251
|
Nicolazzo JA, Steuten JA, Charman SA, Taylor N, Davies PJ, Petrou S. Brain uptake of diazepam and phenytoin in a genetic animal model of absence epilepsy. Clin Exp Pharmacol Physiol 2010; 37:647-9. [PMID: 20082623 DOI: 10.1111/j.1440-1681.2010.05362.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Although many studies have assessed changes to brain uptake of anti-epileptic drugs (AEDs) in chemically and electrically induced seizure models, there are limited data available on changes to brain uptake of AEDs in spontaneous seizure animal models, such as genetic absence epilepsy. 2. In the present study, the brain uptake of diazepam and phenytoin was assessed in a genetic mouse model of absence seizures harbouring a human GABA(A) receptor gamma2-subunit gene GABRG2 mutation (R43Q) and results were compared with those obtained during acute seizures induced by subcutaneous administration of pentylenetetrazole (PTZ; 90 mg/kg). Diazepam and phenytoin were administered intraperitoneally at doses of 2 and 30 mg/kg, respectively, and brain and plasma concentrations were determined 60 min after administration using liquid chromatography-mass spectrometry. 3. Although the brain uptake of phenytoin was significantly reduced following PTZ administration, no changes were observed in phenytoin disposition in the genetic absence epilepsy model. Similarly, the brain uptake of diazepam was significantly enhanced following PTZ administration, but it was not affected in absence epilepsy. 4. The cerebrovascular plasma volume (assessed by administration of the non-absorbable marker [(14)C]-inulin) was not significantly different in saline-treated compared with PTZ-treated mice and in wild-type compared with mutant R43Q mice. 5. These results demonstrate that although the brain uptake of AEDs may be altered in acute seizure models, similar changes to brain uptake may not be observed in the non-convulsive genetic absence epileptic model.
Collapse
Affiliation(s)
- Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | |
Collapse
|
252
|
Abstract
Genetic factors play an increasingly recognized role in idiopathic epilepsies. Since 1995, positional cloning strategies in multi-generational families with autosomal dominant transmission have revealed 11 genes (KCNQ2, KCNQ3, CHRNA4, CHRNA2, CHRNB2, SCN1B, SCN1A, SCN2A, GABRG2, GABRA1, and LGI1) and numerous loci for febrile seizures and epilepsies. To date, all genes with the exception of LGI1 (leucine-rich glioma inactivated 1), encode neuronal ion channel or neurotransmitter receptor subunits. Molecular approaches have revealed great genetic heterogeneity, with the vast majority of genes remaining to be identified. One of the major challenges is now to understand phenotype-genotype correlations. This review focuses on the current knowledge on the molecular basis of these rare Mendelian autosomal dominant forms of idiopathic epilepsies.
Collapse
Affiliation(s)
- Stéphanie Baulac
- UPMC/Inserm, UMR_S975, Cricm, F-75013, Bâtiment Pharmacie, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France.
| | - Michel Baulac
- UPMC/Inserm, UMR_S975, Cricm, F-75013, Bâtiment Pharmacie, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France; Center for Epilepsy, AP-HP, Bâtiment Paul Casteigne Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'hôpital, 75013 Paris, France
| |
Collapse
|
253
|
Thomas EA, Reid CA, Petrou S. Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability. Epilepsia 2010; 51:136-45. [DOI: 10.1111/j.1528-1167.2009.02202.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
254
|
Goldschen-Ohm MP, Wagner DA, Petrou S, Jones MV. An epilepsy-related region in the GABA(A) receptor mediates long-distance effects on GABA and benzodiazepine binding sites. Mol Pharmacol 2010; 77:35-45. [PMID: 19846749 PMCID: PMC2802431 DOI: 10.1124/mol.109.058289] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022] Open
Abstract
The GABA(A) receptor mutation gamma(2)R43Q causes absence epilepsy in humans. Homology modeling suggests that gamma(2)Arg43, gamma(2)Glu178, and beta(2)Arg117 participate in a salt-bridge network linking the gamma(2) and beta(2) subunits. Here we show that several mutations at these locations exert similar long-distance effects on other intersubunit interfaces involved in GABA and benzodiazepine binding. These mutations alter GABA-evoked receptor kinetics by slowing deactivation, enhancing desensitization, or both. Kinetic modeling and nonstationary noise analysis for gamma(2)R43Q reveal that these effects are due to slowed GABA unbinding and slowed recovery from desensitization. Both gamma(2)R43Q and beta(2)R117K also speed diazepam dissociation from the receptor's benzodiazepine binding interface, as assayed by the rate of decay of diazepam-induced potentiation of GABA-evoked currents. These data demonstrate that gamma(2)Arg43 and beta(2)Arg117 similarly regulate the stability of both the GABA and benzodiazepine binding sites at the distant beta/alpha and alpha/gamma intersubunit interfaces, respectively. A simple explanation for these results is that gamma(2)Arg43 and beta(2)Arg117 participate in interactions between the gamma(2) and beta(2) subunits, disruptions of which alter the neighboring intersubunit binding sites in a similar fashion. In addition, gamma(2)Arg43 and gamma(2)Glu178 regulate desensitization, probably mediated within the transmembrane domains near the pore. Therefore, mutations at the gamma/beta intersubunit interface have specific long-distance effects that are propagated widely throughout the GABA(A) receptor protein.
Collapse
|
255
|
Tokuda S, Beyer BJ, Frankel WN. Genetic complexity of absence seizures in substrains of C3H mice. GENES BRAIN AND BEHAVIOR 2009; 8:283-9. [PMID: 19170754 DOI: 10.1111/j.1601-183x.2008.00472.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Absence epilepsy is a common form of idiopathic generalized epilepsy whose etiology is poorly understood because of genetic and phenotypic heterogeneity. The inbred mouse strain C3H/He exhibits spontaneous absence seizures characterized by spike and wave discharges (SWD) on the electroencephalogram concomitant with behavioral arrest. Previous studies using the C3H/HeJ (HeJ) substrain identified a mutation in the Gria4 gene as a major susceptibility locus. In the present study, we found that two closely related substrains C3H/HeOuJ (OuJ) and C3H/HeSnJ, which have a similar SWD incidence as HeJ, do not contain the Gria4 mutation. Further analysis of backcross mice segregating OuJ and C57BL/6J alleles shows that, unlike the HeJ substrain, OuJ does not have a major locus for SWD but has suggestive loci at best that would explain only a fraction of the phenotypic variance. These results illustrate how the genetic etiology of a common neurological disorder can differ between substrains with similar phenotypes. We infer that all C3H strains are sensitized to SWD and that additional mutations affecting SWD arose or were fixed independently in the years since the substrains diverged.
Collapse
Affiliation(s)
- S Tokuda
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA
| | | | | |
Collapse
|
256
|
Cope DW, Di Giovanni G, Fyson SJ, Orbán G, Errington AC, Lőrincz ML, Gould TM, Carter DA, Crunelli V. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 2009; 15:1392-8. [PMID: 19966779 PMCID: PMC2824149 DOI: 10.1038/nm.2058] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/15/2009] [Indexed: 12/02/2022]
Abstract
The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired gamma-aminobutyric acid (GABA)-ergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABA(A) receptor-dependent 'tonic' inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT-1 in the genetic models tested, and GAT-1 is crucial in governing seizure genesis. Extrasynaptic GABA(A) receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABA(A) receptors is sufficient to elicit both electrographic and behavioral correlates of seizures in normal rats. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic importance and highlight potential therapeutic targets for the treatment of absence epilepsy.
Collapse
Affiliation(s)
- David W. Cope
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | | | - Sarah J. Fyson
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | | | - Adam C. Errington
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | - Magor L. Lőrincz
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | - Timothy M. Gould
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | - David A. Carter
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| | - Vincenzo Crunelli
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX. UK
| |
Collapse
|
257
|
Chioza BA, Aicardi J, Aschauer H, Brouwer O, Callenbach P, Covanis A, Dooley JM, Dulac O, Durner M, Eeg-Olofsson O, Feucht M, Friis ML, Guerrini R, Kjeldsen MJ, Nabbout R, Nashef L, Sander T, Sirén A, Wirrell E, McKeigue P, Robinson R, Gardiner RM, Everett KV. Genome wide high density SNP-based linkage analysis of childhood absence epilepsy identifies a susceptibility locus on chromosome 3p23-p14. Epilepsy Res 2009; 87:247-55. [PMID: 19837565 PMCID: PMC2791882 DOI: 10.1016/j.eplepsyres.2009.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 12/03/2022]
Abstract
Childhood absence epilepsy (CAE) is an idiopathic generalised epilepsy (IGE) characterised by typical absence seizures manifested by transitory loss of awareness with 2.5-4 Hz spike-wave complexes on ictal EEG. A genetic component to the aetiology is well recognised but the mechanism of inheritance and the genes involved are yet to be fully established. A genome wide single nucleotide polymorphism (SNP)-based high density linkage scan was carried out using 41 nuclear pedigrees with at least two affected members. Multipoint parametric and non-parametric linkage analyses were performed using MERLIN 1.1.1 and a susceptibility locus was identified on chromosome 3p23-p14 (Z(mean)=3.9, p<0.0001; HLOD=3.3, alpha=0.7). The linked region harbours the functional candidate genes TRAK1 and CACNA2D2. Fine-mapping using a tagSNP approach demonstrated disease association with variants in TRAK1.
Collapse
Affiliation(s)
- Barry A. Chioza
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Harald Aschauer
- Department of General Psychiatry, Medical University Vienna, Austria
| | - Oebele Brouwer
- Department of Neurology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Petra Callenbach
- Department of Neurology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | | | - Olivier Dulac
- Neuropaediatrics Department, Hôpital Necker Enfant Malades, France
| | - Martina Durner
- Division of Statistical Genetics, Columbia University, USA
| | - Orvar Eeg-Olofsson
- Department of Women's and Children's Health/Neuropaediatrics, Uppsala University, Sweden
| | - Martha Feucht
- Department of Paediatrics, Medical University Vienna, Austria
| | | | - Renzo Guerrini
- Division of Child Neurology and Psychiatry, University of Pisa, and IRCCS Fondazione Stella Maris, Italy
| | | | - Rima Nabbout
- Neuropaediatrics Department, Hôpital Necker Enfant Malades, France
| | | | - Thomas Sander
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Epilepsy Genetics Group, Department of Neurology, Charité University Medicine, Humboldt University of Berlin, Germany
| | - Auli Sirén
- Department of Paediatrics, Tampere University Hospital, Finland
| | - Elaine Wirrell
- Division of Child and Adolescent Neurology, Mayo Clinic, USA
| | - Paul McKeigue
- Public Health Sciences Section, Division of Community Health Sciences, The University of Edinburgh Medical School, UK
| | | | - R. Mark Gardiner
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Kate V. Everett
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
258
|
Sirén A, Polvi A, Chahine L, Labuda M, Bourgoin S, Anttonen AK, Kousi M, Hirvonen K, Simola KOJ, Andermann E, Laiho A, Soini J, Koivikko M, Laaksonen R, Pandolfo M, Lehesjoki AE. Suggestive evidence for a new locus for epilepsy with heterogeneous phenotypes on chromosome 17q. Epilepsy Res 2009; 88:65-75. [PMID: 19914042 DOI: 10.1016/j.eplepsyres.2009.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/10/2009] [Accepted: 09/25/2009] [Indexed: 12/31/2022]
Abstract
PURPOSE To characterize the clinical features and molecular genetic background in a family with various epilepsy phenotypes including febrile seizures, childhood absence epilepsy, and possible temporal lobe epilepsy. METHODS Clinical data were collected. DNA and RNA were extracted from peripheral blood. A genome-wide microsatellite marker scan was performed and regions with a multipoint location score > or =1.5 were fine mapped. Functional candidate genes identified from databases and by comparing gene expression profiles of genes between affected and unaffected individuals were sequenced. Copy number variation was evaluated with array-based comparative genomic hybridization. RESULTS The seizure phenotype was benign. Inheritance was consistent with an autosomal dominant model and reduced penetrance. The highest two-point LOD score of 2.8 was identified at marker D17S1606 in a 37cM interval on chromosome 17q12-q24. Loci on 5q11.2 and on 18p11-q11, showed LOD scores > or =1.5 after fine mapping. Sequencing of nine ion-channel genes and two (RPIP8 and SLC25A39) differentially expressed genes from 17q12-q24, as well as IMPA2 from 18p11-q11 did not reveal a pathogenic alteration. No clinically relevant copy number variation was identified. CONCLUSIONS Our findings suggest complex inheritance of seizure susceptibility in the family with contribution from three loci, including a possible new locus on chromosome 17q. The underlying molecular defects remain unknown.
Collapse
Affiliation(s)
- Auli Sirén
- Department of Pediatrics, Tampere University Hospital, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Siniatchkin M, Koepp M. Neuroimaging and neurogenetics of epilepsy in humans. Neuroscience 2009; 164:164-73. [DOI: 10.1016/j.neuroscience.2009.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 08/13/2009] [Accepted: 08/19/2009] [Indexed: 11/24/2022]
|
260
|
Orrico A, Galli L, Grosso S, Buoni S, Pianigiani R, Balestri P, Sorrentino V. Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies. Clin Genet 2009; 75:579-81. [PMID: 19522081 DOI: 10.1111/j.1399-0004.2009.01155.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
261
|
Zai CC, Tiwari AK, King N, De Luca V, Mueller DJ, Shaikh S, Wong GWH, Meltzer HY, Lieberman JA, Kennedy JL. Association study of the gamma-aminobutyric acid type a receptor gamma2 subunit gene with schizophrenia. Schizophr Res 2009; 114:33-8. [PMID: 19682861 DOI: 10.1016/j.schres.2009.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/11/2009] [Accepted: 07/10/2009] [Indexed: 02/08/2023]
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder with a strong genetic basis. We analyzed eight GABRG2 and one DRD5 tag single-nucleotide polymorphisms for association with SCZ in 109 small nuclear families and 229 independent SCZ case-control pairs. The marker rs183294 in the 5' region of GABRG2 was found to be associated with SCZ in both samples with the C allele over-represented in SCZ cases and over-transmitted in SCZ families (combined z=9.18; p<1 x 10(-3)). Taken together, the results of the present study suggest that GABRG2 may be involved in SCZ susceptibility, but further studies are required.
Collapse
Affiliation(s)
- Clement C Zai
- Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Abstract
Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Na(v)1.1 alpha subunits. Sodium channels are modulated by beta1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Na(v)1.1 alpha subunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of beta1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b(-/-) versus Scn1b(+/+) mice. Scn1b(-/-) CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a(+/-) model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b(-/-) mice seize spontaneously, the seizure susceptibility of Scn1b(+/-) mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation.
Collapse
|
263
|
Kang JQ, Macdonald RL. Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 2009; 15:430-8. [PMID: 19717338 DOI: 10.1016/j.molmed.2009.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
Abstract
Nonsense mutations that generate premature translation-termination codons (PTCs) are responsible for approximately one- third of human genetic diseases. PTCs in both voltage- and ligand-gated ion channel genes, including those for sodium, potassium, nicotinic cholinergic receptor and GABA(A) receptor channels, have been associated with genetic epilepsies but the epilepsy syndromes they cause are variable. It was recently proposed that two well-established molecular pathways, nonsense-mediated decay (NMD) and endoplasmic reticulum-associated degradation (ERAD), determine the effects of PTCs in GABA(A) receptor subunit genes associated with genetic epilepsies on the cellular fates of mutant subunit mRNAs and proteins. Activation of these different molecular mechanisms might contribute in part to different clinical phenotypes in patients with GABA(A) receptor subunit gene PTCs and thus different approaches for treatment of their genetic epilepsies might be required.
Collapse
Affiliation(s)
- Jing-Qiong Kang
- Department of Neurology, Vanderbilt University, Nashville, TN 37232-8552, USA.
| | | |
Collapse
|
264
|
Avramescu S, Nita DA, Timofeev I. Neocortical post-traumatic epileptogenesis is associated with loss of GABAergic neurons. J Neurotrauma 2009; 26:799-812. [PMID: 19422294 DOI: 10.1089/neu.2008.0739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The subtle mechanisms of post-traumatic epileptogenesis remain unknown, although the incidence of chronic epilepsy after penetrating cortical wounds is high. Here, we investigated whether the increased frequency of seizures occurring within 6 weeks following partial deafferentation of the suprasylvian gyrus in cats is accompanied with a change in the ratio between the number of excitatory and inhibitory neurons. Immuno-histochemical labeling of all neurons with neuronal-specific nuclear protein (NeuN) antibody, and of the GABAergic inhibitory neurons with either gamma-aminobutyric acid (GABA) or glutamic acid decarboxylase (GAD 65&67) antibodies, was performed on sections obtained from control and epileptic animals with chronically deafferented suprasylvian gyrus. Quantification of the labeled neurons was performed in control animals and at 2, 4, and 6 weeks following cortical deafferentation, in the suprasylvian and marginal gyri, both ipsi- and contra-lateral to the cortical trauma. In all epileptic animals, the neuronal loss was circumscribed to the deafferented suprasylvian gyrus. Inhibitory GABAergic neurons were particularly more sensitive to cortical deafferentation than excitatory ones, leading to a progressively increasing ratio between excitation and inhibition towards excitation, potentially explaining the increased propensity to seizures in chronic undercut cortex.
Collapse
Affiliation(s)
- Sinziana Avramescu
- Laval University Medical School, Centre de Recherche Université Laval Robert-Giffard, Québec, QC G1J 2G3, Canada
| | | | | |
Collapse
|
265
|
Sasaki K, Matsuo M, Maeda T, Zaitsu M, Hamasaki Y. Febrile seizures: characterization of double-stranded RNA-induced gene expression. Pediatr Neurol 2009; 41:114-8. [PMID: 19589459 DOI: 10.1016/j.pediatrneurol.2009.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/23/2009] [Accepted: 03/04/2009] [Indexed: 11/29/2022]
Abstract
An association has long been suspected between febrile seizures and interleukin-1beta, the most potent endogenous pyrogen. Interleukin-1beta production increases after double-stranded RNA stimulation in leukocytes of febrile seizure patients. To elucidate the genetics of the immune response, the gene expression pattern after double-stranded RNA stimulation was investigated using DNA microarray. Compared with the control group, expression of the genes ACCN4 (sodium channel), KCNC3 (potassium channel), GABRE (gamma-aminobutyric acid receptor epsilon subunit), RIPK2 (receptor interacting protein kinase-2), TLR4 (toll-like receptor-4), IL26 (interleukin-26), and TNF (tumor necrosis factor), and CASP1 (caspase-1) was increased in the febrile seizure group (P < 0.01). Because RIPK2 and CASP1 are associated with interleukin-1beta production, increased expression might cause increased interleukin-1beta production in the febrile seizure patients. The induced expression of several ion channel genes by double-stranded RNA may affect neuronal excitability which leads to seizure susceptibility during infection.
Collapse
Affiliation(s)
- Kazuya Sasaki
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | | | | |
Collapse
|
266
|
Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126:173-93. [PMID: 19536565 DOI: 10.1007/s00439-009-0702-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 06/02/2009] [Indexed: 01/10/2023]
Abstract
Epilepsy is the most common neurological disorder affecting young people. The etiologies are multiple and most cases are sporadic. However, some rare families with Mendelian inheritance have provided evidence of genes' important role in epilepsy. Two important but apparently different groups of disorders have been extensively studied: epilepsies associated with malformations of cortical development (MCDs) and epilepsies associated with a structurally normal brain (or with minimal abnormalities only). This review is focused on clinical and molecular aspects of focal cortical dysplasia, polymicrogyria, periventricular nodular heterotopia, subcortical band heterotopia, lissencephaly and schizencephaly as examples of MCDs. Juvenile myoclonic epilepsy, childhood absence epilepsy, some familial forms of focal epilepsy and epilepsies associated with febrile seizures are discussed as examples of epileptic conditions in (apparently) structurally normal brains.
Collapse
|
267
|
Bidabadi E, Mashouf M. Association between iron deficiency anemia and first febrile convulsion: A case–control study. Seizure 2009; 18:347-51. [DOI: 10.1016/j.seizure.2009.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 06/20/2008] [Accepted: 01/08/2009] [Indexed: 11/17/2022] Open
|
268
|
Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J Neurosci 2009; 29:5032-43. [PMID: 19369572 DOI: 10.1523/jneurosci.5331-08.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the gamma2 subunit of type A GABA receptors (GABA(A)R), which is required to anchor GABA(A) receptors to the postsynaptic scaffold. Enhanced green fluorescent protein (EGFP)-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by vesicular GABA transporter immunoreactive puncta. ICL expression completely blocked GABA(A)R-mediated transmission in 36% of transfected neurons and significantly reduced GABA(A)R-mediated synaptic currents relative to AMPA receptor-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABA(A)R-mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of gamma2 subunit-containing GABA(A)R. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors, which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo.
Collapse
|
269
|
Abstract
OBJECTIVE This article aimed to review the latest genes associated with idiopathic focal and generalized epilepsies. METHODS PubMed and Entrez Gene searches pertaining to this work was conducted using specific keyword search terms related to genes and various listed subtopics related to idiopathic epilepsy syndromes. RESULTS Mutations in the cholinergic receptor, neuronal nicotinic, alpha2, alpha4 and beta2 subunit genes have been found in autosomal dominant nocturnal frontal lobe epilepsy. Mutations of potassium voltage-gated channel, KQT-like subfamily, members 2 and 3 genes were identified to be responsible for benign familial neonatal seizures. The voltage-gated sodium channel genes and gamma-aminobutyric acid receptor alpha subunit genes may be involved in the pathogenesis of generalized epilepsy with febrile seizure plus. Mutations of gamma-aminobutyric acid receptor alpha1, gamma-aminobutyric acid receptor delta, calcium channel voltage-dependent beta4 subunit and chloride channel 2 gene are associated with juvenile myoclonic epilepsy. In addition, mutations of leucine-rich, glioma-inactivated 1 gene leads to genetic abnormalities of familial lateral temporal lobe epilepsy. EF-hand domain (C-terminal)-containing 1 gene can cause some patterns of juvenile myoclonic and juvenile absence epilepsies. DISCUSSION Genetic factors play an important role in idiopathic epilepsy syndromes. Ion channel genes and some non-ion channel genes contribute to the pathogenesis of idiopathic epilepsies. Based on these findings, genetic diagnosis and new treatment strategies to part of idiopathic epilepsies become possible in the future.
Collapse
Affiliation(s)
- Yang Lu
- The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
270
|
Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev 2009; 31:394-400. [PMID: 19203856 DOI: 10.1016/j.braindev.2009.01.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 10/02/2008] [Accepted: 01/04/2009] [Indexed: 10/21/2022]
Abstract
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) can both arise due to mutations of SCN1A, the gene encoding the alpha 1 pore-forming subunit of the sodium channel. GEFS+ refers to a familial epilepsy syndrome where at least two family members have phenotypes that fit within the GEFS+ spectrum. The GEFS+ spectrum comprises a range of mild to severe phenotypes varying from classical febrile seizures to Dravet syndrome. Dravet syndrome is a severe infantile onset epilepsy syndrome with multiple seizure types, developmental slowing and poor outcome. More than 70% of patients with Dravet syndrome have mutations of SCN1A; these include both truncation and missense mutations. In contrast, only 10% of GEFS+ families have SCN1A mutations and these comprise missense mutations. GEFS+ has also been associated with mutations of genes encoding the sodium channel beta 1 subunit, SCN1B, and the GABA(A) receptor gamma 2 subunit, GABRG2. The phenotypic heterogeneity that is characteristic of GEFS+ families is likely to be due to modifier genes. Interpretation of the significance of a SCN1A missense mutation requires a thorough understanding of the phenotypes in the GEFS+ spectrum whereas a de novo truncation mutation is likely to be associated with a severe phenotype. Early recognition of Dravet syndrome is important as aggressive control of seizures may improve developmental outcome.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Department of Medicine, The University of Melbourne, Austin Health, Victoria, Australia.
| | | | | | | |
Collapse
|
271
|
Nakayama J. Progress in searching for the febrile seizure susceptibility genes. Brain Dev 2009; 31:359-65. [PMID: 19201561 DOI: 10.1016/j.braindev.2008.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 11/04/2008] [Indexed: 12/01/2022]
Abstract
Febrile seizures (FS) represent the most common form of childhood seizures. They affect 2-5% of infants in the Caucasian population and are even more common in the Japanese population, affecting 6-9% of infants. Some familial FS are associated with a wide variety of afebrile seizures. Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with a spectrum of phenotypes including FS, atypical FS (FS+) and afebrile seizures. A significant genetic component exists for susceptibility to FS and GEFS+: extensive genetic studies have shown that at least nine loci are responsible for FS. Furthermore, mutations in the voltage-gated sodium channel subunit genes (SCN1A, SCN2A and SCN1B) and the GABA(A) receptor subunit genes (GABRG2 and GABRD) have been identified in GEFS+. However, the causative genes have not been identified in most patients with FS or GEFS+. Common forms of FS are genetically complex disorders believed to be influenced by variations in several susceptibility genes. Recently, several association studies on FS have been reported, but the results vary among different groups and no consistent or convincing FS susceptibility gene has emerged. Herein, we review the genetic data reported in FS, including the linkage analysis, association studies, and genetic abnormalities found in the FS-related disorders such as GEFS+ and severe myoclonic epilepsy in infancy.
Collapse
Affiliation(s)
- Junko Nakayama
- Department of Pediatrics, Ibaraki Prefectural University of Health Sciences, Inashiki, Ibaraki, Japan.
| |
Collapse
|
272
|
The GABRG2 mutation, Q351X, associated with generalized epilepsy with febrile seizures plus, has both loss of function and dominant-negative suppression. J Neurosci 2009; 29:2845-56. [PMID: 19261880 DOI: 10.1523/jneurosci.4772-08.2009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The GABA(A) receptor gamma2 subunit mutation, Q351X, associated with generalized epilepsy with febrile seizures plus (GEFS+), created a loss of function with homozygous expression. However, heterozygous gamma2(+/-) gene deletion mice are seizure free, suggesting that the loss of one GABRG2 allele alone in heterozygous patients may not be sufficient to produce epilepsy. Here we show that the mutant gamma2 subunit was immature and retained in the endoplasmic reticulum (ER). With heterozygous coexpression of gamma2S/gamma2S(Q351X) subunits and alpha1 and beta2 subunits, the trafficking deficient mutant gamma2 subunit reduced trafficking of wild-type partnering subunits, which was not seen in the hemizygous gene deletion control. Consequently, the function of the heterozygous receptor channel was reduced to less than the hemizygous control and to less than half of the wild-type receptors with a full gene dose. Pulse-chase experiments demonstrated that in the presence of the mutant gamma2S(Q351X) subunit, wild-type alpha1 subunits degraded more substantially within 1 h of translation. We showed that the basis for this dominant-negative effect on wild-type receptors was due to an interaction between mutant and wild-type subunits. The mutant subunit oligomerized with wild-type subunits and trapped them in the ER, subjecting them to glycosylation arrest and ER-associated degradation (ERAD) through the ubiquitin proteosome system. Thus, we hypothesize that a likely explanation for the GEFS+ phenotype is a dominant-negative suppression of wild-type receptors by the mutant gamma2S subunit in combination with loss of mutant gamma2S subunit protein function.
Collapse
|
273
|
Combi R, Grioni D, Contri M, Redaelli S, Redaelli F, Bassi MT, Barisani D, Lavitrano ML, Tredici G, Tenchini ML, Bertolini M, Dalprà L. Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy. Brain Res Bull 2009; 79:89-96. [PMID: 19200853 DOI: 10.1016/j.brainresbull.2009.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 12/19/2008] [Accepted: 01/16/2009] [Indexed: 12/13/2022]
|
274
|
Kalscheuer VM, Musante L, Fang C, Hoffmann K, Fuchs C, Carta E, Deas E, Venkateswarlu K, Menzel C, Ullmann R, Tommerup N, Dalprà L, Tzschach A, Selicorni A, Lüscher B, Ropers HH, Harvey K, Harvey RJ. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation. Hum Mutat 2009; 30:61-8. [PMID: 18615734 DOI: 10.1002/humu.20814] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Clustering of inhibitory gamma-aminobutyric acid(A) (GABA(A)) and glycine receptors at synapses is thought to involve key interactions between the receptors, a "scaffolding" protein known as gephyrin and the RhoGEF collybistin. We report the identification of a balanced chromosomal translocation in a female patient presenting with a disturbed sleep-wake cycle, late-onset epileptic seizures, increased anxiety, aggressive behavior, and mental retardation, but not hyperekplexia. Fine mapping of the breakpoint indicates disruption of the collybistin gene (ARHGEF9) on chromosome Xq11, while the other breakpoint lies in a region of 18q11 that lacks any known or predicted genes. We show that defective collybistin transcripts are synthesized and exons 7-10 are replaced by cryptic exons from chromosomes X and 18. These mRNAs no longer encode the pleckstrin homology (PH) domain of collybistin, which we now show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the "membrane activation model" of gephyrin clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABA(A) receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABA(A) receptor subtypes involved in epilepsy, anxiety, aggression, insomnia, and learning and memory.
Collapse
Affiliation(s)
- Vera M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol Appl Pharmacol 2009; 237:168-77. [PMID: 19289137 DOI: 10.1016/j.taap.2009.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope >200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX+PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached >250% of baseline period in the presence of PTX+100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca(2+)-dependence of [(3)H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca(2+) appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.
Collapse
|
276
|
Sijben AEJ, Sithinamsuwan P, Radhakrishnan A, Badawy RAB, Dibbens L, Mazarib A, Lev D, Lerman-Sagie T, Straussberg R, Berkovic SF, Scheffer IE. Does a SCN1A gene mutation confer earlier age of onset of febrile seizures in GEFS+? Epilepsia 2009; 50:953-6. [PMID: 19292758 DOI: 10.1111/j.1528-1167.2009.02023.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SCN1A is the most clinically relevant epilepsy gene and is associated with generalized epilepsy and febrile seizure plus (GEFS+) and Dravet syndrome. We postulated that earlier onset of febrile seizures in the febrile seizure (FS) and febrile seizure plus (FS+) phenotypes may occur in the presence of a SCN1A mutation. This was because of the age-related onset of Dravet syndrome, which typically begins in the first year of life. We found that patients with FS and FS+ with SCN1A mutations had earlier median onset of febrile seizures compared to the population median. Patients with GABRG2 mutations had a similar early onset in contrast to patients with SCN1B mutations where onset was later. This study is the first to demonstrate that a specific genetic abnormality directly influences the FS and FS+ phenotype in terms of age of onset.
Collapse
Affiliation(s)
- Angelique E J Sijben
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
277
|
Papale LA, Beyer B, Jones JM, Sharkey LM, Tufik S, Epstein M, Letts VA, Meisler MH, Frankel WN, Escayg A. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum Mol Genet 2009; 18:1633-41. [PMID: 19254928 PMCID: PMC2667290 DOI: 10.1093/hmg/ddp081] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In a chemical mutagenesis screen, we identified the novel Scn8a8J allele of the gene encoding the neuronal voltage-gated sodium channel Nav1.6. The missense mutation V929F in this allele alters an evolutionarily conserved residue in the pore loop of domain 2 of Nav1.6. Electroencephalography (EEG) revealed well-defined spike-wave discharges (SWD), the hallmark of absence epilepsy, in Scn8a8J heterozygotes and in heterozygotes for two classical Scn8a alleles, Scn8amed (null) and Scn8amed-jo (missense). Mouse strain background had a significant effect on SWD, with mutants on the C3HeB/FeJ strain showing a higher incidence than on C57BL/6J. The abnormal EEG patterns in heterozygous mutant mice and the influence of genetic background on SWD make SCN8A an attractive candidate gene for common human absence epilepsy, a genetically complex disorder.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
|
279
|
Hessel EVS, Van Gassen KLI, Wolterink-Donselaar IG, Stienen PJ, Fernandes C, Brakkee JH, Kas MJH, De Graan PNE. Phenotyping mouse chromosome substitution strains reveal multiple QTLs for febrile seizure susceptibility. GENES BRAIN AND BEHAVIOR 2009; 8:248-55. [DOI: 10.1111/j.1601-183x.2008.00466.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
280
|
Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci 2009; 29:1457-68. [PMID: 19193892 DOI: 10.1523/jneurosci.4688-08.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
About one-third of women with epilepsy have a catamenial seizure pattern, in which seizures fluctuate with the menstrual cycle. Catamenial seizures occur more frequently when the ratio of circulating estradiol to progesterone is high, suggesting that estradiol is proconvulsant. We used adult female rats to test how estradiol-induced suppression of GABAergic inhibition in the hippocampus affects behavioral seizures induced by kainic acid. As expected, estradiol decreased the latency to initiate seizures, indicating increased seizure susceptibility. At the same time, however, estradiol also shortened the duration of late-stage seizures, indicating decreased seizure severity. Additional analyses showed that the decrease in seizure severity was attributable to greater release of the anticonvulsant neuropeptide, neuropeptide Y (NPY). First, blocking hippocampal NPY during seizures eliminated the estradiol-induced decrease in seizure duration. Second, light and electron microscopic studies indicated that estradiol increases the potentially releasable pool of NPY in inhibitory presynaptic boutons and facilitates the release of NPY from inhibitory boutons during seizures. Finally, the presence of estrogen receptor-alpha on large dense-core vesicles (LDCVs) in the hippocampus suggests that estradiol could facilitate neuropeptide release by acting directly on LDCVs themselves. Understanding how estradiol regulates NPY-containing LDCVs could point to molecular targets for novel anticonvulsant therapies.
Collapse
|
281
|
Dibbens LM, Harkin LA, Richards M, Hodgson BL, Clarke AL, Petrou S, Scheffer IE, Berkovic SF, Mulley JC. The role of neuronal GABA(A) receptor subunit mutations in idiopathic generalized epilepsies. Neurosci Lett 2009; 453:162-5. [PMID: 19429026 DOI: 10.1016/j.neulet.2009.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/04/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
Abstract
Rare GABA(A) receptor gamma2 and alpha1 subunit mutations of pathogenic effect have been described segregating in families with "monogenic" epilepsies. We now report globally on the genetic variation contained within all 16 neuronal GABA(A) receptor subunit genes from the one patient cohort. The cohort consists of GEFS(+), FS, and IGE subgroups as either sporadic cases or index cases from small families, with one index case from one large IGE family. The rarity of mutations and coding variation in general across all of the subunits suggests a low tolerance for mutations affecting GABA mediated neuronal inhibition. Characterization of the broader channelopathy load associated with susceptibility to these common epilepsies mostly with complex genetics will need to be expanded beyond the family of GABA(A) receptor subunits to all families of neuronal ion channels and their interacting molecules by systematic mutation detection associated with functional investigation of their naturally occurring genetic variations.
Collapse
Affiliation(s)
- L M Dibbens
- Epilepsy Research Program, SA Pathology at Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proc Natl Acad Sci U S A 2009; 106:3994-9. [PMID: 19234123 DOI: 10.1073/pnas.0813330106] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Heterozygous loss-of-function mutations in the alpha subunit of the type I voltage-gated sodium channel Na(V)1.1 cause severe myoclonic epilepsy in infancy (SMEI), an infantile-onset epileptic encephalopathy characterized by normal development followed by treatment-refractory febrile and afebrile seizures and psychomotor decline. Mice with SMEI (mSMEI), created by heterozygous deletion of Na(V)1.1 channels, develop seizures and ataxia. Here we investigated the temperature and age dependence of seizures and interictal epileptiform spike-and-wave activity in mSMEI. Combined video-EEG monitoring demonstrated that mSMEI had seizures induced by elevated body core temperature but wild-type mice were unaffected. In the 3 age groups tested, no postnatal day (P)17-18 mSMEI had temperature-induced seizures, but nearly all P20-22 and P30-46 mSMEI had myoclonic seizures followed by generalized seizures caused by elevated core body temperature. Spontaneous seizures were only observed in mice older than P32, suggesting that mSMEI become susceptible to temperature-induced seizures before spontaneous seizures. Interictal spike activity was seen at normal body temperature in most P30-46 mSMEI but not in P20-22 or P17-18 mSMEI, indicating that interictal epileptic activity correlates with seizure susceptibility. Most P20-22 mSMEI had interictal spike activity with elevated body temperature. Our results define a critical developmental transition for susceptibility to seizures in SMEI, demonstrate that body temperature elevation alone is sufficient to induce seizures, and reveal a close correspondence between human and mouse SMEI in the striking temperature and age dependence of seizure frequency and severity and in the temperature dependence and frequency of interictal epileptiform spike activity.
Collapse
|
283
|
Abstract
Over the past 10 years mutations in voltage-gated sodium channels (Na(v)s) have become closely associated with inheritable forms of epilepsy. One isoform in particular, Na(v)1.1 (gene symbol SCN1A), appears to be a superculprit, registering with more than 330 mutations to date. The associated phenotypes range from benign febrile seizures to extremely serious conditions, such as Dravet's syndrome (SMEI). Despite the wealth of information, mutational analyses are cumbersome, owing to inconsistencies among the Na(v)1.1 sequences to which different research groups refer. Splicing variability is the core problem: Na(v)1.1 co-exists in three isoforms, two of them lack 11 or 28 amino acids compared to full-length Na(v).1.1. This review establishes a standardized nomenclature for Na(v)1.1 variants so as to provide a platform from which future mutation analyses can be started without need for up-front data normalization. An online resource--SCN1A infobase--is introduced.
Collapse
Affiliation(s)
- Christoph Lossin
- Department of Neurology, University of California, Davis, 4635 2nd Avenue, Room 1004A, Sacramento, CA 95817, USA.
| |
Collapse
|
284
|
Delgado-Escueta AV, Bourgeois BFD. Debate: Does genetic information in humans help us treat patients? PRO--genetic information in humans helps us treat patients. CON--genetic information does not help at all. Epilepsia 2009; 49 Suppl 9:13-24. [PMID: 19087113 DOI: 10.1111/j.1528-1167.2008.01922.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PRO: In the past decade, genotyping has started to help the neurologic practitioner treat patients with three types of epilepsy causing mutations, namely (1) SCN1A, a sodium channel gene mutated in Dravet's sporadic severe myoclonic epilepsy of infancy (SMEI and SMEB); (2) laforin (dual specificity protein phosphatase) and malin (ubiquitin E3 ligase) in Lafora progressive myoclonic epilepsy (PME); and (3) cystatin B in Unverricht-Lundborg type of PME. Laforin, malin, and cystatin B are non-ion channel gene mutations that cause PME. Genotyping ensures accurate diagnosis, helps treatment and genetic counseling, psychological and social help for patients and families, and directs families to organizations devoted to finding cures for specific epilepsy diseases. In SCN1A and cystatin B mutations, treatment with sodium channel blockers (phenytoin, carbamazepine, oxcarbazepine, lamotrigine) should be avoided. Because of early and correct diagnosis by genotyping of SCN1A mutations, the avoidance of sodium channel blockers, and aggressive treatment of prolonged convulsive status, there is hope that Dravet's syndrome may not be as severe as observed in all past reports. Genotyping also identifies nonsense mutations in Lafora PME. Nonsense mutations can be corrected by premature stop codon readthrough drugs such as gentamicin. The community practitioner together with epilepsy specialists in PME can work together and acquire gentamicin (Barton-Davis et al., 1999) for "compassionate use" in Lafora PME, a generalized lysosome multiorgan storage disorder that is invariably fatal. In Unverricht-Lundborg PME, new cohorts with genotyped cystatin B mutations have led to the chronic use of antioxidant N-acetylcysteine and combination valproate clobazam or clonazepam plus antimyoclonic drugs topiramate, zonisamide, piracetam, levetiracetam, or brivaracetam. These cohorts have minimal ataxia and no dementia, questioning whether the syndrome is truly progressive. In conclusion, not only is genotyping a prerequisite in the diagnosis of Dravet's syndrome and the progressive myoclonus epilepsies, but it also helps us choose the correct antiepileptic drugs to treat seizures in Dravet's syndrome and Unverricht-Lundborg PME. Genotyping also portends a brighter future, helping us to reassess the true course, severity, and progressive nature of Dravet's syndrome and Unverricht-Lundborg PME and helping us craft a future curative treatment for Dravet's syndrome and Lafora disease. Without the genotyping diagnosis of epilepsy causing mutations we are stuck with imprecise diagnosis and symptomatic treatment of seizures. CON: Genotyping of epilepsy may help to better understand the genetics of epilepsy, to establish an etiology in a patient with epilepsy, to provide genetic counseling, and to confirm a clinical diagnosis. However, critical analysis reveals that genotyping does not contribute to an improved treatment for the patients. In order to improve treatment, genotyping would have to (1) improve our ability to select the drug of choice for a given epilepsy or epileptic syndrome; (2) improve our ability to predict the individual risk of adverse reactions to certain drugs; (3) improve our ability to avoid unnecessary treatments or treatments that could aggravate seizures. Many example illustrate the lack of impact of genetic information on the treatment outcome: we do not treat Dravet syndrome more successfully since SCN1A testing became available; we do not treat Lafora disease more successfully since testing for laforin and malin became available; we do not need to know the genetic nature of Unverricht-Lundborg disease or test for the cystatin B mutation in order to select or avoid certain drugs; we do not treat Rett syndrome more successfully since MECP2 testing became available; we do not treat JME more successfully since we know its genetic origin; we do not treat autosomal dominant nocturnal frontal lobe epilepsy more successfully since we know its genetic origin and can test for its mutation. The clinical characteristics as well as the response to treatment of these epilepsy syndromes have been well established before genotyping became available. It can not be argued that genotyping is necessary for establishing a diagnosis or ensure accurate diagnosis. Since not all individuals with given syndromes have been shown to have the corresponding mutation, the clinical diagnosis must have been based on well-established clinical criteria. In addition, the presence or absence of the mutation in a given patient has never been shown to specifically predict the response to any form of treatment, positive or negative. Finally, the appropriate psychological and social help in a given patient will not depend on the identification of a mutation. This does not leave any role for genotyping in epilepsy for the sole reason of improving treatment of the patient. Claiming that the result of genotyping predicts optimal treatment in certain epilepsies is equivalent to stating that genotyping for diabetes has become available and that, based on this breakthrough, insulin can now be selected as the treatment of choice in those who test positive.
Collapse
Affiliation(s)
- Antonio V Delgado-Escueta
- Epilepsy Genetics/Genomics Laboratories, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, West Los Angeles, California 90073, USA.
| | | |
Collapse
|
285
|
Suzuki T, Miyamoto H, Nakahari T, Inoue I, Suemoto T, Jiang B, Hirota Y, Itohara S, Saido TC, Tsumoto T, Sawamoto K, Hensch TK, Delgado-Escueta AV, Yamakawa K. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Hum Mol Genet 2009; 18:1099-109. [PMID: 19147686 DOI: 10.1093/hmg/ddp006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in EFHC1 gene have been previously reported in patients with epilepsies, including those with juvenile myoclonic epilepsy. Myoclonin1, also known as mRib72-1, is encoded by the mouse Efhc1 gene. Myoclonin1 is dominantly expressed in embryonic choroid plexus, post-natal ependymal cilia, tracheal cilia and sperm flagella. In this study, we generated viable Efhc1-deficient mice. Most of the mice were normal in outward appearance, and both sexes were found to be fertile. However, the ventricles of the brains were significantly enlarged in the null mutants, but not in the heterozygotes. Although the ciliary structure was found intact, the ciliary beating frequency was significantly reduced in null mutants. In adult stages, both the heterozygous and null mutants developed frequent spontaneous myoclonus. Furthermore, the threshold of seizures induced by pentylenetetrazol was significantly reduced in both heterozygous and null mutants. These observations seem to further suggest that decrease or loss of function of myoclonin1 may be the molecular basis for epilepsies caused by EFHC1 mutations.
Collapse
Affiliation(s)
- Toshimitsu Suzuki
- Laboratory for Neurogenetics, RIKEN Brain Science Institute (BSI), Wako-shi, 351-0198 Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Mechanisms of human inherited epilepsies. Prog Neurobiol 2009; 87:41-57. [DOI: 10.1016/j.pneurobio.2008.09.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/25/2008] [Accepted: 09/29/2008] [Indexed: 12/19/2022]
|
287
|
Aspetti genetici delle epilessie. Neurologia 2009. [DOI: 10.1016/s1634-7072(09)70509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
288
|
Chiu C, Reid CA, Tan HO, Davies PJ, Single FN, Koukoulas I, Berkovic SF, Tan SS, Sprengel R, Jones MV, Petrou S. Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol 2008; 64:284-93. [PMID: 18825662 DOI: 10.1002/ana.21440] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE A major goal of epilepsy research is to understand the molecular and functional basis of seizure genesis. A human GABA(A) gamma2 gene mutation (R43Q) is associated with generalized epilepsy. Introduction of this mutation into a mouse by gene targeting recapitulates the human phenotype demonstrating a strong genotype to phenotype link. GABA(A) receptors play a role in the moment-to-moment control of brain function and also on the long-term wiring of the brain by directing neuronal development. Our objective was to determine whether developmental expression of the mutation alters seizure susceptibility later in life. METHODS A tetracycline-based conditional model for activation of a hypomorphic Q43 disease allele was created and validated. Seizure susceptibility was assessed using the subcutaneous pentylenetetrazole model. RESULTS Seizure susceptibility was significantly reduced in mice where the Q43 allele was suppressed during development. INTERPRETATION These results demonstrate that a human epilepsy-causing mutation impacts network stability during a critical developmental period. These data suggest that identification of presymptomatic children may provide a window for therapeutic intervention before overt symptoms are observed, potentially altering the course of epileptogenesis.
Collapse
Affiliation(s)
- Cindy Chiu
- Howard Florey Institute, The University of Melbourne, Parkville, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Northup JK, Wain KE, Hawkins JC, Matalon R, Velagaleti GV. First report of an interstitial deletion, del(5)(q33.1q35.1) in a girl with primary amenorrhea, seizures, and severe behavioral and developmental deficiencies. Am J Med Genet A 2008; 146A:2578-82. [DOI: 10.1002/ajmg.a.32486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
290
|
Helbig I, Matigian NA, Vadlamudi L, Lawrence KM, Bayly MA, Bain SM, Diyagama D, Scheffer IE, Mulley JC, Holloway AJ, Dibbens LM, Berkovic SF, Hayward NK. Gene expression analysis in absence epilepsy using a monozygotic twin design. Epilepsia 2008; 49:1546-54. [DOI: 10.1111/j.1528-1167.2008.01630.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
291
|
Abstract
Idiopathic epilepsies are considered to be genetically determined. The inheritance can be monogenic and the detected mutation considered sufficient to cause the phenotype. In contrast, when the inheritance is complex, the epileptic phenotype is determined by several minor genetic defects that are much more difficult to discover. In recent years, an increasing number of mutations, mainly associated with rare monogenic idiopathic epilepsy syndromes, have been identified in genes encoding subunits of voltage- or ligand-gated ion channels. A few mutations have also been found in the frequent classical forms of idiopathic generalized epilepsies which are thought to follow a complex genetic trait, for example, in absence or juvenile myoclonic epilepsies. Functional studies characterizing the molecular defects of the mutant channels point to an important role of GABAergic synaptic inhibition in the pathophysiology of idiopathic epilepsies. As a result of genetic and functional investigations, not only will the pathophysiology of epilepsy be better understood, but newly discovered genes and pathophysiological pathways may also determine novel targets for pharmacotherapy, as has been shown for the anticonvulsant drug retigabine, which enhances the activity of neuronal KCNQ potassium channels.
Collapse
|
292
|
The genetics of hyperekplexia: more than startle! Trends Genet 2008; 24:439-47. [DOI: 10.1016/j.tig.2008.06.005] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 11/20/2022]
|
293
|
Pisu MG, Mostallino MC, Dore R, Mura ML, Maciocco E, Russo E, De Sarro G, Serra M. Neuroactive steroids and GABAA receptor plasticity in the brain of the WAG/Rij rat, a model of absence epilepsy. J Neurochem 2008; 106:2502-14. [PMID: 18624910 DOI: 10.1111/j.1471-4159.2008.05538.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of neuroactive steroids and GABA(A) receptors in the generation of spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. The plasma, cerebrocortical, and thalamic concentrations of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) were increased in the WAG/Rij rat at 2 months of age compared with those in control (Wistar) rats. In contrast, the brain and peripheral levels of 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) did not differ between the two rat strains at this age. At 6 months of age, when absence epilepsy worsens in WAG/Rij rats, the plasma concentration of 3alpha,5alpha-TH PROG remained high whereas that of 3alpha,5alpha-TH DOC had increased, the cerebrocortical levels of both 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC had increased, and the thalamic concentrations of these metabolites had decreased. At 6 months of age the expression of the alpha(4) and delta subunits of the GABA(A) receptor in relay nuclei was increased. Finally, chronic stress induced by social isolation elicited a reduction in the amount of 3alpha,5alpha-TH PROG in the thalamus of 2-month-old WAG/Rij rats that was associated with a reduction in the number and overall duration of SWDs at 6 months of age. Absence epilepsy in the WAG/Rij rat is thus associated with changes in the abundance of neuroactive steroids and in the expression of specific GABA(A) receptor subunits in the thalamus, a brain area key to the pathophysiology of this condition.
Collapse
|
294
|
Lagae L. What's new in: "genetics in childhood epilepsy". Eur J Pediatr 2008; 167:715-22. [PMID: 18320221 DOI: 10.1007/s00431-008-0690-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 02/06/2008] [Indexed: 12/17/2022]
Abstract
In recent years, different mutations in genes that control the excitability of neurons have been described in idiopathic childhood epilepsies. Most commonly, sodium/potassium channelopathies and GABA-receptor mutations are involved. Major progress has been made in the field of idiopathic generalised epilepsies associated with febrile seizures (GEFS+). It now is becoming clear that mutations should not only be looked for in familial cases, but also in sporadic cases, especially in infants and young children with unexplained severe epileptic encephalopathies. Many studies also define 'epilepsy susceptibility genes', which contribute to one's individual genetic vulnerability to develop epilepsy. It should be realized, however, that in the most common idiopathic benign childhood epilepsies (benign rolandic and occipital epilepsies), major breakthroughs are still awaited. In addition, a better clinical description of the epileptic phenotypes is needed to explain more precisely the genotypic and phenotypic heterogeneity. Genetic studies are nowadays becoming a necessary diagnostic step in the evaluation of idiopathic childhood epilepsies, not only in familial cases, but also in sporadic cases.
Collapse
Affiliation(s)
- Lieven Lagae
- Department of Paediatric Neurology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
295
|
Sun H, Zhang Y, Liang J, Liu X, Ma X, Wu H, Xu K, Qin J, Qi Y, Wu X. SCN1A, SCN1B, and GABRG2 gene mutation analysis in Chinese families with generalized epilepsy with febrile seizures plus. J Hum Genet 2008; 53:769-774. [PMID: 18566737 DOI: 10.1007/s10038-008-0306-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
Generalized epilepsy with febrile seizures plus (GEFS+; MIM#604233) is a familial epilepsy syndrome characterized by phenotypic and genetic heterogeneity. It was associated with mutations in the neuronal voltage-gated sodium channel subunit gene (SCN1A, SCN2A, SCN1B) and ligand-gated gamma aminobutyric acid receptors genes (GABRG2, GABRD). We investigated the roles of SCN1A, SCN1B, and GABRG2 mutations in the etiology of Chinese GEFS+ families. Genomic deoxyribonucleic acid (DNA) was extracted from peripheral blood lymphocytes of 23 probands and their family members. The sequences of SCN1A, SCN1B, and GABRG2 genes were analyzed by polymerase chain reaction (PCR) and direct sequencing. The major phenotypes of affected members in the 23 GEFS+ families exhibited FS and FS+, whereas rare phenotypes afebrile generalized tonic-clonic seizures (AGTCS), myoclonic-astatic epilepsy (MAE), and partial seizures were also observed. A novel SCN1A mutation, p.N935H, was identified in one family and another novel mutation in GABRG2, p.W390X, in another family. However, no SCN1B mutation was identified. The combined frequency of SCN1A, SCN1B, and GABRG2 mutations was 8.7% (2/23), extending the distribution of SCN1A and GABRG2 mutations to Chinese GEFS+ families. There were still unidentified genes contributing to the pathogenesis of GEFS+.
Collapse
Affiliation(s)
- Huihui Sun
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Yuehua Zhang
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China.
| | - Jianmin Liang
- Jilin University, First Hospital, Changchun, 130021, China
| | - Xiaoyan Liu
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Xiuwei Ma
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Husheng Wu
- Beijing Children's Hospital, Beijing, 100045, People's Republic of China
| | - Keming Xu
- Capital Institute of Pediatrics, Beijing, 100020, People's Republic of China
| | - Jiong Qin
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Yu Qi
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| | - Xiru Wu
- Peking University, First Hospital, No. 1 Xian Men Street, Xicheng District, Beijing, 100034, People's Republic of China
| |
Collapse
|
296
|
Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, Duron RM, Castro-Ortega R, Martinez-Juarez IE, Pascual-Castroviejo I, Machado-Salas J, Silva R, Bailey JN, Bai D, Ochoa A, Jara-Prado A, Pineda G, Macdonald RL, Delgado-Escueta AV. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008; 82:1249-61. [PMID: 18514161 DOI: 10.1016/j.ajhg.2008.04.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 04/09/2008] [Accepted: 04/24/2008] [Indexed: 12/24/2022] Open
Abstract
Childhood absence epilepsy (CAE) accounts for 10% to 12% of epilepsy in children under 16 years of age. We screened for mutations in the GABA(A) receptor (GABAR) beta 3 subunit gene (GABRB3) in 48 probands and families with remitting CAE. We found that four out of 48 families (8%) had mutations in GABRB3. One heterozygous missense mutation (P11S) in exon 1a segregated with four CAE-affected persons in one multiplex, two-generation Mexican family. P11S was also found in a singleton from Mexico. Another heterozygous missense mutation (S15F) was present in a singleton from Honduras. An exon 2 heterozygous missense mutation (G32R) was present in two CAE-affected persons and two persons affected with EEG-recorded spike and/or sharp wave in a two-generation Honduran family. All mutations were absent in 630 controls. We studied functions and possible pathogenicity by expressing mutations in HeLa cells with the use of Western blots and an in vitro translation and translocation system. Expression levels did not differ from those of controls, but all mutations showed hyperglycosylation in the in vitro translation and translocation system with canine microsomes. Functional analysis of human GABA(A) receptors (alpha 1 beta 3-v2 gamma 2S, alpha 1 beta 3-v2[P11S]gamma 2S, alpha 1 beta 3-v2[S15F]gamma 2S, and alpha 1 beta 3-v2[G32R]gamma 2S) transiently expressed in HEK293T cells with the use of rapid agonist application showed that each amino acid transversion in the beta 3-v2 subunit (P11S, S15F, and G32R) reduced GABA-evoked current density from whole cells. Mutated beta 3 subunit protein could thus cause absence seizures through a gain in glycosylation of mutated exon 1a and exon 2, affecting maturation and trafficking of GABAR from endoplasmic reticulum to cell surface and resulting in reduced GABA-evoked currents.
Collapse
Affiliation(s)
- Miyabi Tanaka
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
297
|
Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008; 9:331-43. [PMID: 18382465 PMCID: PMC2709246 DOI: 10.1038/nrn2370] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA (gamma-aminobutyric acid) type A receptors (GABA(A)Rs) mediate most fast synaptic inhibition in the mammalian brain, controlling activity at both the network and the cellular levels. The diverse functions of GABA in the CNS are matched not just by the heterogeneity of GABA(A)Rs, but also by the complex trafficking mechanisms and protein-protein interactions that generate and maintain an appropriate receptor cell-surface localization. In this Review, we discuss recent progress in our understanding of the dynamic regulation of GABA(A)R composition, trafficking to and from the neuronal surface, and lateral movement of receptors between synaptic and extrasynaptic locations. Finally, we highlight a number of neurological disorders, including epilepsy and schizophrenia, in which alterations in GABA(A)R trafficking occur.
Collapse
Affiliation(s)
- Tija C. Jacob
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Stephen J. Moss
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Department of Pharmacology, University College London, WC1E 6BT, UK
| | - Rachel Jurd
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
298
|
Fritschy JM. Epilepsy, E/I Balance and GABA(A) Receptor Plasticity. Front Mol Neurosci 2008; 1:5. [PMID: 18946538 PMCID: PMC2525999 DOI: 10.3389/neuro.02.005.2008] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 01/26/2023] Open
Abstract
GABAA receptors mediate most of the fast inhibitory transmission in the CNS. They form heteromeric complexes assembled from a large family of subunit genes. The existence of multiple GABAA receptor subtypes differing in subunit composition, localization and functional properties underlies their role for fine-tuning of neuronal circuits and genesis of network oscillations. The differential regulation of GABAA receptor subtypes represents a major facet of homeostatic synaptic plasticity and contributes to the excitation/inhibition (E/I) balance under physiological conditions and upon pathological challenges. The purpose of this review is to discuss recent findings highlighting the significance of GABAA receptor heterogeneity for the concept of E/I balance and its relevance for epilepsy. Specifically, we address the following issues: (1) role for tonic inhibition, mediated by extrasynaptic GABAA receptors, for controlling neuronal excitability; (2) significance of chloride ion transport for maintenance of the E/I balance in adult brain; and (3) molecular mechanisms underlying GABAA receptor regulation (trafficking, posttranslational modification, gene transcription) that are important for homoeostatic plasticity. Finally, the relevance of these findings is discussed in light of the involvement of GABAA receptors in epileptic disorders, based on recent experimental studies of temporal lobe epilepsy (TLE) and absence seizures and on the identification of mutations in GABAA receptor subunit genes underlying familial forms of epilepsy.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| |
Collapse
|
299
|
|
300
|
Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol 2008; 6:1-20. [PMID: 19305785 PMCID: PMC2645547 DOI: 10.2174/157015908783769653] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/24/2007] [Accepted: 08/05/2007] [Indexed: 12/26/2022] Open
Abstract
GABA(A) receptors have an age-adapted function in the brain. During early development, they mediate excitatory effects resulting in activation of calcium sensitive signaling processes that are important for the differentiation of the brain. In more mature stages of development and in adults, GABA(A) receptors transmit inhibitory signals. The maturation of GABA(A) signaling follows sex-specific patterns, which appear to also be important for the sexual differentiation of the brain. The inhibitory effects of GABA(A) receptor activation have been widely exploited in the treatment of conditions where neuronal silencing is necessary. For instance, drugs that target GABA(A) receptors are the mainstay of treatment of seizures. Recent evidence suggests however that the physiology and function of GABA(A) receptors changes in the brain of a subject that has epilepsy or status epilepticus.This review will summarize the physiology of and the developmental factors regulating the signaling and function of GABA(A) receptors; how these may change in the brain that has experienced prior seizures; what are the implications for the age and sex specific treatment of seizures and status epilepticus. Finally, the implications of these changes for the treatment of certain forms of medically refractory epilepsies and status epilepticus will be discussed.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Albert Einstein College of Medicine, Saul R Korey Department of Neurology & Dominick P Purpura, Department of Neuroscience, Bronx NY, USA.
| |
Collapse
|