251
|
Heesters BA, Carroll MC. The Role of Dendritic Cells in S. pneumoniae Transport to Follicular Dendritic Cells. Cell Rep 2016; 16:3130-3137. [PMID: 27653679 PMCID: PMC5790206 DOI: 10.1016/j.celrep.2016.08.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/24/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Affinity-mature B cells require cognate antigen, retained by follicular dendritic cells (FDCs), for clonal selection within germinal centers. Studies on how FDCs in lymphoid tissues acquire antigen have relied primarily on model protein antigens. To examine delivery of intact bacteria to FDCs, we used inactivated Streptococcus pneumonia (SP). We found that both medullary macrophages and a subset of SIGN-R1-positive dendritic cells (DCs) in the lymph node capture SP from the draining afferent lymphatics. The presence of DCs is required for initial complement activation, opsonization of the bacteria, and efficient transport of SP to FDCs. Moreover, we observed a major role for transport of bacteria to FDCs by naive B cells via a CD21-dependent pathway. We propose a mechanism by which efficient transport of SP to FDCs is dependent on DCs for initial binding and activation of complement and either direct transport to FDCs or transfer to naive B cells.
Collapse
Affiliation(s)
- Balthasar A Heesters
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
252
|
Sehgal A, Kobayashi A, Donaldson DS, Mabbott NA. c-Rel is dispensable for the differentiation and functional maturation of M cells in the follicle-associated epithelium. Immunobiology 2016; 222:316-326. [PMID: 27663963 PMCID: PMC5152706 DOI: 10.1016/j.imbio.2016.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 01/22/2023]
Abstract
M cells reside within the follicle-associated epithelium (FAE) overlying the gut-associated lymphoid tissues. These unique phagocytic epithelial cells enable the mucosal immune system to sample antigens within the lumen of the intestine. The differentiation of M cells from uncommitted precursors in the FAE is dependent on the production of receptor activator of nuclear factor-κB ligand (RANKL) by subepithelial stromal cells. The ligation of a variety of cell surface receptors activates the nuclear factor-κB (NF-κB) family of transcription factors which in-turn induce the transcription of multiple target genes. RANKL-stimulation can stimulate the nuclear translocation of the NF-κB subunit c-Rel. We therefore used c-Rel-deficient mice to determine whether the differentiation and functional maturation of M cells in the Peyer's patches was dependent on c-Rel. Our data show that c-Rel-deficiency does not influence the expression of RANKL or RANK in Peyer's patches, or the induction of M-cell differentiation in the FAE. RANKL-stimulation in the differentiating M cells induces the expression of SpiB which is essential for their subsequent maturation. However, SpiB expression in the FAE was also unaffected in the absence of c-Rel. As a consequence, the functional maturation of M cells was not impaired in the Peyer's patches of c-Rel-deficient mice. Although our data showed that the specific expression of CCL20 and ubiquitin D in the FAE was not impeded in the absence of c-Rel, the expression of ubiquitin D was dramatically reduced in the B cell-follicles of c-Rel-deficient mice. Coincident with this, we also observed that the status of follicular dendritic cells in the B cell-follicles was dramatically reduced in Peyer's patches from c-Rel-deficient mice. Taken together, our data show that c-Rel is dispensable for the RANKL-mediated differentiation and functional maturation of M cells.
Collapse
Affiliation(s)
- Anuj Sehgal
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - David S Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
253
|
|
254
|
Sardi M, Lubitz A, Giese C. Modeling Human Immunity In Vitro: Improving Artificial Lymph Node Physiology by Stromal Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2016.0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Christoph Giese
- Department CATS, ProBioGen AG, Berlin, Germany
- Department QC, ProBioGen AG, Berlin, Germany
| |
Collapse
|
255
|
Sleeman JP. The lymph node pre-metastatic niche. J Mol Med (Berl) 2016; 93:1173-84. [PMID: 26489604 DOI: 10.1007/s00109-015-1351-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/09/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Lymph node metastases occur frequently during the progression of many types of cancer, and their presence often reflects poor prognosis. The drainage of tumor-derived factors such as antigens, growth factors, cytokines, and exosomes through the lymphatic system to the regional lymph nodes plays an important role in the pre-metastatic conditioning of the microenvironment in lymph nodes, making them receptive and supportive metastatic niches for disseminating tumor cells. Modified immunological responses and remodeling of the vasculature are the most studied tumor-induced pre-metastatic changes in the lymph node microenvironment that promote metastasis, although other metastasis-relevant alterations are also starting to be studied. Here, I review our current understanding of the lymph node pre-metastatic niche, how tumors condition this niche, and the relevance of this conditioning for our understanding of the process of metastasis.
Collapse
|
256
|
Chen HW, Huang CY, Lin SY, Fang ZS, Hsu CH, Lin JC, Chen YI, Yao BY, Hu CMJ. Synthetic virus-like particles prepared via protein corona formation enable effective vaccination in an avian model of coronavirus infection. Biomaterials 2016; 106:111-8. [PMID: 27552321 PMCID: PMC7112462 DOI: 10.1016/j.biomaterials.2016.08.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/10/2016] [Accepted: 08/13/2016] [Indexed: 01/11/2023]
Abstract
The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan.
| | - Chen-Yu Huang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shu-Yi Lin
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Zih-Syun Fang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsuan Hsu
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Chen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-I Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Yu Yao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Che-Ming J Hu
- Research Center for Nanotechnology and Infectious Diseases, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
257
|
Sato Y, Mii A, Hamazaki Y, Fujita H, Nakata H, Masuda K, Nishiyama S, Shibuya S, Haga H, Ogawa O, Shimizu A, Narumiya S, Kaisho T, Arita M, Yanagisawa M, Miyasaka M, Sharma K, Minato N, Kawamoto H, Yanagita M. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 2016; 1:e87680. [PMID: 27699223 PMCID: PMC5033938 DOI: 10.1172/jci.insight.87680] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition defined as a rapid decline in kidney function. AKI is a global health burden, estimated to cause 2 million deaths annually worldwide. Unlike AKI in the young, which is reversible, AKI in the elderly often leads to end-stage renal disease, and the mechanism that prevents kidney repair in the elderly is unclear. Here we demonstrate that aged but not young mice developed multiple tertiary lymphoid tissues (TLTs) in the kidney after AKI. TLT size was associated with impaired renal function and increased expression of proinflammatory cytokines and homeostatic chemokines, indicating a possible contribution of TLTs to sustained inflammation after injury. Notably, resident fibroblasts from a single lineage diversified into p75 neurotrophin receptor+ (p75NTR+) fibroblasts and homeostatic chemokine-producing fibroblasts inside TLTs, and retinoic acid-producing fibroblasts around TLTs. Deletion of CD4+ cells as well as late administration of dexamethasone abolished TLTs and improved renal outcomes. Importantly, aged but not young human kidneys also formed TLTs that had cellular and molecular components similar to those of mouse TLTs. Therefore, the inhibition of TLT formation may offer a novel therapeutic strategy for AKI in the elderly.
Collapse
Affiliation(s)
| | | | | | | | | | - Kyoko Masuda
- Department of Immunology, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | - Shuh Narumiya
- Medical Innovation Center, Graduate School of Medicine
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masashi Yanagisawa
- Department of Molecular Genetics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Miyasaka
- Institute for Academic Initiatives, Osaka University, Osaka, Japan
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Kumar Sharma
- Center for Renal Translational Medicine and Institute of Metabolomic Medicine, Department of Medicine, University of California San Diego, Veteran’s Administration San Diego Health Care System, La Jolla, California, USA
| | | | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Science, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
258
|
Hoxha E, Beck LH, Wiech T, Tomas NM, Probst C, Mindorf S, Meyer-Schwesinger C, Zahner G, Stahl PR, Schöpper R, Panzer U, Harendza S, Helmchen U, Salant DJ, Stahl RAK. An Indirect Immunofluorescence Method Facilitates Detection of Thrombospondin Type 1 Domain-Containing 7A-Specific Antibodies in Membranous Nephropathy. J Am Soc Nephrol 2016; 28:520-531. [PMID: 27436855 DOI: 10.1681/asn.2016010050] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/07/2016] [Indexed: 11/03/2022] Open
Abstract
Thrombospondin type 1 domain-containing 7A (THSD7A) is a target antigen identified in adult membranous nephropathy (MN) along with the major antigen phospholipase A2 receptor 1 (PLA2R1). The prevalence of THSD7A-Ab-positive patients is unknown, and it is unclear whether the clinical presentation differs between patients positive for PLA2R1-Ab or THSD7A-Ab. We screened serum samples of 1276 patients with MN from three different cohorts for the presence of THSD7A-Ab by Western blot analysis and a newly developed indirect immunofluorescence test (IFT). Compared with Western blot analysis, the IFT had a 92% sensitivity and a 100% specificity. The prevalence of THSD7A-associated MN in a prospective cohort of 345 patients with MN was 2.6%, and most were women. In this cohort, the percentage of patients with THSD7A-associated MN and malignant disease significantly exceeded that of patients with PLA2R1-associated MN and malignant disease. In all cohorts, we identified 40 patients with THSD7A-associated MN, eight of whom developed a malignancy within a median time of 3 months from diagnosis of MN. In one patient with THSD7A-associated MN and metastases of an endometrial carcinoma, immunohistochemistry showed THSD7A expression on the metastatic cells and within follicular dendritic cells of the metastasis-infiltrated lymph node. We conclude that the IFT allows sensitive and specific measurement of circulating THSD7A-Ab in patients with MN. Patients with THSD7A-associated MN differ in their clinical characteristics from patients with PLA2R1-associated MN, and more intensive screening for the presence of malignancies may be warranted in those with THSD7A-associated MN.
Collapse
Affiliation(s)
| | - Laurence H Beck
- Boston University School of Medicine, Boston, Massachusetts; and
| | | | | | - Christian Probst
- Institute of Experimental Immunology, Euroimmun AG, Lubeck, Germany
| | - Swantje Mindorf
- Institute of Experimental Immunology, Euroimmun AG, Lubeck, Germany
| | | | | | | | | | | | | | - Udo Helmchen
- Nierenregister, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David J Salant
- Boston University School of Medicine, Boston, Massachusetts; and
| | | |
Collapse
|
259
|
Kranich J, Krautler NJ. How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol 2016; 7:225. [PMID: 27446069 PMCID: PMC4914831 DOI: 10.3389/fimmu.2016.00225] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs.
Collapse
Affiliation(s)
- Jan Kranich
- Institute for Immunology, Ludwig Maximilian University Munich, Munich, Germany
| | | |
Collapse
|
260
|
Allen F, Tong AA, Huang AY. Unique Transcompartmental Bridge: Antigen-Presenting Cells Sampling across Endothelial and Mucosal Barriers. Front Immunol 2016; 7:231. [PMID: 27375624 PMCID: PMC4901051 DOI: 10.3389/fimmu.2016.00231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
Potentially harmful pathogens can gain access to tissues and organ systems through body sites that are in direct contact with the outside environment, such as the skin, the gut, and the airway mucosa. Antigen-presenting cells (APCs) represent a bridge between the innate and adaptive immunity, and their capacity for constant immune surveillance and rapid sampling of incoming pathogens and other potentially harmful antigens is central for mounting an effective and robust protective host response. The classical view is that APCs perform this task efficiently within the tissue to sense invading agents intra-compartmentally. However, recent data based on high resolution imaging support an additional transcompartmental surveillance behavior by APC by reaching across intact physical barriers. In this review, we summarize intravital microscopic evidences of APC to sample antigens transcompartmentally at the gut mucosa and other body sites.
Collapse
Affiliation(s)
- Frederick Allen
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Alexander A Tong
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Angie Fowler AYA Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| |
Collapse
|
261
|
Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma. Oncotarget 2016; 6:17135-46. [PMID: 25915530 PMCID: PMC4627297 DOI: 10.18632/oncotarget.3529] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.
Collapse
|
262
|
Hoxha E, Wiech T, Stahl PR, Zahner G, Tomas NM, Meyer-Schwesinger C, Wenzel U, Janneck M, Steinmetz OM, Panzer U, Harendza S, Stahl RAK. A Mechanism for Cancer-Associated Membranous Nephropathy. N Engl J Med 2016; 374:1995-6. [PMID: 27192690 DOI: 10.1056/nejmc1511702] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Elion Hoxha
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Phillip R Stahl
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulrich Wenzel
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ulf Panzer
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigrid Harendza
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf A K Stahl
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
263
|
Dubey LK, Lebon L, Mosconi I, Yang CY, Scandella E, Ludewig B, Luther SA, Harris NL. Lymphotoxin-Dependent B Cell-FRC Crosstalk Promotes De Novo Follicle Formation and Antibody Production following Intestinal Helminth Infection. Cell Rep 2016; 15:1527-1541. [PMID: 27160906 DOI: 10.1016/j.celrep.2016.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022] Open
Abstract
Secondary lymphoid tissues provide specialized niches for the initiation of adaptive immune responses and undergo a remarkable expansion in response to inflammatory stimuli. Although the formation of B cell follicles was previously thought to be restricted to the postnatal period, we observed that the draining mesenteric lymph nodes (mLN) of helminth-infected mice form an extensive number of new, centrally located, B cell follicles in response to IL-4Rα-dependent inflammation. IL-4Rα signaling promoted LTα1β2 (lymphotoxin) expression by B cells, which then interacted with CCL19 positive stromal cells to promote lymphoid enlargement and the formation of germinal center containing B cell follicles. Importantly, de novo follicle formation functioned to promote both total and parasite-specific antibody production. These data reveal a role for type 2 inflammation in promoting stromal cell remodeling and de novo follicle formation by promoting B cell-stromal cell crosstalk.
Collapse
Affiliation(s)
- Lalit Kumar Dubey
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), station 19, 1015 Lausanne, Switzerland
| | - Luc Lebon
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), station 19, 1015 Lausanne, Switzerland
| | - Ilaria Mosconi
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), station 19, 1015 Lausanne, Switzerland
| | - Chen-Ying Yang
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, 1066 Épalinges, Switzerland
| | - Elke Scandella
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection Lausanne, University of Lausanne, 1066 Épalinges, Switzerland
| | - Nicola L Harris
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
264
|
Abstract
Secondary lymphoid tissues share the important function of bringing together antigens and rare antigen-specific lymphocytes to foster induction of adaptive immune responses. Peyer's patches (PPs) are unique compared to other secondary lymphoid tissues in their continual exposure to an enormous diversity of microbiome- and food-derived antigens and in the types of pathogens they encounter. Antigens are delivered to PPs by specialized microfold (M) epithelial cells and they may be captured and presented by resident dendritic cells (DCs). In accord with their state of chronic microbial antigen exposure, PPs exhibit continual germinal center (GC) activity. These GCs not only contribute to the generation of B cells and plasma cells producing somatically mutated gut antigen-specific IgA antibodies but have also been suggested to support non-specific antigen diversification of the B-cell repertoire. Here, we review current understanding of how PPs foster B-cell encounters with antigen, how they favor isotype switching to the secretory IgA isotype, and how their GC responses may uniquely contribute to mucosal immunity.
Collapse
Affiliation(s)
- Andrea Reboldi
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
265
|
Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. J Virol 2016; 90:5132-5140. [PMID: 26962214 DOI: 10.1128/jvi.00166-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem.
Collapse
|
266
|
Ruckwardt TJ, Morabito KM, Graham BS. Determinants of early life immune responses to RSV infection. Curr Opin Virol 2016; 16:151-157. [PMID: 26986236 DOI: 10.1016/j.coviro.2016.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Respiratory syncytial virus causes significant morbidity and mortality in both developed and developing countries, and a vaccine that adequately protects from severe disease remains an important unmet need. RSV disease has an inordinate impact on the very young, and the physical and immunological immaturity of early life complicates vaccine design. Defining and targeting the functional capacities of early life immune responses and controlling responses during primary antigen exposure with selected vaccine delivery approaches will be important for protecting infants by active immunization. Alternatively, vaccination of older children and pregnant mothers may ameliorate disease burden indirectly until infants reach about six months of age, when they can generate more effective anti-RSV immune responses.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
267
|
Abstract
Germinal centers (GC) are the main sites where antigen-activated B-cell clones expand and undergo immunoglobulin gene hypermutation and selection. Iterations of this process will lead to affinity maturation, replicating Darwinian evolution on the cellular level. GC B-cell selection can lead to four different outcomes: further expansion and evolution, apoptosis (non-selection), or output from the GC with differentiation into memory B cells or plasma cells. T-helper cells in GC have been shown to have a central role in regulating B-cell selection by sensing the density of major histocompatibility complex (MHC):peptide antigen complexes. Antigen is provided on follicular dendritic cells in the form of immune complex. Antibody on these immune complexes regulates antigen accessibility by shielding antigen from B-cell receptor access. Replacement of antibody on immune complexes by antibody generated from GC-derived plasma cell output will gradually reduce the availability of antigen. This antibody feedback can lead to a situation where a slow rise in selection stringency caused by a changing environment leads to directional evolution toward higher affinity antibody.
Collapse
Affiliation(s)
- Yang Zhang
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| | - Laura Garcia‐Ibanez
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| | - Kai‐Michael Toellner
- Institute for Immunology and ImmunotherapyUniversity of Birmingham Medical SchoolBirminghamUK
| |
Collapse
|
268
|
Zhang X, Bajic G, Andersen GR, Christiansen SH, Vorup-Jensen T. The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:471-8. [PMID: 26876535 DOI: 10.1016/j.bbapap.2016.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/16/2022]
Abstract
As a broad-spectrum anti-microbial peptide, LL-37 plays an important role in the innate immune system. A series of previous reports implicates LL-37 as an activator of various cell surface receptor-mediated functions, including chemotaxis in integrin CD11b/CD18 (Mac-1)-expressing cells. However, evidence is scarce concerning the direct binding of LL-37 to these receptors and investigations on the associated binding kinetics is lacking. Mac-1, a member of the β2 integrin family, is mainly expressed in myeloid leukocytes. Its critical functions include phagocytosis of complement-opsonized pathogens. Here, we report on interactions of LL-37 and its fragment FK-13 with the ligand-binding domain of Mac-1, the α-chain I domain. LL-37 bound the I-domain with an affinity comparable to the complement fragment C3d, one of the strongest known ligands for Mac-1. In cell adhesion assays both LL-37 and FK-13 supported binding by Mac-1 expressing cells, however, with LL-37-coupled surfaces supporting stronger cell adhesion than FK-13. Likewise, in phagocytosis assays with primary human monocytes both LL-37 and FK-13 enhanced uptake of particles coupled with these ligands but with a tendency towards a stronger uptake by LL-37.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; MEMBRANES Research Center, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
269
|
Heesters BA, Lindqvist M, Vagefi PA, Scully EP, Schildberg FA, Altfeld M, Walker BD, Kaufmann DE, Carroll MC. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes. PLoS Pathog 2015; 11:e1005285. [PMID: 26623655 PMCID: PMC4666623 DOI: 10.1371/journal.ppat.1005285] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/27/2015] [Indexed: 01/12/2023] Open
Abstract
Despite the success of antiretroviral therapy (ART), it does not cure Human Immunodeficiency Virus (HIV) and discontinuation results in viral rebound. Follicular dendritic cells (FDC) are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans. Human immunodeficiency virus (HIV) can lead to acquired immunodeficiency syndrome, or AIDS. Before the introduction of anti retroviral therapy (ART) in the mid-1990s, people with HIV could progress to AIDS in just a few years. Today patients with HIV have a close to normal life expectancy. Worldwide, there are about 2 million new cases of HIV per year. Currently about 35 million people are living with HIV of which around 13 million receive ART. Still an estimated 1.5 million people die from the consequences of HIV each year. Despite the success of ART, it does not cure HIV and discontinuation results in viral rebound. Follicular dendritic cells (FDC), located central to the B cell follicle, are also in direct contact with T cells. FDCs retain intact antigen for prolonged periods. We found that human FDCs isolated from patients on ART retain infectious HIV and can transmit virus to uninfected T cells in vitro. Treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission to T cells in vitro. Our results can explain how FDCs retain infectious HIV and suggest a therapeutic strategy to come closer to a cure.
Collapse
Affiliation(s)
- Balthasar A. Heesters
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| | - Madelene Lindqvist
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Parsia A. Vagefi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eileen P. Scully
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank A. Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Viral Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Centre de Recherché du CHUM; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
270
|
Recaldin T, Fear DJ. Transcription factors regulating B cell fate in the germinal centre. Clin Exp Immunol 2015; 183:65-75. [PMID: 26352785 DOI: 10.1111/cei.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.
Collapse
Affiliation(s)
- T Recaldin
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - D J Fear
- Division of Asthma, Allergy and Lung Biology, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| |
Collapse
|
271
|
Bajic G, Degn SE, Thiel S, Andersen GR. Complement activation, regulation, and molecular basis for complement-related diseases. EMBO J 2015; 34:2735-57. [PMID: 26489954 DOI: 10.15252/embj.201591881] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
The complement system is an essential element of the innate immune response that becomes activated upon recognition of molecular patterns associated with microorganisms, abnormal host cells, and modified molecules in the extracellular environment. The resulting proteolytic cascade tags the complement activator for elimination and elicits a pro-inflammatory response leading to recruitment and activation of immune cells from both the innate and adaptive branches of the immune system. Through these activities, complement functions in the first line of defense against pathogens but also contributes significantly to the maintenance of homeostasis and prevention of autoimmunity. Activation of complement and the subsequent biological responses occur primarily in the extracellular environment. However, recent studies have demonstrated autocrine signaling by complement activation in intracellular vesicles, while the presence of a cytoplasmic receptor serves to detect complement-opsonized intracellular pathogens. Furthermore, breakthroughs in both functional and structural studies now make it possible to describe many of the intricate molecular mechanisms underlying complement activation and the subsequent downstream events, as well as its cross talk with, for example, signaling pathways, the coagulation system, and adaptive immunity. We present an integrated and updated view of complement based on structural and functional data and describe the new roles attributed to complement. Finally, we discuss how the structural and mechanistic understanding of the complement system rationalizes the genetic defects conferring uncontrolled activation or other undesirable effects of complement.
Collapse
Affiliation(s)
- Goran Bajic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Program in Cellular and Molecular Medicine, Children's Hospital, Boston, MA, USA
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
272
|
Stoof SP, Buisman AM, van Rooijen DM, Boonacker R, van der Klis FRM, Sanders EAM, Berbers GAM. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age? PLoS One 2015; 10:e0138665. [PMID: 26458006 PMCID: PMC4601787 DOI: 10.1371/journal.pone.0138665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022] Open
Abstract
Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.
Collapse
Affiliation(s)
- Susanne P. Stoof
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail: (SS); (GB)
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M. van Rooijen
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rianne Boonacker
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona R. M. van der Klis
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A. M. Sanders
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail: (SS); (GB)
| |
Collapse
|
273
|
Kedl RM, Tamburini BA. Antigen archiving by lymph node stroma: A novel function for the lymphatic endothelium. Eur J Immunol 2015; 45:2721-9. [PMID: 26278423 DOI: 10.1002/eji.201545739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/01/2015] [Accepted: 08/12/2015] [Indexed: 12/22/2022]
Abstract
Secondary lymphoid stroma performs far more functions than simple structural support for lymphoid tissues, providing a host of soluble and membrane-bound cues to trafficking leukocytes during inflammation and homeostasis. More recently it has become clear that stromal cells can manipulate T-cell responses, either through direct antigen-mediated stimulation of T cells or more indirectly through the retention and management of antigen after viral infection or vaccination. In light of recent data, this review provides an overview of stromal cell subsets and functions during the progression of an adaptive immune response with particular emphasis on antigen capture and retention by follicular dendritic cells as well as the recently described "antigen archiving" function of lymphatic endothelial cells (LECs). Given its impact on the maintenance of protective immune memory, we conclude by discussing the most pressing questions pertaining to LEC antigen capture, archiving and exchange with hematopoetically derived antigen-presenting cells.
Collapse
Affiliation(s)
- Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| | - Beth A Tamburini
- Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, CO, USA
| |
Collapse
|
274
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
275
|
Woods M, Zou YR, Davidson A. Defects in Germinal Center Selection in SLE. Front Immunol 2015; 6:425. [PMID: 26322049 PMCID: PMC4536402 DOI: 10.3389/fimmu.2015.00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023] Open
Abstract
Germinal centers (GCs) are the primary site at which clonal expansion and affinity maturation of B cells occur. B cells encounter antigen and receive T cell help in the GC light zone (LZ) and then migrate to the dark zone where they proliferate and undergo somatic mutation before cycling back to the LZ for further rounds of selection. Tolerance to autoantigens is frequently lost de novo as GC B cells undergo class switching and somatic mutation. This loss of tolerance is regulated by a variety of mechanisms including cell death, failure to compete for T cell help, and failure to differentiate into effector cells. Systemic lupus erythematosus (SLE) is characterized by loss of tolerance to nucleic acid antigens. While defects in tolerance occur in the naïve repertoire of SLE patients, pathogenic autoantibodies also arise in the GC by somatic mutation from non-autoreactive precursors. Several B cell defects contribute to the loss of GC tolerance in SLE, including polymorphisms of genes encoded by the Sle1 locus, excess TLR7 signaling, defects in FcRIIB expression, or defects of B cell apoptosis. Extrinsic soluble factors, such as Type-1 IFN and B cell-activating factor, or an increased number of T follicular helper cells in the GC also alter B cell-negative selection. Finally, defects in clearance of apoptotic debris within the GC result in BCR-mediated internalization of nucleic acid containing material and stimulation of autoantibody production by endosomal TLR-driven mechanisms.
Collapse
Affiliation(s)
- Megan Woods
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Yong-Rui Zou
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research , New York, NY , USA
| |
Collapse
|
276
|
Abstract
Over the past decade, a series of discoveries relating to fibroblastic reticular cells (FRCs) — immunologically specialized myofibroblasts found in lymphoid tissue — has promoted these cells from benign bystanders to major players in the immune response. In this Review, we focus on recent advances regarding the immunobiology of lymph node-derived FRCs, presenting an updated view of crucial checkpoints during their development and their dynamic control of lymph node expansion and contraction during infection. We highlight the robust effects of FRCs on systemic B cell and T cell responses, and we present an emerging view of FRCs as drivers of pathology following acute and chronic viral infections. Lastly, we review emerging therapeutic advances that harness the immunoregulatory properties of FRCs.
Collapse
|
277
|
Purwada A, Jaiswal MK, Ahn H, Nojima T, Kitamura D, Gaharwar AK, Cerchietti L, Singh A. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials 2015; 63:24-34. [PMID: 26072995 DOI: 10.1016/j.biomaterials.2015.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
Ex vivo engineered three-dimensional organotypic cultures have enabled the real-time study and control of biological functioning of mammalian tissues. Organs of broad interest where its architectural, cellular, and molecular complexity has prevented progress in ex vivo engineering are the secondary immune organs. Ex vivo immune organs can enable mechanistic understanding of the immune system and more importantly, accelerate the translation of immunotherapies as well as a deeper understanding of the mechanisms that lead to their malignant transformation into a variety of B and T cell malignancies. However, till date, no modular ex vivo immune organ has been developed with an ability to control the rate of immune reaction through tunable design parameter. Here we describe a B cell follicle organoid made of nanocomposite biomaterials, which recapitulates the anatomical microenvironment of a lymphoid tissue that provides the basis to induce an accelerated germinal center (GC) reaction by continuously providing extracellular matrix (ECM) and cell-cell signals to naïve B cells. Compared to existing co-cultures, immune organoids provide a control over primary B cell proliferation with ∼100-fold higher and rapid differentiation to the GC phenotype with robust antibody class switching.
Collapse
Affiliation(s)
- Alberto Purwada
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Haelee Ahn
- Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Takuya Nojima
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Leandro Cerchietti
- Division of Hematology and Medical Oncology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| | - Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
278
|
Moalli F, Proulx ST, Schwendener R, Detmar M, Schlapbach C, Stein JV. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells. Front Immunol 2015; 6:114. [PMID: 25821451 PMCID: PMC4358226 DOI: 10.3389/fimmu.2015.00114] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/01/2015] [Indexed: 11/13/2022] Open
Abstract
Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy.
Collapse
Affiliation(s)
- Federica Moalli
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zürich , Zürich , Switzerland
| | - Reto Schwendener
- Institute of Molecular Cancer Research, University Zürich , Zürich , Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zürich , Zürich , Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital - Universitätsspital Bern , Bern , Switzerland
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern , Bern , Switzerland
| |
Collapse
|
279
|
de Ruiter PE, van der Laan LJW. Evidence of B-cell follicles with germinal centers in chronic hepatitis C patients. Eur J Immunol 2015; 45:1570-1. [PMID: 25664973 DOI: 10.1002/eji.201445389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/23/2015] [Accepted: 02/04/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Petra E. de Ruiter
- Department of Surgery; Erasmus MC-University Medical Center; Rotterdam Netherlands
| | | |
Collapse
|
280
|
Rajnai H, Teleki I, Kiszner G, Meggyesházi N, Balla P, Vancsik T, Muzes G, Csomor J, Matolcsy A, Krenacs T. Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res 2015; 2015:528098. [PMID: 25815348 PMCID: PMC4359865 DOI: 10.1155/2015/528098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Follicular dendritic cells (FDC) show homo- and heterocellular metabolic coupling through connexin 43 (Cx43) gap junctions and support B cell selection and maturation in germinal centers. In follicular lymphomas B cells escape apoptosis while FDC develop abnormally. Here we tested Cx43 channels in reactive FDC development and follicular lymphomas. In culture, the treatment of FDC-B cell clusters (resembling to "ex vivo" germinal centers) with Gap27 peptide, mimicking the 2nd extracellular loop of Cx43 protein, significantly impaired FDC-B cell cluster formation and cell survival. In untreated cultures of intact clusters, cell proliferation showed a moderate reduction. In tissues, Cx43 protein levels run parallel with the density of FDC both in reactive germinal centers and in malformed follicles of follicular lymphomas and showed strong upregulation in newly generated and/or degrading bi-/multinuclear FDC of rudimentary processes. However, the inverse correlation between Cx43 expression and B cell proliferation seen in reactive germinal centers was not detected in follicular lymphomas. Furthermore, Cx43 levels were not associated with either lymphoma grade or bone marrow involvement. Our results suggest that Cx43 channels are critical in FDC and "ex vivo" germinal center development and in the persistence of FDC in follicular lymphomas but do not affect tumor progression.
Collapse
Affiliation(s)
- Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Ivett Teleki
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Gergo Kiszner
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Nora Meggyesházi
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Peter Balla
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Tamas Vancsik
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Gyorgyi Muzes
- 2nd Department of Internal Medicine, 1085 Budapest, Hungary
| | - Judit Csomor
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Andras Matolcsy
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
| | - Tibor Krenacs
- 1st Department of Pathology and Experimental Cancer Research, 1085 Budapest, Hungary
- MTA-SE Tumor Progression Research Group, 1085 Budapest, Hungary
| |
Collapse
|
281
|
Yamada DH, Elsaesser H, Lux A, Timmerman JM, Morrison SL, de la Torre JC, Nimmerjahn F, Brooks DG. Suppression of Fcγ-receptor-mediated antibody effector function during persistent viral infection. Immunity 2015; 42:379-390. [PMID: 25680277 DOI: 10.1016/j.immuni.2015.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/21/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023]
Abstract
Understanding how viruses subvert host immunity and persist is essential for developing strategies to eliminate infection. T cell exhaustion during chronic viral infection is well described, but effects on antibody-mediated effector activity are unclear. Herein, we show that increased amounts of immune complexes generated in mice persistently infected with lymphocytic choriomeningitis virus (LCMV) suppressed multiple Fcγ-receptor (FcγR) functions. The high amounts of immune complexes suppressed antibody-mediated cell depletion, therapeutic antibody-killing of LCMV infected cells and human CD20-expressing tumors, as well as reduced immune complex-mediated cross-presentation to T cells. Suppression of FcγR activity was not due to inhibitory FcγRs or high concentrations of free antibody, and proper FcγR functions were restored when persistently infected mice specifically lacked immune complexes. Thus, we identify a mechanism of immunosuppression during viral persistence with implications for understanding effective antibody activity aimed at pathogen control.
Collapse
Affiliation(s)
- Douglas H Yamada
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Heidi Elsaesser
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058, Erlangen, Germany
| | - John M Timmerman
- Division of Hematology & Oncology, Department of Medicine, and Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sherie L Morrison
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstrasse 3, 91058, Erlangen, Germany
| | - David G Brooks
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA; UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
282
|
Pekkarinen PT, Heikkilä N, Kisand K, Peterson P, Botto M, Daha MR, Drouet C, Isaac L, Helminen M, Haahtela T, Meri S, Jarva H, Arstila TP. Dysregulation of adaptive immune responses in complement C3-deficient patients. Eur J Immunol 2015; 45:915-21. [PMID: 25446578 DOI: 10.1002/eji.201444948] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/21/2014] [Accepted: 11/26/2014] [Indexed: 11/07/2022]
Abstract
In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humoral responses to toxoid vaccines in eight patients with C3 deficiency, representing more than 25% of all the known patients worldwide. Serum cytokine levels were also studied. The patients developed normal Ig responses to tetanus and diphtheria toxoids, but IgE levels were low. The pattern of antigen-specific IgG subclasses was abnormal, with increased Th1-related IgG3 responses, low IgG2, and almost completely undetectable IgG4. The patients also had increased amounts of Th1-related cytokines IL-12p70 and IL-21, and these showed a positive correlation with IgG3 levels. Our results confirm that complement modulates Th differentiation, but reveal a more nuanced outcome than previously reported. Since IgG4 has been linked to tolerogenic responses, the data also suggest that in the absence of functional complement at least some aspects of systemic tolerance are impaired.
Collapse
Affiliation(s)
- Pirkka T Pekkarinen
- Haartman Institute and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Fasnacht N, Huang HY, Koch U, Favre S, Auderset F, Chai Q, Onder L, Kallert S, Pinschewer DD, MacDonald HR, Tacchini-Cottier F, Ludewig B, Luther SA, Radtke F. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. ACTA ACUST UNITED AC 2014; 211:2265-79. [PMID: 25311507 PMCID: PMC4203954 DOI: 10.1084/jem.20132528] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasnacht et al. now show that fibroblasts in secondary lymphoid organs are responsible for the production of Notch ligands regulating the differentiation of immune cells Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell–cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2–driven differentiation of marginal zone B cells and of Esam+ dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.
Collapse
Affiliation(s)
- Nicolas Fasnacht
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Hsin-Ying Huang
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Experimental Cancer Research, 1015 Lausanne, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Floriane Auderset
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Qian Chai
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Sandra Kallert
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Petersplatz 10, 4003 Basel, Switzerland
| | - H Robson MacDonald
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, WHO Immunology Research and Training Center, and Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Experimental Cancer Research, 1015 Lausanne, Switzerland
| |
Collapse
|
284
|
Kurita N, Honda SI, Shibuya A. Increased serum IgA in Fcα/μR-deficient mice on the (129 x C57BL/6) F1 genetic background. Mol Immunol 2014; 63:367-72. [PMID: 25282043 DOI: 10.1016/j.molimm.2014.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/27/2022]
Abstract
Fcα/μR (CD351) is an Fc receptor for both IgA and IgM, which is abundantly expressed in the small intestine. However, the role of Fcα/μR in the intestinal tissue is largely unknown. Here, we found that Fcα/μR is highly expressed on follicular dendritic cells (FDCs) in Peyer's patches (PP) in the small intestine. Fcα/μR-deficient mice on the (129 x C57BL/6) F1 background showed increased serum, but not fecal, IgA level in response to gut-oriented antigens. IgA(+) B cells were increased in PP, but not in the lamina propria, of Fcα/μR-deficient mice, which was attenuated after reduction of commensal microbiota by oral treatment with antibiotics. Analyses of bone marrow chimeric mice, in which either FDCs or blood cells or both lack the expression of Fcα/μR, suggested that FDCs, but not blood cells, were responsible for the increased serum IgA concentration in Fcα/μR-deficient mice. Moreover, Fcα/μR-deficient mice showed enhanced germinal center formation against commensal microbiota in PP. Thus, serum IgA production against gut-oriented antigens is negatively regulated by Fcα/μR on FDCs in the F1 mice.
Collapse
Affiliation(s)
- Naoki Kurita
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin-Ichiro Honda
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|