251
|
Morimoto N, Okamura Y, Kono T, Sakai M, Hikima JI. Characterization and expression analysis of tandemly-replicated asc genes in the Japanese medaka, Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103894. [PMID: 33080274 DOI: 10.1016/j.dci.2020.103894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
ASC is a component of the inflammasome playing crucial roles in the inflammatory response. In mammals, ASC induces pyroptosis and inflammatory cytokine production. In this study, three asc genes (asc1, asc2, and asc3) from the Japanese medaka (Oryzias latipes) were identified and characterized. These asc genes were tandem replicates on chromosome 16, and their exon-intron structures differed between them. All three ASCs conserved the pyrin and caspase-recruitment domains, which are important for inflammasome formation. In phylogenetic analysis, all ASCs clustered with those of other teleosts. The asc1 expression levels were significantly higher in several organs than those of asc2 and asc3, suggesting that asc1 may act as a dominant asc in the Japanese medaka. Expression of the three asc genes showed different patterns during Aeromonas hydrophila and Edwardsiella piscicida infections. Furthermore, their expression was adequately down-regulated in the medaka fin-derived cells stimulated with ATP for 12 h, while asc2 expression was statistically up-regulated after nigericin stimulation for 24 h. Moreover, the expression of asc2 and asc3 was significantly higher in the skin of ASC-1-knockout medaka than in that of the wild type medaka during A. hydrophila infection.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
252
|
Xu G, Fu S, Zhan X, Wang Z, Zhang P, Shi W, Qin N, Chen Y, Wang C, Niu M, Guo Y, Wang J, Bai Z, Xiao X. Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90. JCI Insight 2021; 6:134601. [PMID: 33350984 PMCID: PMC7934863 DOI: 10.1172/jci.insight.134601] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aberrant activation of NLRP3 inflammasome has been implicated in a variety of human inflammatory diseases, but currently, no pharmacological NLRP3 inhibitor has been approved. In this study, we showed that echinatin, the ingredient of the traditional herbal medicine licorice, effectively suppresses the activation of NLRP3 inflammasome in vitro and in vivo. Further investigation revealed that echinatin exerts its inhibitory effect on NLRP3 inflammasome by binding to heat-shock protein 90 (HSP90), inhibiting its ATPase activity and disrupting the association between the cochaperone SGT1 and HSP90-NLRP3. Importantly, in vivo experiments demonstrated that administration of echinatin obviously inhibits NLRP3 inflammasome activation and ameliorates LPS-induced septic shock and dextran sodium sulfate-induced (DSS-induced) colitis in mice. Moreover, echinatin exerted favorable pharmacological effects on liver inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis (NASH). Collectively, our study identifies echinatin as a potentially novel inhibitor of NLRP3 inflammasome, and its use may be developed as a therapeutic approach for the treatment of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Guang Xu
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,Integrative Medical Centre, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Shubin Fu
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Jiujiang Institute for Food and Drug Control, Jiujiang, China
| | - Xiaoyan Zhan
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,Integrative Medical Centre, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Zhilei Wang
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Zhang
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,Integrative Medical Centre, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Wei Shi
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Nan Qin
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China.,School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuanyuan Chen
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Chunyu Wang
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Ming Niu
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Yuming Guo
- Integrative Medical Centre, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Jiabo Wang
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Zhaofang Bai
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| | - Xiaohe Xiao
- Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China
| |
Collapse
|
253
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
254
|
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. Int J Mol Sci 2021; 22:ijms22020872. [PMID: 33467177 PMCID: PMC7830601 DOI: 10.3390/ijms22020872] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Collapse
|
255
|
The Inflammasome Components NLRP3 and ASC Act in Concert with IRGM To Rearrange the Golgi Apparatus during Hepatitis C Virus Infection. J Virol 2021; 95:JVI.00826-20. [PMID: 33208442 PMCID: PMC7925091 DOI: 10.1128/jvi.00826-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Hepatitis C virus (HCV) infection triggers Golgi fragmentation through the Golgi-resident protein immunity-related GTPase M (IRGM). Here, we report the roles of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) and ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain [CARD]), two inflammasome components, in the initial events leading to this fragmentation. We show that ASC resides at the Golgi with IRGM at homeostasis. Upon infection, ASC dissociates from both IRGM and the Golgi and associates with HCV-induced NLRP3. NLRP3 silencing inhibits Golgi fragmentation. ASC silencing disrupts the Golgi structure in both control and infected cells and reduces the localization of IRGM at the Golgi. IRGM depletion in the ASC-silenced cells cannot totally restore the Golgi structure. These data highlight a role for ASC, upstream of the formation of the inflammasome, in regulating IRGM through its control on the Golgi. A similar mechanism occurs in response to nigericin treatment, but not in cells infected with another member of the Flaviviridae family, Zika virus (ZIKV). We propose a model for a newly ascribed function of the inflammasome components in Golgi structural remodeling during certain stimuli. IMPORTANCE Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Here, we reveal the role of the inflammasome components NLRP3 and ASC in this process, thus uncovering a new interplay between effectors of inflammation and viral infection or stress. We show that the inflammasome component ASC resides at the Golgi under homeostasis and associates with IRGM. Upon HCV infection, ASC is recruited to NLRP3 and dissociates from IRGM, causing Golgi fragmentation. Our results uncover that aside from their known function in the inflammation response, these host defense regulators also ensure the maintenance of intact intracellular structure in homeostasis, while their activation relieves factors leading to Golgi remodeling.
Collapse
|
256
|
Camargo M, Ibrahim E, Intasqui P, Belardin LB, Antoniassi MP, Lynne CM, Brackett NL, Bertolla RP. Seminal inflammasome activity in the adult varicocele. HUM FERTIL 2021; 25:548-556. [PMID: 33432865 DOI: 10.1080/14647273.2020.1870756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Varicocele has been hypothesized to lead to seminal inflammation, which in turn interferes with sperm function. Thus, the aim of this study was to investigate the role of inflammatory cytokines in the pathogenesis of decreased semen quality observed in adult men with varicocele, and to determine if varicocelectomy corrects these potential alterations. A prospective study was carried out including fifteen control men without varicocele and with normal semen quality and 15 men with varicocele with surgical indication. Men with varicocele grades II or III underwent microsurgical subinguinal varicocelectomy. Controls collected one semen sample and men with varicocele collected one before and one 6 months after the surgery. Semen analysis, sperm function, and seminal lipid peroxidation levels were assessed. Seminal plasma inflammasome activity was evaluated by ELISA assays for IL-1β, IL-18 and caspase-1 and by Western blotting for ASC (apoptosis-associated speck-like protein). Groups were compared by an unpaired Student's T test. Varicocelectomy samples were compared using a paired Student's T test (α = 5%). Men with varicocele had decreased semen quality, and increased seminal IL-1β levels, when compared to control men. Varicocelectomy decreased levels of caspase-1, IL-18, and IL1β. Thus, varicocelectomy improves sperm morphology and decreases seminal plasma inflammatory activity, after a six-month post-operative period.
Collapse
Affiliation(s)
- Mariana Camargo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Emad Ibrahim
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Larissa B Belardin
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mariana P Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Charles M Lynne
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nancy L Brackett
- Miami Project to Cure Paralysis and Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo P Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil.,Hospital São Paulo, São Paulo, Brazil
| |
Collapse
|
257
|
Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci Pharm 2021. [DOI: 10.3390/scipharm89010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has spread globally with the number of cases exceeding seventy million. Although trials on potential treatments of COVID-19 Acute Respiratory Distress Syndrome (ARDS) are promising, the introduction of an effective therapeutic intervention seems elusive. In this review, we explored the potential therapeutic role of volatile anesthetics during mechanical ventilation in the late stages of the disease. COVID-19 is thought to hit the human body via five major mechanisms: direct viral damage, immune overactivation, capillary thrombosis, loss of alveolar capillary membrane integrity, and decreased tissue oxygenation. The overproduction of pro-inflammatory cytokines will eventually lead to the accumulation of inflammatory cells in the lungs, which will lead to ARDS requiring mechanical ventilation. Respiratory failure resulting from ARDS is thought to be the most common cause of death in COVID-19. The literature suggests that these effects could be directly countered by using volatile anesthetics for sedation. These agents possess multiple properties that affect viral replication, immunity, and coagulation. They also have proven benefits at the molecular, cellular, and tissue levels. Based on the comprehensive understanding of the literature, short-term sedation with volatile anesthetics may be beneficial in severe stages of COVID-19 ARDS and trials to study their effects should be encouraged.
Collapse
|
258
|
I KY, Tseng WY, Wang WC, Gordon S, Ng KF, Lin HH. Stimulation of Vibratory Urticaria-Associated Adhesion-GPCR, EMR2/ADGRE2, Triggers the NLRP3 Inflammasome Activation Signal in Human Monocytes. Front Immunol 2021; 11:602016. [PMID: 33488598 PMCID: PMC7820815 DOI: 10.3389/fimmu.2020.602016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/20/2020] [Indexed: 11/21/2022] Open
Abstract
EMR2/ADGRE2 is an adhesion G protein-coupled receptor differentially expressed by human myeloid cells. It modulates diverse cellular functions of innate immune cells and a missense EMR2 variant is directly responsible for vibratory urticaria. Recently, EMR2 was found to activate NLRP3 inflammasome in monocytes via interaction with FHR1, a regulatory protein of complement Factor H. However, the functional involvement of EMR2 activation and its signaling mechanisms in eliciting NLRP3 inflammasome activation remain elusive. In this study, we show that EMR2-mediated signaling plays a critical role in triggering the activation (2nd) signal for the NLRP3 inflammasome in both THP-1 monocytic cell line and primary monocytes. Stimulation of EMR2 by its agonistic 2A1 monoclonal antibody elicits a Gα16-dependent PLC-β activation pathway, inducing the activity of downstream Akt, MAPK, NF-κB, and Ca2+ mobilization, eventually leading to K+ efflux. These results identify EMR2 and its associated signaling intermediates as potential intervention targets of NLRP3 inflammasome activation in inflammatory disorders.
Collapse
Affiliation(s)
- Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yi Tseng
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Kwai-Fong Ng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital-Keelung, Keelung, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
259
|
Zhang Y, Zhu P, Wu X, Yuan T, Su Z, Chen S, Zhou Y, Tao WA. Microcystin-LR Induces NLRP3 Inflammasome Activation via FOXO1 Phosphorylation, Resulting in Interleukin-1β Secretion and Pyroptosis in Hepatocytes. Toxicol Sci 2021; 179:53-69. [PMID: 33078829 DOI: 10.1093/toxsci/kfaa159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Microcystin-LR (MC-LR), the most common and toxic microcystin (MC) present in freshwater, poses a substantial threat to human health, especially hepatotoxicity. Recent evidence reveals that the NLRP3 inflammasome plays an important role in liver injury by activating caspase-1 to promote interleukin-1β (IL-1β) secretion. In this study, we investigated the possible role of NLRP3 inflammasome activation in MC-LR-induced mouse liver inflammatory injury. We found that MC-LR administered to mice by oral gavage mainly accumulated in liver and induced the activation of the NLRP3 inflammasome and production of mature IL-1β. Additionally, we observed an increase in the levels of NLRP3 inflammasome-related proteins and the proportion of pyroptosis in MC-LR-treated AML-12 cells. We also found that inhibition of NLRP3 in mice attenuated MC-LR-induced IL-1β production, indicating an essential role for NLRP3 in MC-LR-induced liver inflammatory injury. In addition, we found that inhibition of FOXO1 by AKT-mediated hyperphosphorylation, due to protein phosphatase 2A (PP2A) inhibition, is required for MC-LR-induced expression of NLRP3. Taken together, our in vivo and in vitro findings suggest a model in which the NLRP3 inflammasome activation, a result of AKT-mediated hyperphosphorylation of FOXO1 through inhibition of PP2A, plays a key role in MC-LR-induced liver inflammatory injury via IL-1β secretion and pyroptotic cell death.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Xiaofeng Wu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhangyao Su
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Shiyin Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Yajun Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
260
|
Abstract
Pyroptosis is a new type of programmed cell death identified in recent years, which destroys the integrity of cell membranes by punching pores on them, resulting in cell lysis. Light- and dark-colored vesicles/pore-like structures on the membranes of pyroptotic cells are generally observed using light microscope, accompanied by cell swelling and cytoplasmic release. However, due to the release of the cell contents in both pyroptosis and necrosis, it is difficult to distinguish them solely by morphological characteristics. The mechanism of pyroptosis involves three major signaling pathways, all activating downstream gasdermin (GSDM) D and E, which results in the formation of pores (10-15 nm) on the cell membrane, while small cytoplasmic molecules such as interleukin (IL)-1 and IL-18 flow out from the pores and cause inflammation. The occurrence of pyroptosis can be determined by a combination of markers. These include cleavage of GSDM D and E, activation and release of IL-1β and IL-18, and activation of cysteinyl aspartate specific proteinase (caspase-1, -3, -4, -5, and -11). This chapter discusses several common methods to assist researchers in detecting pyroptosis.
Collapse
Affiliation(s)
- Yang Feng
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
261
|
Chen S, Tang C, Ding H, Wang Z, Liu X, Chai Y, Jiang W, Han Y, Zeng H. Maf1 Ameliorates Sepsis-Associated Encephalopathy by Suppressing the NF- kB/NLRP3 Inflammasome Signaling Pathway. Front Immunol 2020; 11:594071. [PMID: 33424842 PMCID: PMC7785707 DOI: 10.3389/fimmu.2020.594071] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome has been identified as an important mediator of blood–brain-barrier disruption in sepsis-associated encephalopathy (SAE). However, no information is available concerning the critical upstream regulators of SAE. Methods Lipopolysaccharide (LPS) was used to establish an in vitro model of blood–brain barrier (BBB) disruption and an in vivo model of SAE. Disruption of BBB integrity was assessed by measuring the expression levels of tight-junction proteins. NLRP3 inflammasome activation, pro-inflammatory cytokines levels, and neuroapoptosis were measured using biochemical assays. Finally, the FITC-dextran Transwell assay and Evan’s blue dye assay were used to assess the effect of Maf1 on LPS-induced endothelial permeability in vitro and in vivo. Results We found that Maf1 significantly suppressed the brain inflammatory response and neuroapoptosis induced by LPS in vivo and in vitro. Notably, Maf1 downregulated activation of the NF-κB/p65-induced NLRP3 inflammasome and the expression of pro-inflammatory cytokines. In addition, we found that Maf1 and p65 directly bound to the NLRP3 gene promoter region and competitively regulated the function of NLRP3 in inflammations. Moreover, overexpression of NLRP3 reversed the effects of p65 on BBB integrity, apoptosis, and inflammation in response to LPS. Our study revealed novel role for Maf1 in regulating NF-κB-mediated inflammasome formation, which plays a prominent role in SAE. Conclusions Regulation of Maf1 might be a therapeutic strategy for SAE and other neurodegenerative diseases associated with inflammation.
Collapse
Affiliation(s)
- Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chaogang Tang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Hongguang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhonghua Wang
- Department of Gerontological Critical Care Medicine, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences/Guangdong Provincial Geriatrics Institute, Guangzhou, China
| | - Xinqiang Liu
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yunfei Chai
- Anesthesiology Department of Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenqiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongli Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
262
|
The Reducing Effects of Pyrogallol-Phloroglucinol-6,6-Bieckol on High-Fat Diet-Induced Pyroptosis in Endothelial and Vascular Smooth Muscle Cells of Mice Aortas. Mar Drugs 2020; 18:md18120648. [PMID: 33339328 PMCID: PMC7766911 DOI: 10.3390/md18120648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
In hyperlipidemia, pyroptosis in endothelial cells (ECs) induces atherosclerosis via the toll-like receptor 4 (TLR4) pathway. We evaluated the effects of Ecklonia cava extract (ECE) and pyrogallol-phloroglucinol-6,6-bieckol (PPB) on pyroptosis of ECs and vascular smooth muscle cells (VSMCs), which leads to attenuation of these cells and dysfunction of the aorta in high-fat-diet (HFD)-fed mice and in palmitate-treated ECs and VSMCs. The expression of TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which induce formation of NOD-LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasomes, were increased by HFD and were decreased by ECE and PPB. The TLR4/NF-κB pathway was upregulated in palmitate-treated ECs and VSMCs and was decreased by ECE and PPB. The expressions of NLRP3/apoptosis-associated speck like protein containing a caspase recruitment domain, caspase-1, interleukin (IL)-1β, and IL-18 were increased by HFD and were decreased by ECE and PPB. Pyroptotic cells were increased by HFD and decreased by ECE and PPB. The expressions of the adhesion molecules, intercellular adhesion molecule and vascular cell adhesion molecule, and endothelin-1 were increased by HFD and were decreased by ECE and PPB. ECE and PPB decreased pyroptosis in the ECs and VSMCs, which was induced by HFD in the mouse aorta, and attenuated EC and VSMC dysfunction, an initiation factor of atherosclerosis.
Collapse
|
263
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic acid inhibits oxLDL-induced inflammasome activation under high-glucose conditions through downregulating the p38-FOXO1-TXNIP pathway. Biochem Pharmacol 2020; 182:114246. [PMID: 33011160 DOI: 10.1016/j.bcp.2020.114246] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023]
Abstract
Elevated glucose levels in diabetes mellitus is associated with increased oxidized low density lipoprotein (oxLDL). High glucose (HG) and oxLDL are key inducers of oxidative stress and inflammatory processes responsible for diabetic vascular disorders. Rosmarinic acid is a polyphenol with antioxidant, anti-inflammatory and insulin-sensitizing effects. However, whether rosmarinic acid protects against diabetic atherosclerosis remains unknown. In this study, we aimed to investigate the protective effect of rosmarinic acid against diabetic atherosclerosis and the related signaling pathway. oxLDL-mediated oxidative stress upregulated thioredoxin-interacting protein (TXNIP) and subsequently induced binding of TXNIP to NLRP3 to mediate NLRP3 inflammasome assembly and activation under HG conditions in ECs. Reactive oxygen species (ROS) scavengers, p38 and FOXO1 inhibitors and TXNIP siRNA inhibited TXNIP protein upregulation and NLRP3 inflammasome assembly and activation. Rosmarinic acid abrogated TXNIP protein upregulation and the interaction between TXNIP and NLRP3 to attenuate NLRP3 inflammasome assembly and activation and eventually IL-1β secretion in ECs through downregulating ROS production, p38 phosphorylation and FOXO1 protein induction in ECs. These findings show that rosmarinic acid inhibits endothelial dysfunction which is shown in diabetic atherosclerosis through downregulating the p38-FOXO1-TXNIP pathway and inhibiting inflammasome activation.
Collapse
Affiliation(s)
- Jean Baptiste Nyandwi
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hana Jin
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea.
| |
Collapse
|
264
|
Ding W, Ding Z, Wang Y, Zhu Y, Gao Q, Cao W, Du R. Evodiamine Attenuates Experimental Colitis Injury Via Activating Autophagy and Inhibiting NLRP3 Inflammasome Assembly. Front Pharmacol 2020; 11:573870. [PMID: 33240089 PMCID: PMC7681073 DOI: 10.3389/fphar.2020.573870] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy and NLRP3 inflammasome were associated with the process of colitis. Drugs targeting NLRP3 inflammasome and autophagy to treat colitis are absent, and they are urgently required. Herein, we examine the effect of evodiamine, extracted from the fruit of Evodiae Fructus, on experimental colitis induced by dextran sulfate sodium and exposit whether evodiamine effects on autophagy and NLRP3 inflammasome. Our data indicated that colitis was ameliorated by evodiamine, including the improvement of mice body weight, colon length, histopathologic score, and the disease activity index. We also observed that evodiamine restrained the formation of the NLRP3 inflammasome by inhibiting the apoptosis-associated speck-like protein oligomerization and caspase-1 activity in THP-1 macrophages. Our results demonstrated evodiamine inhibit NLRP3 inflammasome activation via the induction of autophagosome-mediated degradation of inflammasome and the inhibition of NFκB pathway, which synergistically contribute to the effect of evodiamine in colitis. It indicates the potential use of evodiamine in inflammatory bowel diseases treatment.
Collapse
Affiliation(s)
- Wenwen Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Zhiquan Ding
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yong Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Qi Gao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wangsen Cao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Ronghui Du
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
265
|
The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 2020; 135:1087-1100. [PMID: 32016282 DOI: 10.1182/blood.2019002282] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection not only stimulates innate immune responses but also activates coagulation cascades. Overactivation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), a widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC by amplifying the release of high-mobility group box 1 (HMGB1) into the bloodstream. Inhibition of the expression of type 1 IFNs and disruption of their receptor IFN-α/βR or downstream effector (eg, HMGB1) uniformly decreased gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the procoagulant activity of tissue factor by promoting the externalization of phosphatidylserine to the outer cell surface, where phosphatidylserine assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but they also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.
Collapse
|
266
|
Duan Y, Zhang L, Angosto-Bazarra D, Pelegrín P, Núñez G, He Y. RACK1 Mediates NLRP3 Inflammasome Activation by Promoting NLRP3 Active Conformation and Inflammasome Assembly. Cell Rep 2020; 33:108405. [PMID: 33207200 DOI: 10.1016/j.celrep.2020.108405] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022] Open
Abstract
The NLRP3 inflammasome, a critical component of the innate immune system, induces caspase-1 activation and interleukin (IL)-1β maturation in response to microbial infection and cellular damage. However, aberrant activation of the NLRP3 inflammasome contributes to the pathogenesis of several inflammatory disorders, including cryopyrin-associated periodic syndromes, Alzheimer's disease, type 2 diabetes, and atherosclerosis. Here, we identify the receptor for activated protein C kinase 1 (RACK1) as a component of the NLRP3 complexes in macrophages. RACK1 interacts with NLRP3 and NEK7 but not ASC. Suppression of RACK1 expression abrogates caspase-1 activation and IL-1β release in response to NLRP3- but not NLRC4- or AIM2-activating stimuli. This RACK1 function is independent of its ribosomal binding activity. Mechanistically, RACK1 promotes the active conformation of NLRP3 induced by activating stimuli and subsequent inflammasome assembly. These results demonstrate that RACK1 is a critical mediator for NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yanhui Duan
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lingzhi Zhang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Diego Angosto-Bazarra
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Yuan He
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
267
|
Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, Brough D. The NLRP3-inflammasome as a sensor of organelle dysfunction. J Cell Biol 2020; 219:191204. [PMID: 33044555 PMCID: PMC7543090 DOI: 10.1083/jcb.202006194] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Diverse pathogen- and damage-associated stresses drive inflammation via activation of the multimolecular NLRP3-inflammasome complex. How the effects of diverse stimuli are integrated by the cell to regulate NLRP3 has been the subject of intense research, and yet an accepted unifying hypothesis for the control of NLRP3 remains elusive. Here, we review the literature on the effects of NLRP3-activating stimuli on subcellular organelles and conclude that a shared feature of NLRP3-activating stresses is an organelle dysfunction. In particular, we propose that the endosome may be more important than previously recognized as a signal-integrating hub for NLRP3 activation in response to many stimuli and may also link to the dysfunction of other organelles. In addition, NLRP3-inflammasome-activating stimuli trigger diverse posttranslational modifications of NLRP3 that are important in controlling its activation. Future research should focus on how organelles respond to specific NLRP3-activating stimuli, and how this relates to posttranslational modifications, to delineate the organellar control of NLRP3.
Collapse
Affiliation(s)
- Paula I. Seoane
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Bali Lee
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Shi Yu
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK,Correspondence to David Brough:
| |
Collapse
|
268
|
Hou X, Yuan Z, Wang X, Cheng R, Zhou X, Qiu J. Peptidome analysis of cerebrospinal fluid in neonates with hypoxic-ischemic brain damage. Mol Brain 2020; 13:133. [PMID: 33008433 PMCID: PMC7531121 DOI: 10.1186/s13041-020-00671-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxic-ischemic brain injury (HIBD) causes neonatal death and serious neurological disability; however, there are currently no promising therapies for it excepting cooling. Therefore, in this study, we used peptidome analysis to identify differentially expressed peptides in cerebrospinal fluid (CSF) of neonates with HIBD or controls, which may give a foundation for finding new promising drugs of neonatal HIBD. CSF samples were collected from neonates with HIBD (n = 4) or controls (n = 4). ITRAQ LC-MS/MS was used to identify differentially expressed peptides between two groups. A total of 35 differentially expressed peptides from 25 precursor proteins were identified. The 2671.5 Da peptide (HSQFIGYPITLFVEKER), one of the down-regulated peptides in neonatal HIBD, is a fragment of heat shock protein 90-alpha (HSP90α/HSP90AA1). Results of bioinformatics analysis showed that HSP90α/HSP90AA1 was located in the protein-protein interaction (PPI) network hub and was involved in the NOD-LIKE receptor (NLR) signaling pathway. This peptide, we named it Hypoxic-Ischemic Brain Damage Associated Peptide (HIBDAP), is a hydrophilic peptide with high stability and has a long half-life of 3.5 h in mammalian reticulocytes. It was demonstrated that TAT-HIBDAP could successfully enter PC12 cells and further into the nucleus. After HIBDAP pretreatment and 6 h of OGD treatment, low concentrations of HIBDAP increased the survival rate of cells, except 40 μM had a toxic effect. Safe concentrations of HIBDAP reduced pyroptosis of PC12 cells under OGD, except 20 μM had no effect, by suppressing expressions of NLRP3, ASC and Caspase-1 except NLRP1. The results of our study identified the characterization and expression profiles of peptides in CSF of neonatal HIBD. Several meaningful peptides such as HIBDAP may play significant roles in neonatal HIBD and provide new therapeutic targets for neonatal HIBD.
Collapse
Affiliation(s)
- Xuewen Hou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Zijun Yuan
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xuan Wang
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Rui Cheng
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xiaoguang Zhou
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Jie Qiu
- Department of Newborn Infants, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
269
|
An S, Hu H, Li Y, Hu Y. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis 2020; 11:1146-1157. [PMID: 33014529 PMCID: PMC7505276 DOI: 10.14336/ad.2019.1127] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed novel forms of cell death beyond the canonical types of cellular apoptosis and necrosis, and these novel forms of cell death are induced by extreme microenvironmental factors. Pyroptosis, a type of regulated cell death, occurs when pattern recognition receptors (PRRs) induce the activation of cysteine-aspartic protease 1 (caspase-1) or caspase-11, which can trigger the release of the pyrogenic cytokines interleukin-1β (IL-1β) and IL-18. Osteoarthritis (OA), the most common joint disease worldwide, is characterized by low-grade inflammation and increased levels of cytokines, including IL-1β and IL-18. Additionally, some damaged chondrocytes associated with OA exhibit morphological changes consistent with pyroptosis, suggesting that this form of regulated cell death may contribute significantly to the pathology of OA. This review summarizes the molecular mechanisms of pyroptosis and shows the critical role of NLRP3 (NLR family, pyrin domain containing 3; NLR refers to "nucleotide-binding domain, leucine-rich repeat") inflammasomes. We also provide evidence describing potential role of pyroptosis in OA, including the relationship with OA risk factors and the contribution to cartilage degradation, synovitis and OA pain.
Collapse
Affiliation(s)
- Senbo An
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyu Hu
- 2Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng Li
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihe Hu
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
270
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the virus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely throughout the world. Despite the strict global outbreak management and quarantine measures that have been implemented, the incidence of COVID-19 continues to rise, resulting in more than 290,000 deaths and representing an extremely serious threat to human life and health. The clinical symptoms of the affected patients are heterogeneous, ranging from mild upper respiratory symptoms to severe pneumonitis and even acute respiratory distress syndrome (ARDS) or death. Systemic immune over activation due to SARS-CoV-2 infection causes the cytokine storm, which is especially noteworthy in severely ill patients with COVID-19. Pieces of evidence from current studies have shown that the cytokine storm may be an important factor in disease progression, even leading to multiple organ failure and death. This review provides an overview of the knowledge on the COVID-19 epidemiological profile, the molecular mechanisms of the SARS-CoV-2-induced cytokine storm and immune responses, the pathophysiological changes that occur during infection, the main antiviral compounds used in treatment strategies and the potential drugs for targeting cytokines, this information is presented to provide valuable guidance for further studies and for a therapeutic reduction of this excessive immune response.
Collapse
|
271
|
Morimoto N, Okamura Y, Maekawa S, Wang HC, Aoki T, Kono T, Sakai M, Hikima JI. ASC-deficiency impairs host defense against Aeromonas hydrophila infection in Japanese medaka, Oryzias latipes. FISH & SHELLFISH IMMUNOLOGY 2020; 105:427-437. [PMID: 32712229 DOI: 10.1016/j.fsi.2020.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a component of inflammasome, which plays crucial roles in the inflammatory response. In mammals, ASC regulates caspase-1 activation, thereby inducing pyroptosis and producing activated inflammatory cytokines. In addition, ASC also interacts with receptor-interacting protein kinase 2 (RIPK2) and induces nuclear factor-κB (NF-κB) activation. However, the role of ASC remains poorly understood in fish. In this study, we focused on elucidating the role of ASC in fish that were infected with Aeromonas hydrophila using Japanese medaka (Oryzias latipes) as fish model, and ASC-knockout (KO) medaka was established using CRISPR-Cas9 system. ASC-KO and wild type (WT) medakas were infected with A. hydrophila, and mortality was observed. ASC-KO medaka demonstrated higher mortality than WT. Moreover, the expression of immune-related genes in the kidney and intestine of the ASC-KO and WT medakas challenged with A. hydrophila were analyzed. Following A. hydrophila infection, the kidney of ASC-KO medaka exhibited significantly lower expression of NF-κB regulated genes (e.g., IL-1β, IL-6, IL-8 and TNF-α) and RIPK2 gene than in WT kidney. Moreover, to investigate the immune response against A. hydrophila via ASC in the medaka, bacterial burden, superoxide anion production, and lactate dehydrogenase release in the kidney cells of ASC-KO medaka were measured. After infection, these responses in ASC-KO medaka were significantly decreased compared to those in WT. These results suggest that the medaka ASC plays a critical role against A. hydrophila infection by inducing inflammatory responses and cell death for bacterial clearance.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Shun Maekawa
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan, ROC
| | - Takashi Aoki
- Integrated Institute for Regulatory Science, Research Organization for Nano and Life Innovation, Waseda University, Waseda Tsurumaki-cho, Shinjuku-ku, Tokyo, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
272
|
Yang M, So KF, Lam WC, Lo ACY. Novel Programmed Cell Death as Therapeutic Targets in Age-Related Macular Degeneration? Int J Mol Sci 2020; 21:E7279. [PMID: 33019767 PMCID: PMC7582463 DOI: 10.3390/ijms21197279] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual loss among the elderly. AMD patients are tormented by progressive central blurring/loss of vision and have limited therapeutic options to date. Drusen accumulation causing retinal pigment epithelial (RPE) cell damage is the hallmark of AMD pathogenesis, in which oxidative stress and inflammation are the well-known molecular mechanisms. However, the underlying mechanisms of how RPE responds when exposed to drusen are still poorly understood. Programmed cell death (PCD) plays an important role in cellular responses to stress and the regulation of homeostasis and diseases. Apart from the classical apoptosis, recent studies also discovered novel PCD pathways such as pyroptosis, necroptosis, and ferroptosis, which may contribute to RPE cell death in AMD. This evidence may yield new treatment targets for AMD. In this review, we summarized and analyzed recent advances on the association between novel PCD and AMD, proposing PCD's role as a therapeutic new target for future AMD treatment.
Collapse
Affiliation(s)
- Ming Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (M.Y.); (K.-F.S.)
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (M.Y.); (K.-F.S.)
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Wai Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (M.Y.); (K.-F.S.)
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (M.Y.); (K.-F.S.)
| |
Collapse
|
273
|
Saponaro F, Rutigliano G, Sestito S, Bandini L, Storti B, Bizzarri R, Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front Mol Biosci 2020; 7:588618. [PMID: 33195436 PMCID: PMC7556165 DOI: 10.3389/fmolb.2020.588618] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is related to ACE but turned out to counteract several pathophysiological actions of ACE. ACE2 exerts antihypertensive and cardioprotective effects and reduces lung inflammation. ACE2 is subjected to extensive transcriptional and post-transcriptional modulation by epigenetic mechanisms and microRNAs. Also, ACE2 expression is regulated post-translationally by glycosylation, phosphorylation, and shedding from the plasma membrane. ACE2 protein is ubiquitous across mammalian tissues, prominently in the cardiovascular system, kidney, and intestine. ACE2 expression in the respiratory tract is of particular interest, in light of the discovery that ACE2 serves as the initial cellular target of severe acute respiratory syndrome (SARS)-coronaviruses, including the recent SARS-CoV2, responsible of the COronaVIrus Disease 2019 (COVID-19). Since the onset of the COVID-19 pandemic, an intense effort has been made to elucidate the biochemical determinants of SARS-CoV2-ACE2 interaction. It has been determined that SARS-CoV2 engages with ACE2 through its spike (S) protein, which consists of two subunits: S1, that mediates binding to the host receptor; S2, that induces fusion of the viral envelope with the host cell membrane and delivery of the viral genome. Owing to the role of ACE2 in SARS-CoV2 pathogenicity, it has been speculated that medical conditions, i.e., hypertension, and/or drugs, i.e., ACE inhibitors and angiotensin receptor blockers, known to influence ACE2 density could alter the fate of SARS-CoV-2 infection. The debate is still open and will only be solved when results of properly designed experimental and clinical investigations will be made public. An interesting observation is, however that, upon infection, ACE2 activity is reduced either by downregulation or by shedding. These events might precipitate the so-called "cytokine storm" that characterizes the most severe COVID-19 forms. As evidence accumulates, ACE2 appears a druggable target in the attempt to limit virus entry and replication. Strategies aimed at blocking ACE2 with antibodies, small molecules or peptides, or at neutralizing the virus by competitive binding with exogenously administered ACE2, are currently under investigations. In this review, we will present an overview of the state-of-the-art knowledge on ACE2 biochemistry and pathophysiology, outlining open issues in the context of COVID-19 disease and potential experimental and clinical developments.
Collapse
Affiliation(s)
| | | | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Barbara Storti
- NEST, Scuola Normale Superiore and CNR-NANO, Pisa, Italy
| | - Ranieri Bizzarri
- Department of Pathology, University of Pisa, Pisa, Italy
- NEST, Scuola Normale Superiore and CNR-NANO, Pisa, Italy
| | | |
Collapse
|
274
|
Wang S, Su X, Xu L, Chang C, Yao Y, Komal S, Cha X, Zang M, Ouyang X, Zhang L, Han S. Glycogen synthase kinase-3β inhibition alleviates activation of the NLRP3 inflammasome in myocardial infarction. J Mol Cell Cardiol 2020; 149:82-94. [PMID: 32991876 DOI: 10.1016/j.yjmcc.2020.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Inflammasome-promoted sterile inflammation following cardiac damage is critically implicated in heart dysfunction after myocardial infarction (MI). Glycogen synthase kinase-3 (GSK-3β) is a prominent mediator of the inflammatory response, and high GSK-3 activity is associated with various heart diseases. We investigated the regulatory mechanisms of GSK-3β in activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in a rat model with successful induction of MI on days 2-28. An in vitro investigation was performed using newborn rat/human cardiomyocytes and fibroblast cultures under typical inflammasome stimulation and hypoxia treatment. GSK-3β inhibition markedly improved myocardial dysfunction and prevented remodeling, with parallel reduction in the parameters of NLRP3 inflammasome activation after MI. GSK-3β inhibition reduced NLRP3 inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes. GSK-3β's interaction with activating signal cointegrator (ASC) as well as GSK-3β inhibition reduced ASC phosphorylation and oligomerization at the tissues and cellular levels. Taken together, these data show that GSK-3β directly mediates NLRP3 inflammasome activation, causing cardiac dysfunction in MI.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueling Su
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lina Xu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng Chang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Yao
- Undergraduate, Student of Class 2015, Department of Clinical Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuexiang Cha
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingxi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shengna Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
275
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
276
|
Pang Y, Zhang PC, Lu RR, Li HL, Li JC, Fu HX, Cao YW, Fang GX, Liu BH, Wu JB, Zhou JY, Zhou Y. Andrade-Oliveira Salvianolic Acid B Modulates Caspase-1-Mediated Pyroptosis in Renal Ischemia-Reperfusion Injury via Nrf2 Pathway. Front Pharmacol 2020; 11:541426. [PMID: 33013384 PMCID: PMC7495093 DOI: 10.3389/fphar.2020.541426] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent antioxidant activity. Here, we investigated the protective effect of SalB against renal ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative stress markers and inflammatory biomarkers, we found that SalB could improve kidney damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1, pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1β, which were significantly upregulated in the kidney tissues of I/R group, was effectively reversed by SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress, proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.
Collapse
Affiliation(s)
- Yu Pang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Chun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Rui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Lian Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ji-Cheng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Xin Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Wen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guo-Xing Fang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bi-Hao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jun-Biao Wu
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiu-Yao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
277
|
Xia W, Zhao J, Su B, Jiao Y, Weng W, Zhang M, Wang X, Guo C, Wu H, Zhang T, Gao Y, Li Z. Syphilitic infection impairs immunity by inducing both apoptosis and pyroptosis of CD4 + and CD8 + T lymphocytes. Innate Immun 2020; 27:99-106. [PMID: 32873094 PMCID: PMC7780356 DOI: 10.1177/1753425920952840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Syphilis is an important health problem worldwide; however, few studies have probed the impact of syphilitic infection on T cell turnover. The mechanisms behind the frequency of T cell subset changes and the associations between these subsets during syphilitic infection remain unclear. Herein, we used a cell-staining method and flow cytometry to explore changes in T cell subpopulations and potential contribution of apoptosis and pyroptosis that triggered therein. We investigated caspase-1-mediated pyroptosis and caspase-3-mediated apoptosis of CD4+ and CD8+ T cells, the major effector lymphocytes with pivotal roles in the pathogenesis of infectious diseases. We found that the levels of caspase-1 and caspase-3 increased in both the circulation and intracellularly in CD4+ and CD8+ T cells. Caspase-1 showed a continual increase from early latent stage infection through to phase 2 disease, whereas caspase-3 increased through to phase 1 disease but declined during phase 2. In addition, serum levels and intracellular expression of caspase-1 and caspase-3 were positively correlated. Overall, this study increases our understanding of how syphilitic infection influences CD4+ and CD8+ T-cell turnover, which may help with designing novel and effective strategies to control syphilis infection and prevent its transmission.
Collapse
Affiliation(s)
- Wei Xia
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Beijing Key Laboratory for HIV/AIDS Research, China
| | - Jinxue Zhao
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, The First Hospital of Fangshan District, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Beijing Key Laboratory for HIV/AIDS Research, China
| | - Yanmei Jiao
- Treatment and Research Center for Infectious Diseases, the Fifth Medical Center of the General Hospital of PLA, China *Wei Xia and Jinxue Zhao contributed equally to the article
| | - Wenjia Weng
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, China
| | - Ming Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, China
| | - Xiaodan Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, China
| | - Caiping Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Beijing Key Laboratory for HIV/AIDS Research, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Beijing Key Laboratory for HIV/AIDS Research, China
| | - Yanqing Gao
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China.,Department of Dermatology, Beijing Youan Hospital, Capital Medical University, China
| | - Zaicun Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, China
| |
Collapse
|
278
|
Kong Y, Feng W, Zhao X, Zhang P, Li S, Li Z, Lin Y, Liang B, Li C, Wang W, Huang H. Statins ameliorate cholesterol-induced inflammation and improve AQP2 expression by inhibiting NLRP3 activation in the kidney. Am J Cancer Res 2020; 10:10415-10433. [PMID: 32929357 PMCID: PMC7482822 DOI: 10.7150/thno.49603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Chronic kidney diseases (CKD) are usually associated with dyslipidemia. Statin therapy has been primarily recommended for the prevention of cardiovascular risk in patients with CKD; however, the effects of statins on kidney disease progression remain controversial. This study aims to investigate the effects of statin treatment on renal handling of water in patients and in animals on a high-fat diet. Methods: Retrospective cohort patient data were reviewed and the protein expression levels of aquaporin-2 (AQP2) and NLRP3 inflammasome adaptor ASC were examined in kidney biopsy specimens. The effects of statins on AQP2 and NLRP3 inflammasome components were examined in nlrp3-/- mice, 5/6 nephroectomized (5/6Nx) rats with a high-fat diet (HFD), and in vitro. Results: In the retrospective cohort study, serum cholesterol was negatively correlated to eGFR and AQP2 protein expression in the kidney biopsy specimens. Statins exhibited no effect on eGFR but abolished the negative correlation between cholesterol and AQP2 expression. Whilst nlrp3+/+ mice showed an increased urine output and a decreased expression of AQP2 protein after a HFD, which was moderately attenuated in nlrp3 deletion mice with HFD. In 5/6Nx rats on a HFD, atorvastatin markedly decreased the urine output and upregulated the protein expression of AQP2. Cholesterol stimulated the protein expression of NLRP3 inflammasome components ASC, caspase-1 and IL-1β, and decreased AQP2 protein abundance in vitro, which was markedly prevented by statins, likely through the enhancement of ASC speck degradation via autophagy. Conclusion: Serum cholesterol level has a negative correlation with AQP2 protein expression in the kidney biopsy specimens of patients. Statins can ameliorate cholesterol-induced inflammation by promoting the degradation of ASC speck, and improve the expression of aquaporin in the kidneys of animals on a HFD.
Collapse
|
279
|
Chadha S, Behl T, Bungau S, Kumar A, Arora R, Gupta A, Uddin MS, Zengin G, Aleya L, Setia D, Arora S. Mechanistic insights into the role of pyroptosis in rheumatoid arthritis. Curr Res Transl Med 2020; 68:151-158. [PMID: 32830085 DOI: 10.1016/j.retram.2020.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022]
Abstract
Cell death is ascribed as an essential biological process that is fundamental for the development of an organism along with its survival. The procedure comprises of apoptosis and pyroptosis. Pyroptosis is a programmed procedure for cell death which is inflammatory in nature and this pathway gets activated via human caspase-4, human caspase-11 and human caspase-5. The activation of this process leads to release of pro-inflammatory mediators including cytokines, alarmins, IL-18 and IL-1β. The pro-inflammatory mediators released via interaction of intracellular kinases direct the development of Rheumatoid arthritis. Rheumatoid arthritis is characterized as disorder/disease that is auto-immune and chronic in nature. It involves erosions in marginal bone along with articular cartilage which is responsible for joint destruction. The cytokine along with its complex network is responsible for inflammation. The process of pyroptosis is linked with the destruction of plasma membrane, that releases these mediators and excessive release of these mediators is linked with rheumatoid arthritis.
Collapse
Affiliation(s)
- Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Uniersity Campus, Konya, Turkey
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
280
|
Ahmed SG, Abdelnabi A, Maguire CA, Doha M, Sagers JE, Lewis RM, Muzikansky A, Giovannini M, Stemmer-Rachamimov A, Stankovic KM, Fulci G, Brenner GJ. Gene therapy with apoptosis-associated speck-like protein, a newly described schwannoma tumor suppressor, inhibits schwannoma growth in vivo. Neuro Oncol 2020; 21:854-866. [PMID: 30977509 DOI: 10.1093/neuonc/noz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We evaluated apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as a schwannoma tumor suppressor and explored its utilization in a schwannoma gene therapy strategy that may be translated to clinical use. METHODS ASC protein expression and mRNA level were assessed in human schwannoma by immunohistochemistry and quantitative PCR, respectively. Methylation- specific PCR was used to assess ASC promoter methylation. The effect of ASC overexpression in schwannoma cells was evaluated through ATP-based viability, lactate dehydrogenase release, and apoptosis staining. Western blotting and colorimetric assay were used to test the effect of ASC overexpression on endogenous pro-apoptotic pathways. Bioluminescence imaging, behavioral testing, and immunohistochemistry in human xenograft and murine allograft schwannoma models were used to examine the efficacy and toxicity of intratumoral injection of adeno-associated virus (AAV) vector encoding ASC. RESULTS ASC expression was suppressed via promoter methylation in over 80% of the human schwannomas tested. ASC overexpression in schwannoma cells results in cell death and is associated with activation of endogenous caspase-9, caspase-3, and upregulation of BH3 interacting-domain death agonist. In a human xenograft schwannoma model, AAV1-mediated ASC delivery reduced tumor growth and resolved tumor-associated pain without detectable toxicity, and tumor control was associated with reduced Ki67 mitotic index and increased tumor-cell apoptosis. Efficacy of this schwannoma gene therapy strategy was confirmed in a murine schwannoma model. CONCLUSION We have identified ASC as a putative schwannoma tumor suppressor with high potential clinical utility for schwannoma gene therapy and generated a vector that treats schwannomas via a novel mechanism that does not overlap with current treatments.
Collapse
Affiliation(s)
- Sherif G Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Ahmed Abdelnabi
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts
| | - Mohamed Doha
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| | - Jessica E Sagers
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
| | - Rebecca M Lewis
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California, Los Angeles, California
| | | | - Konstantina M Stankovic
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear and Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts.,Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
| | - Giulia Fulci
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts.,Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Gary J Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
281
|
Leite EL, Gautron A, Deplanche M, Nicolas A, Ossemond J, Nguyen MT, do Carmo FLR, Gilot D, Azevedo V, Goetz F, Le Loir Y, Otto M, Berkova N. Involvement of caspase-1 in inflammasomes activation and bacterial clearance in S. aureus-infected osteoblast-like MG-63 cells. Cell Microbiol 2020; 22:e13204. [PMID: 32176433 PMCID: PMC10988652 DOI: 10.1111/cmi.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus, a versatile Gram-positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase-1 that proteolytically matures and promotes the secretion of mature IL-1β and IL-18. The role of inflammasomes and caspase-1 in the secretion of mature IL-1β and in the defence of S. aureus-infected osteoblasts has not yet been fully investigated. We show here that S. aureus-infected osteoblast-like MG-63 but not caspase-1 knock-out CASP1 -/- MG-63 cells, which were generated using CRISPR-Cas9 technology, activate the inflammasome as monitored by the release of mature IL-1β. The effect was strain-dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes-related IL-1β production. Furthermore, we found that the lack of caspase-1 in CASP1 -/- MG-63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 -/- MG-63 compared to wild-type cells. Our results demonstrate that osteoblast-like MG-63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase-1 in bacterial clearance.
Collapse
Affiliation(s)
- Elma Lima Leite
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Arthur Gautron
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Martine Deplanche
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Aurelie Nicolas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Jordane Ossemond
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Minh Thu Nguyen
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen 63225, Germany
| | - Fillipe L. R. do Carmo
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - David Gilot
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Friedrich Goetz
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | - Yves Le Loir
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nadia Berkova
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| |
Collapse
|
282
|
Liu L, Xu X, Zhang N, Zhang Y, Zhao K. Acetylase inhibitor SI-2 is a potent anti-inflammatory agent by inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2020; 87:106829. [PMID: 32736194 DOI: 10.1016/j.intimp.2020.106829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
Abstract
Aberrant activation of Nod-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome is implicated in a variety of inflammatory diseases. Targeting NLRP3 inflammasome represents a promising therapy to cure such diseases. We and others recently demonstrated that acetylation of NLRP3 promotes the inflammasome activity and also suggested lysine acetyltransferases inhibitors could be a kind of promising agents for treating NLRP3 associated disorders. In this study, by searching for kinds of lysine acetyltransferases inhibitors, we showed that SI-2 hydrochloride (SI-2), a specific inhibitor of lysine acetyltransferase KAT13B (lysine acetyltransferases 13B), specifically blocks NLRP3 inflammasome activation both in mice in vivo and in human cells ex vivo. Intriguingly, SI-2 does not affect the acetylation of NLRP3. Instead, it disrupts the interaction between NLRP3 and adaptor apoptosis-associated speck-like protein containing CARD (ASC), then blocks the formation of ASC speck. Thus, our study identified a specific inhibitor for NLRP3 inflammasome and suggested SI-2 as a potential inhibitory agent for the therapy of NLRP3-driven diseases.
Collapse
Affiliation(s)
- Liping Liu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Xueming Xu
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Yening Zhang
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| | - Kai Zhao
- Department of Hematology and Key Laboratory of Non-resolving Inflammation and Cancer of Hunan Province, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| |
Collapse
|
283
|
von Herrmann KM, Anderson FL, Martinez EM, Young AL, Havrda MC. Slc6a3-dependent expression of a CAPS-associated Nlrp3 allele results in progressive behavioral abnormalities and neuroinflammation in aging mice. J Neuroinflammation 2020; 17:213. [PMID: 32680528 PMCID: PMC7368774 DOI: 10.1186/s12974-020-01866-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND An association between neuroinflammation and age-related neurologic disorders has been established but the molecular mechanisms and cell types involved have not been thoroughly characterized. Activity of the proinflammatory NLRP3 inflammasome is implicated in Alzheimer's and Parkinson's disease and our recent studies in patients suggest that dopaminergic neurons within the degenerating mesencephalon express NLRP3 throughout the progression of PD. Here, we directly test the impact of enhanced inflammasome activity in mesencephalic neurons by characterizing motor function, tissue integrity, and neuroinflammation in aging mice harboring hyperactivating mutations within the endogenous murine Nlrp3 locus, enabled only in cells expressing the dopaminergic neuron-specific Slc6a3 promoter. METHODS We compared mice harboring inducible alleles encoding the cryopyrin-associated periodic syndrome activating mutations Nlrp3A350V and Nlrp3L351P inserted into the endogenous mouse Nlrp3 locus. Tissue specific expression was driven by breeding these animals with mice expressing Cre recombinase under the control of the dopaminergic neuron-specific Slc6a3 promoter. The experimental mice, designed to express hyperactive NLRP3 only when the endogenous mouse Nlrp3 promotor is active in dopaminergic neurons, were analyzed throughout 18 months of aging using longitudinal motor function assessments. Biochemical and histologic analyses of mesencephalic tissues were conducted in 1- and 18-month-old animals. RESULTS We observed progressive and significant deficits in motor function in animals expressing Nlrp3L351P, compared with animals expressing Nlrp3WT and Nlrp3A350V. Age-dependent neuroinflammatory changes in the mesencephalon were noted in all animals. Analysis of GFAP-immunoreactive astrocytes in the substantia nigra revealed a significant increase in astrocyte number in animals expressing Nlrp3L351P compared with Nlrp3WT and Nlrp3A350V. Further analysis of Nlrp3L351P striatal tissues indicated genotype specific gliosis, elevated Il1b expression, and both morphologic and gene expression indicators of proinflammatory A1 astrocytes. CONCLUSIONS Dopaminergic neurons have the potential to accumulate NLRP3 inflammasome activators with age, including reactive oxygen species, dopamine metabolites, and misfolded proteins. Results indicate the Nlrp3 locus is active in dopaminergic neurons in aging mice, and that the hyperactive Nlrp3L351P allele can drive neuroinflammatory changes in association with progressive behavioral deficits. Findings suggest neuronal NLRP3 inflammasome activity may contribute to neuroinflammation observed during normal aging and the progression of neurologic disorders.
Collapse
Affiliation(s)
- Katharine M von Herrmann
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Eileen M Martinez
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Alison L Young
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA.
| |
Collapse
|
284
|
Faro J, Romero R, Schwenkel G, Garcia-Flores V, Arenas-Hernandez M, Leng Y, Xu Y, Miller D, Hassan SS, Gomez-Lopez N. Intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome†. Biol Reprod 2020; 100:1290-1305. [PMID: 30590393 DOI: 10.1093/biolre/ioy261] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 12/22/2018] [Indexed: 01/23/2023] Open
Abstract
Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1β were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.
Collapse
Affiliation(s)
- Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
285
|
The Effect of Lycium barbarum Polysaccharides on Pyroptosis-Associated Amyloid β 1-40 Oligomers-Induced Adult Retinal Pigment Epithelium 19 Cell Damage. Int J Mol Sci 2020; 21:ijms21134658. [PMID: 32629957 PMCID: PMC7369740 DOI: 10.3390/ijms21134658] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a sight-threatening disease with limited treatment options. We investigated whether amyloid β1-40 (Aβ1-40) could cause pyroptosis and evaluated the effects of Lycium barbarum polysaccharides (LBP) on Aβ1-40 oligomers-induced retinal pigment epithelium 19 (ARPE-19) damage, which is an in vitro AMD model. Aβ1-40 oligomers verified by Western blot were added to ARPE-19 cells with or without 24 h LBP treatment. Aβ1-40 oligomers significantly decreased ARPE-19 cell viability with obvious morphological changes under light microscopy. SEM revealed swollen cells with a bubbling appearance and ruptured cell membrane, which are morphological characteristics of pyroptosis. ELISA results showed increased expression of IL-1β and IL-18, which are the final products of pyroptosis. LBP administration for 24 h had no toxic effects on ARPE-19 cells and improved cell viability and morphology while disrupting Aβ1-40 oligomerization in a dose-dependent manner. Furthermore, Aβ1-40 oligomers up-regulated the cellular immunoreactivity of pyroptosis markers including NOD-like receptors protein 3 (NLRP3), caspase-1, and membrane N-terminal cleavage product of GSDMD (GSDMD-N), which could be reversed by LBP treatment. Taken together, this study showed that LBP effectively protects the Aβ1-40 oligomers-induced pyroptotic ARPE-19 cell damages by its anti-Aβ1-40 oligomerization properties and its anti-pyroptotic effects.
Collapse
|
286
|
Xu Z, Liu R, Huang L, Xu Y, Su M, Chen J, Geng L, Xu W, Gong S. CD147 Aggravated Inflammatory Bowel Disease by Triggering NF- κB-Mediated Pyroptosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5341247. [PMID: 32714980 PMCID: PMC7352133 DOI: 10.1155/2020/5341247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pyroptosis, a novel form of inflammatory programmed cell death, was recently found to be a cause of mucosal barrier defect. In our pervious study, CD147 expression was documented to increase in intestinal tissue of inflammatory bowel disease (IBD). OBJECTIVE The aim of this study was to determine the function of serum CD147 in pyroptosis. METHODS The study group consisted of 96 cases. The centration of CD147, IL-1β, and IL-18 levels in serum was assessed by ELISA. Real-time PCR and WB were performed to analyze the effect of CD147 on pyroptosis. RESULTS In this study, our results showed that CD147 induced cell pyroptosis in intestinal epithelial cells (IECs) by enhancement of IL-1β and IL-18 expression and secretion in IECs, which is attributed to activation of inflammasomes, including caspase-1 and GSDMD as well as GSDME, leading to aggregate inflammatory reaction. Mechanically, CD147 promoted phosphorylation of NF-κB p65 in IECs, while inhibition of NF-κB activity by the NF-κB inhibitor BAY11-7082 reversed the effect of CD147 on IL-1β and IL-18 secretion. Most importantly, serum CD147 level is slightly clinically correlated with IL-1β, but not IL-18 level. CONCLUSION These findings revealed a critical role of CD147 in the patients with IBD, suggesting that blockade of CD147 may be a novel therapeutic strategy for the patients with IBD.
Collapse
Affiliation(s)
- Zhaohui Xu
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruitao Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuxin Xu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Mingmin Su
- Department of Cancer Biology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales CF103AT, UK
| | - Jiayu Chen
- Department of Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
287
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
288
|
Li CJ, Fang QH, Liu ML, Lin JN. Current understanding of the role of Adipose-derived Extracellular Vesicles in Metabolic Homeostasis and Diseases: Communication from the distance between cells/tissues. Am J Cancer Res 2020; 10:7422-7435. [PMID: 32642003 PMCID: PMC7330853 DOI: 10.7150/thno.42167] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) including exosomes, microvesicles (MVs), and apoptotic bodies, are small membrane vesicular structures that are released during cell activation, senescence, or programmed cell death, including apoptosis, necroptosis, and pyroptosis. EVs serve as novel mediators for long-distance cell-to-cell communications and can transfer various bioactive molecules, such as encapsulated cytokines and genetic information from their parental cells to distant target cells. In the context of obesity, adipocyte-derived EVs are implicated in metabolic homeostasis serving as novel adipokines. In particular, EVs released from brown adipose tissue or adipose-derived stem cells may help control the remolding of white adipose tissue towards browning and maintaining metabolic homeostasis. Interestingly, EVs may even serve as mediators for the transmission of metabolic dysfunction across generations. Also, EVs have been recognized as novel modulators in various metabolic disorders, including insulin resistance, diabetes mellitus, and non-alcoholic fatty liver disease. In this review, we summarize the latest progress from basic and translational studies regarding the novel effects of EVs on metabolic diseases. We also discuss EV-mediated cross-talk between adipose tissue and other organs/tissues that are relevant to obesity and metabolic diseases, as well as the relevant mechanisms, providing insight into the development of new therapeutic strategies in obesity and metabolic diseases.
Collapse
|
289
|
Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol 2020; 109:121-141. [PMID: 32531842 DOI: 10.1002/jlb.3mr0420-305r] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Caspase-8 is an apical caspase involved in the programmed form of cell death called apoptosis that is critically important for mammalian development and immunity. Apoptosis was historically described as immunologically silent in contrast to other types of programmed cell death such as necroptosis or pyroptosis. Recent reports suggest considerable crosstalk between these different forms of cell death. It is becoming increasingly clear that caspase-8 has many non-apoptotic roles, participating in multiple processes including regulation of necroptosis (mediated by receptor-interacting serine/threonine kinases, RIPK1-RIPK3), inflammatory cytokine expression, inflammasome activation, and cleavage of IL-1β and gasdermin D, and protection against shock and microbial infection. In this review, we discuss the involvement of caspase-8 in cell death and inflammation and highlight its role in innate immune responses and in the relationship between different forms of cell death. Caspase-8 is one of the central components in this type of crosstalk.
Collapse
Affiliation(s)
- Pontus Orning
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Egil Lien
- UMass Medical School, Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, Worcester, Massachusetts, USA.,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
290
|
Guan L, Li C, Zhang Y, Gong J, Wang G, Tian P, Shen N. Puerarin ameliorates retinal ganglion cell damage induced by retinal ischemia/reperfusion through inhibiting the activation of TLR4/NLRP3 inflammasome. Life Sci 2020; 256:117935. [PMID: 32526286 DOI: 10.1016/j.lfs.2020.117935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
AIMS Retinal ischemia/reperfusion (I/R) injury is common in the development of ophthalmic diseases and potentially causes blindness. In present study, the aim is to investigate the possible protective effects of puerarin on retinal I/R. MAIN METHODS Retinal I/R injury was conducted on the left eyes of male Sprague Dawley rats, which were subsequently received treatment with puerarin. After administration, retinal I/R-induced apoptosis, oxidative stress and inflammatory responses were detected. Meanwhile, we purified retinal ganglion cells (RGCs) from 7-day-old rats. After subjected RGCs to oxygen and glucose deprivation/reoxygenation (OGD/R), apoptosis and TLR4/NLRP3 inflammasome activation in RGCs were detected. KEY FINDINGS Puerarin prominently suppressed apoptosis, alleviated oxidative stress and suppressed TLR4/NLRP3 inflammasome activation in rats with retinal I/R injury. Consistent with our in vivo study, we found puerarin ameliorated retinal I/R injury through suppressing apoptosis and TLR4/NLRP3 inflammasome activation in RGCs. SIGNIFICANCE Our findings reveal that puerarin plays a protective role against retinal I/R injury by alleviating RGC damage, and is beneficial for the treatment of I/R injury-caused ophthalmic diseases.
Collapse
Affiliation(s)
- Linan Guan
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Chao Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Jianying Gong
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, People's Republic of China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, People's Republic of China
| | - Pei Tian
- Department of Ophthalmology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Ning Shen
- Library Special Collection Room, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China.
| |
Collapse
|
291
|
Zhong X, Xie L, Yang X, Liang F, Yang Y, Tong J, Zhong Y, Zhao K, Tang Y, Yuan C. Ethyl pyruvate protects against sepsis-associated encephalopathy through inhibiting the NLRP3 inflammasome. Mol Med 2020; 26:55. [PMID: 32517686 PMCID: PMC7285451 DOI: 10.1186/s10020-020-00181-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/18/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND With the advance of antibiotics and life support therapy, the mortality of sepsis has been decreasing in recent years. However, the incidence of sepsis-associated encephalopathy (SAE), a common complication of sepsis, is still high. There are few effective therapies to treat clinical SAE. We previously found that ethyl pyruvate (EP), a metabolite derivative, is able to effectively inhibit the NLRP3 inflammasome activation. Administration of ethyl pyruvate protects mice against polymicrobial sepsis in cecal ligation and puncture (CLP) model. The aim of present study is to investigate if ethyl pyruvate is able to attenuate SAE. METHODS After CLP, C57BL/6 mice were intraperitoneally or intrathecally injected with saline or ethyl pyruvate using the sham-operated mice as control. New Object Recognition (NOR) and Morris Water Maze (MWM) were conducted to determine the cognitive function. Brain pathology was assessed via immunohistochemistry. To investigate the mechanisms by which ethyl pyruvate prevent SAE, the activation of NLRP3 in the hippocampus and the microglia were determined using western blotting, and cognitive function, microglia activation, and neurogenesis were assessed using WT, Nlrp3-/- and Asc-/- mice in the sublethal CLP model. In addition, Nlrp3-/- and Asc-/- mice treated with saline or ethyl pyruvate were subjected to CLP. RESULTS Ethyl pyruvate treatment significantly attenuated CLP-induced cognitive decline, microglia activation, and impaired neurogenesis. In addition, EP significantly decreased the NLRP3 level in the hippocampus of the CLP mice, and inhibited the cleavage of IL-1β induced by NLRP3 inflammsome in microglia. NLRP3 and ASC deficiency demonstrated similar protective effects against SAE. Nlrp3-/- and Asc-/- mice significantly improved cognitive function and brain pathology when compared with WT mice in the CLP models. Moreover, ethyl pyruvate did not have additional effects against SAE in Nlrp3-/- and Asc-/- mice. CONCLUSION The results demonstrated that ethyl pyruvate confers protection against SAE through inhibiting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoli Zhong
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Lingli Xie
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Xiaolong Yang
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yanliang Yang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanjun Zhong
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China
- ICU Center, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong, Changsha, 410011, Hunan, China
| | - Kai Zhao
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China
| | - Yiting Tang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China.
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410000, P. R. China.
| | - Chuang Yuan
- Department of Hematology and Critical Care Medicine, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, 410000, P. R. China.
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 138 Tong-zi-po Road, Changsha, Hunan Province, 410000, P. R. China.
| |
Collapse
|
292
|
Yang G, Lee HE, Moon SJ, Ko KM, Koh JH, Seok JK, Min JK, Heo TH, Kang HC, Cho YY, Lee HS, Fitzgerald KA, Lee JY. Direct Binding to NLRP3 Pyrin Domain as a Novel Strategy to Prevent NLRP3-Driven Inflammation and Gouty Arthritis. Arthritis Rheumatol 2020; 72:1192-1202. [PMID: 32134203 DOI: 10.1002/art.41245] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The NLRP3 inflammasome is closely linked to the pathophysiology of a wide range of inflammatory diseases. This study was undertaken to identify small molecules that directly bind to NLRP3 in order to develop pharmacologic interventions for NLRP3-related diseases. METHODS A structure-based virtual screening analysis was performed with ~62,800 compounds to select efficient NLRP3 inhibitors. The production of caspase 1-p10 and interleukin-1β (IL-1β) was measured by immunoblotting and enzyme-linked immunosorbent assay to examine NLRP3 inflammasome activation. Two gouty arthritis models and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystal injection were used for in vivo experiments. Primary synovial fluid cells from gout patients were used to determine the relevance of NLRP3 inflammasome inhibition in human gout. RESULTS Beta-carotene (provitamin A) suppressed the NLRP3 inflammasome activation induced by various activators, including MSU crystals, in mouse bone marrow-derived primary macrophages (P < 0.05). Surface plasmon resonance analysis demonstrated the direct binding of β-carotene to the pyrin domain (PYD) of NLRP3 (KD = 3.41 × 10-6 ). Molecular modeling and mutation assays revealed the interaction mode between β-carotene and the NLRP3 PYD. Inflammatory symptoms induced by MSU crystals were attenuated by oral administration of β-carotene in gouty arthritis mouse models (P < 0.05), correlating with its suppressive effects on the NLRP3 inflammasome in inflamed tissues. Furthermore, β-carotene reduced IL-1β secretion from human synovial fluid cells isolated from gout patients (P < 0.05), showing its inhibitory efficacy in human gout. CONCLUSION Our results present β-carotene as a selective and direct inhibitor of NLRP3, and the binding of β-carotene to NLRP3 PYD as a novel pharmacologic strategy to combat NLRP3 inflammasome-driven diseases, including gouty arthritis.
Collapse
Affiliation(s)
- Gabsik Yang
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye E Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Su-Jin Moon
- St. Mary's Hospital, Uijeongbu, Republic of Korea, and The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung M Ko
- St. Mary's Hospital, Bucheon, Republic of Korea, and The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung H Koh
- St. Mary's Hospital, Bucheon, Republic of Korea, and The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin K Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jun-Ki Min
- St. Mary's Hospital, Bucheon, Republic of Korea, and The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Hwe Heo
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han C Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye S Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Joo Y Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
293
|
Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 2020; 11:2270. [PMID: 32385301 PMCID: PMC7210277 DOI: 10.1038/s41467-020-16143-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages. A type VII secretion system (ESX-1) mediated, contact-induced plasma membrane damage response occurs during phagocytosis of bacteria. Alternatively, this can occur from the cytosolic side of the plasma membrane after phagosomal rupture in infected macrophages. This damage causes K+ efflux and activation of NLRP3-dependent IL-1β release and pyroptosis, facilitating the spread of bacteria to neighbouring cells. A dynamic interplay of pyroptosis with ESCRT-mediated plasma membrane repair also occurs. This dual plasma membrane damage seems to be a common mechanism for NLRP3 activators that function through lysosomal damage. Inflammasome activation is a response to bacterial infection but can cause damage and spread infection. Here, the authors use live single-cell imaging to show two mechanisms by which M. tuberculosis causes damage to human macrophage cell plasma membranes, resulting in activation of the NLRP3 inflammasome, pyroptosis and release of infectious particles.
Collapse
|
294
|
Lin HH, Chen HL, Janapatla RP, Chen CL, Chiu CH. Hyperexpression of type III secretion system of Salmonella Typhi linked to a higher cytotoxic effect to monocyte-derived macrophages by activating inflammasome. Microb Pathog 2020; 146:104222. [PMID: 32387390 DOI: 10.1016/j.micpath.2020.104222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Inflammasome activation is an important host response to infectious diseases, but the difference in inflammasome activation between typhoid fever and non-typhoidal Salmonella infection has been rarely studied. To determine whether inflammasome activation in macrophages after S. Typhi and S. Typhimurium infection is different, we measured pyroptosis, caspase-1 activation, and IL-1β secretion in monocyte-derived macrophages infected with S. Typhi or S. Typhimurium both in vitro and ex vivo. The role of Vi capsule and virulence genes in Salmonella pathogenicity island-1 (SPI-1), belonging to type III secretion system, was also examined. S. Typhi caused more pyroptosis, caspase-1 activation, and IL-1β production than S. Typhimurium did, predominantly within 2 h of infection, in the context of high number of infecting bacteria. Mutagenesis and complementation experiments confirmed that SPI-1 effectors but not Vi were associated with greater inflammasome activation. The expression levels of invA and hilA were significantly higher in S. Typhi than in S. Typhimurium at early log phase in SPI-1 environment. Thus, S. Typhi, relative to its non-typhoidal counterpart, S. Typhimurium, induces greater SPI-1-dependent inflammasome activation in monocyte-derived macrophages. This finding may explain why S. Typhi causes a hyperinflammatory state at bacteremic stage in typhoid fever.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
295
|
Wang W, Tan J, Wang Z, Zhang Y, Liu Q, Yang D. Characterization of the inflammasome component SmASC in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2020; 100:324-333. [PMID: 32198069 DOI: 10.1016/j.fsi.2020.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/29/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Apoptosis-associated speck-like protein containing a C-terminal caspase recruit domain (ASC) is an important adapter protein in the inflammasome complex that mediates inflammatory caspase activation and host innate immunity in mammals. However, the function of inflammasome components in lower vertebrate remains poorly understood. In this study, full length of SmASC was cloned from turbot (Scophthalmus maximus). Through bioinformatic analysis, we found that SmASC shares relatively high identity with ASC in bony fish. Furthermore, we found that the intact SmASC can form an oligomeric speck-like structure, while the PYD segment of SmASC can form the filamentous structure. Moreover, expression of SmASC was induced after intraperitoneal injection of Edwardsiella piscicida (E. piscicida) in vivo. To further explore the role of SmASC during infection, we constructed SmASC knockdown and overexpression models by administration of siRNA and overexpression plasmids in vivo, respectively. Expression of SmASC decreased the propagation of E. piscicida in different immune organs. In summary, our results characterize the function of SmASC in S. maximus, suggesting that the SmASC plays a critical role in turbot immune responses.
Collapse
Affiliation(s)
- Wenhui Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
296
|
Wang H, Zhang S, Zhao H, Qin H, Zhang J, Dong J, Zhang H, Liu X, Zhao Z, Zhao Y, Shao M, Wu F, Zhang W. Carbon Monoxide Inhibits the Expression of Proteins Associated with Intestinal Mucosal Pyroptosis in a Rat Model of Sepsis Induced by Cecal Ligation and Puncture. Med Sci Monit 2020; 26:e920668. [PMID: 32351244 PMCID: PMC7207005 DOI: 10.12659/msm.920668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Carbon monoxide (CO) has anti-inflammatory effects and protects the intestinal mucosal barrier in sepsis. Pyroptosis, or cell death associated with sepsis, is mediated by caspase-1 activation. This study aimed to investigate the role of CO on the expression of proteins associated with intestinal mucosal pyroptosis in a rat model of sepsis induced by cecal ligation and puncture (CLP). MATERIAL AND METHODS The rat model of sepsis was developed using CLP. Male Sprague-Dawley rats (n=120) were divided into six study groups: the sham group (n=20); the CLP group (n=20); the hemin group (treated with ferric chloride and heme) (n=20); the zinc protoporphyrin IX (ZnPPIX) group (n=20); the CO-releasing molecule 2 (CORM-2) group (n=20); and the inactive CORM-2 (iCORM-2) group (n=20). Hemin and CORM-2 were CO donors, and ZnPPIX was a CO inhibitor. In the six groups, the seven-day survival curves, the fluorescein isothiocyanate (FITC)-labeled dextran 4000 Da (FD-4) permeability assay, levels of intestinal pyroptosis proteins caspase-1, caspase-11, and gasdermin D (GSDMD) were measured by confocal fluorescence microscopy. Proinflammatory cytokines interleukin (IL)-18, IL-1ß, and high mobility group box protein 1 (HMGB1) were measured by Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS CO reduced the mortality rate in rats with sepsis and reduced intestinal mucosal permeability and mucosal damage. CO also reduced the expression levels of IL-18, IL-1ß, and HMGB1, and reduced pyroptosis by preventing the cleavage of caspase-1 and caspase-11. CONCLUSIONS In a rat model of sepsis induced by CLP, CO had a protective role by inhibiting intestinal mucosal pyroptosis.
Collapse
Affiliation(s)
- Hongzhou Wang
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Shunwen Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Haijun Zhao
- The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Huiyuan Qin
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jie Zhang
- The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Jiangtao Dong
- The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hui Zhang
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Xiaoling Liu
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Zhengyong Zhao
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Yanheng Zhao
- The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Meng Shao
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| | - Wanjiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine and The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi, Xinjiang, P.R. China
| |
Collapse
|
297
|
VX765 Attenuates Pyroptosis and HMGB1/TLR4/NF- κB Pathways to Improve Functional Outcomes in TBI Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7879629. [PMID: 32377306 PMCID: PMC7181015 DOI: 10.1155/2020/7879629] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
Abstract
Background Traumatic brain injury (TBI) refers to temporary or permanent damage to brain function caused by penetrating objects or blunt force trauma. TBI activates inflammasome-mediated pathways and other cell death pathways to remove inactive and damaged cells, however, they are also harmful to the central nervous system. The newly discovered cell death pattern termed pyroptosis has become an area of interest. It mainly relies on caspase-1-mediated pathways, leading to cell death. Methods Our research focus is VX765, a known caspase-1 inhibitor which may offer neuroprotection after the process of TBI. We established a controlled cortical impact (CCI) mouse model and then controlled the degree of pyroptosis in TBI with VX765. The effects of caspase-1 inhibition on inflammatory response, pyroptosis, blood-brain barrier (BBB), apoptosis, and microglia activation, in addition to neurological deficits, were investigated. Results We found that TBI led to NOD-like receptors (NLRs) as well as absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the damaged cerebral cortex. VX765 curbed the expressions of indispensable inflammatory subunits (caspase-1 as well as key downstream proinflammatory cytokines such as interleukin- (IL-) 1β and IL-18). It also inhibited gasdermin D (GSDMD) cleavage and apoptosis-associated spot-like protein (ASC) oligomerization in the injured cortex. In addition to the above, VX765 also inhibited the inflammatory activity of the high-mobility cassette -1/Toll-like receptor 4/nuclear factor-kappa B (HMGB1/TLR4/NF-kappa B) pathway. By inhibiting pyroptosis and inflammatory mediator expression, we demonstrated that VX765 can decrease blood-brain barrier (BBB) leakage, apoptosis, and microglia polarization to exhibit its neuroprotective effects. Conclusion In conclusion, VX765 can counteract neurological damage after TBI by reducing pyroptosis and HMGB1/TLR4/NF-κB pathway activities. VX765 may have a good therapeutic effect on TBI.
Collapse
|
298
|
Jiang J, Sun X, Akther M, Lian ML, Quan LH, Koppula S, Han JH, Kopalli SR, Kang TB, Lee KH. Ginsenoside metabolite 20(S)-protopanaxatriol from Panax ginseng attenuates inflammation-mediated NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112564. [PMID: 31926987 DOI: 10.1016/j.jep.2020.112564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer (Araliaceae), has been used in traditional medicine for preventive and therapeutic purposes in Asian countries. One of the active ginsenoside metabolites, 20(S)-Protopanaxatriol (PPT), has been associated with diverse pharmacological effects, including anti-inflammatory properties. AIM OF THE STUDY Although the capacity of PPT as an anti-inflammatory agent has been studied, this study aimed to explore the intrinsic mechanism of PPT in regulating inflammasome activation-mediated inflammatory responses in experimental models. MATERIALS AND METHODS Lipopolysaccharide (LPS)-primed peritoneal macrophages in vitro was used to study the role of PPT on inflammasome activation. LPS-induced septic shock and monosodium urate (MSU)-induced murine peritonitis models were employed for in vivo evaluations. RESULTS PPT attenuated NLRP3 inflammasome activation and also reduced ASC oligomerization, leading to attenuation of interleukin (IL)-1β secretion. Further, PPT inhibited IL-1β secretion in both LPS-induced septic shock and MSU-induced mouse peritonitis models. CONCLUSIONS This study revealed that ginsenoside metabolite PPT, inhibits inflammation-mediated inflammasome activation and supported the traditional use of ginseng in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Jun Jiang
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Ginseng Research Center of Changbai Mountain, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Xiao Sun
- Department of Applied Life Science, Graduate School, BK21 Plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, South Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, South Korea
| | - Mei-Lan Lian
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Ginseng Research Center of Changbai Mountain, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Resource of Changbai Mountain and Functional Molecules (Ministry of Education), Ginseng Research Center of Changbai Mountain, College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, South Korea
| | - Jun-Hyuk Han
- Department of Applied Life Science, Graduate School, BK21 Plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, South Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, South Korea.
| | - Kwang-Ho Lee
- Department of Applied Life Science, Graduate School, BK21 Plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, South Korea; Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, South Korea.
| |
Collapse
|
299
|
Cao R, Ma Y, Li S, Shen D, Yang S, Wang X, Cao Y, Wang Z, Wei Y, Li S, Liu G, Zhang H, Wang Y, Ma Y. 1,25(OH) 2 D 3 alleviates DSS-induced ulcerative colitis via inhibiting NLRP3 inflammasome activation. J Leukoc Biol 2020; 108:283-295. [PMID: 32237257 DOI: 10.1002/jlb.3ma0320-406rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2 D3, VitD3) is the major active ingredient of vitamin D and has anti-inflammatory activity; however, the mechanism for this remains poorly understood. In this study, we found that VitD3 was able to abolish NOD-like receptor protein 3 (NLRP3) inflammasome activation and subsequently inhibit caspase-1 activation and IL-1β secretion via the vitamin D receptor (VDR). Furthermore, VitD3 specifically prevented NLRP3-mediated apoptosis-associated speck-like protein with a caspase-recruitment domain (ASC) oligomerization. In additional to this, NLRP3 binding to NIMA-related kinase 7 (NEK7) was also inhibited. Notably, VitD3 inhibited autophagy, leading to the inhibition of the NLRP3 inflammasome. Uncoupling protein 2-reactive oxygen species signaling may be involved in inflammasome suppression by VitD3. Importantly, VitD3 had both preventive and therapeutic effects on mouse model of ulcerative colitis, via inhibition of NLRP3 inflammasome activation. Our results reveal a mechanism through which VitD3 represses inflammation and prevents the relevant diseases, and suggest a potential clinical use of VitD3 in autoimmune syndromes or other NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Run Cao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuting Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shaowei Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Donghai Shen
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shuang Yang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xuance Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yue Cao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| |
Collapse
|
300
|
Davidson SM, Adameová A, Barile L, Cabrera-Fuentes HA, Lazou A, Pagliaro P, Stensløkken KO, Garcia-Dorado D. Mitochondrial and mitochondrial-independent pathways of myocardial cell death during ischaemia and reperfusion injury. J Cell Mol Med 2020; 24:3795-3806. [PMID: 32155321 PMCID: PMC7171390 DOI: 10.1111/jcmm.15127] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial infarction causes lethal injury to cardiomyocytes during both ischaemia and reperfusion (IR). It is important to define the precise mechanisms by which they die in order to develop strategies to protect the heart from IR injury. Necrosis is known to play a major role in myocardial IR injury. There is also evidence for significant myocardial death by other pathways such as apoptosis, although this has been challenged. Mitochondria play a central role in both of these pathways of cell death, as either a causal mechanism is the case of mitochondrial permeability transition leading to necrosis, or as part of the signalling pathway in mitochondrial cytochrome c release and apoptosis. Autophagy may impact this process by removing dysfunctional proteins or even entire mitochondria through a process called mitophagy. More recently, roles for other programmed mechanisms of cell death such as necroptosis and pyroptosis have been described, and inhibitors of these pathways have been shown to be cardioprotective. In this review, we discuss both mitochondrial and mitochondrial‐independent pathways of the major modes of cell death, their role in IR injury and their potential to be targeted as part of a cardioprotective strategy. This article is part of a special Issue entitled ‘Mitochondria as targets of acute cardioprotection’ and emerged as part of the discussions of the European Union (EU)‐CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Adriana Adameová
- Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia.,Centre of Experimental Medicine SAS, Bratislava, Slovakia
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation and Faculty of Biomedical Sciences, Università Svizzera Italiana, Lugano, Switzerland
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Nuevo Leon, México.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Institute of Physiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pasquale Pagliaro
- Department of Biological and Clinical Sciences, University of Turin, Torino, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| | - Kåre-Olav Stensløkken
- Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David Garcia-Dorado
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Barcelona, Spain.,Universitat Autónoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|