251
|
Wu J, Belmonte JCI. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Res 2016; 25:375-84. [DOI: 10.1007/s11248-016-9930-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022]
|
252
|
Lewandowski J, Kolanowski TJ, Kurpisz M. Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. J Tissue Eng Regen Med 2016; 11:1658-1674. [PMID: 26777594 DOI: 10.1002/term.2117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/16/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
The derivation of pluripotent stem cells from human embryos and the generation of induced pluripotent stem cells (iPSCs) from somatic cells opened a new chapter in studies on the regeneration of the post-infarction heart and regenerative medicine as a whole. Thus, protocols for obtaining iPSCs were enthusiastically adopted and widely used for further experiments on cardiac differentiation. iPSC-mediated cardiomyocytes (iPSC-CMs) under in vitro culture conditions are generated by simulating natural cardiomyogenesis and involve the wingless-type mouse mammary tumour virus integration site family (WNT), transforming growth factor beta (TGF-β) and fibroblast growth factor (FGF) signalling pathways. New strategies have been proposed to take advantage of small chemical molecules, organic compounds and even electric or mechanical stimulation. There are three main approaches to support cardiac commitment in vitro: embryoid bodis (EBs), monolayer in vitro cultures and inductive co-cultures with visceral endoderm-like (END2) cells. In EB technique initial uniform size of pluripotent stem cell (PSC) colonies has a pivotal significance. Hence, some methods were designed to support cells aggregation. Another well-suited procedure is based on culturing cells in monolayer conditions in order to improve accessibility of growth factors and nutrients. Other distinct tactics are using visceral endoderm-like cells to culture them with PSCs due to secretion of procardiac cytokines. Finally, the appropriate purification of the obtained cardiomyocytes is required prior to their administration to a patient under the prospective cellular therapy strategy. This goal can be achieved using non-genetic methods, such as the application of surface markers and fluorescent dyes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jarosław Lewandowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz J Kolanowski
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
253
|
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy KK, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, Van Handel B, Parkkonen O, Sinisalo J, Jalanko A, Hawkins RD, Woods NB, Otonkoski T, Trokovic R. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports 2016; 6:200-12. [PMID: 26777058 PMCID: PMC4750096 DOI: 10.1016/j.stemcr.2015.12.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
Reports on the retention of somatic cell memory in induced pluripotent stem cells (iPSCs) have complicated the selection of the optimal cell type for the generation of iPSC biobanks. To address this issue we compared transcriptomic, epigenetic, and differentiation propensities of genetically matched human iPSCs derived from fibroblasts and blood, two tissues of the most practical relevance for biobanking. Our results show that iPSC lines derived from the same donor are highly similar to each other. However, genetic variation imparts a donor-specific expression and methylation profile in reprogrammed cells that leads to variable functional capacities of iPSC lines. Our results suggest that integration-free, bona fide iPSC lines from fibroblasts and blood can be combined in repositories to form biobanks. Due to the impact of genetic variation on iPSC differentiation, biobanks should contain cells from large numbers of donors. Isogenic iPSC from fibroblasts and blood have similar differentiation propensities Donor-dependent variability affects molecular and differentiation propensities of iPSCs Impact of donor variability exceeds source-cell-specific differences in iPSC lines Bona fide iPSC lines from different tissues can be combined in the repositories
Collapse
Affiliation(s)
- Aija Kyttälä
- Genomics and Biomarkers Unit, National Institute for Health and Welfare (THL), THL Biobank, 00290 Helsinki, Finland
| | - Roksana Moraghebi
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Cristina Valensisi
- Division of Medical Genetics, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195-7720, USA; Turku Centre for Biotechnology, Turku 20520, Finland
| | - Johannes Kettunen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare (THL), THL Biobank, 00290 Helsinki, Finland; Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu 90014, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 70210, Finland; Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Colin Andrus
- Division of Medical Genetics, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195-7720, USA
| | | | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Ken Nishimura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan; Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Jere Weltner
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, 00290 Helsinki, Finland
| | | | - Olavi Parkkonen
- Heart and Lung Center, Helsinki University Central Hospital and University of Helsinki, 00029 HUS Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Helsinki University Central Hospital and University of Helsinki, 00029 HUS Helsinki, Finland
| | - Anu Jalanko
- Genomics and Biomarkers Unit, National Institute for Health and Welfare (THL), THL Biobank, 00290 Helsinki, Finland
| | - R David Hawkins
- Division of Medical Genetics, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA 98195-7720, USA; Turku Centre for Biotechnology, Turku 20520, Finland
| | - Niels-Bjarne Woods
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, 00290 Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Central Hospital, 00029 HUS Helsinki, Finland.
| | - Ras Trokovic
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
254
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
255
|
Świerczek B, Ciemerych MA, Archacka K. From pluripotency to myogenesis: a multistep process in the dish. J Muscle Res Cell Motil 2015; 36:363-75. [PMID: 26715014 PMCID: PMC4762919 DOI: 10.1007/s10974-015-9436-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/30/2015] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells or induced pluripotent stem cells are a promising source of cells for regenerative medicine as they can differentiate into all cell types building a mammalian body. However, protocols leading to efficient and safe in vitro generation of desired cell types must be perfected before PSCs can be used in cell therapies or tissue engineering. In vivo, i.e. in developing mouse embryo or teratoma, PSCs can differentiate into skeletal muscle, but in vitro their spontaneous differentiation into myogenic cells is inefficient. Numerous attempts have been undertaken to enhance this process. Many of them involved mimicking the interactions occurring during embryonic myogenesis. The key regulators of embryonic myogenesis, such as Wnts proteins, fibroblast growth factor 2, and retinoic acid, have been tested to improve the frequency of in vitro myogenic differentiation of PSCs. This review summarizes the current state of the art, comparing spontaneous and directed myogenic differentiation of PSCs as well as the protocols developed this far to facilitate this process.
Collapse
Affiliation(s)
- Barbara Świerczek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
256
|
Chetty S, Engquist EN, Mehanna E, Lui KO, Tsankov AM, Melton DA. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation. J Cell Biol 2015; 210:1257-68. [PMID: 26416968 PMCID: PMC4586752 DOI: 10.1083/jcb.201502035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation.
Collapse
Affiliation(s)
- Sundari Chetty
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Elise N Engquist
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Elie Mehanna
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Kathy O Lui
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Alexander M Tsankov
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138 Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Douglas A Melton
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA 02138 Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138
| |
Collapse
|
257
|
Freedman BS. Modeling Kidney Disease with iPS Cells. Biomark Insights 2015; 10:153-69. [PMID: 26740740 PMCID: PMC4689367 DOI: 10.4137/bmi.s20054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field.
Collapse
Affiliation(s)
- Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
258
|
Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. Int J Mol Sci 2015; 16:28614-34. [PMID: 26633382 PMCID: PMC4691066 DOI: 10.3390/ijms161226119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/13/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases.
Collapse
|
259
|
Quiskamp N, Bruin JE, Kieffer TJ. Differentiation of human pluripotent stem cells into β-cells: Potential and challenges. Best Pract Res Clin Endocrinol Metab 2015; 29:833-47. [PMID: 26696513 DOI: 10.1016/j.beem.2015.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) hold great potential as the basis for cell-based therapies of degenerative diseases, including diabetes. Current insulin-based therapies for diabetes do not prevent hyperglycaemia or the associated long-term organ damage. While transplantation of pancreatic islets can achieve insulin independence and improved glycemic control, it is limited by donor tissue scarcity, challenges of purifying islets from the pancreas, and the need for immunosuppression to prevent rejection of transplants. Large-scale production of β-cells from stem cells is a promising alternative. Recent years have seen considerable progress in the optimization of in vitro differentiation protocols to direct hESCs/iPSCs into mature insulin-secreting β-cells and clinical trials are now under way to test the safety and efficiency of hESC-derived pancreatic progenitor cells in patients with type 1 diabetes. Here, we discuss key milestones leading up to these trials in addition to recent developments and challenges for hESC/iPSC-based diabetes therapies and disease modeling.
Collapse
Affiliation(s)
- Nina Quiskamp
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Jennifer E Bruin
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
260
|
Shimojo D, Onodera K, Doi-Torii Y, Ishihara Y, Hattori C, Miwa Y, Tanaka S, Okada R, Ohyama M, Shoji M, Nakanishi A, Doyu M, Okano H, Okada Y. Rapid, efficient, and simple motor neuron differentiation from human pluripotent stem cells. Mol Brain 2015; 8:79. [PMID: 26626025 PMCID: PMC4666063 DOI: 10.1186/s13041-015-0172-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022] Open
Abstract
Background Human pluripotent stem cells (hPSCs) are being applied in regenerative medicine and for the in vitro modeling of human intractable disorders. In particular, neural cells derived from disease-specific human induced pluripotent stem cells (hiPSCs) established from patients with neurological disorders have been used as in vitro disease models to recapitulate in vivo pathogenesis because neural cells cannot be usually obtained from patients themselves. Results In this study, we established a rapid, efficient, and simple method for efficiently deriving motor neurons from hPSCs that is useful for pathophysiological analysis and the development of drugs to treat motor neuron diseases. Treatment with GSK3β inhibitors during the initial phase of differentiation in combination with dual SMAD inhibition was sufficient to induce PAX6+ and SOX1+ neural progenitors within 1 week, and subsequent treatment with retinoic acid (RA) and purmorphamine, which activates sonic hedgehog (SHH) signaling, resulted in the highly efficient induction of HB9+ and ISL-1+ motor neurons within 2 weeks. After 4 weeks of monolayer differentiation in motor neuron maturation medium, hPSC-derived motor neurons were shown to mature, displaying larger somas and clearer staining for the mature motor neuron marker choline acetyltransferase (ChAT). Moreover, hPSC-derived motor neurons were able to form neuromuscular junctions with human myotubes in vitro and induced acetylcholine receptor (AChR) clustering, as detected by Alexa 555-conjugated α-Bungarotoxin (α-BTX), suggesting that these hPSC-derived motor neurons formed functional contacts with skeletal muscles. This differentiation system is simple and is reproducible in several hiPSC clones, thereby minimizing clonal variation among hPSC clones. We also established a system for visualizing motor neurons with a lentiviral reporter for HB9 (HB9e438::Venus). The specificity of this reporter was confirmed through immunocytochemistry and quantitative RT-PCR analysis of high-positive fractions obtained via fluorescence-activated cell sorting (FACS), suggesting its applicability for motor neuron-specific analysis. Conclusions Our motor neuron differentiation system and lentivirus-based reporter system for motor neurons facilitate the analysis of disease-specific hiPSCs for motor neuron diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0172-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisuke Shimojo
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.,Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazunari Onodera
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.,Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yukiko Doi-Torii
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Yasuharu Ishihara
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chinatsu Hattori
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yukino Miwa
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Satoshi Tanaka
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.,Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Rina Okada
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.,Division of Regenerative Medicine, Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masanobu Shoji
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, 251-8555, Japan
| | - Atsushi Nakanishi
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, 251-8555, Japan
| | - Manabu Doyu
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan. .,Department of Physiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
261
|
Pellegrini S, Ungaro F, Mercalli A, Melzi R, Sebastiani G, Dotta F, Broccoli V, Piemonti L, Sordi V. Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol 2015; 52:1025-35. [PMID: 25733399 DOI: 10.1007/s00592-015-0726-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
AIMS New sources of insulin-secreting cells are strongly required for the cure of diabetes. Recent successes in differentiating embryonic stem cells, in combination with the discovery that it is possible to derive human induced pluripotent stem cells (iPSCs) from somatic cells, have raised the possibility that patient-specific beta cells might be derived from patients through cell reprogramming and differentiation. In this study, we aimed to obtain insulin-producing cells from human iPSCs and test their ability to secrete insulin in vivo. METHODS Human iPSCs, derived from both fetal and adult fibroblasts, were differentiated in vitro into pancreas-committed cells and then transplanted into immunodeficient mice at two different stages of differentiation (posterior foregut and endocrine cells). RESULTS IPSCs were shown to differentiate in insulin-producing cells in vitro, following the stages of pancreatic organogenesis. At the end of the differentiation, the production of INSULIN mRNA was highly increased and 5 ± 2.9 % of the cell population became insulin-positive. Terminally differentiated cells also produced C-peptide in vitro in both basal and stimulated conditions. In vivo, mice transplanted with pancreatic cells secreted human C-peptide in response to glucose stimulus, but transplanted cells were observed to lose insulin secretion capacity during the time. At histological evaluation, the grafts resulted to be composed of a mixed population of cells containing mature pancreatic cells, but also pluripotent and some neuronal cells. CONCLUSION These data overall suggest that human iPSCs have the potential to generate insulin-producing cells and that these differentiated cells can engraft and secrete insulin in vivo.
Collapse
Affiliation(s)
- Silvia Pellegrini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Federica Ungaro
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Raffaella Melzi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, c/o Toscana Life Sciences, 53100, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, c/o Toscana Life Sciences, 53100, Siena, Italy
| | - Vania Broccoli
- Stem Cells and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
262
|
Canham MA, Van Deusen A, Brison DR, De Sousa PA, Downie J, Devito L, Hewitt ZA, Ilic D, Kimber SJ, Moore HD, Murray H, Kunath T. The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines. Sci Rep 2015; 5:17258. [PMID: 26607962 PMCID: PMC4660465 DOI: 10.1038/srep17258] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
The application of human embryonic stem cell (hESC) derivatives to regenerative medicine is now becoming a reality. Although the vast majority of hESC lines have been derived for research purposes only, about 50 lines have been established under Good Manufacturing Practice (GMP) conditions. Cell types differentiated from these designated lines may be used as a cell therapy to treat macular degeneration, Parkinson’s, Huntington’s, diabetes, osteoarthritis and other degenerative conditions. It is essential to know the genetic stability of the hESC lines before progressing to clinical trials. We evaluated the molecular karyotype of 25 clinical-grade hESC lines by whole-genome single nucleotide polymorphism (SNP) array analysis. A total of 15 unique copy number variations (CNVs) greater than 100 kb were detected, most of which were found to be naturally occurring in the human population and none were associated with culture adaptation. In addition, three copy-neutral loss of heterozygosity (CN-LOH) regions greater than 1 Mb were observed and all were relatively small and interstitial suggesting they did not arise in culture. The large number of available clinical-grade hESC lines with defined molecular karyotypes provides a substantial starting platform from which the development of pre-clinical and clinical trials in regenerative medicine can be realised.
Collapse
Affiliation(s)
- Maurice A Canham
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| | - Amy Van Deusen
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, St. Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Paul A De Sousa
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK.,Centre for Clinical Brain Sciences and MRC Centre for Regenerative Medicine, The University of Edinburgh, UK
| | - Janet Downie
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK
| | - Liani Devito
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Zoe A Hewitt
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Susan J Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Harry D Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Helen Murray
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| |
Collapse
|
263
|
Oliveira LMA, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC, Gerhardt E, Taschenberger H, Outeiro TF, Lingor P, Schüle B, Arndt-Jovin DJ, Jovin TM. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis 2015; 6:e1994. [PMID: 26610207 PMCID: PMC4670926 DOI: 10.1038/cddis.2015.318] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
Abstract
We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction.
Collapse
Affiliation(s)
- L M A Oliveira
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - L J Falomir-Lockhart
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - M G Botelho
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - K-H Lin
- Group of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - P Wales
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
| | - J C Koch
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
| | - E Gerhardt
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
| | - H Taschenberger
- Group of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - T F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - P Lingor
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen, Germany
- DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - B Schüle
- The Parkinson's Institute, 675 Almanor Ave., Sunnyvale, CA, USA
| | - D J Arndt-Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - T M Jovin
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
- Laboratory of Cellular Dynamics, Max Planck Institute for Biophysical Chemistry, Am FaÃberg 11, Göttingen 37077, Germany. Tel: +49 551 201 1381; Fax: +49 551 201 1467; E-mail:
| |
Collapse
|
264
|
Affiliation(s)
- Ludovic Vallier
- Wellcome Trust and MRC Stem Cell Institute and Wellcome Trust Sanger Institute, Department of Surgery, Cambridge University, Cambridge, UK
| |
Collapse
|
265
|
Goyal S, Kim S, Chen ISY, Chou T. Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques. BMC Biol 2015; 13:85. [PMID: 26486451 PMCID: PMC4615871 DOI: 10.1186/s12915-015-0191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/12/2015] [Indexed: 12/19/2022] Open
Abstract
Background How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates to supply more than 1011 mature blood cells every day in humans remains a key biological question. We investigated this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12 years, hundreds of distinct clonal lineages. Results While the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a steady-state clone size-distribution with a distinctive shape. Steady-state solutions of our model show that the predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number of active HSCs. Conclusions Our concise mathematical model shows how slow HSC differentiation followed by fast progenitor growth can be responsible for the observed broad clone size-distribution. Although all cells are assumed to be statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach captures the intrinsic variability in the times to HSC differentiation after transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0191-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sidhartha Goyal
- Department of Physics, University of Toronto, St George Campus, Toronto, Canada
| | - Sanggu Kim
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, USA.,UCLA AIDS Institute and Department of Medicine, UCLA, Los Angeles, USA
| | - Tom Chou
- Departments of Biomathematics and Mathematics, UCLA, Los Angeles, USA.
| |
Collapse
|
266
|
Lim CS, Yang JE, Lee YK, Lee K, Lee JA, Kaang BK. Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Mol Brain 2015; 8:57. [PMID: 26419846 PMCID: PMC4589208 DOI: 10.1186/s13041-015-0146-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/11/2015] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social cognition, language development, and repetitive/restricted behaviors. Due to the complexity and heterogeneity of ASD and lack of a proper human cellular model system, the pathophysiological mechanism of ASD during the developmental process is largely unknown. However, recent progress in induced pluripotent stem cell (iPSC) technology as well as in vitro neural differentiation techniques have allowed us to functionally characterize neurons and analyze cortical development during neural differentiation. These technical advances will increase our understanding of the pathogenic mechanisms of heterogeneous ASD and help identify molecular biomarkers for patient stratification as well as personalized medicine. In this review, we summarize our current knowledge of iPSC generation, differentiation of specific neuronal subtypes from iPSCs, and phenotypic characterizations of human ASD patient-derived iPSC models. Finally, we discuss the current limitations of iPSC technology and future directions of ASD pathophysiology studies using iPSCs.
Collapse
Affiliation(s)
- Chae-Seok Lim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea
| | - Jung-Eun Yang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea
| | - You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Science and NanoTechnology, Hannam University, Jeonmin-dong 461-6, Daejeon, Yuseong-gu, 305-811, Korea
| | - Kyungmin Lee
- Department of Anatomy, Kyungpook National University Graduate School of Medicine, Dongin-dong 2-101, Daegu, Jung-gu, 700-422, Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Science and NanoTechnology, Hannam University, Jeonmin-dong 461-6, Daejeon, Yuseong-gu, 305-811, Korea.
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanangno 599, Seoul, Gwanak-gu, 151-747, Korea.
| |
Collapse
|
267
|
Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells. Methods 2015; 101:73-84. [PMID: 26404920 DOI: 10.1016/j.ymeth.2015.09.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/16/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022] Open
Abstract
Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies.
Collapse
|
268
|
Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015; 10:139-46. [PMID: 26379417 PMCID: PMC4554358 DOI: 10.4137/bmi.s20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023] Open
Abstract
Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
Collapse
Affiliation(s)
- Yang Gao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, TX, USA
- Congenital Heart Surgery Services, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
269
|
Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells. Sci Rep 2015; 5:13317. [PMID: 26304831 PMCID: PMC4548446 DOI: 10.1038/srep13317] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity.
Collapse
|
270
|
Manor YS, Massarwa R, Hanna JH. Establishing the human naïve pluripotent state. Curr Opin Genet Dev 2015; 34:35-45. [PMID: 26291026 DOI: 10.1016/j.gde.2015.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 02/08/2023]
Abstract
Pluripotency is first assembled within the inner-cell-mass of developing pre-implantation blastocysts, and is gradually reconfigured and dismantled during early post-implantation development, before overt differentiation into somatic lineages ensues. This transition from pre-implantation to post-implantation pluripotent states, respectively referred to as naïve and primed, is accompanied by dramatic changes in molecular and functional characteristics. Remarkably, pluripotent states can be artificially preserved in a self-renewing state in vitro by continuous supplementation of a variety of exogenous cytokines and small molecule inhibitors. Different exogenous factors endow the cells with distinct configurations of pluripotency that have direct influence on stem cell characteristics both in mice and humans. Here we overview pluripotent states captured from rodents and humans under different growth conditions, and provide a conceptual framework for classifying pluripotent cell states on the basis of a combination of multiple characteristics that a pluripotent cell can simultaneously retain. We further highlight the complexity and dynamic nature of these artificially isolated in vitro pluripotent states in humans.
Collapse
Affiliation(s)
- Yair S Manor
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rada Massarwa
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
271
|
Gallegos-Cárdenas A, Webb R, Jordan E, West R, West FD, Yang JY, Wang K, Stice SL. Pig Induced Pluripotent Stem Cell-Derived Neural Rosettes Developmentally Mimic Human Pluripotent Stem Cell Neural Differentiation. Stem Cells Dev 2015; 24:1901-11. [DOI: 10.1089/scd.2015.0025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Amalia Gallegos-Cárdenas
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Departamento de Producción Animal, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Girona, Perú
| | - Robin Webb
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Erin Jordan
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Rachel West
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Franklin D. West
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Jeong-Yeh Yang
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Kai Wang
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
- Department of Animal and Dairy Science, University of Georgia, Rhodes Center for Animal and Dairy Science, Athens, Georgia
| |
Collapse
|
272
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
273
|
Toyohara T, Mae SI, Sueta SI, Inoue T, Yamagishi Y, Kawamoto T, Kasahara T, Hoshina A, Toyoda T, Tanaka H, Araoka T, Sato-Otsubo A, Takahashi K, Sato Y, Yamaji N, Ogawa S, Yamanaka S, Osafune K. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Transl Med 2015. [PMID: 26198166 DOI: 10.5966/sctm.2014-0219] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. SIGNIFICANCE This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases.
Collapse
Affiliation(s)
- Takafumi Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shin-Ichi Sueta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tatsuyuki Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Yukiko Yamagishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tatsuya Kawamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Tomoko Kasahara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Azusa Hoshina
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Hiromi Tanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Aiko Sato-Otsubo
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Yasunori Sato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Noboru Yamaji
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Seishi Ogawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Clinical Research Center, Chiba University of Medicine, Chiba, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| |
Collapse
|
274
|
Van der Jeught M, O'Leary T, Duggal G, De Sutter P, Chuva de Sousa Lopes S, Heindryckx B. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Hum Reprod Update 2015; 21:616-26. [PMID: 26089403 DOI: 10.1093/humupd/dmv028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Until recently, the temporal events that precede the generation of pluripotent embryonic stem cells (ESCs) and their equivalence with specific developmental stages in vivo was poorly understood. Our group has discovered the existence of a transient epiblast-like structure, coined the post-inner cell mass (ICM) intermediate or PICMI, that emerges before human ESC (hESCs) are established, which supports their primed nature (i.e. already showing some predispositions towards certain cell types) of pluripotency. METHODS The PICMI results from the progressive epithelialization of the ICM and it expresses a mixture of early and late epiblast markers, as well as some primordial germ cell markers. The PICMI is a closer progenitor of hESCs than the ICM and it can be seen as the first proof of why all existing hESCs, until recently, display a primed state of pluripotency. RESULTS Even though the pluripotent characteristics of ESCs differ from mouse (naïve) to human (primed), it has recently been shown in mice that a similar process of self-organization at the transition from ICM to (naïve) mouse ESCs (mESCs) transforms the amorphous ICM into a rosette of polarized epiblast cells, a mouse PICMI. The transient PICMI stage is therefore at the origin of both mESCs and hESCs. In addition, several groups have now reported the conversion from primed to the naïve (mESCs-like) hESCs, broadening the pluripotency spectrum and opening new opportunities for the use of pluripotent stem cells. CONCLUSIONS In this review, we discuss the recent discoveries of mouse and human transient states from ICM to ESCs and their relation towards the state of pluripotency in the eventual stem cells, being naïve or primed. We will now further investigate how these intermediate and/or different pluripotent stages may impact the use of human stem cells in regenerative medicine and assisted reproductive technology.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Thomas O'Leary
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Coastal Fertility Specialists, 1375 Hospital Drive, Mt Pleasant, SC 29464, USA
| | - Galbha Duggal
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
275
|
Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 2015; 5:11019. [PMID: 26066093 PMCID: PMC4464258 DOI: 10.1038/srep11019] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have emerged as an important source for cell therapy. However, to date, no studies demonstrated generation of purified hPSC-derived lymphatic endothelial cells (LECs) and tested their therapeutic potential in disease models. Here we sought to differentiate hPSCs into the LEC lineage, purify them with LEC markers, and evaluate their therapeutic effects. We found that an OP9-assisted culture system reinforced by addition of VEGF-A, VEGF-C, and EGF most efficiently generated LECs, which were then isolated via FACS-sorting with LYVE-1 and PODOPLANIN. These hPSC-derived LYVE-1+PODOPLANIN+cells showed a pure committed LEC phenotype, formed new lymphatic vessels, and expressed lymphangiogenic factors at high levels. These hPSC-derived LECs enhanced wound healing through lymphangiogenesis and lymphvasculogenesis. Here we report, for the first time, that LECs can be selectively isolated from differentiating hPSCs, and that these cells are potent for lymphatic vessel formation in vivo and wound healing. This system and the purified hPSC-derived LECs can serve as a new platform for studying LEC development as well as for cell therapy.
Collapse
|
276
|
Qiu Z, Mishra A, Li M, Farnsworth SL, Guerra B, Lanford RE, Hornsby PJ. Marmoset induced pluripotent stem cells: Robust neural differentiation following pretreatment with dimethyl sulfoxide. Stem Cell Res 2015; 15:141-50. [PMID: 26070112 DOI: 10.1016/j.scr.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/21/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022] Open
Abstract
The marmoset is an important nonhuman primate model for regenerative medicine. For experimental autologous cell therapy based on induced pluripotent (iPS) cells in the marmoset, cells must be able to undergo robust and reliable directed differentiation that will not require customization for each specific iPS cell clone. When marmoset iPS cells were aggregated in a hanging drop format for 3 days, followed by exposure to dual SMAD inhibitors and retinoic acid in monolayer culture for 3 days, we found substantial variability in the response of different iPS cell clones. However, when clones were pretreated with 0.05-2% dimethyl sulfoxide (DMSO) for 24 hours, all clones showed a very similar maximal response to the directed differentiation scheme. Peak responses were observed at 0.5% DMSO in two clones and at 1% DMSO in a third clone. When patterns of gene expression were examined by microarray analysis, hierarchical clustering showed very similar responses in all 3 clones when they were pretreated with optimal DMSO concentrations. The change in phenotype following exposure to DMSO and the 6 day hanging drop/monolayer treatment was confirmed by immunocytochemistry. Analysis of DNA content in DMSO-exposed cells indicated that it is unlikely that DMSO acts by causing cells to exit from the cell cycle. This approach should be generally valuable in the directed neural differentiation of pluripotent cells for experimental cell therapy.
Collapse
Affiliation(s)
- Zhifang Qiu
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Anuja Mishra
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Miao Li
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Steven L Farnsworth
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States
| | - Bernadette Guerra
- Southwest National Primate Research Center and Texas Biomedical Research Institute, United States
| | - Robert E Lanford
- Southwest National Primate Research Center and Texas Biomedical Research Institute, United States
| | - Peter J Hornsby
- South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Physiology/Barshop Institute, University of Texas Health Science Center at San Antonio, United States.
| |
Collapse
|
277
|
Yvon C, Ramsden CM, Lane A, Powner MB, da Cruz L, Coffey PJ, Carr AJF. Using Stem Cells to Model Diseases of the Outer Retina. Comput Struct Biotechnol J 2015; 13:382-9. [PMID: 26106463 PMCID: PMC4477013 DOI: 10.1016/j.csbj.2015.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/13/2022] Open
Abstract
Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE). It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC)-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP), Usher syndrome (USH), Leber congenital amaurosis (LCA), gyrate atrophy (GA), juvenile neuronal ceroid lipofuscinosis (NCL), Best vitelliform macular dystrophy (BVMD) and age related macular degeneration (AMD).
Collapse
Affiliation(s)
- Camille Yvon
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Conor M. Ramsden
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Amelia Lane
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Michael B. Powner
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Lyndon da Cruz
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Peter J. Coffey
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Center for Stem Cell Biology and Engineering, NRI, UC, Santa Barbara, USA
| | - Amanda-Jayne F. Carr
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
278
|
Zhang D, Jiang W. From One-Cell to Tissue: Reprogramming, Cell Differentiation and Tissue Engineering. Bioscience 2015; 65:468-475. [DOI: 10.1093/biosci/biv016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
|
279
|
Bosman A, Letourneau A, Sartiani L, Del Lungo M, Ronzoni F, Kuziakiv R, Tohonen V, Zucchelli M, Santoni F, Guipponi M, Dumevska B, Hovatta O, Antonarakis SE, Jaconi ME. Perturbations of Heart Development and Function in Cardiomyocytes from Human Embryonic Stem Cells with Trisomy 21. Stem Cells 2015; 33:1434-46. [DOI: 10.1002/stem.1961] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis Bosman
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
- Victor Chang Cardiac Research Institute; Darlinghurst New South Wales Australia
| | - Audrey Letourneau
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | - Laura Sartiani
- Department of Neuroscience; Psychology, Drug Research and Child Health, Center of Molecular Medicine, University of Florence; Florence Italy
| | - Martina Del Lungo
- Department of Neuroscience; Psychology, Drug Research and Child Health, Center of Molecular Medicine, University of Florence; Florence Italy
| | - Flavio Ronzoni
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| | - Rostyslav Kuziakiv
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| | - Virpi Tohonen
- Department of Biosciences and Nutrition; Karolinska Institute; Huddinge Sweden
| | - Marco Zucchelli
- Department of Biosciences and Nutrition; Karolinska Institute; Huddinge Sweden
| | - Federico Santoni
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
| | | | - Outi Hovatta
- Division of Obstetrics and Gynecology; Department of Clinical Science; Karolinska Institute; Huddinge Stockholm Sweden
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development; Faculty of Medicine, University of Geneva; Geneva Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva; Geneva Switzerland
| | - Marisa E. Jaconi
- Department of Pathology and Immunology; Faculty of Medicine; University of Geneva; Geneva Switzerland
| |
Collapse
|
280
|
The generation of definitive endoderm from human embryonic stem cells is initially independent from activin A but requires canonical Wnt-signaling. Stem Cell Rev Rep 2015; 10:480-93. [PMID: 24913278 DOI: 10.1007/s12015-014-9509-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.
Collapse
|
281
|
Expression of Tight Junction Components in Hepatocyte-Like Cells Differentiated from Human Embryonic Stem Cells. Pathol Oncol Res 2015; 21:1059-70. [PMID: 25845432 DOI: 10.1007/s12253-015-9936-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 03/18/2015] [Indexed: 02/07/2023]
Abstract
Human embryonic stem cells can be differentiated in vitro into a wide variety of progeny cells by addition of different morphogens and growth factors. Our aim was to monitor the expression pattern of tight junction (TJ) components and various cellular markers during differentiation of stem cell lines toward the hepatic lineage. Human embryonic stem cell lines (HUES1, HUES9) were differentiated into endoderm-like cells, and further differentiated to hepatocyte-like cells. Gene expressions of Oct3/4, Nanog, alpha-fetoprotein, albumin, cytokeratins (CK-7, CK-8, CK-18, CK-19), ATP-binding cassette (ABC) transporters (ABCC2, ABCC7, ABCG2), and various TJ components, including claudin-1, claudin-4, claudin-5, claudin-7, and tricellulin, as well as an extracellular matrix component, agrin were monitored during hepatic differentiation by real-time quantitative PCR. The differentiated cells exhibit epithelial morphology and functional assessments similar to that of hepatocytes. The expression level of stem cell marker genes (Oct3/4 and Nanog) significantly and gradually decreased, while liver-associated genes (alpha-fetoprotein, albumin) reached their highest expression at the end of the differentiation. The endoderm-like cells expressed claudin-1, which declined eventually. The expression levels of cholangiocyte markers including claudin-4, CK-7, CK-19, and agrin gradually increased and reached their highest level at the final stage of differentiation. In contrast, these cells did not express notable level of claudin-7, CK-8 and tricellulin. The marker set used for monitoring differentiation revealed both hepatocyte and cholangiocyte characteristics of the differentiated cells at the final stage. This is the first report describing the expression level changes of various TJ components, and underlining their importance in hepatic differentiation.
Collapse
|
282
|
Onuma Y, Higuchi K, Aiki Y, Shu Y, Asada M, Asashima M, Suzuki M, Imamura T, Ito Y. A stable chimeric fibroblast growth factor (FGF) can successfully replace basic FGF in human pluripotent stem cell culture. PLoS One 2015; 10:e0118931. [PMID: 25850016 PMCID: PMC4388338 DOI: 10.1371/journal.pone.0118931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells.
Collapse
Affiliation(s)
- Yasuko Onuma
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
| | - Kumiko Higuchi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
| | - Yasuhiko Aiki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
| | - Yujing Shu
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
| | - Masahiro Asada
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
| | - Makoto Asashima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
| | - Masashi Suzuki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310–8512, Japan
| | - Toru Imamura
- Signaling Molecules Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8566, Japan
- Cell Regulation Laboratory, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404–1 Katakura Hachioji, Tokyo 192–0982, Japan
| | - Yuzuru Ito
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305–8562, Japan
- * E-mail:
| |
Collapse
|
283
|
Wang YC, Lin V, Loring JF, Peterson SE. The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine. Expert Opin Biol Ther 2015; 15:679-87. [PMID: 25736263 DOI: 10.1517/14712598.2015.1021329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Human pluripotent stem cells (hPSCs) promise for the future of regenerative medicine. The structural and biochemical diversity associated with glycans makes them a unique type of macromolecule modification that is involved in the regulation of a vast array of biochemical events and cellular activities including pluripotency in hPSCs. The primary focus of this review article is to highlight recent advances in stem cell research from a glycobiological perspective. We also discuss how our understanding of glycans and glycosylation may help overcome barriers hindering the clinical application of hPSC-derived cells. AREAS COVERED A literature survey using NCBI-PubMed and Google Scholar was performed in 2014. EXPERT OPINION Regenerative medicine hopes to provide novel strategies to combat human disease and tissue injury that currently lack effective therapies. Although progress in this field is accelerating, many critical issues remain to be addressed in order for cell-based therapy to become a practical and safe treatment option. Emerging evidence suggests that protein glycosylation may significantly influence the regulation of cellular pluripotency, and that the exploitation of protein glycosylation in hPSCs and their differentiated derivatives may lead to transformative and translational discoveries for regenerative medicine. In addition, hPSCs represent a novel research platform for investigating glycosylation-related disease.
Collapse
Affiliation(s)
- Yu-Chieh Wang
- The University of North Texas Health Science Center, Department of Pharmaceutical Sciences , 3500 Camp Bowie Boulevard, RES-314G, Fort Worth, TX 76107 , USA +1 817 735 2944 ; +1 817 735 2603 ;
| | | | | | | |
Collapse
|
284
|
Toyoda T, Mae SI, Tanaka H, Kondo Y, Funato M, Hosokawa Y, Sudo T, Kawaguchi Y, Osafune K. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res 2015; 14:185-97. [DOI: 10.1016/j.scr.2015.01.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/28/2014] [Accepted: 01/19/2015] [Indexed: 01/22/2023] Open
|
285
|
Lippmann ES, Estevez-Silva MC, Ashton RS. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 2015; 32:1032-42. [PMID: 24357014 DOI: 10.1002/stem.1622] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022]
Abstract
The embryonic neuroepithelium gives rise to the entire central nervous system in vivo, making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here, we report that hPSCs maintained under chemically defined, feeder-independent, and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions, without small molecule inhibitors, and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12, sodium bicarbonate, selenium, ascorbic acid, transferrin, and insulin (i.e., E6 medium). Furthermore, we provide evidence that the defined culture conditions enable this high level of neural conversion in contrast to hPSCs maintained on mouse embryonic fibroblasts (MEFs). In addition, hPSCs previously maintained on MEFs could be rapidly converted to a neural compliant state upon transfer to these defined conditions while still maintaining their ability to generate all three germ layers. Overall, this fully defined and scalable protocol should be broadly useful for generating therapeutic neural cells for regenerative applications.
Collapse
Affiliation(s)
- Ethan Scott Lippmann
- Wisconsin Institute for Discovery and University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
286
|
Huang SXL, Green MD, de Carvalho AT, Mumau M, Chen YW, D'Souza SL, Snoeck HW. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat Protoc 2015; 10:413-25. [PMID: 25654758 DOI: 10.1038/nprot.2015.023] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung and airway epithelial cells generated in vitro from human pluripotent stem cells (hPSCs) have applications in regenerative medicine, modeling of lung disease, drug screening and studies of human lung development. Here we describe a strategy for directed differentiation of hPSCs into developmental lung progenitors, and their subsequent differentiation into predominantly distal lung epithelial cells. The protocol entails four stages that recapitulate lung development, and it takes ∼50 d. First, definitive endoderm (DE) is induced in the presence of high concentrations of activin A. Subsequently, lung-biased anterior foregut endoderm (AFE) is specified by sequential inhibition of bone morphogenetic protein (BMP), transforming growth factor-β (TGF-β) and Wnt signaling. AFE is then ventralized by applying Wnt, BMP, fibroblast growth factor (FGF) and retinoic acid (RA) signaling to obtain lung and airway progenitors. Finally, these are further differentiated into more mature epithelial cells types using Wnt, FGF, cAMP and glucocorticoid agonism. This protocol is conducted in defined conditions, it does not involve genetic manipulation of the cells and it results in cultures in which the majority of the cells express markers of various lung and airway epithelial cells, with a predominance of cells identifiable as functional type II alveolar epithelial cells.
Collapse
Affiliation(s)
- Sarah X L Huang
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Michael D Green
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ana Toste de Carvalho
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Melanie Mumau
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Ya-Wen Chen
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Sunita L D'Souza
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Experimental Therapeutic Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hans-Willem Snoeck
- 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA. [2] Department of Medicine, Columbia University Medical Center, New York, New York, USA. [3] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
287
|
Melo-Braga MN, Meyer M, Zeng X, Larsen MR. Characterization of human neural differentiation from pluripotent stem cells using proteomics/PTMomics--current state-of-the-art and challenges. Proteomics 2015; 15:656-674. [PMID: 25418965 DOI: 10.1002/pmic.201400388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2025]
Abstract
Stem cells are unspecialized cells capable of self-renewal and to differentiate into the large variety of cells in the body. The possibility to differentiate these cells into neural precursors and neural cells in vitro provides the opportunity to study neural development, nerve cell biology, neurological disease as well as contributing to clinical research. The neural differentiation process is associated with changes at protein and their post-translational modifications (PTMs). PTMs are important regulators of proteins physicochemical properties, function, activity, and interaction with other proteins, DNA/RNA, and complexes. Moreover, the interplay between PTMs is essential to regulate a range of cellular processes that abnormalities in PTM signaling are associated with several diseases. Altogether, this makes PTMs very relevant to study in order to uncover disease pathogenesis and increase the understanding of molecular processes in cells. Substantial advances in PTM enrichment methods and mass spectrometry has allowed the characterization of a subset of PTMs in large-scale studies. This review focuses on the current state-of-the-art of proteomic, as well as PTMomic studies related to human neural differentiation from pluripotent stem cells. Moreover, some of the challenges in stem cell biology, differentiation, and proteomics/PTMomics that are not exclusive to neural development will be discussed.
Collapse
Affiliation(s)
- Marcella Nunes Melo-Braga
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Clinical Proteomics, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
288
|
Ikonomou L, Kotton DN. Derivation of Endodermal Progenitors From Pluripotent Stem Cells. J Cell Physiol 2015; 230:246-58. [PMID: 25160562 PMCID: PMC4344429 DOI: 10.1002/jcp.24771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023]
Abstract
Stem and progenitor cells play important roles in organogenesis during development and in tissue homeostasis and response to injury postnatally. As the regenerative capacity of many human tissues is limited, cell replacement therapies hold great promise for human disease management. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are prime candidates for the derivation of unlimited quantities of clinically relevant cell types through development of directed differentiation protocols, that is, the recapitulation of developmental milestones in in vitro cell culture. Tissue-specific progenitors, including progenitors of endodermal origin, are important intermediates in such protocols since they give rise to all mature parenchymal cells. In this review, we focus on the in vivo biology of embryonic endodermal progenitors in terms of key transcription factors and signaling pathways. We critically review the emerging literature aiming to apply this basic knowledge to achieve the efficient and reproducible in vitro derivation of endodermal progenitors such as pancreas, liver and lung precursor cells.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston
Medical Center, Boston, MA, USA
- Boston University Pulmonary Center, Boston University School of
Medicine, Boston, MA, USA
| |
Collapse
|
289
|
Duggal G, Heindryckx B, Warrier S, Taelman J, Van der Jeught M, Deforce D, Chuva de Sousa Lopes S, De Sutter P. Exogenous supplementation of Activin A enhances germ cell differentiation of human embryonic stem cells. Mol Hum Reprod 2015; 21:410-23. [PMID: 25634576 DOI: 10.1093/molehr/gav004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Human embryonic stem cells (hESCs) derived in the presence of Activin A (ActA) demonstrate an increased differentiation propensity toward the germ cell lineage. In addition, mouse epiblast stem cells and mouse epiblast-like cells are poised toward germ cell differentiation and are derived in the presence of ActA. We therefore investigated whether supplementation with ActA enhances in vitro hESC differentiation toward germ cell lineage. ActA up-regulated early primordial germ cell (PGC) genes STELLA/DPPA3 (developmental pluripotency associated 3) and tyrosine kinase receptor cKIT in both ActA-derived and standard-derived hESCs indicating its role in priming hESCs toward the PGC lineage. Indeed, ActA plus bone morphogenic protein 4 (BMP4) strongly increased germ cell differentiation potential of hESCs based on the high expression of late PGC markers DAZL (deleted in azoospermia-like) and VASA/DDX4 (DEAD-box polypeptide 4) at mRNA and protein level. Hence, the combination of ActA with BMP4 provides an additional boost for hESCs to develop into postmigratory germ cells. Together with increased VASA expression in the presence of ActA and BMP4, we also observed up-regulation of endoderm-specific genes GATA4 (GATA binding protein 4) and GATA6. Finally, we were able to further mature these in vitro-derived PGC-like cells (PGCLCs) by culturing them in in vitro maturation (IVM) medium, resulting in the formation of germ cell-like clusters and induction of meiotic gene expression. In conclusion, we demonstrate for the first time a synergism between ActA and BMP4 in facilitating germ cell-directed differentiation of hESCs, which is enhanced by extended culture in IVM medium, as shown by cytoplasmic VASA-expressing PGCLCs. We propose a novel relationship between the endoderm and germ cell lineage during hESC differentiation.
Collapse
Affiliation(s)
- Galbha Duggal
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sharat Warrier
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jasin Taelman
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Margot Van der Jeught
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Susana Chuva de Sousa Lopes
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Petra De Sutter
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
290
|
Abdelalim EM, Emara MM. Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells. World J Stem Cells 2015; 7:174-181. [PMID: 25621117 PMCID: PMC4300928 DOI: 10.4252/wjsc.v7.i1.174] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells (PSCs) are able to differentiate into several cell types, including pancreatic β cells. Differentiation of pancreatic β cells depends on certain transcription factors, which function in a coordinated way during pancreas development. The existing protocols for in vitro differentiation produce pancreatic β cells, which are not highly responsive to glucose stimulation except after their transplantation into immune-compromised mice and allowing several weeks for further differentiation to ensure the maturation of these cells in vivo. Thus, although the substantial improvement that has been made for the differentiation of induced PSCs and embryonic stem cells toward pancreatic β cells, several challenges still hindering their full generation. Here, we summarize recent advances in the differentiation of PSCs into pancreatic β cells and discuss the challenges facing their differentiation as well as the different applications of these potential PSC-derived β cells.
Collapse
|
291
|
Diekmann U, Lenzen S, Naujok O. A Reliable and Efficient Protocol for Human Pluripotent Stem Cell Differentiation into the Definitive Endoderm Based on Dispersed Single Cells. Stem Cells Dev 2015; 24:190-204. [DOI: 10.1089/scd.2014.0143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
292
|
Tsuyama T, Shiraki N, Kume S. Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation. Methods Mol Biol 2015; 1307:205-12. [PMID: 25822724 DOI: 10.1007/7651_2015_224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human embryonic stem cells (ESCs) show a characteristic feature in that they are highly dependent on methionine metabolism. Undifferentiated human ESCs cannot survive under the condition that methionine is deprived from culture medium. We describe here a procedure for definitive endoderm differentiation from human ESCs, in which human ESCs are subject to 10 days (d) differentiation combined with methionine deprivation between differentiation day (d) 8 to d10. Methionine deprivation results in elimination of undifferentiated cells from the culture with no significant loss of definitive endoderm cells, as compared to those cultured under complete condition throughout the whole culture period.
Collapse
Affiliation(s)
- Tomonori Tsuyama
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, 860-0811, Japan
| | | | | |
Collapse
|
293
|
Disease-in-a-dish: the contribution of patient-specific induced pluripotent stem cell technology to regenerative rehabilitation. Am J Phys Med Rehabil 2014; 93:S155-68. [PMID: 25122102 DOI: 10.1097/phm.0000000000000141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.
Collapse
|
294
|
Tsugata T, Nikoh N, Kin T, Saitoh I, Noguchi Y, Ueki H, Watanabe M, James Shapiro AM, Noguchi H. Potential Factors for the Differentiation of ESCs/iPSCs Into Insulin-Producing Cells. CELL MEDICINE 2014; 7:83-93. [PMID: 26858897 DOI: 10.3727/215517914x685178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The low efficiency of in vitro differentiation of human embryonic stem cells (ESCs) or human induced pluripotent stem cells (iPSCs) into insulin-producing cells thus creates a crucial hurdle for the clinical implementation of human pluripotent stem cells (PSCs). In this study, we investigated the key factors for the differentiation of PSCs into insulin-producing cells. We obtained microarray data of HUES8 and HUES6 from two GeneChips (GPL3921: Affymetrix HT Human Genome U133A Array, GPL570: Affymetrix Human Genome U133 Plus 2.0 Array) in a database of GEO (NCBI), since HUES8 can differentiate into pancreatic cells, while HUES6 hardly demonstrates any differentiation at all. The genes with more than fourfold higher expressions in HUES8 compared to HUES6 included RPS4Y1, DDX3Y, EIF1AY, GREM1, GATA6, and NLGN4Y. Since there were four genes, RPS4Y1, DDX3Y, EIF1AY, and NLGN4Y, on the Y chromosome and HUES8 was a male cell line and HUES6 was a female cell line, we excluded these genes in this study. On the other hand, genes with more than fourfold higher expressions in HUES6 compared to HUES8 included NLRP2, EGR1, and SMC3. We next compared iPSCs derived from pancreatic cells (PiPSCs) and iPSCs derived from fibroblasts (FiPSCs). PiPSCs differentiated into insulin-producing cells more easily than FiPSCs because of their epigenetic memory. The gene expressions of GREM1, GATA6, NLRP2, EGR1, and SMC3 in PiPSCs and FiPSCs were also investigated. The expression level of GREM1 and GATA6 in PiPSCs were higher than in FiPSCs. On the other hand, EGR1, which was lower in HUES8 than in HUES6, was predictably lower in PiPSCs than FiPSCs, while NLRP2 and SMC3 were higher in PiPSCs than FiPSCs. These data suggest that the expression of GATA6 and GREM1 and the inhibition of EGR1 may be important factors for the differentiation of PSCs into insulin-producing cells.
Collapse
Affiliation(s)
- Takako Tsugata
- Natural and Environmental Sciences Program, The Open University of Japan , Chiba , Japan
| | - Naruo Nikoh
- Natural and Environmental Sciences Program, The Open University of Japan , Chiba , Japan
| | - Tatsuya Kin
- † Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Yasufumi Noguchi
- § Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Hideo Ueki
- ¶ Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masami Watanabe
- ¶ Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | | | - Hirofumi Noguchi
- Natural and Environmental Sciences Program, The Open University of Japan, Chiba, Japan; #Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
295
|
Colleoni S, Galli C, Gaspar JA, Meganathan K, Jagtap S, Hescheler J, Zagoura D, Bremer S, Sachinidis A, Lazzari G. A comparative transcriptomic study on the effects of valproic acid on two different hESCs lines in a neural teratogenicity test system. Toxicol Lett 2014; 231:38-44. [DOI: 10.1016/j.toxlet.2014.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
|
296
|
Phasic modulation of Wnt signaling enhances cardiac differentiation in human pluripotent stem cells by recapitulating developmental ontogeny. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2394-402. [DOI: 10.1016/j.bbamcr.2014.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/02/2014] [Accepted: 06/19/2014] [Indexed: 01/05/2023]
|
297
|
Prowse AB, Timmins NE, Yau TM, Li RK, Weisel RD, Keller G, Zandstra PW. Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Can J Cardiol 2014; 30:1335-49. [DOI: 10.1016/j.cjca.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 01/08/2023] Open
|
298
|
Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Ohno R, Fujita C, Haruna T, Yuasa S, Sano M, Fujita J, Fukuda K. A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 2014; 3:1473-83. [PMID: 25355733 DOI: 10.5966/sctm.2014-0072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cardiac regenerative therapy with human pluripotent stem cells (hPSCs), such as human embryonic stem cells and induced pluripotent stem cells, has been hampered by the lack of efficient strategies for expanding functional cardiomyocytes (CMs) to clinically relevant numbers. The development of the massive suspension culture system (MSCS) has shed light on this critical issue, although it remains unclear how hPSCs could differentiate into functional CMs using a MSCS. The proliferative rate of differentiating hPSCs in the MSCS was equivalent to that in suspension cultures using nonadherent culture dishes, although the MSCS provided more homogeneous embryoid bodies (EBs), eventually reducing apoptosis. However, pluripotent markers such as Oct3/4 and Tra-1-60 were still expressed in EBs 2 weeks after differentiation, even in the MSCS. The remaining undifferentiated stem cells in such cultures could retain a strong potential for teratoma formation, which is the worst scenario for clinical applications of hPSC-derived CMs. The metabolic purification of CMs in glucose-depleted and lactate-enriched medium successfully eliminated the residual undifferentiated stem cells, resulting in a refined hPSC-derived CM population. In colony formation assays, no Tra-1-60-positive colonies appeared after purification. The nonpurified CMs in the MSCS produced teratomas at a rate of 60%. However, purified CMs never induced teratomas, and enriched CMs showed proper electrophysiological properties and calcium transients. Overall, the combination of a MSCS and metabolic selection is a highly effective and practical approach to purify and enrich massive numbers of functional CMs and provides an essential technique for cardiac regenerative therapy with hPSC-derived CMs.
Collapse
Affiliation(s)
- Natsuko Hemmi
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shugo Tohyama
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kazuaki Nakajima
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kanazawa
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoyuki Suzuki
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hattori
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomohisa Seki
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshikazu Kishino
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Akinori Hirano
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Marina Okada
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ryota Tabei
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Rei Ohno
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Chihana Fujita
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoko Haruna
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shinsuke Yuasa
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Motoaki Sano
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Jun Fujita
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Keiichi Fukuda
- Departments of Cardiology and Cardiovascular Surgery, Keio University School of Medicine, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
299
|
Leschik J, Caron L, Yang H, Cowan C, Pucéat M. A view of bivalent epigenetic marks in two human embryonic stem cell lines reveals a different cardiogenic potential. Stem Cells Dev 2014; 24:384-92. [PMID: 25202820 DOI: 10.1089/scd.2014.0345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem (HUES) cells are derived from early individual embryos with unique genetic printing. However, how their epigenetic status might affect their potential to differentiate toward specific lineages remains a puzzling question. Using chromatin immunoprecipitation (ChIP)-polymerase chain reaction and ChIP-on-chip, the status of bivalent domains on gene promoters (ie, histone 3 on lysine 4 and histone 3 on lysine 27 trimethylation) was monitored for both undifferentiated and bone morphogenetic protein 2 (BMP2)-induced cardiac-committed cells. A marked difference in the epigenetic profile of HUES cell lines was observed and this was correlated to the pattern of gene expression induced by BMP2 as well as to their potential to generate cardiac progenitors and differentiated myocytes. Thus, the epigenetic H3trimeK4 and H3trimeK27 prints generating bivalent domains on promoters, could be used to predict a preference in their differentiation toward a specific lineage.
Collapse
Affiliation(s)
- Julia Leschik
- 1 INSERM UMR 633, Genopole Evry, University Paris V Descartes , Evry, France
| | | | | | | | | |
Collapse
|
300
|
Honsho K, Hirose M, Hatori M, Yasmin L, Izu H, Matoba S, Togayachi S, Miyoshi H, Sankai T, Ogura A, Honda A. Naïve-like conversion enhances the difference in innate in vitro differentiation capacity between rabbit ES cells and iPS cells. J Reprod Dev 2014; 61:13-9. [PMID: 25345855 PMCID: PMC4354226 DOI: 10.1262/jrd.2014-098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/17/2014] [Indexed: 01/27/2023] Open
Abstract
Quality evaluation of pluripotent stem cells using appropriate animal models needs to be improved for human regenerative medicine. Previously, we demonstrated that although the in vitro neural differentiating capacity of rabbit induced pluripotent stem cells (iPSCs) can be mitigated by improving their baseline level of pluripotency, i.e., by converting them into the so-called "naïve-like" state, the effect after such conversion of rabbit embryonic stem cells (ESCs) remains to be elucidated. Here we found that naïve-like conversion enhanced the differences in innate in vitro differentiation capacity between ESCs and iPSCs. Naïve-like rabbit ESCs exhibited several features indicating pluripotency, including the capacity for teratoma formation. They differentiated into mature oligodendrocytes much more effectively (3.3-7.2 times) than naïve-like iPSCs. This suggests an inherent variation in differentiation potential in vitro among PSC lines. When naïve-like ESCs were injected into preimplantation rabbit embryos, although they contributed efficiently to forming the inner cell mass of blastocysts, no chimeric pups were obtained. Thus, in vitro neural differentiation following naïve-like conversion is a promising option for determining the quality of PSCs without the need to demonstrate chimeric contribution. These results provide an opportunity to evaluate which pluripotent stem cells or treatments are best suited for therapeutic use.
Collapse
Affiliation(s)
- Kimiko Honsho
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|