251
|
Abstract
This review discusses evolution of the process of Ig heavy chain class switching, relating it to the first appearance of somatic hypermutation (SHM) of variable region genes. First, we discuss recent findings on the mechanism of class switch recombination (CSR) in mice and humans, and then review the mechanisms of expression of Ig heavy chain isotypes from fishes to mammals. Importantly, activation-induced cytidine deaminase (AID), which is essential for CSR and somatic hypermutation, is found in fishes. Although at least some fishes are likely to undergo SHM, CSR is highly unlikely to occur in this group. We discuss the first appearance of CSR in amphibians and how it differs in birds and mammals.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA 01655-0122, USA.
| | | |
Collapse
|
252
|
Neuberger MS, Di Noia JM, Beale RCL, Williams GT, Yang Z, Rada C. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 2005; 5:171-8. [PMID: 15688043 DOI: 10.1038/nri1553] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Somatic hypermutation of immunoglobulin genes occurs at both C.G pairs and A.T pairs. Mutations at C.G pairs are created by activation-induced deaminase (AID)-catalysed deamination of C residues to U residues. Mutations at A.T pairs are probably produced during patch repair of the AID-generated U.G lesion, but they occur through an unknown mechanism. Here, we compare the popular suggestion of nucleotide mispairing through polymerase error with an alternative possibility, mutation through incorporation of dUTP (or another non-canonical nucleotide).
Collapse
Affiliation(s)
- Michael S Neuberger
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | | | | | |
Collapse
|
253
|
Okamoto M, Okamoto N, Yashiro H, Shiokawa D, Sunaga S, Yoshimori A, Tanuma SI, Kitamura D. Involvement of DNase gamma in the resected double-strand DNA breaks in immunoglobulin genes. Biochem Biophys Res Commun 2005; 327:76-83. [PMID: 15629432 DOI: 10.1016/j.bbrc.2004.11.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 11/25/2022]
Abstract
Somatic hypermutation (SHM) of immunoglobulin variable (V) region genes occurs in the germinal center (GC) B cells during immune responses, depending on activation-induced cytidine deaminase (AID). SHM is associated with resected double-strand DNA breaks (DSBs) which were shown to occur specifically in rearranged V regions in the GC B cells and CD40-stimulated B cells expressing AID. So far, endonucleases responsible for the DSBs have not been identified. Here we show that DNase gamma, a member of DNase I family of endonucleases, is expressed in GC B cells and CD40-stimulated B cells. Overexpression of DNase gamma in the mutation-competent Ramos B-cell line resulted in a marked increase in the resected but not blunt DSBs in the V region. Conversely, a selective DNase gamma inhibitor, DR396, suppressed the generation of the resected DSBs. These results suggest that DNase gamma is involved in the generation of resected DSBs associated with SHM.
Collapse
Affiliation(s)
- Mariko Okamoto
- Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
Somatic hypermutation (SHM) in immunoglobulin genes is required for high affinity antibody–antigen binding. Cultured cell systems, mouse model systems, and human genetic deficiencies have been the key players in identifying likely SHM pathways, whereas “pure” biochemical approaches have been far less prominent, but change appears imminent. Here we comment on how, when, and why biochemistry is likely to emerge from the shadows and into the spotlight to elucidate how the somatic mutation of antibody variable (V) regions is generated.
Collapse
Affiliation(s)
- Myron F Goodman
- University of Southern California, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
255
|
Wilson TM, Vaisman A, Martomo SA, Sullivan P, Lan L, Hanaoka F, Yasui A, Woodgate R, Gearhart PJ. MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. ACTA ACUST UNITED AC 2005; 201:637-45. [PMID: 15710654 PMCID: PMC2213055 DOI: 10.1084/jem.20042066] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) η, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol η in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol η in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol η stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs.
Collapse
Affiliation(s)
- Teresa M Wilson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Nagaoka H, Ito S, Muramatsu M, Nakata M, Honjo T. DNA cleavage in immunoglobulin somatic hypermutation depends on de novo protein synthesis but not on uracil DNA glycosylase. Proc Natl Acad Sci U S A 2005; 102:2022-7. [PMID: 15684068 PMCID: PMC548564 DOI: 10.1073/pnas.0409491102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for the DNA cleavage step of Ig somatic hypermutation (SHM). However, its molecular mechanism is controversial. The RNA editing hypothesis postulates that AID deaminates cytosine in an unknown mRNA to generate a new mRNA encoding SHM endonuclease. On the other hand, the DNA deamination hypothesis explains DNA cleavage by cytosine deamination in DNA, followed by uracil removal by uracil DNA glycosylase (UNG). By using the protein synthesis inhibitor cycloheximide, we showed that SHM requires de novo protein synthesis in accord with predictions by the RNA editing hypothesis. In addition, we found that cycloheximide but not Ugi (the specific inhibitor of UNG) inhibited AID-dependent DNA cleavage in the Ig gene during SHM, by using histone H2AX focus formation as a marker of DNA cleavage. The results indicate the following order of events: AID expression, protein synthesis, DNA cleavage, and SHM. The requirement of protein synthesis but not of UNG for the DNA cleavage step of SHM forces us to reconsider the DNA deamination hypothesis and strengthens the RNA editing hypothesis.
Collapse
Affiliation(s)
- Hitoshi Nagaoka
- Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-Ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
257
|
Durandy A, Revy P, Imai K, Fischer A. Hyper-immunoglobulin M syndromes caused by intrinsic B-lymphocyte defects. Immunol Rev 2005; 203:67-79. [PMID: 15661022 DOI: 10.1111/j.0105-2896.2005.00222.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyper-immunoglobulin M (IgM) syndromes are primary immunodeficiencies characterized by normal or elevated serum IgM levels with the absence of other isotypes, pinpointing to a defect in the Ig class switch recombination (CSR). The delineation of hyper-IgM syndromes made it possible to better define the mechanisms underlying the two major events of antibody maturation in humans, CSR and introduction of somatic hypermutation (SHM) in the variable region of immunoglobulins. The description of the activation-induced cytidine deaminase (AID) deficiency, characterized by a defect in both CSR and SHM, demonstrated for the first time that this molecule acts as a master player in the antigen-induced Ig gene-modification events responsible for both CSR and SHM. However, deleterious mutations located in the C-terminus lead to a CSR defect without affecting SHM, providing evidence for a role of AID in CSR distinct from the cytidine deaminase activity, likely by binding to a specific CSR cofactor. Molecular causes of two other hyper-IgM conditions have not yet been defined. However, they may be caused by either a defect in AID targeting on S regions or a CSR-specific DNA-repair defect. The mechanism of action of AID remains somewhat debated, but the observation that uracil-DNA-glycosylase deficiency leads to a severe hyper-IgM syndrome strongly argues in favor of a DNA-editing activity of AID.
Collapse
Affiliation(s)
- Anne Durandy
- INSERM U429, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | |
Collapse
|
258
|
Abstract
A functional immune system is one of the prerequisites for the survival of a species. Humans have one of the most complicated immune systems, with the ability to learn from and adapt to pathogens. At first, a primary repertoire of antibodies is generated, which, upon antigen encounter, will diversify and adapt to produce a highly specific and potent secondary response, part of which is kept in memory to fight off future infections. In this review, the mechanism as well as the specificities of the key protein in the secondary immune response, activation-induced cytidine deaminase (AID), are highlighted, as well as its role in the DNA deamination model of immunoglobulin diversification. The review also highlights aspects of AID's regulation on both the transcriptional as well as post-translational level and its potential molecular mechanism and specificity. Furthermore, it expands outside the involvement of AID in somatic hypermutation, class switching, and gene conversion to discuss the implications of DNA deamination in epigenetic modifications of DNA (as a potential demethylase), the induction of mutations during oncogenesis, and includes an evolutionary comparison to the DNA deaminase family member APOBEC3G, a key protein in human immunodeficiency virus pathogenesis.
Collapse
Affiliation(s)
- Svend Petersen-Mahrt
- DNA Editing Laboratory, Cancer Research UK, Clare Hall Laboratories, South Mimms Hert, UK.
| |
Collapse
|
259
|
Reina-San-Martin B, Chen HT, Nussenzweig A, Nussenzweig MC. ATM is required for efficient recombination between immunoglobulin switch regions. ACTA ACUST UNITED AC 2005; 200:1103-10. [PMID: 15520243 PMCID: PMC2211855 DOI: 10.1084/jem.20041162] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ataxia telangiectasia mutated (ATM) kinase is critical for initiating the signaling pathways that lead to cell cycle checkpoints and DNA double strand break repair. In the absence of ATM, humans and mice show a primary immunodeficiency that includes low serum antibody titers, but the role of ATM in antigen-driven immunoglobulin gene diversification has not been defined. Here, we show that although ATM is dispensable for somatic hypermutation, it is required for efficient class switch recombination (CSR). The defect in CSR is not due to alterations in switch region transcription, accessibility, DNA damage checkpoint protein recruitment, or short-range intra-switch region recombination. Only long-range inter-switch recombination is defective, indicating an unexpected role for ATM in switch region synapsis during CSR.
Collapse
Affiliation(s)
- Bernardo Reina-San-Martin
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA
| | | | | | | |
Collapse
|
260
|
Stivers JT. Comment on "Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch". Science 2005. [PMID: 15604391 DOI: 10.1126/science.1104396] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- James T Stivers
- Department of Pharmacology, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
261
|
Revy P, Buck D, le Deist F, de Villartay JP. The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Adv Immunol 2005; 87:237-95. [PMID: 16102576 DOI: 10.1016/s0065-2776(05)87007-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is the site of various genotoxic stresses that occur during its maturation as well as during immune responses. These DNA lesions/modifications are primarily the consequences of specific physiological processes such as the V(D)J recombination, the immunoglobulin class switch recombination (CSR), and the generation of somatic hypermutations (SHMs) within Ig variable domains. The DNA lesions can be introduced either by specific factors (RAG1 and RAG2 in the case of V(D)J recombination and AID in the case of CSR and SHM) or during the various phases of cellular proliferation and cellular activation. All these DNA lesions are taken care of by the diverse DNA repair machineries of the cell. Several animal models as well as human conditions have established the critical importance of these DNA lesions/modifications and their repair in the physiology of the immune system. Indeed their defects have consequences ranging from immune deficiency to development of immune malignancy. The survey of human pathology has been highly instrumental in the past in identifying key factors involved in the generation of DNA modifications (AID for the Ig CSR and generation of SHM) or the repair of specific DNA damages (Artemis for V(D)J recombination). Defects in factors involved in the cell cycle checkpoints following DNA damage also have deleterious consequences on the immune system. The continuous survey of human diseases characterized by primary immunodeficiency associated with increased sensitivity to ionizing radiation should help identify other important DNA repair factors essential for the development and maintenance of the immune system.
Collapse
Affiliation(s)
- Patrick Revy
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
262
|
Min IM, Selsing E. Antibody class switch recombination: roles for switch sequences and mismatch repair proteins. Adv Immunol 2005; 87:297-328. [PMID: 16102577 DOI: 10.1016/s0065-2776(05)87008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanisms and targeting of antibody class switch DNA recombination are reviewed. Particular emphasis is on the roles for the DNA sequences comprising switch (S) regions, including the S-region tandem repeats, and on the roles of proteins that are involved in both DNA mismatch repair and in class switch recombination.
Collapse
Affiliation(s)
- Irene M Min
- Genetics Program, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
263
|
Steele EJ. DNA polymerase-eta as a reverse transcriptase: implications for mechanisms of hypermutation in innate anti-retroviral defences and antibody SHM systems. DNA Repair (Amst) 2004; 3:687-92. [PMID: 15177177 DOI: 10.1016/j.dnarep.2004.03.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
264
|
Santa-Marta M, da Silva FA, Fonseca AM, Goncalves J. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. J Biol Chem 2004; 280:8765-75. [PMID: 15611076 DOI: 10.1074/jbc.m409309200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.
Collapse
Affiliation(s)
- Mariana Santa-Marta
- Unidade de Retrovirus e Infecçôes Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | | | | | | |
Collapse
|
265
|
Wang CL, Wabl M. Mutational activity in cell line WEHI-231. Immunogenetics 2004; 56:849-53. [PMID: 15605247 DOI: 10.1007/s00251-004-0750-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 11/09/2004] [Indexed: 11/24/2022]
Abstract
The cell line WEHI-231 expresses activation-induced cytidine deaminase (AID), the enzyme that mediates hypermutation and immunoglobulin class switch recombination in activated B cells. Although both the cDNA sequence and protein expression of AID appear normal, the frequency of mutation at the endogenous immunoglobulin locus is low. In this report, we have tested the mutational activity of the cell line with three different indicator constructs. The first construct measures a composite rate of transversions of C to G and C to A, respectively. The second construct measures only transversion from C to G. The third measures the canonical AID activity, from C to U, which after cell replication can result in a C to T transition. We found that in WEHI-231, the C to G activity is 32- to 37-times lower than in the hypermutating cell line 18-81. The C to T activity is also much reduced, but only 12-fold. We suggest that the WEHI-231 lacks an activity that subverts the faithful repair of incipient C to U mutations.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143-0414, USA.
| | | |
Collapse
|
266
|
Rada C, Di Noia JM, Neuberger MS. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 2004; 16:163-71. [PMID: 15494304 DOI: 10.1016/j.molcel.2004.10.011] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Revised: 09/06/2004] [Accepted: 09/07/2004] [Indexed: 11/25/2022]
Abstract
AID-mediated deamination of dC residues within the immunoglobulin locus generates dU:dG lesions whose resolution leads to class-switch recombination and somatic hypermutation. The dU:dG pair is a mismatch and comprises a base foreign to DNA and is, thus, recognized by proteins from both base excision (uracil-DNA glycosylase, UNG) and mismatch recognition (MSH2/MSH6) pathways. Strikingly, while antibody diversification is perturbed by single deficiency in either UNG or MSH2, combined UNG/MSH2 deficiency leads to a total ablation both of switch recombination and of IgV hypermutation at dA:dT pairs. The initiating dU:dG lesions appear not to be recognized and are simply replicated over. The results indicate that the major pathway for switch recombination occurs through uracil excision with mismatch recognition of dU:dG providing a backup; the second phase of hypermutation (essentially introducing mutations solely at dA:dT pairs) is triggered by mismatch recognition of the dU:dG lesion with uracil excision providing a backup.
Collapse
Affiliation(s)
- Cristina Rada
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| | | | | |
Collapse
|
267
|
Abstract
A powerful mechanism of vertebrate innate immunity has been discovered in the past year, in which APOBEC proteins inhibit retroviruses by deaminating cytosine residues in nascent retroviral cDNA. To thwart this cellular defence, HIV encodes Vif, a small protein that mediates APOBEC degradation. Therefore, the balance between APOBECs and Vif might be a crucial determinant of the outcome of retroviral infection. Vertebrates have up to 11 different APOBEC proteins, with primates having the most. APOBEC proteins include AID, a probable DNA mutator that is responsible for immunoglobulin-gene diversification, and APOBEC1, an RNA editor with antiretroviral activities. This APOBEC abundance might help to tip the balance in favour of cellular defences.
Collapse
Affiliation(s)
- Reuben S Harris
- University of Minnesota, Biochemistry, Molecular Biology and Biophysics Department, 321 Church Street South East, 6-155 Jackson Hall, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
268
|
Rückerl F, Bachl J. Activation-induced cytidine deaminase fails to induce a mutator phenotype in the human pre-B cell line Nalm-6. Eur J Immunol 2004; 35:290-8. [PMID: 15593119 DOI: 10.1002/eji.200425315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) plays a key role in the induction of somatic hypermutation and class switching at the immunoglobulin loci of B lymphocytes. AID overexpression can induce a mutator phenotype in lymphoid and nonlymphoid cell lines, suggesting that AID by itself is sufficient to trigger hypermutation and class switching. AID expression in vivo is considered to be restricted to germinal center B lymphocytes, yet AID expression is also seen in many B cell lymphomas, hinting at a potential role for the development of these malignancies. We used a GFP-based reversion assay to efficiently evaluate the activation of mutator phenotypes. As expected, AID overexpression in the human Burkitt lymphoma cell line BL70 caused hypermutation. Surprisingly, AID overexpression in the human pre-B cell line Nalm-6 failed to induce a detectable mutator phenotype, indicating that Nalm-6 cells are probably lacking an essential factor(s) to confer AID-induced mutagenesis. This finding supports the concept that AID overexpression by itself must not automatically lead to the onset of a mutator phenotype. In addition, treating Nalm-6 transfectants with thymidine, a potential mutagenic drug, caused profound mutation rates on the GFP transgene. Thus, the GFP-based mutation assay might prove a powerful tool to study protein- and chemical-induced mutator phenotypes in cell lines.
Collapse
Affiliation(s)
- Florian Rückerl
- GSF-National Research Centre for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, D-81377 Munich, Germany
| | | |
Collapse
|
269
|
Franklin A, Blanden RV. On the molecular mechanism of somatic hypermutation of rearranged immunoglobulin genes. Immunol Cell Biol 2004; 82:557-67. [PMID: 15550113 DOI: 10.1111/j.1440-1711.2004.01289.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Somatic hypermutation (SHM) diversifies the genes that encode immunoglobulin variable regions in antigen-activated germinal centre B lymphocytes. Available evidence strongly suggests that DNA deamination potentiates phase I SHM and subsequently triggers phase II SHM. A concise review of this evidence is followed by a detailed critique of two possible models which suggest that polymerase-eta potentiates phase II SHM via either its DNA-dependent or its RNA-dependent DNA synthetic activity. Quantitative analysis, in the context of extant data that define the features of SHM, favours the RNA-dependent mechanism.
Collapse
Affiliation(s)
- Andrew Franklin
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | |
Collapse
|
270
|
Bransteitter R, Pham P, Calabrese P, Goodman MF. Biochemical Analysis of Hypermutational Targeting by Wild Type and Mutant Activation-induced Cytidine Deaminase. J Biol Chem 2004; 279:51612-21. [PMID: 15371439 DOI: 10.1074/jbc.m408135200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of high affinity antibodies requires activation-induced cytidine deaminase (AID) to initiate somatic hypermutation and class-switch recombination. Here we investigate AID-catalyzed deamination of C --> U on single-stranded DNA and on actively transcribed closed circular double-stranded DNA. Mutations are initially favored at canonical WRC (W = A or T, R = A or G) somatic hypermutation hot spot motifs, but over time mutations at neighboring non-hot spot sites increase creating random clusters of mutated regions in a seemingly processive manner. N-terminal AID mutants R35E and R35E/R36D appear less processive and have altered mutational specificity compared with wild type AID. In contrast, a C-terminal deletion mutant defective in CSR in vivo closely resembles wild type AID. A mutational spectrum generated during transcription of closed circular double-stranded DNA indicates that wild type AID retains its specificity for WRC hot spot motifs within the confines of a moving transcription bubble while introducing clusters of multiple deaminations predominantly on the nontranscribed strand.
Collapse
Affiliation(s)
- Ronda Bransteitter
- Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | |
Collapse
|
271
|
|
272
|
Pasqualucci L, Guglielmino R, Houldsworth J, Mohr J, Aoufouchi S, Polakiewicz R, Chaganti RSK, Dalla-Favera R. Expression of the AID protein in normal and neoplastic B cells. Blood 2004; 104:3318-25. [PMID: 15304391 DOI: 10.1182/blood-2004-04-1558] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Abstract
Somatic hypermutation (SHM) targets primarily the immunoglobulin variable region (IgV) genes in germinal center (GC) B cells, thereby allowing antibody affinity maturation. A malfunction of SHM, termed aberrant somatic hypermutation (ASHM), was found in about 50% of diffuse large B-cell lymphomas (DLBCLs), leading to mutations in the 5′ sequences of multiple genes, including oncogenes. Although the SHM mechanism is largely unknown, it was shown to require the activation-induced cytidine deaminase (AID) gene. AID mRNA is expressed in GC B cells and GC-derived lymphomas, but the pattern of expression of the AID protein is not known. Using 2 specific antibodies, here we show that the AID protein can be detected in GC centroblasts and their transformed counterpart (Burkitt lymphoma) but not in pre-GC B cells and post-GC neoplasms, including B-cell chronic lymphocytic leukemia and multiple myeloma. DLBCLs displayed variable levels of AID expression, which did not correlate with IgV ongoing hypermutation, ASHM, or disease subtype. Finally, both in normal and malignant B cells the AID protein appeared predominantly localized in the cytoplasm. These results indicate that the AID protein is specifically expressed in normal and transformed GC B cells; nonetheless, its predominantly cytoplasmic localization suggests that additional mechanisms may regulate its function and may be altered during lymphomagenesis. (Blood. 2004;104:3318-3325)
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology, Columbia University, 1150 St Nicholas Ave, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
273
|
Zarrin AA, Alt FW, Chaudhuri J, Stokes N, Kaushal D, Du Pasquier L, Tian M. An evolutionarily conserved target motif for immunoglobulin class-switch recombination. Nat Immunol 2004; 5:1275-81. [PMID: 15531884 DOI: 10.1038/ni1137] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 10/21/2004] [Indexed: 02/05/2023]
Abstract
Immunoglobulin H class-switch recombination (CSR) occurs between switch regions and requires transcription and activation-induced cytidine deaminase (AID). Transcription through mammalian switch regions, because of their GC-rich composition, generates stable R-loops, which provide single-stranded DNA substrates for AID. However, we show here that the Xenopus laevis switch region S(mu), which is rich in AT and not prone to form R-loops, can functionally replace a mouse switch region to mediate CSR in vivo. X. laevis S(mu)-mediated CSR occurred mostly in a region of AGCT repeats targeted by the AID-replication protein A complex when transcribed in vitro. We propose that AGCT is a primordial CSR motif that targets AID through a non-R-loop mechanism involving an AID-replication protein A complex.
Collapse
Affiliation(s)
- Ali A Zarrin
- Howard Hughes Medical Institute, The Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
274
|
Wright BE, Schmidt KH, Minnick MF. Mechanisms by which transcription can regulate somatic hypermutation. Genes Immun 2004; 5:176-82. [PMID: 14985674 DOI: 10.1038/sj.gene.6364053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mechanisms for somatic hypermutation (SHM) have proven elusive. An actively transcribed substrate was analyzed to elucidate the role of stem-loop structures (SLSs) in SHM. Analysis with a new computer algorithm indicates that the location and mutability of a base are regulated by: (a) the extent to which it is unpaired, (b) the degree to which it is exposed by stabilization of SLSs containing and flanking it, and (c) the level of transcription that drives supercoiling, which creates and stabilizes SLSs containing unpaired bases vulnerable to mutation. New mechanisms are described by which transcription can differentially stabilize SLSs harboring targeted bases and establish specific base exposure patterns. Assuming that transcription levels correlate with the magnitude of superhelicity induced and the lengths of ssDNA forming SLSs, this analysis accounts for the location of all mutable bases during SHM.
Collapse
Affiliation(s)
- B E Wright
- Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
275
|
Delpy L, Sirac C, Le Morvan C, Cogné M. Transcription-dependent somatic hypermutation occurs at similar levels on functional and nonfunctional rearranged IgH alleles. THE JOURNAL OF IMMUNOLOGY 2004; 173:1842-8. [PMID: 15265916 DOI: 10.4049/jimmunol.173.3.1842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Allelic exclusion of IgH chain expression is stringently established before or during early B cell maturation. It likely relies both on cellular mechanisms, selecting those cells in which a single receptor allows the best possible Ag response, and on molecular restrictions of gene accessibility to rearrangement. The extent to which transcriptional control may be involved is unclear. Transcripts arising from nonfunctional alleles would undergo nonsense-mediated degradation and their virtual absence in mature cells cannot ensure that transcription per se is down-regulated. By contrast, somatic hypermutation may provide an estimate of primary transcription in Ag-activated cells since both processes are directly correlated. For coding regions, the rate and nature of mutations also depend upon Ag binding constraints. By sequencing intronic sequence downstream mouse VDJ genes, we could show in the absence of such constraints that somatic hypermutation intrinsically targets nonfunctional rearranged alleles at a frequency approaching that of functional alleles, suggesting that transcription also proceeds on both alleles at a similar rate. By contrast and confirming the strong dependency of somatic hypermutation upon transcription, we show that artificial blockade of transcription on the nonfunctional allele by a knock-in neomycin resistance cassette keeps the VDJ region unmutated even when its promoter is intact and when it is fully rearranged.
Collapse
Affiliation(s)
- Laurent Delpy
- Laboratoire d'Immunologie, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6101, Equipe labellisée La Ligue, Faculté de Médecine, Limoges, France
| | | | | | | |
Collapse
|
276
|
Ruckerl F, Mailhammer R, Bachl J. Dual reporter system to dissect cis- and trans-effects influencing the mutation rate in a hypermutating cell line. Mol Immunol 2004; 41:1135-43. [PMID: 15482849 DOI: 10.1016/j.molimm.2004.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 06/09/2004] [Indexed: 11/30/2022]
Abstract
Activation induced cytidine deaminase (AID) plays a key role in the induction of somatic hypermutation and class switching in the immunoglobulin genes of B-lymphocytes. AID expression by itself is sufficient to induce a GC-basepair biased mutator phenotype in lymphoid and non-lymphoid cell lines. Nevertheless a network of cis-regulatory elements and additional trans-factor proteins seems to govern the molecular mechanism of somatic hypermutation. To address the nature of mutation rate changes observed in the hypermutating pre-B cell line 18-81, we extended our previously described green fluorescent protein (GFP) reversion-system. Introducing an additional mutation reporter transgene enables us to discriminate between cis- and trans-factor caused alterations in the mutator phenotype. We show here that in cell line 18-81 the mutation rate declines upon prolonged periods of cell culture. The gradual loss of the mutator phenotype in cell line 18-81 is due to the downregulation of endogenous AID expression and can be reconstituted by overexpression of human AID protein. A correlation between AID mRNA levels and mutation rates is evident and even small changes in AID expression levels cause a significant effect on the mutability of the reporter transgenes.
Collapse
Affiliation(s)
- Florian Ruckerl
- GSF-National Research Centre for Environment and Health, Institute of Clinical Molecular Biology and Tumour Genetics, Marchioninistrasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
277
|
Li Z, Scherer SJ, Ronai D, Iglesias-Ussel MD, Peled JU, Bardwell PD, Zhuang M, Lee K, Martin A, Edelmann W, Scharff MD. Examination of Msh6- and Msh3-deficient mice in class switching reveals overlapping and distinct roles of MutS homologues in antibody diversification. ACTA ACUST UNITED AC 2004; 200:47-59. [PMID: 15238604 PMCID: PMC2213317 DOI: 10.1084/jem.20040355] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Somatic hypermutation and class switch recombination (CSR) contribute to the somatic diversification of antibodies. It has been shown that MutS homologue (Msh)6 (in conjunction with Msh2) but not Msh3 is involved in generating A/T base substitutions in somatic hypermutation. However, their roles in CSR have not yet been reported. Here we show that Msh6−/− mice have a decrease in CSR, whereas Msh3−/− mice do not. When switch regions were analyzed for mutations, deficiency in Msh6 was associated with an increase in transition mutations at G/C basepairs, mutations at RGYW/WRCY hotspots, and a small increase in the targeting of G/C bases. In addition, Msh6−/− mice exhibited an increase in the targeting of recombination sites to GAGCT/GGGGT consensus repeats and hotspots in Sγ3 but not in Sμ. In contrast to Msh2−/− mice, deficiency in Msh6 surprisingly did not change the characteristics of Sμ-Sγ3 switch junctions. However, Msh6−/− mice exhibited a change in the positioning of Sμ and Sγ3 junctions. Although none of these changes were seen in Msh3−/− mice, they had a higher percentage of large inserts in their switch junctions. Together, our data suggest that MutS homologues Msh2, Msh3, and Msh6 play overlapping and distinct roles during antibody diversification processes.
Collapse
Affiliation(s)
- Ziqiang Li
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Chanin 403, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Martomo SA, Yang WW, Gearhart PJ. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. ACTA ACUST UNITED AC 2004; 200:61-8. [PMID: 15238605 PMCID: PMC2213309 DOI: 10.1084/jem.20040691] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6−/− clones, whereas mutations were dispersed in Msh3−/− and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase.
Collapse
Affiliation(s)
- Stella A Martomo
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Dr., Baltimore, MD 21224, USA
| | | | | |
Collapse
|
279
|
Arudchandran A, Bernstein RM, Max EE. Single-stranded DNA breaks adjacent to cytosines occur during Ig gene class switch recombination. THE JOURNAL OF IMMUNOLOGY 2004; 173:3223-9. [PMID: 15322184 DOI: 10.4049/jimmunol.173.5.3223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Class switch recombination (CSR) at the DNA level underlies ability of B lymphocytes to switch from expressing IgM to expressing IgG, IgA, or IgE. The mechanism of CSR is largely unknown, but it is clear that CSR is stimulated by T cell signals and is mediated in part by activation-induced deaminase (AID), an enzyme that is also required for somatic hypermutation of Ig genes. In one current model, AID is proposed to initiate CSR by deaminating cytosines in the unpaired nontemplate strand of DNA displaced from its complementary strand by the "sterile" RNA transcript across the switch region. We have used LM-PCR to analyze single-strand breaks in CH12F3-2, a murine cell line that switches in vitro to IgA expression. In contrast to the above model, we have detected CSR-associated ssDNA breaks in the template strand of the H chain alpha switch region, the strand thought to be complexed with RNA. Most breaks are adjacent to cytosines, consistent with mediation by AID, and occur within the novel consensus sequence C*AG, which occurs much more frequently on the template strand than on the putatively displaced nontemplate strand. These results suggest that AID may target the DNA strand bound to RNA, perhaps resembling APOBEC-3G, a cytosine deaminase related to AID that inhibits HIV replication by mutating viral DNA. Furthermore, the absence of detectable breaks in the nontemplate strand within the DNA segment under study suggests that the two DNA strands are handled differently in the generation or processing of strand breaks.
Collapse
Affiliation(s)
- Arulvathani Arudchandran
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
280
|
Fear DJ, McCloskey N, O'Connor B, Felsenfeld G, Gould HJ. Transcription of Ig Germline Genes in Single Human B Cells and the Role of Cytokines in Isotype Determination. THE JOURNAL OF IMMUNOLOGY 2004; 173:4529-38. [PMID: 15383585 DOI: 10.4049/jimmunol.173.7.4529] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have developed a critical test of the chromatin accessibility model of Ig isotype determination in which local unfolding of chromatin higher order structure (chromatin accessibility) in the region of specific germline genes in the H chain locus determines the Ab class to be expressed in the B cell. We show that multiple germline genes are constitutively transcribed in the majority of naive human B cells in a population. Thus, because chromatin in its higher order structure cannot be transcribed, the entire Ig H chain locus must be unfolded in naive B cells. We have also established that IL-4 and anti-CD40 act by enhancing transcription in the majority of cells, rather than by activating transcription in more of the cells. Transcriptional activity in the human H chain locus rules out the perturbation of chromatin higher order structure as a factor in isotype determination. We have also found that the levels of germline gene transcription cannot fully account for the levels of secretion of the different Ig isotypes, and that secretion of IgE, in particular, is suppressed relative to that of IgG.
Collapse
Affiliation(s)
- David J Fear
- The Randall Center, King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
281
|
Ward IM, Reina-San-Martin B, Olaru A, Minn K, Tamada K, Lau JS, Cascalho M, Chen L, Nussenzweig A, Livak F, Nussenzweig MC, Chen J. 53BP1 is required for class switch recombination. ACTA ACUST UNITED AC 2004; 165:459-64. [PMID: 15159415 PMCID: PMC2172356 DOI: 10.1083/jcb.200403021] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
53BP1 participates early in the DNA damage response and is involved in cell cycle checkpoint control. Moreover, the phenotype of mice and cells deficient in 53BP1 suggests a defect in DNA repair (Ward et al., 2003b). Therefore, we asked whether or not 53BP1 would be required for the efficient repair of DNA double strand breaks. Our data indicate that homologous recombination by gene conversion does not depend on 53BP1. Moreover, 53BP1-deficient mice support normal V(D)J recombination, indicating that 53BP1 is not required for “classic” nonhomologous end joining. However, class switch recombination is severely impaired in the absence of 53BP1, suggesting that 53BP1 facilitates DNA end joining in a way that is not required or redundant for the efficient closing of RAG-induced strand breaks. These findings are similar to those observed in mice or cells deficient in the tumor suppressors ATM and H2AX, further suggesting that the functions of ATM, H2AX, and 53BP1 are closely linked.
Collapse
Affiliation(s)
- Irene M Ward
- 1306 Guggenheim, Mayo Clinic, 200 First St., SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
282
|
|
283
|
Faili A, Aoufouchi S, Weller S, Vuillier F, Stary A, Sarasin A, Reynaud CA, Weill JC. DNA polymerase eta is involved in hypermutation occurring during immunoglobulin class switch recombination. ACTA ACUST UNITED AC 2004; 199:265-70. [PMID: 14734526 PMCID: PMC2211761 DOI: 10.1084/jem.20031831] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Base substitutions, deletions, and duplications are observed at the immunoglobulin locus in DNA sequences involved in class switch recombination (CSR). These mutations are dependent upon activation-induced cytidine deaminase (AID) and present all the characteristics of the ones observed during V gene somatic hypermutation, implying that they could be generated by the same mutational complex. It has been proposed, based on the V gene mutation pattern of patients with the cancer-prone xeroderma pigmentosum variant (XP-V) syndrome who are deficient in DNA polymerase η (pol η), that this enzyme could be responsible for a large part of the mutations occurring on A/T bases. Here we show, by analyzing switched memory B cells from two XP-V patients, that pol η is also an A/T mutator during CSR, in both the switch region of tandem repeats as well as upstream of it, thus suggesting that the same error-prone translesional polymerases are involved, together with AID, in both processes.
Collapse
Affiliation(s)
- Ahmad Faili
- INSERM U373, Faculté de Médecine Necker-Enfants Malades, Université Paris V, France
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Abstract
Small resting B lymphocytes all start out producing IgM Abs. Upon encountering Ag, the cells become activated and make a switch from IgM to other Ig classes. This class switch serves to distribute a particular V region to different Ig C regions. Each C region mediates a specialized effector function, and so, through switching, an organism can guide its Abs to various sites. Creating the new H chain requires loop-out and deletion of DNA between switch regions. These DNA acrobatics require transcription of the switch regions, presumably so that necessary factors can gain access to the DNA. These requisite switching factors include activation-induced cytidine deaminase and components of general DNA repair, including base excision repair, mismatch repair, and double-strand break repair. Despite much recent progress, not all important factors have been discovered, especially those that may guide recombination to a particular subclass.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
285
|
Begum NA, Kinoshita K, Muramatsu M, Nagaoka H, Shinkura R, Honjo T. De novo protein synthesis is required for activation-induced cytidine deaminase-dependent DNA cleavage in immunoglobulin class switch recombination. Proc Natl Acad Sci U S A 2004; 101:13003-7. [PMID: 15317942 PMCID: PMC516508 DOI: 10.1073/pnas.0405219101] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase is required for the DNA cleavage step of Ig class switch recombination (CSR). However, its molecular mechanism is controversial. RNA-editing hypothesis postulates that activation-induced cytidine deaminase deaminates cytosine in an unknown mRNA to generate a new mRNA encoding an endonuclease for CSR and thus predicts that DNA cleavage depends on de novo protein synthesis. On the other hand, DNA deamination hypothesis proposes that DNA cleavage is initiated by cytosine deamination in DNA, followed by uracil removal by uracil DNA glycosylase. By using the chromatin immunoprecipitation assay to detect gamma-H2AX focus formation as a marker for DNA cleavage, we found that cycloheximide inhibited DNA cleavage in the Ig heavy-chain locus during CSR. Requirement of protein synthesis in the DNA cleavage step of CSR strengthens the RNA-editing hypothesis.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
286
|
Shen HM, Storb U. Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci U S A 2004; 101:12997-3002. [PMID: 15328407 PMCID: PMC516507 DOI: 10.1073/pnas.0404974101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The activation-induced cytidine deaminase (AID) is required for somatic hypermutation (SHM) and class-switch recombination of Ig genes. It has been shown that in vitro, AID protein deaminates C in single-stranded DNA or the coding-strand DNA that is being transcribed but not in double-stranded DNA. However, in vivo, both DNA strands are mutated equally during SHM. We show that AID efficiently deaminates C on both DNA strands of a supercoiled plasmid, acting preferentially on SHM hotspot motifs. However, this DNA is not targeted by AID when it is relaxed after treatment with topoisomerase I, and thus, supercoiling plays a crucial role for AID targeting to this DNA. Most of the mutations are in negatively supercoiled regions, suggesting a mechanism of AID targeting in vivo. During transcription the DNA sequences upstream of the elongating RNA polymerase are negatively supercoiled, and this transient change in DNA topology may allow AID to access both DNA strands.
Collapse
Affiliation(s)
- Hong Ming Shen
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
287
|
Begum NA, Kinoshita K, Kakazu N, Muramatsu M, Nagaoka H, Shinkura R, Biniszkiewicz D, Boyer LA, Jaenisch R, Honjo T. Uracil DNA Glycosylase Activity Is Dispensable for Immunoglobulin Class Switch. Science 2004; 305:1160-3. [PMID: 15326357 DOI: 10.1126/science.1098444] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation-induced cytidine deaminase (AID) is required for the DNA cleavage step in immunoglobulin class switch recombination (CSR). AID is proposed to deaminate cytosine to generate uracil (U) in either mRNA or DNA. In the second instance, DNA cleavage depends on uracil DNA glycosylase (UNG) for removal of U. Using phosphorylated histone gamma-H2AX focus formation as a marker of DNA cleavage, we found that the UNG inhibitor Ugi did not inhibit DNA cleavage in immunoglobulin heavy chain (IgH) locus during CSR, even though Ugi blocked UNG binding to DNA and strongly inhibited CSR. Strikingly, UNG mutants that had lost the capability of removing U rescued CSR in UNG-/- B cells. These results indicate that UNG is involved in the repair step of CSR yet by an unknown mechanism. The dispensability of U removal in the DNA cleavage step of CSR requires a reconsideration of the model of DNA deamination by AID.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Durandy A, Revy P, Fischer A. Hyper-immunoglobulin-M syndromes caused by an intrinsic B cell defect. Curr Opin Allergy Clin Immunol 2004; 3:421-5. [PMID: 14612665 DOI: 10.1097/00130832-200312000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Elucidation of the molecular basis of hyper-immunoglobulin-M syndromes has provided considerable insight into the molecular events involved in antibody maturation, including immunoglobulin class switch recombination and the generation of somatic hypermutation. RECENT FINDINGS The identification of activation-induced cytidine deaminase deficiency (hyper-immunoglobulin-M syndrome 2) has revealed the key role played by this inducible B cell-specific molecule in both class switch recombination and somatic hypermutation. Data from Escherichia coli and in-vitro assays have strongly suggested that activation-induced cytidine deaminase acts as a DNA-editing enzyme in these processes. The recent description of a new hyper-immunoglobulin-M syndrome caused by mutations in the gene encoding the uracil-N glycosylase provided further evidence that activation-induced cytidine deaminase acts on deoxycytidine in the switch and variable regions. Indeed, uracil-N glycosylase is required to remove the uracil residues integrated into DNA following deoxycytidine deamination by activation-induced cytidine deaminase. Another hyper-immunoglobulin-M condition has recently been described (hyper-immunoglobulin-M syndrome 4). Its molecular basis is unknown, but it appears to be a homogeneous entity characterized by an intrinsic B cell defective class switch recombination but normal generation of somatic hypermutation. It is probably caused by a class switch recombination-specific DNA repair defect because class switch recombination-induced DNA breaks in S regions are normally detected in patients with this condition. SUMMARY The heterogeneity in hyper-immunoglobulin-M syndromes will continue to shed light on the molecular mechanisms of class switch recombination and somatic hypermutation. The description of hyper-immunoglobulin-M syndromes may therefore lead to improvements in the care of these patients.
Collapse
Affiliation(s)
- Anne Durandy
- Inserm U429, Hospital Necker-Sick Children, Paris, France.
| | | | | |
Collapse
|
289
|
Chaudhuri J, Alt FW. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 2004; 4:541-52. [PMID: 15229473 DOI: 10.1038/nri1395] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jayanta Chaudhuri
- Howard Hughes Medical Institute, Center for Blood Research and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
290
|
Yu K, Lieber MR. Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair (Amst) 2004; 2:1163-74. [PMID: 14599739 DOI: 10.1016/j.dnarep.2003.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Class switch recombination is the gene rearrangement process by which our B lymphocytes change from IgM production to IgG, IgA, or IgE. Unlike the well-characterized V(D)J recombination, the mechanism of class switch recombination has been largely enigmatic until very recent progress has begun to shed light on this gene rearrangement process. Progress has been made on the enzymes involved in leading to the DNA cleavage events and on identifying the unusual DNA structures that those enzymes recognize.
Collapse
Affiliation(s)
- Kefei Yu
- Department of Pathology, Norris Comprehensive Cancer Ctr, Rm 5428, 1441 Eastlake Ave, MC9176, Los Angeles, CA 90033, USA
| | | |
Collapse
|
291
|
Schrader CE, Vardo J, Linehan E, Twarog MZ, Niedernhofer LJ, Hoeijmakers JHJ, Stavnezer J. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions. ACTA ACUST UNITED AC 2004; 200:321-30. [PMID: 15280420 PMCID: PMC2211985 DOI: 10.1084/jem.20040052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3′ single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1−/− splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Sμ segments and recombined Sμ-Sγ3 segments cloned from Ercc1−/− splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1−/− cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S–S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.
Collapse
Affiliation(s)
- Carol E Schrader
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | | | | | |
Collapse
|
292
|
Chaudhuri J, Khuong C, Alt FW. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004; 430:992-8. [PMID: 15273694 DOI: 10.1038/nature02821] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/12/2004] [Indexed: 01/20/2023]
Abstract
Activation-induced cytidine deaminase (AID) is a single-stranded (ss) DNA deaminase required for somatic hypermutation (SHM) and class switch recombination of immunoglobulin genes. Class switch recombination involves transcription through switch regions, which generates ssDNA within R loops. However, although transcription through immunoglobulin variable region exons is required for SHM, it does not generate stable ssDNA, which leaves the mechanism of AID targeting unresolved. Here we characterize the mechanism of AID targeting to in-vitro-transcribed substrates harbouring SHM motifs. We show that the targeting activity of AID is due to replication protein A (RPA), a ssDNA-binding protein involved in replication, recombination and repair. The 32-kDa subunit of RPA interacts specifically with AID from activated B cells in a manner that seems to be dependent on post-translational AID modification. Thus, our study implicates RPA as a novel factor involved in immunoglobulin diversification. We propose that B-cell-specific AID-RPA complexes preferentially bind to ssDNA of small transcription bubbles at SHM 'hotspots', leading to AID-mediated deamination and RPA-mediated recruitment of DNA repair proteins.
Collapse
Affiliation(s)
- Jayanta Chaudhuri
- Howard Hughes Medical Institute, Children's Hospital, Center for Blood Research and Department of Genetics, Harvard University Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
293
|
Shinkura R, Ito S, Begum NA, Nagaoka H, Muramatsu M, Kinoshita K, Sakakibara Y, Hijikata H, Honjo T. Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 2004; 5:707-12. [PMID: 15195091 DOI: 10.1038/ni1086] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 04/20/2004] [Indexed: 11/09/2022]
Abstract
Activation-induced cytidine deaminase (AID) is essential for class-switch recombination (CSR) and somatic hypermutation (SHM). Mutants with changes in the C-terminal region of AID retain SHM but lose CSR activity. Here we describe five mutants with alterations in the N-terminal region of AID that caused selective deficiency in SHM but retained CSR, suggesting that the CSR and SHM activities of AID may dissociate via interaction of CSR- or SHM-specific cofactors with different domains of AID. Unlike cells expressing C-terminal AID mutants, B cells expressing N-terminal AID mutants had mutations in the switch micro region, indicating that such mutations are generated by reactions involved in CSR but not SHM. Thus, we propose that separate domains of AID interact with specific cofactors to regulate these two distinct genetic events in a target-specific way.
Collapse
Affiliation(s)
- Reiko Shinkura
- Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Abstract
Activation-induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM), and gene conversion (GC). AID is known to be required for DNA cleavage of S regions in CSR. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We discuss available evidence for the two proposed models. Recent findings, namely requirement of protein synthesis for DNA breakage and dispensability of U removal activity of uracil DNA glycosylase, force us to reconsider DNA deamination hypothesis.
Collapse
Affiliation(s)
- Tasuku Honjo
- Department of Medical Chemistry and Molecular Biology, Graduate School of Medicine, Kyoto University, Yoshida Sakyo-Ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|
295
|
Brar SS, Watson M, Diaz M. Activation-induced Cytosine Deaminase (AID) Is Actively Exported out of the Nucleus but Retained by the Induction of DNA Breaks. J Biol Chem 2004; 279:26395-401. [PMID: 15087440 DOI: 10.1074/jbc.m403503200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation-induced cytosine deaminase (AID) is a cytosine deaminase that is critical to immunoglobulin hypermutation, class switch recombination, and gene conversion. In the context of hypermutating B cells, AID deaminates cytosine in the DNA of immunoglobulin genes, leading to the accumulation of mutations in the variable regions. However, when AID is expressed ectopically, it is a generalized mutator of G:C base pairs. Therefore, we asked whether AID may be partially regulated by an active system of nuclear export. We found that removal of a highly conserved nuclear export signal in the C terminus of AID causes accumulation of AID in the nucleus. However, a putative nuclear localization signal in the N terminus does not appear to be functional. Finally, we found that agents that induce DNA breaks caused retention of AID in the nucleus, suggesting that DNA breaks or the repair patches initiated as a result are a substrate for AID binding.
Collapse
Affiliation(s)
- Sukhdev S Brar
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709-2233, USA
| | | | | |
Collapse
|
296
|
Boursier L, Su W, Spencer J. Analysis of strand biased 'G'.C hypermutation in human immunoglobulin V(lambda) gene segments suggests that both DNA strands are targets for deamination by activation-induced cytidine deaminase. Mol Immunol 2004; 40:1273-8. [PMID: 15128044 DOI: 10.1016/j.molimm.2003.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatic hypermutation. which diversifies the immunoglobulin repertoire by introducing mutations into rearranged IgV genes, is dependent on the expression of activation-induced cytidine deaminase (AID). It has been proposed that AID deaminates DNA directly, generating mutations at C bases. Mutations from C and G are linked, and it has been suggested that mutations from G arise either during repair of DNA following deamination of C or by deamination of C on both DNA strands. Studies demonstrating that AID deaminates ssDNA on the non-transcribed strand support the former hypothesis. However, analyses of microsequences surrounding mutations suggest that the G.C mutator acts on both DNA strands equivalently. Unusually, in human IgV(lambda) genes, there is G.C strand bias favoring mutation from G. In IgV(lambda), 92% of mutations from G occur in GNW motifs. Hotspots for mutation from G IgV(lambda) are often independent of C nucleotides in the context of local microsequence. This independence of G and C mutation, yet retained dependence on local microsequence suggests that mutations from G arise independent of C on the non-transcribed strand. We suggest that both DNA strands are deaminated and that the transcribed strand is preferentially deaminated in human IgV(lambda) resulting in bias towards mutations from G.
Collapse
Affiliation(s)
- Laurent Boursier
- Department of Histopathology, Guy's, King's and St. Thomas' Medical School, St. Thomas' Campus, Lambeth Palace Road, London SE1 7EH, UK
| | | | | |
Collapse
|
297
|
Xie K, Sowden MP, Dance GSC, Torelli AT, Smith HC, Wedekind JE. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Proc Natl Acad Sci U S A 2004; 101:8114-9. [PMID: 15148397 PMCID: PMC419566 DOI: 10.1073/pnas.0400493101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 12/21/2022] Open
Abstract
Activation-induced deaminase (AID) uses base deamination for class-switch recombination and somatic hypermutation and is related to the mammalian RNA-editing enzyme apolipoprotein B editing catalytic subunit 1 (APOBEC-1). CDD1 is a yeast ortholog of APOBEC-1 that exhibits cytidine deaminase and RNA-editing activity. Here, we present the crystal structure of CDD1 at 2.0-A resolution and its use in comparative modeling of APOBEC-1 and AID. The models explain dimerization and the need for trans-acting loops that contribute to active site formation. Substrate selectivity appears to be regulated by a central active site "flap" whose size and flexibility accommodate large substrates in contrast to deaminases of pyrimidine metabolism that bind only small nucleosides or free bases. Most importantly, the results suggested both AID and APOBEC-1 are equally likely to bind single-stranded DNA or RNA, which has implications for the identification of natural AID targets.
Collapse
Affiliation(s)
- Kefang Xie
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
298
|
Khamlichi AA, Glaudet F, Oruc Z, Denis V, Le Bert M, Cogné M. Immunoglobulin class-switch recombination in mice devoid of any Sμ tandem repeat. Blood 2004; 103:3828-36. [PMID: 14962903 DOI: 10.1182/blood-2003-10-3470] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AbstractImmunoglobulin heavy-chain class-switch recombination (CSR) occurs between highly repetitive switch sequences located upstream of the constant region genes. However, the role of these sequences remains unclear. Mutant mice were generated in which most of the Iμ-Cμ intron was deleted, including all the repeats. Late B-cell development was characterized by a severe impairment, but not a complete block, in class switching to all isotypes despite normal germ line transcription. Sequence analysis of the Iμ-Cμ intron in in vitro activated–mutant splenocytes did not reveal any significant increase in activation-induced cytidine deaminase (AID)–induced somatic mutations. Analysis of switch junctions showed that, in the absence of any Sμ repeat, the Iμ exon was readily used as a substrate for CSR. In contrast to the sequence alterations downstream of the switch junctions, very few, if any, mutations were found upstream of the junction sites. Our data suggest that the core Eμ enhancer could be the boundary for CSR-associated somatic mutations. We propose that the core Eμ enhancer plays a central role in the temporal dissociation of somatic hypermutation from class switching.
Collapse
|
299
|
Wang CL, Harper RA, Wabl M. Genome-wide somatic hypermutation. Proc Natl Acad Sci U S A 2004; 101:7352-6. [PMID: 15123833 PMCID: PMC409922 DOI: 10.1073/pnas.0402009101] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Indexed: 11/18/2022] Open
Abstract
DNA mutagenesis is generally considered harmful. Yet activated B cells normally mutate the Ig loci. Because this somatic hypermutation is potentially dangerous, it has been hypothesized that mutations do not occur throughout the genome but instead are actively targeted to the Ig loci. Here we challenge this longstanding and widely accepted hypothesis. We demonstrate that hypermutation requires no Ig gene sequences. Instead, activation-induced cytidine deaminase and other trans-acting hypermutation factors may function as general mutators.
Collapse
Affiliation(s)
- Clifford L Wang
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
300
|
McBride KM, Barreto V, Ramiro AR, Stavropoulos P, Nussenzweig MC. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med 2004; 199:1235-44. [PMID: 15117971 PMCID: PMC2211910 DOI: 10.1084/jem.20040373] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 03/26/2004] [Indexed: 12/17/2022] Open
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated in activated B lymphocytes by activation-induced deaminase (AID). AID is thought to make lesions in DNA by deaminating cytidine residues in single-stranded DNA exposed by RNA polymerase during transcription. Although this must occur in the nucleus, AID is found primarily in the cytoplasm. Here we show that AID is actively excluded from the nucleus by an exportin CRM1-dependent pathway. The AID nuclear export signal (NES) is found at the carboxyl terminus of AID in a region that overlaps a sequence required for CSR but not SHM. We find that AID lacking a functional NES causes more hypermutation of a nonphysiologic target gene in transfected fibroblasts. However, the NES does not impact on the rate of mutation of immunoglobulin genes in B lymphocytes, suggesting that the AID NES does not limit AID activity in these cells.
Collapse
Affiliation(s)
- Kevin M McBride
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|