251
|
Communication of Glioma cells with neuronal plasticity: What is the underlying mechanism? Neurochem Int 2020; 141:104879. [PMID: 33068685 DOI: 10.1016/j.neuint.2020.104879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
There has been a significantly rising discussion on how neuronal plasticity communicates with the glioma growth and invasion. This literature review aims to determine which neurotransmitters, ion channels and signaling pathways are involved in this context, how information is transferred from synaptic sites to the glioma cells and how glioma cells apply established mechanics of synaptic plasticity for their own increment. This work is a compilation of some outstanding findings related to the influence of the glutamate, calcium, potassium, chloride and sodium channels and other important brain plasticity molecules over the glioma progression. These topics also include the relevant molecular signaling data which could prove to be helpful for an effective clinical management of brain tumors in the future.
Collapse
|
252
|
Wang Y, Wang G, Tao J, Li X, Hu L, Li Q, Lu J, Li Y, Li Z. Autophagy associated with the efficacy of valproic acid in PTZ-induced epileptic rats. Brain Res 2020; 1745:146923. [PMID: 32504548 DOI: 10.1016/j.brainres.2020.146923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drugs. Patients who are non-responsive to VPA often present to the clinic; however, the mechanism of resistance is unclear. In this study, we found that responder and non-responder pentylenetetrazole-induced chronic epileptic rats had no significant differences in VPA concentrations in their plasma and brain tissues. Furthermore, through an RNA-sequence method, we identified 334 differentially expressed genes between VPA-responsive and non-responsive rats, while 21 pathways were enriched. Interestingly, 16 pathways, including the phagosome pathway, were commonly enriched compared to those in patients. We used transmission electron microscopy and immunofluorescence microscopy to further assess the level of autophagy in responder and non-responder rats. Non-responders had more autophagic vacuoles and an increased level of LC3B expression. Furthermore, epileptic rats that were previously administered 3-methyadenine (an inhibitor of autophagy) exhibited a slight increase in VPA efficacy. In conclusion, autophagy was associated with the efficacy of VPA.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China; Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Guangfei Wang
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jie Tao
- Central Laboratory, Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoxia Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lan Hu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China
| | - Qin Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Jinmiao Lu
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou, China.
| | - Zhiping Li
- Department of Pharmacy, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China.
| |
Collapse
|
253
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
254
|
Liu X, Fan Z, Li Y, Li Z, Zhou Z, Yu X, Wan J, Min Z, Yang L, Li D. microRNA-196a-5p inhibits testicular germ cell tumor progression via NR6A1/E-cadherin axis. Cancer Med 2020; 9:9107-9122. [PMID: 33034957 PMCID: PMC7724306 DOI: 10.1002/cam4.3498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are a diverse group of neoplasms that are derived from dysfunctional fetal germ cells and can also present in extragonadal sites. The genetic drivers underlying malignant transformation of TGCTs have not been fully elucidated so far. The aim of the present study is to clarify the functional role and regulatory mechanism of miR‐196a‐5p in TGCTs. We demonstrated that miR‐196a‐5p was downregulated in TGCTs. It can inhibit the proliferation, migration, and invasion of testicular tumor cell lines including NT‐2 and NCCIT through targeting the NR6A1 gene, which we proved its role in promotion of cell proliferation and repression of cellular junction and aggregation. Mechanistically, NR6A1 inhibited E‐cadherin through binding with DR0 sites in the CDH1 gene promoter and recruiting methyltransferases Dnmt1. Further, NR6A1 promoted neuronal marker protein MAP2 expression in RA‐induced neurodifferentiation of NT‐2 cells and testicular tumor xenografts. Clinical histopathologically, NR6A1 was positively correlated with MAP2, and negatively correlated with E‐cadherin in TGCTs. These findings revealed that the miR‐196a‐5p represses cell proliferation, migration, invasion, and tumor neurogenesis by inhibition of NR6A1/E‐cadherin signaling axis, which may be a potential target for diagnosis and therapy of TGCTs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ziling Fan
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ye Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Zhilan Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China.,Department of Pathology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhuan Zhou
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Xuehui Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jingyu Wan
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Ziqian Min
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| | - Lifang Yang
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Dan Li
- Institute of Molecular Medicine and Oncology, College of Biology, Hunan University, Changsha, P.R. China
| |
Collapse
|
255
|
Zhang L, Li D, Xiao D, Couldwell WT, Ohata K. Improving brain health by identifying structure-function relations in patients with neurosurgical disorders. BMJ 2020; 371:m3690. [PMID: 33037010 PMCID: PMC7541034 DOI: 10.1136/bmj.m3690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Use of new technology to map which parts of the brain control different functions is leading to better treatment of patients with neurosurgical disorders, say Liwei Zhang and colleagues
Collapse
Affiliation(s)
- Liwei Zhang
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Fengtai District, Beijing, China
- International Translational Molecular Imaging Center for Brain Tumor, Fengtai District, Beijing, China
| | - Deling Li
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
- Beijing Key Laboratory of Brain Tumor, Fengtai District, Beijing, China
- International Translational Molecular Imaging Center for Brain Tumor, Fengtai District, Beijing, China
| | - Dan Xiao
- Neurosurgery Department, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, Fengtai District, Beijing, China
| | - William T Couldwell
- Neurosurgery Department, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Kenji Ohata
- Neurosurgery Department, Osaka City University, Osaka, Japan
| |
Collapse
|
256
|
Tang R, Murray CW, Linde IL, Kramer NJ, Lyu Z, Tsai MK, Chen LC, Cai H, Gitler AD, Engleman E, Lee W, Winslow MM. A versatile system to record cell-cell interactions. eLife 2020; 9:61080. [PMID: 33025906 PMCID: PMC7682987 DOI: 10.7554/elife.61080] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cell-cell interactions influence all aspects of development, homeostasis, and disease. In cancer, interactions between cancer cells and stromal cells play a major role in nearly every step of carcinogenesis. Thus, the ability to record cell-cell interactions would facilitate mechanistic delineation of the role of the cancer microenvironment. Here, we describe GFP-based Touching Nexus (G-baToN) which relies upon nanobody-directed fluorescent protein transfer to enable sensitive and specific labeling of cells after cell-cell interactions. G-baToN is a generalizable system that enables physical contact-based labeling between various human and mouse cell types, including endothelial cell-pericyte, neuron-astrocyte, and diverse cancer-stromal cell pairs. A suite of orthogonal baToN tools enables reciprocal cell-cell labeling, interaction-dependent cargo transfer, and the identification of higher order cell-cell interactions across a wide range of cell types. The ability to track physically interacting cells with these simple and sensitive systems will greatly accelerate our understanding of the outputs of cell-cell interactions in cancer as well as across many biological processes. It takes the coordinated effort of more than 40 trillion cells to build and maintain a human body. This intricate process relies on cells being able to communicate across long distances, but also with their immediate neighbors. Interactions between cells in close contact are key in both health and disease, yet tracing these connections efficiently and accurately remains challenging. The surface of a cell is studded with proteins that interact with the environment, including with the proteins on neighboring cells. Using genetic engineering, it is possible to construct surface proteins that carry a fluorescent tag called green fluorescent protein (or GFP), which could help to track physical interactions between cells. Here, Tang et al. test this idea by developing a new technology named GFP-based Touching Nexus, or G-baToN for short. Sender cells carry a GFP protein tethered to their surface, while receiver cells present a synthetic element that recognizes that GFP. When the cells touch, the sender passes its GFP to the receiver, and these labelled receiver cells become ‘green’. Using this system, Tang et al. recorded physical contacts between a variety of human and mouse cells. Interactions involving more than two cells could also be detected by using different colors of fluorescent tags. Furthermore, Tang et al. showed that, alongside GFP, G-baToN could pass molecular cargo such as proteins, DNA, and other chemicals to receiver cells. This new system could help to study interactions among many different cell types. Changes in cell-to-cell contacts are a feature of diverse human diseases, including cancer. Tracking these interactions therefore could unravel new information about how cancer cells interact with their environment.
Collapse
Affiliation(s)
- Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, United States
| | - Ian L Linde
- Immunology Program, Stanford University School of Medicine, Stanford, United States
| | - Nicholas J Kramer
- Department of Genetics, Stanford University School of Medicine, Stanford, United States.,Neuroscience Program, Stanford University School of Medicine, Stanford, United States
| | - Zhonglin Lyu
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, United States
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Leo C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Edgar Engleman
- Cancer Biology Program, Stanford University School of Medicine, Stanford, United States.,Immunology Program, Stanford University School of Medicine, Stanford, United States.,Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Wonjae Lee
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, United States
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, United States.,Cancer Biology Program, Stanford University School of Medicine, Stanford, United States.,Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
257
|
Kumaria A. Observations on neuroimmunomodulation as a novel therapeutic strategy in metastasis. Cancer Immunol Immunother 2020; 69:2163-2164. [DOI: 10.1007/s00262-020-02658-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
|
258
|
Tang M, Xie Q, Gimple RC, Zhong Z, Tam T, Tian J, Kidwell RL, Wu Q, Prager BC, Qiu Z, Yu A, Zhu Z, Mesci P, Jing H, Schimelman J, Wang P, Lee D, Lorenzini MH, Dixit D, Zhao L, Bhargava S, Miller TE, Wan X, Tang J, Sun B, Cravatt BF, Muotri AR, Chen S, Rich JN. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res 2020; 30:833-853. [PMID: 32499560 PMCID: PMC7608409 DOI: 10.1038/s41422-020-0338-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Brain tumors are dynamic complex ecosystems with multiple cell types. To model the brain tumor microenvironment in a reproducible and scalable system, we developed a rapid three-dimensional (3D) bioprinting method to construct clinically relevant biomimetic tissue models. In recurrent glioblastoma, macrophages/microglia prominently contribute to the tumor mass. To parse the function of macrophages in 3D, we compared the growth of glioblastoma stem cells (GSCs) alone or with astrocytes and neural precursor cells in a hyaluronic acid-rich hydrogel, with or without macrophage. Bioprinted constructs integrating macrophage recapitulate patient-derived transcriptional profiles predictive of patient survival, maintenance of stemness, invasion, and drug resistance. Whole-genome CRISPR screening with bioprinted complex systems identified unique molecular dependencies in GSCs, relative to sphere culture. Multicellular bioprinted models serve as a scalable and physiologic platform to interrogate drug sensitivity, cellular crosstalk, invasion, context-specific functional dependencies, as well as immunologic interactions in a species-matched neural environment.
Collapse
Affiliation(s)
- Min Tang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Qi Xie
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pathology, Case Western University, Cleveland, OH, USA
| | - Zheng Zhong
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Trevor Tam
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jing Tian
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Pathology, Case Western University, Cleveland, OH, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Aaron Yu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Zhe Zhu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Pinar Mesci
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hui Jing
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Michael H Lorenzini
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Tyler E Miller
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Xueyi Wan
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing Tang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Bingjie Sun
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alysson R Muotri
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA, 92093, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
259
|
Dieterich LC, Bikfalvi A. The tumor organismal environment: Role in tumor development and cancer immunotherapy. Semin Cancer Biol 2020; 65:197-206. [DOI: 10.1016/j.semcancer.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
260
|
Tishchenko A, Azorín DD, Vidal-Brime L, Muñoz MJ, Arenas PJ, Pearce C, Girao H, Ramón y Cajal S, Aasen T. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers (Basel) 2020; 12:E2798. [PMID: 33003486 PMCID: PMC7601615 DOI: 10.3390/cancers12102798] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Connexin 43 (Cx43) forms gap junctions that mediate the direct intercellular diffusion of ions and small molecules between adjacent cells. Cx43 displays both pro- and anti-tumorigenic properties, but the mechanisms underlying these characteristics are not fully understood. Tunneling nanotubes (TNTs) are long and thin membrane projections that connect cells, facilitating the exchange of not only small molecules, but also larger proteins, organelles, bacteria, and viruses. Typically, TNTs exhibit increased formation under conditions of cellular stress and are more prominent in cancer cells, where they are generally thought to be pro-metastatic and to provide growth and survival advantages. Cx43 has been described in TNTs, where it is thought to regulate small molecule diffusion through gap junctions. Here, we developed a high-fidelity CRISPR/Cas9 system to knockout (KO) Cx43. We found that the loss of Cx43 expression was associated with significantly reduced TNT length and number in breast cancer cell lines. Notably, secreted factors present in conditioned medium stimulated TNTs more potently when derived from Cx43-expressing cells than from KO cells. Moreover, TNT formation was significantly induced by the inhibition of several key cancer signaling pathways that both regulate Cx43 and are regulated by Cx43, including RhoA kinase (ROCK), protein kinase A (PKA), focal adhesion kinase (FAK), and p38. Intriguingly, the drug-induced stimulation of TNTs was more potent in Cx43 KO cells than in wild-type (WT) cells. In conclusion, this work describes a novel non-canonical role for Cx43 in regulating TNTs, identifies key cancer signaling pathways that regulate TNTs in this setting, and provides mechanistic insight into a pro-tumorigenic role of Cx43 in cancer.
Collapse
Affiliation(s)
- Alexander Tishchenko
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Daniel D. Azorín
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Laia Vidal-Brime
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - María José Muñoz
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Pol Jiménez Arenas
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Christopher Pearce
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
| | - Henrique Girao
- Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra, CACC, 3000-548 Coimbra, Portugal
| | - Santiago Ramón y Cajal
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- Anatomía Patológica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Trond Aasen
- Patologia Molecular Translacional, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.T.); (D.D.A.); (L.V.-B.); (M.J.M.); (P.J.A.); (C.P.); (S.R.yC.)
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
261
|
A TAZ-AXL-ABL2 Feed-Forward Signaling Axis Promotes Lung Adenocarcinoma Brain Metastasis. Cell Rep 2020; 29:3421-3434.e8. [PMID: 31825826 DOI: 10.1016/j.celrep.2019.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Brain metastases are a common consequence of advanced lung cancer, resulting in cranial neuropathies and increased mortality. Currently, there are no effective therapies to treat brain metastases due to a lack of actionable targets and a failure of systemic therapies to penetrate the blood-brain barrier (BBB). Here we identify an autocrine signaling axis required for lung adenocarcinoma brain metastasis, whereby nuclear accumulation of the TAZ transcriptional co-activator drives expression of a panel of transcripts enriched in brain metastases, including ABL2 and AXL, encoding for protein tyrosine kinases that engage in bidirectional signaling. Activation of ABL2 in turn promotes TAZ tyrosine phosphorylation and nuclear localization, establishing an autocrine AXL-ABL2-TAZ feed-forward signaling loop required for brain metastasis colonization. Notably, treatment with a BBB-penetrant ABL allosteric inhibitor or knockdown of ABL2, AXL, or TAZ markedly decreases brain metastases. These findings suggest that ABL and AXL inhibitors might be effective against brain metastases.
Collapse
|
262
|
Ion Channels in Cancer: Orchestrators of Electrical Signaling and Cellular Crosstalk. Rev Physiol Biochem Pharmacol 2020; 183:103-133. [PMID: 32894333 DOI: 10.1007/112_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ion channels are pore-forming transmembrane proteins that govern ion flux to regulate a myriad of biological processes in development, physiology, and disease. Across various types of cancer, ion channel expression and activity are often dysregulated. We review the contribution of ion channels to multiple stages of tumorigenesis based on data from in vivo model systems. As intertumoral and intratumoral heterogeneities are major obstacles in developing effective therapies, we provide perspectives on how ion channels in tumor cells and their microenvironment represent targetable vulnerabilities in the areas of tumor-stromal cell interactions, cancer neuroscience, and cancer mechanobiology.
Collapse
|
263
|
Soffietti R, Ahluwalia M, Lin N, Rudà R. Management of brain metastases according to molecular subtypes. Nat Rev Neurol 2020; 16:557-574. [PMID: 32873927 DOI: 10.1038/s41582-020-0391-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
The incidence of brain metastases has markedly increased in the past 20 years owing to progress in the treatment of malignant solid tumours, earlier diagnosis by MRI and an ageing population. Although local therapies remain the mainstay of treatment for many patients with brain metastases, a growing number of systemic options are now available and/or are under active investigation. HER2-targeted therapies (lapatinib, neratinib, tucatinib and trastuzumab emtansine), alone or in combination, yield a number of intracranial responses in patients with HER2-positive breast cancer brain metastases. New inhibitors are being investigated in brain metastases from ER-positive or triple-negative breast cancer. Several generations of EGFR and ALK inhibitors have shown activity on brain metastases from EGFR and ALK mutant non-small-cell lung cancer. Immune-checkpoint inhibitors (ICIs) hold promise in patients with non-small-cell lung cancer without druggable mutations and in patients with triple-negative breast cancer. The survival of patients with brain metastases from melanoma has substantially improved after the advent of BRAF inhibitors and ICIs (ipilimumab, nivolumab and pembrolizumab). The combination of targeted agents or ICIs with stereotactic radiosurgery could further improve the response rates and survival but the risk of radiation necrosis should be monitored. Advanced neuroimaging and liquid biopsy will hopefully improve response evaluation.
Collapse
Affiliation(s)
- Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy.
| | - Manmeet Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Center Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nancy Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
264
|
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5:166. [PMID: 32843638 PMCID: PMC7447642 DOI: 10.1038/s41392-020-00280-x] [Citation(s) in RCA: 566] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, β-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
265
|
Advani D, Gupta R, Tripathi R, Sharma S, Ambasta RK, Kumar P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem Int 2020; 140:104841. [PMID: 32853752 DOI: 10.1016/j.neuint.2020.104841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
The disease heterogeneity and little therapeutic progress in neurodegenerative diseases justify the need for novel and effective drug discovery approaches. Drug repurposing is an emerging approach that reinvigorates the classical drug discovery method by divulging new therapeutic uses of existing drugs. The common biological background and inverse tuning between cancer and neurodegeneration give weight to the conceptualization of repurposing of anticancer drugs as novel therapeutics. Many studies are available in the literature, which highlights the success story of anticancer drugs as repurposed therapeutics. Among them, kinase inhibitors, developed for various oncology indications evinced notable neuroprotective effects in neurodegenerative diseases. In this review, we shed light on the salient role of multiple protein kinases in neurodegenerative disorders. We also proposed a feasible explanation of the action of kinase inhibitors in neurodegenerative disorders with more attention towards neurodegenerative disorders. The problem of neurotoxicity associated with some anticancer drugs is also highlighted. Our review encourages further research to better encode the hidden potential of anticancer drugs with the aim of developing prospective repurposed drugs with no toxicity for neurodegenerative disorders.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rohan Gupta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rahul Tripathi
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Molecular Neuroscience and Functional Genomics Laboratory, Room# FW4TF3, Mechanical Engineering Building, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
266
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
267
|
Ji X, Zhang H, Cui Q. A Panel of Synapse-Related Genes as a Biomarker for Gliomas. Front Neurosci 2020; 14:822. [PMID: 32848578 PMCID: PMC7431624 DOI: 10.3389/fnins.2020.00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
Gliomas are the most common primary brain cancers. In recent years, IDH mutation and 1p/19q codeletion have been suggested as biomarkers for the diagnosis, treatment, and prognosis of gliomas. However, these biomarkers are only effective for a part of glioma patients, and thus more biomarkers are still emergently needed. Recently, an electrochemical communication between normal neurons and glioma cells by neuro-glioma synapse has been reported. Moreover, it was discovered that breast-to-brain metastasis tumor cells have pseudo synapses with neurons, and these synapses were indicated to promote tumor progression and metastasis. Based on the above observations, we first curated a panel of 17 synapse-related genes and then proposed a metric, synapse score to quantify the "stemness" for each sample of 12 glioma gene expression datasets from TCGA, CGGA, and GEO. Strikingly, synapse score showed excellent predictive ability for the prognosis, diagnosis, and grading of gliomas. Moreover, being compared with the two established biomarkers, IDH mutation and 1p/19q codeletion, synapse score demonstrated independent and better predictive performance. In conclusion, this study proposed a quantitative method, synapse score, as an efficient biomarker for monitoring gliomas.
Collapse
Affiliation(s)
- Xiangwen Ji
- Department of Biomedical Informatics, Center for Non-coding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Physiology and Pathophysiology, Center for Non-coding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Center for Non-coding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China.,Department of Physiology and Pathophysiology, Center for Non-coding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
268
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
269
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
270
|
Chou TH, Tajima N, Romero-Hernandez A, Furukawa H. Structural Basis of Functional Transitions in Mammalian NMDA Receptors. Cell 2020; 182:357-371.e13. [PMID: 32610085 PMCID: PMC8278726 DOI: 10.1016/j.cell.2020.05.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Excitatory neurotransmission meditated by glutamate receptors including N-methyl-D-aspartate receptors (NMDARs) is pivotal to brain development and function. NMDARs are heterotetramers composed of GluN1 and GluN2 subunits, which bind glycine and glutamate, respectively, to activate their ion channels. Despite importance in brain physiology, the precise mechanisms by which activation and inhibition occur via subunit-specific binding of agonists and antagonists remain largely unknown. Here, we show the detailed patterns of conformational changes and inter-subunit and -domain reorientation leading to agonist-gating and subunit-dependent competitive inhibition by providing multiple structures in distinct ligand states at 4 Å or better. The structures reveal that activation and competitive inhibition by both GluN1 and GluN2 antagonists occur by controlling the tension of the linker between the ligand-binding domain and the transmembrane ion channel of the GluN2 subunit. Our results provide detailed mechanistic insights into NMDAR pharmacology, activation, and inhibition, which are fundamental to the brain physiology.
Collapse
Affiliation(s)
- Tsung-Han Chou
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nami Tajima
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Annabel Romero-Hernandez
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hiro Furukawa
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
271
|
Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Inflammatory Breast Carcinoma: Elevated microRNA miR-181b-5p and Reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p Expression as Potential Biomarkers with Diagnostic Value. Biomolecules 2020; 10:E1059. [PMID: 32708601 PMCID: PMC7407124 DOI: 10.3390/biom10071059] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare yet aggressive breast cancer variant, associated with a poor prognosis. The major challenge for IBC is misdiagnosis due to the lack of molecular biomarkers. We profiled dysregulated expression of microRNAs (miRNAs) in primary samples of IBC and non-IBC tumors using human breast cancer miRNA PCR array. We discovered that 28 miRNAs were dysregulated (10 were upregulated, while 18 were underexpressed) in IBC vs. non-IBC tumors. We identified 128 hub genes, which are putative targets of the differentially expressed miRNAs and modulate important cancer biological processes. Furthermore, our qPCR analysis independently verified a significantly upregulated expression of miR-181b-5p, whereas a significant downregulation of miR-200b-3p, miR-200c-3p, and miR-203a-3p was detected in IBC tumors. Receiver operating characteristic (ROC) curves implied that the four miRNAs individually had a diagnostic accuracy in discriminating patients with IBC from non-IBC and that miR-203a-3p had the highest diagnostic value with an AUC of 0.821. Interestingly, a combination of miR-181b-5p, miR-200b-3p, and miR-200c-3p robustly improved the diagnostic accuracy, with an area under the curve (AUC) of 0.897. Intriguingly, qPCR revealed that the expression of zinc finger E box-binding homeobox 2 (ZEB2) mRNA, the putative target of miR-200b-3p, miR-200c-3p, and miR-203a-3p, was upregulated in IBC tumors. Overall, this study identified a set of miRNAs serving as potential biomarkers with diagnostic relevance for IBC.
Collapse
Affiliation(s)
- Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Ayman M. Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | - George Shakir
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Mohamed A. Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Nadia I. Zakhary
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Burkhard Greve
- Department of Radiotherapy–Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| |
Collapse
|
272
|
Kobren SN, Chazelle B, Singh M. PertInInt: An Integrative, Analytical Approach to Rapidly Uncover Cancer Driver Genes with Perturbed Interactions and Functionalities. Cell Syst 2020; 11:63-74.e7. [PMID: 32711844 PMCID: PMC7493809 DOI: 10.1016/j.cels.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/23/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
A major challenge in cancer genomics is to identify genes with functional roles in cancer and uncover their mechanisms of action. We introduce an integrative framework that identifies cancer-relevant genes by pinpointing those whose interaction or other functional sites are enriched in somatic mutations across tumors. We derive analytical calculations that enable us to avoid time-prohibitive permutation-based significance tests, making it computationally feasible to simultaneously consider multiple measures of protein site functionality. Our accompanying software, PertInInt, combines knowledge about sites participating in interactions with DNA, RNA, peptides, ions, or small molecules with domain, evolutionary conservation, and gene-level mutation data. When applied to 10,037 tumor samples, PertInInt uncovers both known and newly predicted cancer genes, while additionally revealing what types of interactions or other functionalities are disrupted. PertInInt’s analysis demonstrates that somatic mutations are frequently enriched in interaction sites and domains and implicates interaction perturbation as a pervasive cancer-driving event. A fast, analytical framework called PertInInt enables efficient integration of multiple measures of protein site functionality—including interaction, domain, and evolutionary conservation—with gene-level mutation data in order to rapidly detect cancer driver genes along with their disrupted functionalities.
Collapse
Affiliation(s)
- Shilpa Nadimpalli Kobren
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bernard Chazelle
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
273
|
Seo J, Park M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell Mol Life Sci 2020; 77:2659-2680. [PMID: 31884567 PMCID: PMC7326806 DOI: 10.1007/s00018-019-03428-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
The progression of cancers and neurodegenerative disorders is largely defined by a set of molecular determinants that are either complementarily deregulated, or share remarkably overlapping functional pathways. A large number of such molecules have been demonstrated to be involved in the progression of both diseases. In this review, we particularly discuss our current knowledge on p53, cyclin D, cyclin E, cyclin F, Pin1 and protein phosphatase 2A, and their implications in the shared or distinct pathways that lead to cancers or neurodegenerative diseases. In addition, we focus on the inter-dependent regulation of brain cancers and neurodegeneration, mediated by intercellular communication between tumor and neuronal cells in the brain through the extracellular microenvironment. Finally, we shed light on the therapeutic perspectives for the treatment of both cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jiyeon Seo
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
274
|
Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Neuronal signatures in cancer. Int J Cancer 2020; 147:3281-3291. [PMID: 32510582 DOI: 10.1002/ijc.33138] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Despite advances in the treatment of solid tumors, the prognosis of patients with many cancers remains poor, particularly of those with primary and metastatic brain tumors. In the last years, "Cancer Neuroscience" emerged as novel field of research at the crossroads of oncology and classical neuroscience. In primary brain tumors, including glioblastoma (GB), communicating networks that render tumor cells resistant against cytotoxic therapies were identified. To build these networks, GB cells extend neurite-like protrusions called tumor microtubes (TMs). Synapses on TMs allow tumor cells to retrieve neuronal input that fosters growth. Single cell sequencing further revealed that primary brain tumors recapitulate many steps of neurodevelopment. Interestingly, neuronal characteristics, including the ability to extend neurite-like protrusions, neuronal gene expression signatures and interactions with neurons, have now been found not only in brain and neuroendocrine tumors but also in some cancers of epithelial origin. In this review, we will provide an overview about neurite-like protrusions as well as neurodevelopmental origins, hierarchies and gene expression signatures in cancer. We will also discuss how "Cancer Neuroscience" might provide a framework for the development of novel therapies.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
275
|
Kalev-Zylinska ML, Hearn JI, Makhro A, Bogdanova A. N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned? Front Physiol 2020; 11:577. [PMID: 32625106 PMCID: PMC7311790 DOI: 10.3389/fphys.2020.00577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) provides a pathway for glutamate-mediated inter-cellular communication, best known for its role in the brain but with multiple examples of functionality in non-neuronal cells. Data previously published by others and us provided ex vivo evidence that NMDARs regulate platelet and red blood cell (RBC) production. Here, we summarize what is known about these hematopoietic roles of the NMDAR. Types of NMDAR subunits expressed in megakaryocytes (platelet precursors) and erythroid cells are more commonly found in the developing rather than adult brain, suggesting trophic functions. Nevertheless, similar to their neuronal counterparts, hematopoietic NMDARs function as ion channels, and are permeable to calcium ions (Ca2+). Inhibitors that block open NMDAR (memantine and MK-801) interfere with megakaryocytic maturation and proplatelet formation in primary culture. The effect on proplatelet formation appears to involve Ca2+ influx-dependent regulation of the cytoskeletal remodeling. In contrast to normal megakaryocytes, NMDAR effects in leukemic Meg-01 cells are diverted away from differentiation to increase proliferation. NMDAR hypofunction triggers differentiation of Meg-01 cells with the bias toward erythropoiesis. The underlying mechanism involves changes in the intracellular Ca2+ homeostasis, cell stress pathways, and hematopoietic transcription factors that upon NMDAR inhibition shift from the predominance of megakaryocytic toward erythroid regulators. This ability of NMDAR to balance both megakaryocytic and erythroid cell fates suggests receptor involvement at the level of a bipotential megakaryocyte-erythroid progenitor. In human erythroid precursors and circulating RBCs, NMDAR regulates intracellular Ca2+ homeostasis. NMDAR activity supports survival of early proerythroblasts, and in mature RBCs NMDARs impact cellular hydration state, hemoglobin oxygen affinity, and nitric oxide synthase activity. Overexcitation of NMDAR in mature RBCs leads to Ca2+ overload, K+ loss, RBC dehydration, and oxidative stress, which may contribute to the pathogenesis of sickle cell disease. In summary, there is growing evidence that glutamate-NMDAR signaling regulates megakaryocytic and erythroid cells at different stages of maturation, with some intriguing differences emerging in NMDAR expression and function between normal and diseased cells. NMDAR signaling may provide new therapeutic opportunities in hematological disease, but in vivo applicability needs to be confirmed.
Collapse
Affiliation(s)
- Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - James I. Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
276
|
Babak MV, Zalutsky MR, Balyasnikova IV. Heterogeneity and vascular permeability of breast cancer brain metastases. Cancer Lett 2020; 489:174-181. [PMID: 32561415 DOI: 10.1016/j.canlet.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Improvements in the diagnosis and treatment of systemic breast cancer have led to a prolongation in patient survival. Unfortunately, these advances are also associated with an increased incidence of brain metastases (BM), with the result that many patients succumb due to BM treatment failure. Intracranial delivery of many chemotherapeutic agents and other therapeutics is hindered by the presence of an impermeable blood-brain barrier (BBB) designed to protect the brain from harmful substances. The formation of BM compromises the integrity of the BBB, resulting in a highly heterogeneous blood-tumor barrier (BTB) with varying degrees of vascular permeability. Here, we discuss how blood vessels play an important role in the formation of brain micrometastases as well as in the transformation from poorly permeable BM to highly permeable BM. We then review the role of BTB vascular permeability in the diagnostics and the choice of treatment regimens for breast cancer brain metastases (BCBM) and discuss whether the vasculature of primary breast cancers can serve as a biomarker for BM. Specifically, we examine the association between the vascular permeability of BCBM and their accumulation of large molecules such as antibodies, which remains largely unexplored.
Collapse
Affiliation(s)
- Maria V Babak
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, 999077, People's Republic of China
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center; 311 Research Drive, Box 3808, Durham, NC, 27710, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, The Feinberg School of Medicine, 303 E. Superior Street, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
277
|
Magnon C. [How tumors partner with the brain ?]. Med Sci (Paris) 2020; 36:440-442. [PMID: 32452360 DOI: 10.1051/medsci/2020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Claire Magnon
- UMR1274 (Équipe cancer et microenvironnement-Inserm-CEA), Institut de radiobiologie cellulaire et moléculaire, Institut de biologie François Jacob, Direction de la recherche fondamentale, 18 route du panorama, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
278
|
Li J, Zhang J, Hu H, Cai Y, Ling J, Wu Z, Deng Y. Gene Expression Signature to Predict Prognosis and Adjuvant Chemosensitivity of Colorectal Cancer Patients. Cancer Manag Res 2020; 12:3301-3310. [PMID: 32494194 PMCID: PMC7227814 DOI: 10.2147/cmar.s243490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/16/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Molecular characteristics using gene-expression profiling can undoubtedly improve the prediction of treatment responses, and ultimately, the clinical outcome of cancer patients. We aimed at developing a genetic signature to improve the prediction of chemosensitivity and prognosis of patients with colorectal cancer (CRC). Patients and Methods We analyzed microarray data of 32 CRC patients to explore the potential functions and pathways involved in the disease relapse in CRC. Gene expression profiles and clinical follow-up information of GSE39582, GSE17536, and GSE103479 were downloaded from the Gene Expression Omnibus database (GEO) to identify prognostic genes. Eventually, a model of 15-mRNA signature was established, in which its efficacy for predicting chemosensitivity and prognosis was examined. Results Based on the proposed model of 15-mRNA signature, the test series patients could be classified into high-risk or low-risk subgroup with significantly different overall survival (OS) rate (hazard ratio [HR]=1.48, 95% confidence interval [CI]=1.30–1.70, P≤0.001). The prognostic value of this 15-mRNA signature was confirmed in another validation series. Further analysis revealed that the prognostic value of this signature was independent of the TNM stage and can predict adjuvant chemosensitivity of patients with early-stage CRC. Conclusion We identified a novel 15-mRNA signature in patients with CRC, which could be clinically helpful in the prognosis evaluation and the process of selection of patients with early-stage CRC for undergoing adjuvant chemotherapy.
Collapse
Affiliation(s)
- Jianxia Li
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Jianwei Zhang
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Huabin Hu
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Yue Cai
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Jiayu Ling
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Zehua Wu
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong Province Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong 510655, People's Republic of China
| |
Collapse
|
279
|
Monje M. Synaptic Communication in Brain Cancer. Cancer Res 2020; 80:2979-2982. [PMID: 32381657 DOI: 10.1158/0008-5472.can-20-0646] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Increasing evidence indicates that the nervous system plays a critical role in cancer progression. This is particularly true in cancers that occur within the central nervous system. Communication between neurons and cancer cells is a fundamental component of brain cancer pathophysiology, both for primary gliomas and for brain metastases. Neuronal activity drives growth of glial malignancies through secreted growth factors and through direct electrochemical synaptic communication. Reciprocally, brain cancers influence neuronal function, increasing neuronal activity and modulating the function of the circuits into which the cancer cells structurally and electrically integrate. Advancing understanding of neuron-cancer interactions will elucidate new therapeutic strategies for these presently lethal brain cancers.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California.
| |
Collapse
|
280
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
281
|
Monje M, Borniger JC, D'Silva NJ, Deneen B, Dirks PB, Fattahi F, Frenette PS, Garzia L, Gutmann DH, Hanahan D, Hervey-Jumper SL, Hondermarck H, Hurov JB, Kepecs A, Knox SM, Lloyd AC, Magnon C, Saloman JL, Segal RA, Sloan EK, Sun X, Taylor MD, Tracey KJ, Trotman LC, Tuveson DA, Wang TC, White RA, Winkler F. Roadmap for the Emerging Field of Cancer Neuroscience. Cell 2020; 181:219-222. [PMID: 32302564 PMCID: PMC7286095 DOI: 10.1016/j.cell.2020.03.034] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.
Collapse
Affiliation(s)
- Michelle Monje
- Departments of Neurology & Neurological Sciences, Pediatrics, Pathology, Neurosurgery, and Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | - Nisha J D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter B Dirks
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Faranak Fattahi
- Department of Biochemistry and Biophysics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Paul S Frenette
- Departments of Medicine and Cell Biology, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Livia Garzia
- Cancer Research Program, Research Institute of the McGill University Health Center and Department of Surgery, McGill University, Montreal, QC, Canada
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology Lausanne, Ludwig Institute for Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sarah M Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Claire Magnon
- UMR1274 (Equipe Cancer et Microenvironnement-INSERM-CEA), Institut de Radiobiologie Cellulaire et Moléculaire, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, Paris, France
| | - Jami L Saloman
- Departments of Medicine and Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Xin Sun
- Departments of Pediatrics and Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael D Taylor
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Developmental and Stem Cell Biology Program, Departments of Surgery, Laboratory Medicine & Pathology and Medical Biophysics, Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ruth A White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, DKTK & Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
282
|
Li C, Zheng Y, Pu K, Zhao D, Wang Y, Guan Q, Zhou Y. A four-DNA methylation signature as a novel prognostic biomarker for survival of patients with gastric cancer. Cancer Cell Int 2020; 20:88. [PMID: 32206039 PMCID: PMC7085204 DOI: 10.1186/s12935-020-1156-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer-related mortality. Lack of prognostic indicators for patient survival hinders GC treatment and survival. Methods and results Methylation profile data of patients with GC obtained from The Cancer Genome Atlas (TCGA) database were analyzed to identify methylation sites as biomarkers for GC prognosis. The cohort was divided into training and validation sets. Univariate Cox, LASSO regression,and multivariate Cox analyses revealed a close correlation of a four-DNA methylation signature as a risk score model with the overall survival of patients with GC. The survival between high-risk and low-risk score patients with GC was significantly different. Analyses of receiver operating characteristics revealed a high prognostic accuracy of the four-DNA methylation signature in patients with GC. The subgroup analysis indicated that the accuracy included that for anatomical region, histologic grade, TNM stage, pathological stage, and sex. The GC prognosis based on the four-DNA methylation signature was more precise than that based on known biomarkers. Conclusions The four-DNA methylation signature could serve as a novel independent prognostic factor that could be an important tool to predict the prognostic outcome of GC patients. This potential must be verified in a large-scale population cohort study and through basic research studies.
Collapse
Affiliation(s)
- Chunmei Li
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ke Pu
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Da Zhao
- 2Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quanlin Guan
- 4Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- 1Key Laboratory for Gastrointestinal Diseases, Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,3Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
283
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1086] [Impact Index Per Article: 271.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
284
|
Abstract
The nervous system is intimately involved in physiological processes from development and growth to tissue homeostasis and repair throughout the body. It logically follows that the nervous system has the potential to play analogous roles in the context of cancer. Progress toward understanding the crucial role of the nervous system in cancer has accelerated in recent years, but much remains to be learned. Here, we highlight rapidly evolving concepts in this burgeoning research space and consider next steps toward understanding and therapeutically targeting the neural regulation of cancer.
Collapse
Affiliation(s)
- Shawn Gillespie
- Cancer Biology Graduate Program, Stanford University, Stanford, California 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
285
|
Contreras-Zárate MJ, Cittelly DM. Sex steroid hormone function in the brain niche: Implications for brain metastatic colonization and progression. Cancer Rep (Hoboken) 2020; 5:e1241. [PMID: 33350105 PMCID: PMC8022872 DOI: 10.1002/cnr2.1241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While sex hormones and their receptors play well-known roles in progression of primary tumors through direct action on sex steroid hormone-responsive cancer cells, emerging evidence suggest that hormones also play important roles in metastatic progression by modulating the tumor microenvironment. Estrogens and androgens synthesized in gonads and within the brain influence memory, behavior, and outcomes of brain pathologies. Yet, their impact on brain metastatic colonization and progression is just beginning to be explored. RECENT FINDINGS Estradiol and testosterone cross the blood-brain barrier and are synthesized de novo in astrocytes and other cells within the adult brain. Circulating and brain-synthesized estrogens have been shown to promote brain metastatic colonization of tumors lacking estrogen receptors (ERs), through mechanisms involving the upregulation of growth factors and neurotrophins in ER+ reactive astrocytes. In this review, we discuss additional mechanisms by which hormones may influence brain metastases, through modulation of brain endothelial cells, astrocytes, and microglia. CONCLUSION A greater understanding of hormone-brain-tumor interactions may shed further light on the mechanisms underlying the adaptation of cancer cells to the brain niche, and provide therapeutic alternatives modulating the brain metastatic niche.
Collapse
Affiliation(s)
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
286
|
Abstract
The contribution of nerves to the pathogenesis of malignancies has emerged as an important component of the tumour microenvironment. Recent studies have shown that peripheral nerves (sympathetic, parasympathetic and sensory) interact with tumour and stromal cells to promote the initiation and progression of a variety of solid and haematological malignancies. Furthermore, new evidence suggests that cancers may reactivate nerve-dependent developmental and regenerative processes to promote their growth and survival. Here we review emerging concepts and discuss the therapeutic implications of manipulating nerves and neural signalling for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Ali H Zahalka
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
287
|
Klotz R, Yu M. Insights into brain metastasis: Recent advances in circulating tumor cell research. Cancer Rep (Hoboken) 2020; 5:e1239. [PMID: 33372393 PMCID: PMC9124503 DOI: 10.1002/cnr2.1239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background How tumor cells disseminate to brain and establish brain metastasis remains partly an unsolved problem. This devastating complication of many cancers is initiated by a rare subset of the circulating tumor cells (CTCs) shed into the blood stream. Thus, the profiling of the molecular properties in these brain metastasis‐initiating CTCs is essential to uncover the mechanisms underlying brain metastasis. Recent Findings Important efforts to improve the enrichment and detection of CTCs enabled the detailed molecular and functional analysis of CTCs that drive brain metastasis. In this review, we highlight key findings on existing preclinical studies that provide insights toward a comprehensive picture of brain metastasis‐precursors in CTCs and the potential clinical implications. Conclusion A deeper understanding of the brain metastasis precursors should help to stratify high‐risk patients and improve preventive therapeutic strategies. Although all these preclinical evidences have yet to be translated into patients, they provide considerable hope to benefit patients with brain metastases in the future.
Collapse
Affiliation(s)
- Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
288
|
|
289
|
Mills MN, Figura NB, Arrington JA, Yu HHM, Etame AB, Vogelbaum MA, Soliman H, Czerniecki BJ, Forsyth PA, Han HS, Ahmed KA. Management of brain metastases in breast cancer: a review of current practices and emerging treatments. Breast Cancer Res Treat 2020; 180:279-300. [PMID: 32030570 DOI: 10.1007/s10549-020-05552-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Breast cancer brain metastases (BCBM) are becoming an increasingly common diagnosis due to improved systemic control and more routine surveillance imaging. Treatment continues to require a multidisciplinary approach managing systemic and intracranial disease burden. Although, improvements have been made in the diagnosis and management of BCBM, brain metastasis patients continue to pose a challenge for practitioners. METHODS In this review, a group of medical oncologists, radiation oncologists, radiologists, breast surgeons, and neurosurgeons specializing in the treatment of breast cancer reviewed the available published literature and compiled a comprehensive review on the current state of BCBM. RESULTS We discuss the pathogenesis, epidemiology, diagnosis, treatment options (including systemic, surgical, and radiotherapy treatment modalities), and treatment response evaluation for BCBM. Furthermore, we discuss the ongoing prospective trials enrolling BCBM patients and their biologic rationale. CONCLUSIONS BCBM management is an increasing clinical concern. Multidisciplinary management combining the strengths of surgical, systemic, and radiation treatment modalities with prospective trials incorporating knowledge from the basic and translational sciences will ultimately lead to improved clinical outcomes for BCBM patients.
Collapse
Affiliation(s)
- Matthew N Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Nicholas B Figura
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - John A Arrington
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hatem Soliman
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA.
| |
Collapse
|
290
|
Yin J, Tu G, Peng M, Zeng H, Wan X, Qiao Y, Qin Y, Liu M, Luo H. GPER-regulated lncRNA-Glu promotes glutamate secretion to enhance cellular invasion and metastasis in triple-negative breast cancer. FASEB J 2020; 34:4557-4572. [PMID: 32030797 DOI: 10.1096/fj.201901384rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is a group of breast cancer with heterogeneity and poor prognosis and effective therapeutic targets are not available currently. TNBC has been recognized as estrogen-independent breast cancer, while the novel estrogen receptor, namely G protein-coupled estrogen receptor (GPER), was claimed to mediate estrogenic actions in TNBC tissues and cell lines. Through mRNA microarrays, lncRNA microarrays, and bioinformatics analysis, we found that GPER is activated by 17β-estradiol (E2) and GPER-specific agonist G1, which downregulates a novel lncRNA (termed as lncRNA-Glu). LncRNA-Glu can inhibit glutamate transport activity and transcriptional activity of its target gene VGLUT2 via specific binding. GPER-mediated reduction of lncRNA-Glu promotes glutamate transport activity and transcriptional activity of VGLUT2. Furthermore, GPER-mediated activation of cAMP-PKA signaling contributes to glutamate secretion. LncRNA-Glu-VGLUT2 signaling synergizes with cAMP-PKA signaling to increase autologous glutamate secretion in TNBC cells, which activates glutamate N-methyl-D-aspartate receptor (NMDAR) and its downstream CaMK and MEK-MAPK pathways, thus enhancing cellular invasion and metastasis in vitro and in vivo. Our data provide new insights into GPER-mediated glutamate secretion and its downstream signaling NMDAR-CaMK/MEK-MAPK during TNBC invasion. The mechanisms we discovered may provide new targets for clinical therapy of TNBC.
Collapse
Affiliation(s)
- Jiali Yin
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Gang Tu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
291
|
Abbruzzese C, Matteoni S, Persico M, Villani V, Paggi MG. Repurposing chlorpromazine in the treatment of glioblastoma multiforme: analysis of literature and forthcoming steps. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:26. [PMID: 32005270 PMCID: PMC6995164 DOI: 10.1186/s13046-020-1534-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
Abstract
Background Glioblastoma multiforme is a CNS cancer characterized by diffuse infiltrative growth, aggressive clinical behavior and very poor prognosis. The state-of-art clinical approach to this disease consists of surgical resection followed by radiotherapy plus concurrent and adjuvant chemotherapy with temozolomide. Tumor recurrence occurs in virtually all cases, therefore, despite any treatment, the median survival is very low (14.6 months), which makes the approach to these patients a challenging clinical issue. Main body The escalating costs and times required for new medications to reach the bedside make repurposing or repositioning of old drugs, when scientific bases allow their use in other pathologies, an appealing strategy. Here, we analyze a number of literature data concerning the antipsychotic chlorpromazine, the founder of the phenothiazines class of drugs, a medication widely used in the clinics for approximately 60 years. The drug exerts its effects on psychiatric patients by interfering with the dopamine receptor D2, although more recent pharmacodynamics studies ascribe chlorpromazine a series of biological effects on cancer cells, all converging in hindering also glioblastoma survival capabilities. Short conclusions On these bases, and assisted by the information on the well-established chlorpromazine toxicity and dosage in humans, we designed a Phase II clinical trial involving the combination of chlorpromazine with the standard treatment, temozolomide, in the adjuvant phase of the therapeutic protocol. Patients displaying hypo-methylation of the MGMT gene, and thus intrinsically resistant to temozolomide, will be enrolled. The endpoints of this study are the analysis of toxicity and clinical activity, as evaluated in terms of Progression-Free Survival, of the association of chlorpromazine with the first-line treatment for this very serious form of cancer.
Collapse
Affiliation(s)
- Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Michele Persico
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marco G Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
292
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
293
|
Gonzalez Castro LN, Milligan TA. Seizures in patients with cancer. Cancer 2020; 126:1379-1389. [PMID: 31967671 DOI: 10.1002/cncr.32708] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
Seizures are common in patients with cancer and either result from brain lesions, paraneoplastic syndromes, and complications of cancer treatment or are provoked by systemic illness (metabolic derangements, infections). Evaluation should include a tailored history, neurologic examination, laboratory studies, neuroimaging, and electroencephalogram. In unprovoked seizures, antiepileptic drug (AED) treatment is required, and a nonenzyme-inducing AED is preferred. Treatment of the underlying cancer with surgery, chemotherapy, and radiation therapy also can help reduce seizures. Benzodiazepines are useful in the treatment of both provoked seizures and breakthrough epileptic seizures and as first-line treatment for status epilepticus. Counseling for safety is an important component in the care of a patient with cancer who has seizures. Good seizure management can be challenging but significantly improves the quality of life during all phases of care, including end-of-life care.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tracey A Milligan
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
294
|
Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nat Rev Cancer 2020; 20:57-70. [PMID: 31806884 DOI: 10.1038/s41568-019-0226-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
Altered cellular metabolism is a hallmark of gliomas. Propelled by a set of recent technological advances, new insights into the molecular mechanisms underlying glioma metabolism are rapidly emerging. In this Review, we focus on the dynamic nature of glioma metabolism and how it is shaped by the interaction between tumour genotype and brain microenvironment. Recent advances integrating metabolomics with genomics are discussed, yielding new insight into the mechanisms that drive glioma pathogenesis. Studies that shed light on interactions between the tumour microenvironment and tumour genotype are highlighted, providing important clues as to how gliomas respond to and adapt to their changing tissue and biochemical contexts. Finally, a road map for the discovery of potential new glioma drug targets is suggested, with the goal of translating these new insights about glioma metabolism into clinical benefits for patients.
Collapse
Affiliation(s)
- Junfeng Bi
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Sudhir Chowdhry
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Wenjing Zhang
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA.
- Department of Pathology, UCSD School of Medicine, La Jolla, CA, USA.
- Moores Cancer Center, UCSD School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
295
|
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20:26-41. [PMID: 31601988 PMCID: PMC8246629 DOI: 10.1038/s41568-019-0205-x] [Citation(s) in RCA: 905] [Impact Index Per Article: 226.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
For a blood-borne cancer therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities, and it must overcome the resistance conferred by the local microenvironment around cancer cells. The brain microenvironment can thwart the effectiveness of drugs against primary brain tumours as well as brain metastases. In this Review, we highlight the cellular and molecular components of the blood-brain barrier (BBB), a specialized neurovascular unit evolved to maintain brain homeostasis. Tumours are known to compromise the integrity of the BBB, resulting in a vasculature known as the blood-tumour barrier (BTB), which is highly heterogeneous and characterized by numerous distinct features, including non-uniform permeability and active efflux of molecules. We discuss the challenges posed by the BBB and BTB for drug delivery, how multiple cell types dictate BBB function and the role of the BTB in disease progression and treatment. Finally, we highlight emerging molecular, cellular and physical strategies to improve drug delivery across the BBB and BTB and discuss their impact on improving conventional as well as emerging treatments, such as immune checkpoint inhibitors and engineered T cells. A deeper understanding of the BBB and BTB through the application of single-cell sequencing and imaging techniques, and the development of biomarkers of BBB integrity along with systems biology approaches, should enable new personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
296
|
Abstract
Brain metastasis, which commonly arises in patients with lung cancer, breast cancer and melanoma, is associated with poor survival outcomes and poses distinct clinical challenges. The brain microenvironment, with its unique cell types, anatomical structures, metabolic constraints and immune environment, differs drastically from microenvironments of extracranial lesions, imposing a distinct and profound selective pressure on tumour cells that, in turn, shapes the metastatic process and therapeutic responses. Accordingly, the study of brain metastasis could uncover new therapeutic targets and identify novel treatment approaches to address the unmet clinical need. Moreover, such efforts could provide insight into the biology of primary brain tumours, which face similar challenges to brain metastases of extracranial origin, and vice versa. However, the paucity of robust preclinical models of brain metastasis has severely limited such investigations, underscoring the importance of developing improved experimental models that holistically encompass the metastatic cascade and/or brain microenvironment. In this Viewpoint, we asked four leading experts to provide their opinions on these important aspects of brain metastasis biology and management.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - Livia Garzia
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.
| | | |
Collapse
|
297
|
Tumor propagating cells: drivers of tumor plasticity, heterogeneity, and recurrence. Oncogene 2019; 39:2055-2068. [PMID: 31801972 DOI: 10.1038/s41388-019-1128-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Abstract
Tumorigenesis is associated with the development of a highly variable pattern of cellular diversity, consequence of genetic and epigenetic diversification, followed by clonal selection and expansion. This process is shaped by the microenvironment and leads to intratumoral heterogeneity, which is characterized by differences between cancer cells in terms of gene expression, phenotypic markers, growth dynamics, and resistance to treatment. Another relevant aspect in intratumor heterogeneity is cell plasticity-the ability of a cell to switch to new identities. In this review, we focus on the mechanisms that regulate cancer cell plasticity within a tumor, and explore the concept of tumor propagating cells, or TPCs, a cancer cell able to propagate/phenocopy the parental tumor and recapitulate tumor heterogeneity. We discuss the influence of the microenvironment and driver mutations on TPCs formation and function, the existence of phenotypically distinct TPC clones within a tumor, the evolution of TPCs with disease progression, and their implications for therapy.
Collapse
|
298
|
|
299
|
The Metabolic Interplay between Cancer and Other Diseases. Trends Cancer 2019; 5:809-821. [PMID: 31813458 DOI: 10.1016/j.trecan.2019.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade, knowledge of cancer metabolism has expanded exponentially and has provided several clinically relevant targets for cancer therapy. Although these current approaches have shown promise, there are very few studies showing how seemingly unrelated metabolic processes in other diseases can readily occur in cancer. Moreover, the striking metabolic overlap between cancer and other diseases such as diabetes, cardiovascular, neurological, obesity, and aging has provided key therapeutic strategies that have even begun to be translated into clinical trials. These promising results necessitate consideration of the interconnected metabolic network while studying the metabolism of cancer. This review article discusses how cancer metabolism is intertwined with systemic metabolism and how knowledge from other diseases can help to broaden therapeutic opportunities for cancer.
Collapse
|
300
|
Lugassy C, Kleinman HK, Vermeulen PB, Barnhill RL. Angiotropism, pericytic mimicry and extravascular migratory metastasis: an embryogenesis-derived program of tumor spread. Angiogenesis 2019; 23:27-41. [PMID: 31720876 DOI: 10.1007/s10456-019-09695-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Intravascular dissemination of tumor cells is the accepted mechanism of cancer metastasis. However, the phenomenon of angiotropism, pericyte mimicry (PM), and extravascular migratory metastasis (EVMM) has questioned the concept that tumor cells metastasize exclusively via circulation within vascular channels. This new paradigm of cancer spread and metastasis suggests that metastatic cells employ embryonic mechanisms for attachment to the abluminal surfaces of blood vessels (angiotropism) and spread via continuous migration, competing with and replacing pericytes, i.e., pericyte mimicry (PM). This is an entirely extravascular phenomenon (i.e., extravascular migratory metastasis or EVMM) without entry (intravasation) into vascular channels. PM and EVMM have mainly been studied in melanoma but also occur in other cancer types. PM and EVMM appear to be a reversion to an embryogenesis-derived program. There are many analogies between embryogenesis and cancer progression, including the important role of laminins, epithelial-mesenchymal transition, and the re-activation of embryonic signals by cancer cells. Furthermore, there is no circulation of blood during the first trimester of embryogenesis, despite the fact that there is extensive migration of cells to distant sites and formation of organs and tissues during this period. Embryonic migration therefore is a continuous extravascular migration as are PM and EVMM, supporting the concept that these embryonic migratory events appear to recur abnormally during the metastatic process. Finally, the perivascular location of tumor cells intrinsically links PM to vascular co-option. Taken together, these two new paradigms may greatly influence the development of new effective therapeutics for metastasis. In particular, targeting embryonic factors linked to migration that are detected during cancer metastasis may be particularly relevant to PM/EVMM.
Collapse
Affiliation(s)
- Claire Lugassy
- Department of Translational Research, Institut Curie, Paris, France.
| | - Hynda K Kleinman
- Department of Molecular Medicine and Biochemistry, The George Washington School of Medicine, Washington, DC, USA
| | - Peter B Vermeulen
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus, Antwerp, Belgium.,Center for Oncological Research (CORE, Faculty of Medicine and Health Sciences), University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Raymond L Barnhill
- Department of Translational Research, Institut Curie, Paris, France.,University of Paris, Réné Descartes Faculty of Medicine, Paris, France
| |
Collapse
|