2106. [PMID: 30107997 PMCID: PMC6127639 DOI: 10.1016/j.ymthe.2018.07.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Hydrogels provide a regenerative medicine platform with their ability to create an environment that supports transplanted or endogenous infiltrating cells and enables these cells to restore or replace the function of tissues lost to disease or trauma. Furthermore, these systems have been employed as delivery vehicles for therapeutic genes, which can direct and/or enhance the function of the transplanted or endogenous cells. Herein, we review recent advances in the development of hydrogels for cell and non-viral gene delivery through understanding the design parameters, including both physical and biological components, on promoting transgene expression, cell engraftment, and ultimately cell function. Furthermore, this review identifies emerging opportunities for combining cell and gene delivery approaches to overcome challenges to the field.
Collapse
Affiliation(s)
- Richard L Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
286
|
Odorico J, Markmann J, Melton D, Greenstein J, Hwa A, Nostro C, Rezania A, Oberholzer J, Pipeleers D, Yang L, Cowan C, Huangfu D, Egli D, Ben-David U, Vallier L, Grey ST, Tang Q, Roep B, Ricordi C, Naji A, Orlando G, Anderson DG, Poznansky M, Ludwig B, Tomei A, Greiner DL, Graham M, Carpenter M, Migliaccio G, D'Amour K, Hering B, Piemonti L, Berney T, Rickels M, Kay T, Adams A. Report of the Key Opinion Leaders Meeting on Stem Cell-derived Beta Cells. Transplantation 2018; 102:1223-1229. [PMID: 29781950 PMCID: PMC6775764 DOI: 10.1097/tp.0000000000002217] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beta cell replacement has the potential to restore euglycemia in patients with insulin-dependent diabetes. Although great progress has been made in establishing allogeneic islet transplantation from deceased donors as the standard of care for those with the most labile diabetes, it is also clear that the deceased donor organ supply cannot possibly treat all those who could benefit from restoration of a normal beta cell mass, especially if immunosuppression were not required. Against this background, the International Pancreas and Islet Transplant Association in collaboration with the Harvard Stem Cell Institute, the Juvenile Diabetes Research Foundation (JDRF), and the Helmsley Foundation held a 2-day Key Opinion Leaders Meeting in Boston in 2016 to bring together experts in generating and transplanting beta cells derived from stem cells. The following summary highlights current technology, recent significant breakthroughs, unmet needs and roadblocks to stem cell-derived beta cell therapies, with the aim of spurring future preclinical collaborative investigations and progress toward the clinical application of stem cell-derived beta cells.
Collapse
Affiliation(s)
- Jon Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - James Markmann
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Douglas Melton
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Boston MA
| | | | - Albert Hwa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Cristina Nostro
- Department of Physiology, University of Toronto, University of Toronto, Toronto Canada
| | | | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL
| | - Daniel Pipeleers
- Center for Beta Cell Therapy in Diabetes, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Chad Cowan
- Harvard Stem Cell Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Danwei Huangfu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Dieter Egli
- Columbia Stem Cell Initiative, Columbia University, New York, NY
| | - Uri Ben-David
- Broad Institute of MIT and Harvard, Cancer Program, Golub Lab, Cambridge MA
| | - Ludovic Vallier
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Shane T Grey
- Department of Medicine, University of Sydney, Sydney, Australia
| | - Qizhi Tang
- Department of Surgery, UCSF Medical Center, San Francisco, CA
| | - Bart Roep
- National Diabetes Center of Excellence, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Giuseppe Orlando
- Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Mark Poznansky
- Department of Medicine, Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Barbara Ludwig
- Department of Endocrinology and Diabetes, University Hospital Dresden, Dresden, Germany
| | - Alice Tomei
- Department of Surgery, University of Miami, Miami, FL
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | | | | | | | - Bernhard Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan Italy
| | - Thierry Berney
- Department of Surgery, Geneva University, Geneva, Switzerland
| | - Mike Rickels
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Thomas Kay
- Department of Medicine, St. Vincent's Institute, Melbourne, Australia
| | - Ann Adams
- Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
287
|
Li L, Stiadle JM, Levendoski EE, Lau HK, Thibeault SL, Kiick KL. Biocompatibility of injectable resilin-based hydrogels. J Biomed Mater Res A 2018; 106:2229-2242. [PMID: 29611890 PMCID: PMC6030450 DOI: 10.1002/jbm.a.36418] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/21/2018] [Accepted: 03/21/2018] [Indexed: 12/25/2022]
Abstract
Vocal folds are connective tissues housed in the larynx, which can be subjected to various injuries and traumatic stimuli that lead to aberrant tissue structural alterations and fibrotic-induced biomechanical stiffening observed in patients with voice disorders. Much effort has been devoted to generate soft biomaterials that are injectable directly to sites of injury. To date, materials applied toward these applications have been largely focused on natural extracellular matrix-derived materials such as collagen, fibrin or hyaluronic acid; these approaches have suffered from the fact that materials are not sufficiently robust mechanically nor offer sufficient flexibility to modulate material properties for targeted injection. We have recently developed multiple resilin-inspired elastomeric hydrogels that possess similar mechanical properties as those reported for vocal fold tissues, and that also show promising in vitro cytocompatibility and in vivo biocompatibility. Here we report studies that test the delivery of resilin-based hydrogels through injection to the subcutaneous tissue in a wild-type mice model; histological and genetic expression outcomes were monitored. The rapid kinetics of crosslinking enabled facile injection and ensured the rapid transition of the viscous resilin precursor solution to a solid-like hydrogel in the subcutaneous space in vivo; the materials exhibited storage shear moduli in the range of 1000-2000 Pa when characterized through oscillatory rheology. Histological staining and gene expression profiles suggested minimal inflammatory profiles three weeks after injection, thereby demonstrating the potential suitability for site-specific in vivo injection of these elastomeric materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2229-2242, 2018.
Collapse
Affiliation(s)
- Linqing Li
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jeanna M. Stiadle
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Elizabeth E. Levendoski
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Hang K. Lau
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, 5136 WIMR, 1111 Highland Ave, Madison, WI, 53792, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE, 19711, USA
| |
Collapse
|
288
|
Abstract
PURPOSE OF REVIEW Here we summarize recent advancements in β cell replacement as a therapy for type 1 diabetes. RECENT FINDINGS β cell replacement therapy has been proposed as a cure for type 1 diabetes with the introduction of the Edmonton protocol for cadaveric islet transplantation. To allow widespread use of this approach, efforts have focused on establishing an abundant source of insulin-producing β cells, protecting transplanted cells from ischemia-mediated death, immune rejection, and re-occurring autoimmunity. Recent developments addressing these issues include generation of insulin-producing cells from human pluripotent stem cells, different encapsulation strategies and prevention of ischemia upon transplant. SUMMARY Despite significant advances in generating functional β cells from human pluripotent stem cells, several key challenges remain in regard to the survival of β cell grafts, protection from (auto-) immune destruction and implementation of additional safety mechanisms before a stem cell-based cell replacement therapy approach can be widely applied. Taking current findings into consideration, we outline a multilayered approach to design immune-privileged β cells from stem cells using state of the art genome editing technologies that if successfully incorporated could result in great benefit for diabetic patients and improve clinical results for cell replacement therapy.
Collapse
Affiliation(s)
- Roberto Castro-Gutierrez
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
289
|
Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat Biomed Eng 2018; 2:894-906. [PMID: 30931173 PMCID: PMC6436621 DOI: 10.1038/s41551-018-0273-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Continuous glucose monitors (CGMs), used by patients with diabetes mellitus, can autonomously track fluctuations in blood glucose over time. However, the signal produced by CGMs during the initial recording period following sensor implantation contains substantial noise, requiring frequent recalibration via fingerprick tests. Here, we show that coating the sensor with a zwitterionic polymer, found via a combinatorial-chemistry approach, significantly reduces signal noise and improves CGM performance. We evaluated the polymer-coated sensors in mice as well as in healthy and diabetic non-human primates, and show that the sensors accurately record glucose levels without the need for recalibration. We also show that the polymer-coated sensors significantly abrogated immune responses to the sensor, as indicated by histology, fluorescent whole-body imaging of inflammation-associated protease activity, and gene expression of inflammation markers. The polymer coating may allow CGMs to become standalone measuring devices.
Collapse
|
290
|
Jansen LE, Amer LD, Chen EYT, Nguyen TV, Saleh LS, Emrick T, Liu WF, Bryant SJ, Peyton SR. Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner. Biomacromolecules 2018; 19:2880-2888. [PMID: 29698603 PMCID: PMC6190668 DOI: 10.1021/acs.biomac.8b00444] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reducing the foreign body response (FBR) to implanted biomaterials will enhance their performance in tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are increasingly popular for this application due to their low cost, ease of use, and the ability to tune their compliance via molecular weight and cross-linking densities. PEG hydrogels can elicit chronic inflammation in vivo, but recent evidence has suggested that extremely hydrophilic, zwitterionic materials and particles can evade the immune system. To combine the advantages of PEG-based hydrogels with the hydrophilicity of zwitterions, we synthesized hydrogels with comonomers PEG and the zwitterion phosphorylcholine (PC). Recent evidence suggests that stiff hydrogels elicit increased immune cell adhesion to hydrogels, which we attempted to reduce by increasing hydrogel hydrophilicity. Surprisingly, hydrogels with the highest amount of zwitterionic comonomer elicited the highest FBR. Lowering the hydrogel modulus (165 to 3 kPa), or PC content (20 to 0 wt %), mitigated this effect. A high density of macrophages was found at the surface of implants associated with a high FBR, and mass spectrometry analysis of the proteins adsorbed to these gels implicated extracellular matrix, immune response, and cell adhesion protein categories as drivers of macrophage recruitment. Overall, we show that modulus regulates macrophage adhesion to zwitterionic-PEG hydrogels, and demonstrate that chemical modifications to hydrogels should be studied in parallel with their physical properties to optimize implant design.
Collapse
Affiliation(s)
| | - Luke D Amer
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Esther Y-T Chen
- Department of Biomedical Engineering , University of California, Irvine , Irvine , California 92697 , United States
| | | | - Leila S Saleh
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | | | - Wendy F Liu
- Department of Biomedical Engineering , University of California, Irvine , Irvine , California 92697 , United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | | |
Collapse
|
291
|
Xu Z, Li Z, Jiang S, Bratlie KM. Chemically Modified Gellan Gum Hydrogels with Tunable Properties for Use as Tissue Engineering Scaffolds. ACS OMEGA 2018; 3:6998-7007. [PMID: 30023967 PMCID: PMC6044625 DOI: 10.1021/acsomega.8b00683] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 05/26/2023]
Abstract
Gellan gum is a naturally occurring polymer that can cross-link in the presence of divalent cations to form biocompatible hydrogels. However, physically cross-linked gellan gum hydrogels lose their stability under physiological conditions, thus restricting the applications of these hydrogels in vivo. To improve the mechanical strength of the gels, we incorporated methacrylate into the gellan gum and chemically cross-linked the hydrogel through three polymerization methods: step growth through thiol-ene photoclick chemistry, chain-growth via photopolymerization, and mixed model in which both mechanisms were employed. Methacrylation was confirmed and quantified by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy. The mechanical properties and chemistry of the cross-linked gels were systematically altered by varying the reaction conditions. The compression moduli of the resulting hydrogels ranged between 6.4 and 17.2 kPa. The swelling ratios of the hydrogels were correlated with the compression moduli and affected by the addition of calcium. In vitro enzymatic degradation rate was found to depend on the degree of methacrylation. NIH/3T3 fibroblast cell proliferation and morphology were related to substrate stiffness, with a high stiffness leading generally to higher proliferation. The proliferation is further affected by the thiol-ene ratio. These results suggest that a hydrogel platform based on the gellan gum can offer versatile chemical modifications and tunable mechanical properties. The influence of these substrates on cell behavior suggests that the gellan gum hydrogels have the flexibility to be engineered for a variety of biomaterials applications.
Collapse
Affiliation(s)
- Zihao Xu
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Zhuqing Li
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Shan Jiang
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division
of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department
of Materials Science & Engineering and Department of Chemical & Biological
Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division
of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
292
|
Duffy C, Prugue C, Glew R, Smith T, Howell C, Choi G, Cook AD. Feasibility of Induced Pluripotent Stem Cell Therapies for Treatment of Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:482-492. [PMID: 29947303 DOI: 10.1089/ten.teb.2018.0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMPACT STATEMENT This review of iPSCs to treat T1D provides a current assessment of the challenges and potential for this proposed new therapy.
Collapse
Affiliation(s)
- Caden Duffy
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Cesar Prugue
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Rachel Glew
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Taryn Smith
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Calvin Howell
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Gina Choi
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Alonzo D Cook
- Department of Chemical Engineering, Brigham Young University , Provo, Utah
| |
Collapse
|
293
|
Liu Y, Bai P, Woischnig AK, Charpin-El Hamri G, Ye H, Folcher M, Xie M, Khanna N, Fussenegger M. Immunomimetic Designer Cells Protect Mice from MRSA Infection. Cell 2018; 174:259-270.e11. [PMID: 29937224 PMCID: PMC6057273 DOI: 10.1016/j.cell.2018.05.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/26/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era. Video Abstract
A closed-loop gene network with bacterial sense-and-destroy actuation Direct diagnosis of implant-associated infections through blood biomarkers Early prevention of MRSA infection, as well as biofilm formation, in vivo Curing acute MRSA infections as an alternative to antibiotic therapy
Collapse
Affiliation(s)
- Ying Liu
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, People's Republic of China
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Faculty of Science, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
294
|
Abstract
PURPOSE OF REVIEW There is considerable interest in using macroencapsulation devices as a delivery strategy for transplanting insulin-producing cells. This review aims to summarize recent advances, to highlight remaining challenges, and to provide recommendations for the field. RECENT FINDINGS A variety of new device designs have been reported to improve biocompatibility and to provide protection for islet/beta cells from immune destruction while allowing continuous secretion of insulin. Some of these new approaches are in clinical trials, but more research is needed to determine how sufficient beta-cell mass can be transplanted in a clinically applicable device size, and that insulin is secreted with kinetics that will safely provide adequate controls of glucose levels. Macroencapsulation is a potential solution to transplant beta cells without immunosuppression in diabetes patients, but new strategies must be developed to show that this approach is feasible.
Collapse
Affiliation(s)
- Albert J Hwa
- Joslin Diabetes Center, 1 Joslin Pl, Boston, MA, 02215, USA.
| | - Gordon C Weir
- Joslin Diabetes Center, 1 Joslin Pl, Boston, MA, 02215, USA
| |
Collapse
|
295
|
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in Immunotherapy, Regenerative Medicine, and Bioengineering for Type 1 Diabetes. Front Immunol 2018; 9:1354. [PMID: 29963051 PMCID: PMC6011033 DOI: 10.3389/fimmu.2018.01354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Recent advances on using immune and stem cells as two-pronged approaches for type 1 diabetes mellitus (T1DM) treatment show promise for advancement into clinical practice. As T1DM is thought to arise from autoimmune attack destroying pancreatic β-cells, increasing treatments that use biologics and cells to manipulate the immune system are achieving better results in pre-clinical and clinical studies. Increasingly, focus has shifted from small molecule drugs that suppress the immune system nonspecifically to more complex biologics that show enhanced efficacy due to their selectivity for specific types of immune cells. Approaches that seek to inhibit only autoreactive effector T cells or enhance the suppressive regulatory T cell subset are showing remarkable promise. These modern immune interventions are also enabling the transplantation of pancreatic islets or β-like cells derived from stem cells. While complete immune tolerance and body acceptance of grafted islets and cells is still challenging, bioengineering approaches that shield the implanted cells are also advancing. Integrating immunotherapy, stem cell-mediated β-cell or islet production and bioengineering to interface with the patient is expected to lead to a durable cure or pave the way for a clinical solution for T1DM.
Collapse
Affiliation(s)
- Christopher Kopan
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - Tori Tucker
- Department of Cell and Molecular Biosciences, University of California Irvine, Irvine, CA, United States
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA, United States
| | - M. Rezaa Mohammadi
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA, United States
| | - Egest J. Pone
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, United States
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
296
|
Olesen MTJ, Winther AK, Fejerskov B, Dagnaes-Hansen F, Simonsen U, Zelikin AN. Bi-Enzymatic Embolization Beads for Two-Armed Enzyme-Prodrug Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morten T. Jarlstad Olesen
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Center; Aarhus University; Aarhus 8000 Denmark
| | - Anna K. Winther
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
| | | | | | - Ulf Simonsen
- Department of Biomedicine; Aarhus University; Aarhus 8000 Denmark
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Center; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
297
|
Aijaz A, Li M, Smith D, Khong D, LeBlon C, Fenton OS, Olabisi RM, Libutti S, Tischfield J, Maus MV, Deans R, Barcia RN, Anderson DG, Ritz J, Preti R, Parekkadan B. Biomanufacturing for clinically advanced cell therapies. Nat Biomed Eng 2018; 2:362-376. [PMID: 31011198 PMCID: PMC6594100 DOI: 10.1038/s41551-018-0246-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The achievements of cell-based therapeutics have galvanized efforts to bring cell therapies to the market. To address the demands of the clinical and eventual commercial-scale production of cells, and with the increasing generation of large clinical datasets from chimeric antigen receptor T-cell immunotherapy, from transplants of engineered haematopoietic stem cells and from other promising cell therapies, an emphasis on biomanufacturing requirements becomes necessary. Robust infrastructure should address current limitations in cell harvesting, expansion, manipulation, purification, preservation and formulation, ultimately leading to successful therapy administration to patients at an acceptable cost. In this Review, we highlight case examples of cutting-edge bioprocessing technologies that improve biomanufacturing efficiency for cell therapies approaching clinical use.
Collapse
Affiliation(s)
- Ayesha Aijaz
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Matthew Li
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - David Smith
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Danika Khong
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA
| | - Courtney LeBlon
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Owen S Fenton
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - Jay Tischfield
- Human Genetics Institute of New Jersey, RUCDR, Piscataway, NJ, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | - Daniel G Anderson
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Division of Health Science and Technology, and the David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jerome Ritz
- Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Robert Preti
- Hitachi Chemical Advanced Therapeutics Solutions, Allendale, NJ, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
- Department of Surgery, Center for Surgery, Innovation, and Bioengineering, Massachusetts General Hospital, Harvard Medical School and Shriners Hospitals for Children, Boston, MA, USA.
- Sentien Biotechnologies, Inc, Lexington, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
298
|
Khan OF, Kowalski PS, Doloff JC, Tsosie JK, Bakthavatchalu V, Winn CB, Haupt J, Jamiel M, Langer R, Anderson DG. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. SCIENCE ADVANCES 2018; 4:eaar8409. [PMID: 29963629 PMCID: PMC6021147 DOI: 10.1126/sciadv.aar8409] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 05/19/2023]
Abstract
Dysfunctional endothelial cells contribute to the pathophysiology of many diseases, including vascular disease, stroke, hypertension, atherosclerosis, organ failure, diabetes, retinopathy, and cancer. Toward the goal of creating a new RNA-based therapy to correct aberrant endothelial cell gene expression in humans, efficient gene silencing in the endothelium of nonhuman primates was achieved by delivering small interfering RNA (siRNA) with 7C1, a low-molecular weight, ionizable polymer that forms nanoparticles. After a single intravenous administration of 1 mg of siRNA per kilogram of animal, 7C1 nanoparticles delivering Tie2 siRNA caused Tie2 mRNA levels to decrease by approximately 80% in the endothelium of the lung. Significant decreases in Tie2 mRNA were also found in the heart, retina, kidney, pancreas, and bone. Blood chemistry and liver function analysis before and after treatment all showed protein and enzyme concentrations within the normal reference ranges. Furthermore, after controlling for siRNA-specific effects, no significant increases in inflammatory cytokine concentrations were found in the serum. Similarly, no gross lesions or significant underlying pathologies were observed after histological examination of nonhuman primate tissues. This study is the first demonstration of endothelial gene silencing in multiple nonhuman primate organs using systemically administered siRNA nanoparticles and highlights the potential of this approach for the treatment of disease in humans.
Collapse
Affiliation(s)
- Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Piotr S. Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan K. Tsosie
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Caroline Bodi Winn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Jennifer Haupt
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Morgan Jamiel
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Division of Health Science Technology, Massachusetts Institute of Technology, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
299
|
Zhu Y, Hideyoshi S, Jiang H, Matsumura Y, Dziki JL, LoPresti ST, Huleihel L, Faria GNF, Fuhrman LC, Lodono R, Badylak SF, Wagner WR. Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater 2018; 73:112-126. [PMID: 29649634 PMCID: PMC5985206 DOI: 10.1016/j.actbio.2018.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Biodegradable injectable hydrogels have been extensively studied and evaluated in various medical applications such as for bulking agents, drug delivery reservoirs, temporary barriers, adhesives, and cell delivery matrices. Where injectable hydrogels are intended to facilitate a healing response, it may be desirable to encourage rapid cellular infiltration into the hydrogel volume from the tissue surrounding the injection site. In this study, we developed a platform technique to rapidly form pores in a thermally responsive injectable hydrogel, poly(NIPAAm-co-VP-co-MAPLA) by using mannitol particles as porogens. In a rat hindlimb muscle injection model, hydrogels incorporating porosity had significantly accelerated cellular infiltration. To influence the inflammatory response to the injected hydrogel, enzymatically digested urinary bladder matrix (UBM) was mixed with the solubilized hydrogel. The presence of UBM was associated with greater polarization of the recruited macrophage population to the M2 phenotype, indicating a more constructive foreign body response. The hybrid hydrogel positively affected the wound healing outcomes of defects in rabbit adipose tissue with negligible inflammation and fibrosis, whereas scar formation and chronic inflammation were observed with autotransplantation and in saline injected groups. These results demonstrate the value of combining the effects of promoting cell infiltration and mediating the foreign body response for improved biomaterials options soft tissue defect filling applications. STATEMENT OF SIGNIFICANCE Our objective was to develop a fabrication process to create porous injectable hydrogels incorporating decellularized tissue digest material. This new hydrogel material was expected to exhibit faster cellular infiltration and a greater extent of pro-M2 macrophage polarization compared to control groups not incorporating each of the functional components. Poly(NIPAAm-co-VP-co-MAPLA) was chosen as the representative thermoresponsive hydrogel, and mannitol particles and digested urinary bladder matrix (UBM) were selected as the porogen and the bioactive decellularized material components respectively. In rat hindlimb intramuscular injection models, this new hydrogel material induced more rapid cellular infiltration and a greater extent of M2 macrophage polarization compared to control groups not incorporating all of the functional components. The hybrid hydrogel positively affected the wound healing outcomes of defects in rabbit adipose tissue with negligible inflammation and fibrosis, whereas scar formation and chronic inflammation were observed with autotransplantation and in saline injected groups. The methodology of this report provides a straightforward and convenient mechanism to promote cell infiltration and mediate foreign body response in injectable hydrogels for soft tissue applications. We believe that the readership of Acta Biomaterialia will find the work of interest both for its specific results and general translatability of the findings.
Collapse
Affiliation(s)
- Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Sato Hideyoshi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hongbin Jiang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Samuel T LoPresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Luai Huleihel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Gabriela N F Faria
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Leah C Fuhrman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ricardo Lodono
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
300
|
Xu H, Fang Z, Tian W, Wang Y, Ye Q, Zhang L, Cai J. Green Fabrication of Amphiphilic Quaternized β-Chitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801100. [PMID: 29845657 DOI: 10.1002/adma.201801100] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Bacterial infection has always been a great threat to public health, and new antimicrobials to combat it are urgently needed. Here, a series of quaternized β-chitin derivatives is prepared simply and homogeneously in an aqueous KOH/urea solution, which is a high-efficiency, energy-saving, and "green" route for the modification of chitin. The mild reaction conditions keep the acetamido groups of β-chitin intact and introduce quaternary ammonium groups on the primary hydroxyl at the C-6 position of the chitin backbone, allowing the quaternized β-chitin derivatives (QCs) to easily form micelles. These QCs are found to exhibit excellent antimicrobial activities against Escherichia coli, Staphylococcus aureus, Candida albicans, and Rhizopus oryzae with minimum inhibitory concentrations (MICs) of 8, 12, 60, and 40 µg mL-1 , respectively. As a specific highlight, their inherent outstanding biocompatibility and significant accelerating effects on the healing of uninfected, E. coli-infected, and S. aureus-infected wounds imply that these novel polysaccharide-based materials can be used as dressings for clinical skin regeneration, particularly for infected wounds.
Collapse
Affiliation(s)
- Huan Xu
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zehong Fang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Weiqun Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, P. R. China
| | - Lina Zhang
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jie Cai
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| |
Collapse
|