251
|
Wang X, Liang HD, Dong B, Lu QL, Blomley MJK. Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice: comparison between commercially available microbubble contrast agents. Radiology 2005; 237:224-9. [PMID: 16081853 DOI: 10.1148/radiol.2371040805] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare three commercial microbubble contrast agents (Optison, SonoVue, and Levovist) for their effect on gene delivery in skeletal muscle in conjunction with the use of therapeutic ultrasound. MATERIALS AND METHODS The study was approved by the Animal Care and Use Committee. Plasmid DNA (10 microg) encoding green fluorescent protein (GFP) was mixed with microbubbles (or saline control) and injected into the tibialis anterior muscle of mice with and without adjunct ultrasound (1 MHz, 2 W/cm2, 30 seconds, 20% duty cycle). The efficiencies of GFP transgene expression were determined with four experimental conditions: (a) plasmid and saline as control (six mice), (b) plasmid and Optison (six mice), (c) plasmid and SonoVue (four mice), and (d) plasmid and Levovist (air based, four mice). The right legs were exposed to ultrasound, while the left legs were unexposed. Transfection efficiency was assessed by counting the number of GFP-positive fibers. Tissue damage was assessed by measuring the maximal-damage area on serial sections. RESULTS When ultrasound was applied, both SonoVue and Optison significantly improved (P < .05) gene transfection efficiency. Optison was also effective (P < .05) even when no ultrasound was applied, which is consistent with previous studies. Levovist without ultrasound decreased the level of transfection (P < .05), with increased tissue damage. CONCLUSION Both non-air-based agents show promise in gene delivery in skeletal muscle with undetectable tissue damage. Enhanced gene transfer with additional ultrasound was achieved only with SonoVue.
Collapse
Affiliation(s)
- Xinghua Wang
- Imaging Sciences Department, Hammersmith Hospital, Imperial College London, Du Cane Rd, London W12 0NN, England
| | | | | | | | | |
Collapse
|
252
|
Hauff P, Seemann S, Reszka R, Schultze-Mosgau M, Reinhardt M, Buzasi T, Plath T, Rosewicz S, Schirner M. Evaluation of Gas-filled Microparticles and Sonoporation as Gene Delivery System: Feasibility Study in Rodent Tumor Models. Radiology 2005; 236:572-8. [PMID: 16040915 DOI: 10.1148/radiol.2362040870] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE To evaluate the feasibility of gene delivery mediated with diagnostic ultrasound and plasmid DNA (pDNA) encapsulated in gas-filled microparticles (GFMP) in rodent tumor models. MATERIALS AND METHODS This study was performed according to a protocol approved by the regional animal research committee. The model plasmid UT651 (pUT651) that contained the Escherichia coli LacZ gene for beta-galactosidase was used to demonstrate the feasibility of ultrasound-mediated gene delivery in CC531 liver tumors in rats. In preliminary experiments, a single injection of pUT651-containing GFMP was administered intraarterially (n=4) or intravenously (n=6) with simultaneous sonication (color Doppler mode, maximum mechanical index) of the GFMP passing through the capillaries of the tumors. All animals were sacrificed 2-5 days later, and liver tumors were examined for beta-galactosidase expression histochemically. Subsequently, potential medical usefulness of this delivery system was tested in nude mice bearing Capan-1 tumors (adenocarcinoma of the human pancreas) by using the plasmid RC/CMV-p16 (pRC/CMV-p16), which contains tumor suppressor gene p16. The tumor suppressor gene p16 is deleted in Capan-1 cells. Twenty-five tumor-bearing mice were classified into five groups (four to six mice per group, one treatment group, four control groups) at random. All mice were treated once weekly for 5 weeks with intravenous infusion of p16-containing GFMP or control substances with simultaneous tumor sonication with color Doppler mode ultrasound and maximum mechanical index or without ultrasound treatment. The therapeutic effect of p16 was measured as an increase in tumor volume doubling time. Data were analyzed with analysis of variance. Results were considered significant at the 5% critical level (P < .05). RESULTS A clear expression of pDNA was found in tumors in rats treated with a combination of pUT651-containing GFMP and ultrasound; relevant controls showed a significantly lower expression of marker gene. The controlled ultrasound-triggered release of pRC/CMV-p16 from GFMP leads to a strong tumor growth inhibition, which is significant (P < .002), compared with that in controls. CONCLUSION A combination of GFMP and ultrasound provides an effective approach for nonviral gene therapy-based cancer treatment.
Collapse
Affiliation(s)
- Peter Hauff
- Schering, Corporate Research Business Area Diagnostics and Radiopharmaceuticals, Ultrasound & New Modalities Research, Müllerstrasse 178, D-13342 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Ultrasound-induced cell detachment and gene transfection in adherent cells. ACTA ACUST UNITED AC 2005. [DOI: 10.1121/1.1909243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
254
|
Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, Crum LA. Ultrasound Enhances Gene Delivery of Human Factor IX Plasmid. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
255
|
Larkin J, Soden D, Collins C, Tangney M, Preston JM, Russell LJ, McHale AP, Dunne C, O'Sullivan GC. Combined electric field and ultrasound therapy as a novel anti-tumour treatment. Eur J Cancer 2005; 41:1339-48. [PMID: 15913991 DOI: 10.1016/j.ejca.2005.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/06/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
The permeabilising effects of electric pulses on cell membranes and the use of ultrasound energy of various intensities, for both thermal effects and enhancement of drug and gene delivery, have led to extensive research into the potential applications of these systems in the development of novel anti-cancer treatments. In the present study we have demonstrated for the first time that the application of brief electric pulses 'sensitises' tumour cells to the effects of low intensity ultrasound. The studies were conducted in human tumours established in athymic nude mice and in many instances resulted in the reduction of tumour mass. The combined electric field and ultrasound approach (CEFUS) was applied in vivo to a murine colon adenocarcinoma (C26) and a human oesophageal adenocarcinoma (OE19). The experiments performed demonstrated the anti-tumour effects of the combined therapy. Varying the electrosensitisation parameters used (voltage, waveform, electrode type) contributed to optimise the procedure. Exponential electric pulses with a peak of 1000 V/cm were initially used, but square wave pulses (1000 V/cm, 1 ms, x2, 1 Hz) were found to be just as effective. All ultrasound application parameters were kept constant during the study. The growth rate of C26 tumours treated with CEFUS was significantly reduced with respect to untreated controls at day 7 (96% of average initial tumour volume in CEFUS group versus 615% for controls, P < 0.05). Similar reduction was observed in OE19 tumours treated with CEFUS by day 4 (82% versus 232%, P < 0.032). Our preliminary data suggest that this novel technology could potentially be of wide application in clinical practice for the treatment of solid tumours and is worth further investigation.
Collapse
Affiliation(s)
- J Larkin
- Cork Cancer Research Centre, Leslie C. Quick Jnr. Cancer Laboratory, Biosciences Institute and Mercy University Hospital, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Koike H, Tomita N, Azuma H, Taniyama Y, Yamasaki K, Kunugiza Y, Tachibana K, Ogihara T, Morishita R. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. J Gene Med 2005; 7:108-16. [PMID: 15515148 DOI: 10.1002/jgm.632] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Safety issues are of paramount importance in clinical human gene therapy. From this point of view, it would be better to develop a novel non-viral efficient gene transfer method. Recently, it was reported that ultrasound exposure could induce cell membrane permeabilization and enhance gene expression. METHODS In this study, we examined the potential of ultrasound for gene transfer into the kidney. First, we transfected rat left kidney with luciferase plasmid mixed with microbubbles, Optison, to optimize the conditions (duration of ultrasound and concentration of Optison). Then, 4, 7, 14 and 21 days after gene transfer, luciferase activity was measured. Next, localization of gene expression was assessed by measuring luciferase activity and green fluorescent protein (GFP) expression. Expression of GFP plasmid was examined under a fluorescence microscope at 4 and 14 days after gene transfer. Finally, to examine the side effects of this gene transfer method, biochemical assays for aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine (Cre) were performed. RESULTS Optison and/or ultrasound significantly enhanced the efficiency of gene transfer and expression in the kidney. Especially, 70-80% of total glomeruli could be transfected. Also, a significant dose-dependent effect of Optison was observed as assessed by luciferase assay (Optison 25%: 12.5 x 10(5) relative light units (RLU)/g tissue; 50%: 31.3 x 10(5) RLU/g tissue; 100%: 57.9 x 10(5) RLU/g tissue). GFP expression could be observed in glomeruli, tubules and interstitial area. Results of blood tests did not change significantly after gene transfer. CONCLUSIONS Overall, an ultrasound-mediated gene transfer method with Optison enhanced the efficiency of gene transfer and expression in the rat kidney. This novel non-viral method may be useful for gene therapy for renal disease.
Collapse
Affiliation(s)
- Hiromi Koike
- Division of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005; 12:884-9. [PMID: 15891773 DOI: 10.1038/sj.cgt.7700850] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined whether sonoporation enhanced by a contrast agent (BR14) was effective in gene therapy for hepatocelluar carcinoma (HCC). Human hepatic cancer cells (SK-Hep1) and plasmid cDNAs expressing green fluorescent protein (GFP), interferonbeta (IFNbeta), and LacZ were used. In vitro, SK-Hep1 cell suspensions with DNA and BR14 were sonoporated. Expressions of every plasmid cDNA and the antitumor effect of IFNbeta were analyzed. In vivo, GFP and IFNbeta genes with BR14 were directly injected into subcutaneous tumors using SK-Hep1 in nude mice, and transcutaneous sonoporation of the tumors was performed. GFP gene transfections and tumor diameters after IFNbeta gene transfection were examined. In vitro, no SK-Hep1 cells were transfected without sonication, whereas transfections were successful after sonication with BR14. Antitumor effect of IFNbeta gene transfection by ultrasound (US) and with BR14 was revealed. In vivo, the SK-Hep1 cells expressed GFP, and the IFNbeta gene transfection by US with BR14 reduced tumor size significantly. In conclusion, gene therapy with sonoporation enhanced by a contrast agent may become a new treatment option for HCC.
Collapse
Affiliation(s)
- Yoshikazu Sakakima
- Department of Surgery II, Nagoya University School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
258
|
Manome Y, Nakayama N, Nakayama K, Furuhata H. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:693-702. [PMID: 15866419 DOI: 10.1016/j.ultrasmedbio.2005.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/19/2005] [Accepted: 01/27/2005] [Indexed: 05/02/2023]
Abstract
Many of the diseases which affect the central nervous system are intractable to conventional therapies and therefore require alternative treatments such as gene therapy. Therapy requires safety, since the central nervous system is a critical organ. Choice of nonviral vectors such as naked plasmid DNA may have merit. However, transfection efficiencies of these vectors are low. We have investigated the use of 210.4 kHz ultrasound and found that 5.0 W/cm(2) of insonation for 5 s most effectively transfected a plasmid DNA into culture slices of mouse brain (147.68-fold increase compared with 0 W/cm(2) of insonation for 5 s). The effect was reinforced by combination with echo contrast agent, Levovist. One hundred fifty mg/mL of Levovist significantly increased gene transfection by ultrasound (5.23-fold when insonated at 5.0 W/cm(2) for 5 s). When DNA was intracranially injected, Levovist also enhanced gene transfection in newborn mice (4.49-fold increase when insonated at 5.0 W/cm(2) for 5 s). Since ultrasound successfully transfected naked plasmid DNA into the neural tissue and Levovist enhanced the effect, this approach may have a significant role in gene transfer to the central nervous system.
Collapse
Affiliation(s)
- Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Science, Jikei University School of medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, Japan 105-8461.
| | | | | | | |
Collapse
|
259
|
Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 2005; 104:213-22. [PMID: 15866347 DOI: 10.1016/j.jconrel.2005.01.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/18/2005] [Accepted: 01/20/2005] [Indexed: 11/25/2022]
Abstract
Sonoporation, in the presence of ultrasound contrast agents (UCA), is a technique that permits the transfer of drugs, including genes, into cells. In this study, the size of the pores created by ultrasound application, and the duration of pore opening, have been characterized via indirect molecular probing and microscopic observation. Internalization of molecules with diameters up to 37 nm was efficient and generally well-tolerated; on the other hand, confocal microscopy revealed that 75 nm particles entered only a few cells when sonoporation was applied. In general, the larger the species to internalize, the poorer the transfer. Direct visualization of pores following insonification, using scanning electron microscopy, was hampered by the presence of numerous villi on the surface of the cells employed (MAT B III), and by the short duration of pore opening. Clearer observations of porated regions were possible using red blood cells. This research (i) confirms that sonoporation is a means with which to achieve macromolecule delivery into cells, and (ii) characterizes in some detail the phenomenon of ultrasound induction of transient pores in the cell membrane.
Collapse
Affiliation(s)
- Sophie Mehier-Humbert
- University of Geneva, School of Pharmacy and Biopharmacy, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
260
|
Zhigang W, Zhiyu L, Haitao R, Hong R, Qunxia Z, Ailong H, Qi L, Chunjing Z, Hailin T, Lin G, Mingli P, Shiyu P. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 2005; 28:395-8. [PMID: 15531137 DOI: 10.1016/j.clinimag.2004.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the possibility of improving the delivery of vascular endothelial growth factor (VEGF) gene to the myocardium in rats by using ultrasound-mediated microbubble destruction (UMMD). METHODS Fifteen male Wistar rats underwent left anterior descending coronary artery ligation in this study. The rats were divided into three groups 3 days after ligation. Ultrasound microbubble vectors (UMVs) attaching to pcD2VEGF121 gene were injected into the tail vein of rats with or without simultaneous echocardiographic microbubble destruction in two groups. The third group was used as control group. VEGF protein expression and formation of new blood vessels were evaluated by immunohistochemical technique during autopsy on 15 rats at 2 weeks after gene transformation. Microvascular density (MVD) in the area with myocardial infarction was counted under a microscope. RESULTS VEGF protein expression and MVD in the ischemic myocardium were higher in the rats receiving UMMD than in the group that did not receive UMMD. CONCLUSION UMMD is a noninvasive method to effectively improve the delivery of targeted genes to the heart.
Collapse
Affiliation(s)
- Wang Zhigang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing 400010, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Ultrasound-mediated gene delivery: kinetics of plasmid internalization and gene expression. J Control Release 2005; 104:203-11. [PMID: 15866346 DOI: 10.1016/j.jconrel.2005.01.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 11/24/2022]
Abstract
Sonoporation is an approach that can be used to transfer DNA or drugs into cells. However, very little is known about the mechanism of ultrasound-mediated membrane permeabilization. In this investigation, DNA transport post-sonoporation and the subsequent plasmid internalization and protein expression kinetics have been studied. Using a plasmid encoding for the green fluorescent protein (GFP), labelled or not with an intercalating agent (YOYO-1), it was found that, as compared to lipofection that requires endocytosis, sonoporation allowed a rapid and direct transfer of naked DNA into the cell cytoplasm probably via ultrasound-induced pores in the membrane. The kinetics of protein expression were significantly faster for sonoporation than for lipofection, the mechanism of which requires endocytosis. However, unprotected DNA in the cytoplasm could be degraded by resident cytosolic DNases, thereby decreasing ultrasound-mediated gene delivery efficiency.
Collapse
Affiliation(s)
- Sophie Mehier-Humbert
- University of Geneva, School of Pharmacy and Biopharmacy, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
262
|
Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005; 45:329-35. [PMID: 15680708 DOI: 10.1016/j.jacc.2004.08.067] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/19/2022]
Abstract
The clinical utility of ultrasound contrast agents has been established in diagnostic echocardiography. Recently, the use of such agents has been promoted for transport and delivery of various bioactive substances, thus providing a technique for non-invasive gene therapy and organ-specific drug delivery. In this review, we give a critical update of published studies using ultrasound contrast agents for therapeutic use. We discuss the potential applications and limitations of this technique and suggest future applications in cardiovascular medicine.
Collapse
Affiliation(s)
- Raffi Bekeredjian
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
263
|
Ignowski JM, Schaffer DV. Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng 2005; 86:827-34. [PMID: 15162459 DOI: 10.1002/bit.20059] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Firefly luciferase has proven to be a highly sensitive and quantitative reporter gene for studying gene delivery and regulation, and its recent use in live cells and organisms promises to further expand its utility. However, the intracellular behavior and properties of the enzyme are not well characterized. Specifically, information on the intracellular kinetics and stability of luciferase activity is necessary for real-time luminescence counts from live cells to be quantitatively meaningful. Here, we report a dynamic analysis of luciferase activity in the context of living mammalian cells. We have determined the relative light units measured in living cells to be proportional to that found in cell lysate. We have also calculated the K(m) of luciferase in living cells to be approximately 1 mM, a value much higher than the 10 microM found for pure enzyme in vitro. In addition, a 2-hour half-life of luciferase activity in live cells was measured in real time. Finally, we have modeled luciferase activity in live cells for the purposes of understanding and translating the luciferase signal into a more effective metric of gene expression and cell behavior.
Collapse
Affiliation(s)
- Jolene M Ignowski
- Department of Chemical Engineering and The Helen Wills Neuroscience Institute, MC 1462, University of California-Berkeley, Berkeley, CA 94720-1462, USA
| | | |
Collapse
|
264
|
Sato K, Yoshida M, Miyoshi K. Utility of ultrasound stimulation for activation of pig oocytes matured in vitro. Mol Reprod Dev 2005; 72:396-403. [PMID: 16094647 DOI: 10.1002/mrd.20352] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was carried out to examine the development of pig oocytes after exposing to ultrasound under various conditions. When oocytes were exposed to ultrasound in the sorbitol medium, the blastocyst formation rate was significantly (P < 0.01) higher than that of oocytes exposed in HEPES-TLP-PVA. Optison, an echo-contrast microbubble, prevented the development into blastocysts of oocytes exposed to ultrasound in the sorbitol medium (P < 0.01). The mean number of cells in the blastocysts developed from oocytes exposed to ultrasound with 10% duty cycle was significantly (P < 0.05) higher than that obtained by using ultrasound with 50% duty cycle. The blastocyst formation rate of oocytes exposed to ultrasound for 30 sec was significantly (P < 0.05) higher than that exposed for 10 sec. There were no significant differences in the rates of oocytes developed to the blastocyst stage and the mean numbers of cells in the blastocysts among different intensities of ultrasound. The pronuclear formation and second polar body extrusion rates of oocytes exposed to ultrasound did not differ from eclectically activated oocytes. Although there was no significant difference in the blastocyst formation rates between different activation methods, the mean number of cells in the blastocysts developed from oocytes activated by exposing to ultrasound was significantly (P < 0.05) higher than that obtained by applying electric pulses. The results of the present study showed that ultrasound stimulation can induce the nuclear activation and parthenogenetic development of pig oocytes matured in vitro.
Collapse
Affiliation(s)
- Keisuke Sato
- Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | |
Collapse
|
265
|
Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther 2004; 11:1363-9. [PMID: 15295618 DOI: 10.1038/sj.gt.3302337] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over the last 5 years, physical methods of plasmid delivery have revolutionized the efficiency of nonviral gene transfer, in some cases reaching the efficiencies of viral vectors. In vivo electroporation dramatically increases transfection efficiency for a variety of tissues. Other methods with clinical precedent, pressure-perfusion and ultrasound, also improve plasmid gene transfer. Alternatives such as focused laser, magnetic fields and ballistic (gene gun) approaches can also enhance delivery. As plasmid DNA appears to be a safe gene vector system, it seems likely that plasmid with physically enhanced delivery will be used increasingly in clinical trials.
Collapse
Affiliation(s)
- D J Wells
- Gene Targeting Unit, Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, UK
| |
Collapse
|
266
|
Shimamura M, Sato N, Taniyama Y, Yamamoto S, Endoh M, Kurinami H, Aoki M, Ogihara T, Kaneda Y, Morishita R. Development of efficient plasmid DNA transfer into adult rat central nervous system using microbubble-enhanced ultrasound. Gene Ther 2004; 11:1532-9. [PMID: 15269716 DOI: 10.1038/sj.gt.3302323] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although gene therapy might become a promising approach for central nervous system diseases, the safety issue is a serious consideration in human gene therapy. To overcome this problem, we developed an efficient gene transfer method into the adult rat brain based on plasmid DNA using a microbubble-enhanced ultrasound method, since microbubble-enhanced ultrasound has shown promise for transfecting genes into other tissues such as blood vessels. Using the microbubble-enhanced ultrasound method, luciferase expression was increased approximately 10-fold as compared to injection of naked plasmid DNA alone. Interestingly, the site of gene expression was limited to the site of insonation with intracisternal injection, in contrast to previous studies using viruses. Expression of the reporter gene, Venus, was readily detected in the central nervous system. The transfected cells were mainly detected in meningeal cells with intracisternal injection, and in glial cells with intrastriatal injection. There was no obvious evidence of tissue damage by microbubble-enhanced ultrasound. Overall, the present study demonstrated the feasibility of efficient plasmid DNA transfer into the central nervous system, providing a new option for treating various diseases such as tumors.
Collapse
Affiliation(s)
- M Shimamura
- Division of Clinical Gene Therapy, Osaka University, Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Ogawa R, Kagiya G, Feril LB, Nakaya N, Nozaki T, Fuse H, Kondo T. Ultrasound mediated intravesical transfection enhanced by treatment with lidocaine or heat. J Urol 2004; 172:1469-73. [PMID: 15371873 DOI: 10.1097/01.ju.0000139589.52415.3d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We have previously reported that cell membrane modification by lidocaine or heat can enhance ultrasound mediated transfection (USMT) on PC-3 cells in vitro. In the current study we investigated whether such enhancement could be observed using the T24 human bladder cancer cell line in vitro along with PC-3 in vivo. MATERIALS AND METHODS For in vitro transfection T24 cells were sonicated with 1 MHz ultrasound at 3.6 W/cm (ISATA) for 20 seconds. For in vivo transfection T24 or PC-3 cells in the bladder were transabdominally sonicated with 1 MHz ultrasound at 0.78 W/cm (ISATA) for 60 seconds. Transfection efficiency was evaluated by the luciferase assay standardized with protein contents of the samples. RESULTS Lidocaine or heat treatment of T24 cells during sonication enhanced luciferase expression significantly. Results indicated that enhancements could be achieved in a different cell line, although to lesser degrees than with PC-3 cells. In addition, membrane fluidity facilitation and cell viability after sonication were also different, presumably influenced by the different structures and/or compositions of the cell membranes. PC-3 and T24 cells were successfully transfected in the bladder. In addition, USMT enhancements were also observed in the 2 cell lines when sonicated with lidocaine or heat. CONCLUSIONS These results suggest that USMT and its enhancement with lidocaine or heat can be applied for gene therapy in the bladder.
Collapse
Affiliation(s)
- Ryohei Ogawa
- Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Tsuruga, Japan
| | | | | | | | | | | | | |
Collapse
|
268
|
Abstract
Ultrasound has an ever-increasing role in the delivery of therapeutic agents, including genetic material, protein and chemotherapeutic agents. Cavitating gas bodies, such as microbubbles, are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilise cell membranes and disrupt the vesicles that carry drugs. Thus, the presence of microbubbles enormously enhances ultrasonic delivery of genetic material, proteins and smaller chemical agents. Numerous reports show that the most efficient delivery of genetic material occurs in the presence of cavitating microbubbles. Attaching the DNA directly to the microbubbles, or to gas-containing liposomes, enhances gene uptake even further. Ultrasonic-enhanced gene delivery has been studied in various tissues, including cardiac, vascular, skeletal muscle, tumour and even fetal tissue. Ultrasonic-assisted delivery of proteins has found most application in transdermal transport of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; and makes cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has on cells and drug-carrying vesicles.
Collapse
Affiliation(s)
- William G Pitt
- Brigham Young University, D350 Clyde Building, Provo, UT 84602, USA.
| | | | | |
Collapse
|
269
|
Liang HD, Lu QL, Xue SA, Halliwell M, Kodama T, Cosgrove DO, Stauss HJ, Partridge TA, Blomley MJK. Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:1523-9. [PMID: 15588963 DOI: 10.1016/j.ultrasmedbio.2004.08.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 08/17/2004] [Accepted: 08/24/2004] [Indexed: 05/02/2023]
Abstract
Ultrasound (US) is a promising tool for facilitating direct gene transfer to skeletal muscle, but no systematic optimisation study has been performed. We exposed H2K myoblast cells to US with varying intensity of exposure and duration to evaluate its effect on cell viability and transfection efficiency using as endpoints transfection rate, average fluorescence intensity (fluorescence normalised by the number of transfected cells) and overall expression (the product of transfection rate and average fluorescence intensity) as indices. Cell viability decreased with exposure time and intensity, consistent with previous findings. Optimal setting of US was observed at the range of 0.5 to 1 W cm(-2) with duration of 20 s, producing maximum efficiency (transfection = 4.5%) in gene transfection with minimum cell toxicity (cell viability = 83%). Higher intensity alone or in combination with low intensity and long duration did not improve cell viability and transfection. The increase of eGFP (enhanced green fluorescence protein) plasmid concentration up to 200 microg per mL was related to an increase in average fluorescence intensity and overall expression. However, transfection rate saturated when DNA concentration reached 50 microg per mL despite initial increase with DNA concentration. The average fluorescence intensity was linearly proportional to the logarithm of DNA concentration, suggesting a diffusion-based model for DNA uptake under sonoporation. We conclude that low-intensity US irradiation provides a safe and effective alternative for gene delivery.
Collapse
Affiliation(s)
- Hai-Dong Liang
- Ultrasound Group, Imaging Sciences Department, Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London W12 0HS, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Abstract
Ultrasound is used today in medicine as a modality for diagnostic imaging. Recently, there have been numerous reports on the application of thermal and nonthermal ultrasound energy for treating various diseases. In addition to thermal ablation of tumors, non-thermal ultrasound combined with drugs and genes have led to much excitement especially for cancer treatment, vascular diseases, and regenerative medicine. Ultrasound energy can enhance the effects of thrombolytic agents such as urokinase for treatment of stroke and acute myocardial infarction. New ultrasound technologies have resulted in advanced devices such as a) ultrasound catheters, b) Non-invasive methods as high intensity focused ultrasound (HIFU) in conjunction with MRI and CT is already being applied in the clinical field, c) Chemical activation of drugs by ultrasound energy for treatment of tumors is another new field recently termed "Sonodynamic Therapy", and d) Combination of genes and microbubble have induced great hopes for ideal gene therapy (sonoporation). Various examples of ultrasound combined modalities are under investigation which could lead to revolutionary therapy.
Collapse
Affiliation(s)
- Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Japan.
| |
Collapse
|
271
|
Liu Y, Uno H, Takatsuki H, Hirano M, Sakanishi A. Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 34:163-9. [PMID: 15480621 DOI: 10.1007/s00249-004-0439-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 07/16/2004] [Accepted: 09/02/2004] [Indexed: 11/27/2022]
Abstract
We have studied the in vitro transfection of a plasmid DNA with the lacZ gene to HeLa-S3 cells and hemolysis in a red blood cell (RBC) suspension under pulsed ultrasound with duty cycles gamma of 10, 20 and 30% using a digital sonifier at a frequency of 20 kHz and an intensity of 6.2 W/cm(2) on the surface of a horn tip. Cultured HeLa-S3 cells in suspension were exposed to pulsed ultrasound for an apparent exposure time t' from 0 to 60 s. HeLa-S3 viability decreased as a single exponential function of the total exposure time t = gammat' with a common time constant tau = 3.8 s for three duty cycles. Transfection was evaluated by counting the number of beta-galactosidase(beta-Gal)-positive cells relative to the total number of cells. Pulsed ultrasound provided an enhanced transfer of the beta-Gal plasmid to HeLa-S3 cells, 3.4-fold as compared with that in the case of the control. The optimal transfection efficiencies were 0.75, 0.80 and 0.74% near t = tau with gamma = 10, 20 and 30%, respectively. The number ratio of beta-Gal-positive cells to the surviving cells after exposure increased with t' according to a modified logistic equation. The degree of hemolysis also increased exponentially with t' at a time constant tau' = tau(0)/gamma for the RBC suspension in physiological saline at a hematocrit concentration of 0.5% with tau(0) = 0.9 s. Thus the total exposure time for the optimal transfection efficiency was tau, that is, nearly four times of tau(0). Hemolysis in the RBC suspension may be a useful model for determining optimal transfection by pulsed ultrasound of various duty cycles.
Collapse
Affiliation(s)
- Y Liu
- Department of Biological and Chemical Engineering, Faculty of Engineering, Gunma University, Kiryu, Japan
| | | | | | | | | |
Collapse
|
272
|
Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2004; 23:1349-1359. [PMID: 15448325 DOI: 10.7863/jum.2004.23.10.1349] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
OBJECTIVE To evaluate ultrasound enhancement of drug delivery through the cornea and the histologic appearance of the cornea up to 24 hours after treatment. METHODS Corneas were exposed to ultrasound at a frequency of 880 kHz and intensities of 0.19 to 0.56 W/cm2 (continuous mode) with an exposure duration of 5 minutes. The aqueous humor concentration of a topically applied hydrophilic dye, sodium fluorescein, was determined quantitatively in ultrasound- and sham-treated rabbit eyes in vivo. Gross and light microscopic examinations were used to observe structural changes in the cornea 0 to 24 hours after ultrasound exposure. Cavitation activity was measured with a passive cavitation detector. RESULTS Most cells with an appearance different from that of the normal cells were present in the surface layer of the corneal epithelium. No structural changes were observed in the stroma. The increase in dye concentration in the aqueous humor (relative to sham treatment), after the simultaneous application of ultrasound and the dye solution, was 2.4 times at 0.19 W/cm2, 3.8 times at 0.34 W/cm2, and 10.6 times at 0.56 W/cm2 (P <.05). Dye delivery was found to increase with increasing ultrasound intensity, which corresponded to an increase in cavitation activity. Corneal pits, observed in the ultrasound-treated epithelium, completely disappeared within 90 minutes. CONCLUSIONS Application of 880-kHz ultrasound provided up to 10-fold enhancement in the delivery of a hydrophilic compound through the cornea while producing minor changes in the corneal epithelium.
Collapse
Affiliation(s)
- Vesna Zderic
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle, WA 98105 USA.
| | | | | |
Collapse
|
273
|
Kondo I, Ohmori K, Oshita A, Takeuchi H, Fuke S, Shinomiya K, Noma T, Namba T, Kohno M. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a "functional" gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44:644-53. [PMID: 15358035 DOI: 10.1016/j.jacc.2004.04.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2002] [Revised: 04/12/2004] [Accepted: 04/20/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We examined whether ultrasonic microbubble destruction (US/MB) enables therapeutic myocardial gene transfer of hepatocyte growth factor (HGF) for acute myocardial infarction (MI). BACKGROUND Hepatocyte growth factor gene transfer provides cardioprotective effects in MI, which requires direct intramyocardial injection or special vectors. Although US/MB was used in myocardial gene transfer, its feasibility in transfer of a therapeutic gene with non-viral vector remains unknown. METHODS In a rat model of acute MI, naked plasmid (pVaxl) encoding human HGF (1,500 microg) was infused into the left ventricular (LV) chamber during US/MB (HGF-US/MB) or insonation only (HGF-US) or alone (HGF-alone), while control MI rats received empty pVaxl during US/MB (pVaxl-US/MB). For US/MB, transthoracic intermittent insonation with a diagnostic transducer (1.3 MHz) was performed for 2 min at a peak negative pressure of -2,160 kPa during intravenous 20% Optison. RESULTS Baseline risk area was comparable among the groups. Immunohistology seven days after treatment revealed significant myocardial expression of HGF protein only in HGF-US/MB. At three weeks, LV weight in HGF-US/MB (0.89 +/- 0.03 g) was significantly lower than those in HGF-alone (1.09 +/- 0.08 g), HGF-US (1.04 +/- 0.07 g), and pVaxl-US/MB (1.04 +/- 0.05 g). Moreover, scar size was significantly smaller (16 +/- 6% vs. 39 +/- 5%, 41 +/- 6%, and 40 +/- 4% of total myocardial circumferential length, respectively), while capillary density (49 +/- 8 vs. 34 +/- 5, 37 +/- 6, and 36 +/- 4 capillaries/high-power field, respectively) and arterial density (37 +/- 7 vs. 15 +/- 9, 18 +/- 4, and 14 +/- 11 arterioles/high-power field, respectively) in the risk area were higher in HGF-US/MB than the other groups. CONCLUSIONS Ultrasound-mediated microbubble destruction may enable myocardial HGF gene transfer with systemic administration of naked plasmid, which enhances angiogenesis, limits infarction size, and prevents LV remodeling after MI.
Collapse
Affiliation(s)
- Isao Kondo
- Second Department of Internal Medicine, Kagawa University School of Medicine, Kagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Nozaki T, Ogawa R, Feril LB, Kagiya G, Fuse H, Kondo T. Enhancement of ultrasound-mediated gene transfection by membrane modification. J Gene Med 2004; 5:1046-55. [PMID: 14661180 DOI: 10.1002/jgm.445] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ultrasound-mediated gene transfection (USMGT) with an echo contrast agent could be a new promising physical method of triggering localized gene delivery, but the effect is still modest. The aim of this study is to devise a method to improve efficiency of USMGT. We examined the effect of lidocaine and different temperatures on USMGT, each of which is a known membrane modifier, since the plasma membrane can be considered a site of action in USMGT. METHODS We observed the effect of lidocaine (0.01, 0.1 or 1.0 mM) and different temperatures (7, 20, 37, 42 or 44 degrees C) on USMGT (1 MHz, 3.6 W/cm(2) (I(SATA)) and 20 s exposure) in the presence of Levovist (10 mg/ml). At 20 h after sonication, transfection efficiency was evaluated by luciferase assay. Membrane fluidity was examined by fluorescence polarization measurement. Cavitational activity was measured by ESR spin trapping with 5,5-dimethyl-1-pyrroline N-oxide. The number of cells transfected with the GFP gene was counted under a fluorescence microscope. RESULTS Lidocaine (1 mM) and heat (42-44 degrees C) significantly increased luciferase expression approximately 18-fold and 19-fold higher than Levovist only. Both treatments were shown to increase membrane fluidity; in addition, heat enhanced a cavitational effect. It was confirmed by an experiment using the GFP gene that increase in luciferase expression was due to the increase in number of cells. CONCLUSIONS This enhancement could be useful for ultrasound-mediated gene therapy in the future since both treatments for membrane modification could be directly applied to the living body.
Collapse
Affiliation(s)
- Tetsuo Nozaki
- Department of Urology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | |
Collapse
|
275
|
Ogura M, Sato S, Nakanishi K, Uenoyama M, Kiyozumi T, Saitoh D, Ikeda T, Ashida H, Obara M. In vivo targeted gene transfer in skin by the use of laser-induced stress waves. Lasers Surg Med 2004; 34:242-8. [PMID: 15022251 DOI: 10.1002/lsm.20024] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND OBJECTIVES Much interest has been shown in the use of lasers for nonviral targeted gene transfer, since the spatial characteristics of laser light are quite well defined. The aim of this study was to demonstrate in vivo gene transfer by the use of laser-induced stress waves (LISWs). STUDY DESIGN/MATERIALS AND METHODS After reporter genes had been intradermally injected to rat skin in vivo, a laser target was placed on the gene-injected skin. LISWs were generated by the irradiation of an elastic laser target with 532-nm nanosecond laser pulses of a Q-switched Nd:YAG laser. RESULTS Levels of luciferase activities for the skin exposed to LISWs were two orders of magnitude higher than those for the skin injected with naked DNA. Expressions of enhanced green fluorescent protein (EGFP) and beta-galactosidase were observed only in the area that was exposed to LISWs, and in addition, epidermal cells were selectively transfected. No major side effects were observed, and luciferase activity levels as high as 10(5) RLU per mg of protein were sustained even 5 days after gene transfer. CONCLUSION Highly efficient and site-specific gene transfer can be achieved by applying a few pulses of nanosecond pulsed LISWs to rat skin in vivo.
Collapse
Affiliation(s)
- Makoto Ogura
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
van der Wouden EA, Sandovici M, Henning RH, de Zeeuw D, Deelman LE. Approaches and methods in gene therapy for kidney disease. J Pharmacol Toxicol Methods 2004; 50:13-24. [PMID: 15233963 DOI: 10.1016/j.vascn.2004.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/08/2004] [Indexed: 11/22/2022]
Abstract
Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient vector for in vivo transfection appears to be adenovirus. Glomeruli, blood vessels, interstitial cells, and pyelum can be transfected with high efficiency. In addition, electroporation and microbubbles with ultrasound, both being enhanced naked plasmid techniques, offer good opportunities. Trapping of mesangial cells into the glomeruli as well as natural targeting of monocytes or macrophages to inflamed kidneys are elegant methods for site-specific delivery of genes. For gene therapy in kidney transplantation, hemagglutinating virus of Japan liposomes are efficient vectors for tubular transfection, whereas enhanced naked plasmid techniques are suitable for glomerular transfection. However, adenovirus offers the best opportunities in a renal transplantation setup because varying parameters of graft perfusion allows targeting of different cell types. In renal grafts, lymphocytes can be used for selective targeting to sites of inflammation. In conclusion, for both in vivo and ex vivo renal transfection, enhanced naked plasmids and adenovirus offer the best perspectives for effective clinical application. Moreover, the development of safer, nonimmunogenic vectors and the large-scale production could make clinical renal gene therapy a realistic possibility for the near future.
Collapse
Affiliation(s)
- Els A van der Wouden
- Department of Clinical Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
277
|
Ohta S, Suzuki K, Tachibana K, Yamada G. Microbubble-enhanced sonoporation: efficient gene transduction technique for chick embryos. Genesis 2004; 37:91-101. [PMID: 14595845 DOI: 10.1002/gene.10232] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The gene transduction technique is a useful method to study gene functions that underlie vertebrate embryogenesis. In this study, a new gene transduction technique is reported using microbubble-enhanced sonoporation (hereafter referred to as sonoporation) to achieve ectopic and transient gene expression for several embryonic organs including embryonic chick limb bud mesenchymes. The technique proposed in this study has the advantages of 1) relatively simple gene transduction procedures, and 2) efficient exogenous gene transduction and expression with lower damages to embryos. Green fluorescent protein (GFP) or LacZ was misexpressed in limb bud mesenchymes by sonoporation, with the introduced expression transiently detected in the injected sites. Most of the transduced chick embryos survived without showing significant embryonic abnormalities or cell death after sonoporation. To demonstrate its efficacy for assessing the effect of transient gene transduction, the Shh (sonic hedgehog) was transduced into the developing chick limb bud. The transduced limb bud displayed limb malformations including partial digit duplication. Advantages and possible future applications in relation to this method are discussed.
Collapse
Affiliation(s)
- Sho Ohta
- Center for Animal Resources and Development (CARD) and Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
278
|
Terakawa M, Ogura M, Sato S, Wakisaka H, Ashida H, Uenoyama M, Masaki Y, Obara M. Gene transfer into mammalian cells by use of a nanosecond pulsed laser-induced stress wave. OPTICS LETTERS 2004; 29:1227-1229. [PMID: 15209255 DOI: 10.1364/ol.29.001227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasmid DNA has been successfully delivered to mammalian cells by applying a nanosecond pulsed laser-induced stress wave (LISW). Cells exposed to a LISW were selectively transfected with plasmids coding for green fluorescent protein. It was also shown that transient, mild cellular heating (approximately 43 degrees C) was effective in improving the transfection efficiency.
Collapse
Affiliation(s)
- Mitsuhiro Terakawa
- Department of Electronics and Electrical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
279
|
Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56:1291-314. [PMID: 15109770 DOI: 10.1016/j.addr.2003.12.006] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/20/2003] [Indexed: 11/15/2022]
Abstract
Lipid-coated microbubbles represent a new class of agents with both diagnostic and therapeutic applications. Microbubbles have low density. Stabilization of microbubbles by lipid coatings creates low-density particles with unusual properties for diagnostic imaging and drug delivery. Perfluorocarbon (PFC) gases entrapped within lipid coatings make microbubbles that are sufficiently stable for circulation in the vasculature as blood pool agents. Microbubbles can be cavitated with ultrasound energy for site-specific local delivery of bioactive materials and for treatment of vascular thrombosis. The blood-brain barrier (BBB) can be reversibly opened without damaging the neurons using ultrasound applied across the intact skull to cavitate microbubbles within the cerebral microvasculature for delivery of both low and high molecular weight therapeutic compounds to the brain. The first lipid-coated PFC microbubble product is currently marketed for diagnostic ultrasound imaging. Clinical trials are currently in process for treatment of vascular thrombosis with ultrasound and lipid-coated PFC microbubbles (SonoLysis Therapy). Targeted microbubbles and acoustically active PFC nanoemulsions with specific ligands can be developed for detecting disease at the molecular level and targeted drug and gene delivery. Bioactive compounds can be incorporated into these carriers for site-specific delivery. Our aim is to cover the therapeutic applications of lipid-coated microbubbles and PFC emulsions in this review.
Collapse
|
280
|
Tomita N, Ogihara T, Morishita R. Therapeutic potential of decoy oligonucleotides strategy in cardiovascular diseases. Expert Rev Cardiovasc Ther 2004; 1:463-70. [PMID: 15030273 DOI: 10.1586/14779072.1.3.463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent progress in molecular biology has provided several new techniques to inhibit target gene expression. In particular, the application of DNA technology, such as an antisense strategy, to regulate the transcription of disease-related genes in vivo has important therapeutic potential. Recently, transfer of cis-element double-stranded oligonucleotides (ODN) (= decoy) has been reported as a new powerful tool in a new class of antigene strategies for gene therapy. Transfer of the double-stranded ODN corresponding to the cis-sequence will result in attenuation of the authentic cis-trans interaction, leading to removal of trans-factors from the endogenous cis-elements with subsequent modulation of gene expression.
Collapse
Affiliation(s)
- Naruya Tomita
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita 565-0871, Japan.
| | | | | |
Collapse
|
281
|
Zarnitsyn VG, Prausnitz MR. Physical parameters influencing optimization of ultrasound-mediated DNA transfection. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:527-38. [PMID: 15121255 DOI: 10.1016/j.ultrasmedbio.2004.01.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 01/22/2004] [Accepted: 01/22/2004] [Indexed: 05/02/2023]
Abstract
Ultrasound (US) has been shown to transiently disrupt cell membranes and, thereby, facilitate the loading of drugs and genes into viable cells. To address optimization of gene therapy applications, the aim of this work was to systematically determine the influence of physical parameters on transfection and viability of DU145 prostate cancer cells by two different DNA plasmids (pEGFP-N1 and pGL3). By sonicating cells in vitro in the presence of naked DNA, we found that transfection efficiency was increased by: 1. optimizing acoustic energy at 10 to 30 J/cm(2) (for our apparatus, at pressures above the cavitation threshold); 2. using 500-kHz US in the presence of Optison to nucleate cavition, rather than 24-kHz US without Optison; 3. increasing cell concentration from 10(6) to 10(7) cells/mL; and 4. changing temperature during sonication from 21 to 37 degrees C. The best conditions in this study increased transfection by almost 100-fold in the absence of significant DNA damage. Additional measurements indicated that less than one fourth of cells with DNA plasmid uptake into the cytosol showed DNA expression, which suggests that further optimizing transfection by US may require facilitating intracellular DNA trafficking.
Collapse
Affiliation(s)
- Vladimir G Zarnitsyn
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
282
|
Baker AH. Designing gene delivery vectors for cardiovascular gene therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:279-99. [PMID: 14769440 DOI: 10.1016/j.pbiomolbio.2003.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic therapy in the cardiovascular system has been proposed for a variety of diseases ranging from prevention of vein graft failure to hypertension. Such diversity in pathogenesis requires the delivery of therapeutic genes to diverse cell types in vivo for varying lengths of time if efficient clinical therapies are to be developed. Data from extensive preclinical studies have been compiled and a certain areas have seen translation into large-scale clinical trials, with some encouraging reports. It is clear that progress within a number of disease areas is limited by a lack of suitable gene delivery vector systems through which to deliver therapeutic genes to the target site in an efficient, non-toxic manner. In general, currently available systems, including non-viral systems and viral vectors such as adenovirus (Ad) or adeno-associated virus (AAV), have a propensity to transduce non-vascular tissue with greater ease than vascular cells thereby limiting their application in cardiovascular disease. This problem has led to the development and testing of improved vector systems for cardiovascular gene delivery. Traditional viral and non-viral systems are being engineered to increase their efficiency of vascular cell transduction and diminish their affinity for other cell types through manipulation of vector:cell binding and the use of cell-selective promoters. It is envisaged that future use of such technology will substantially increase the efficacy of cardiovascular gene therapy.
Collapse
Affiliation(s)
- Andrew H Baker
- Glasgow Cardiovascular Research Centre, Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
283
|
Chen J, Yang WL, Li G, Qian J, Xue JL, Fu SK, Lu DR. Transfection of mEpo gene to intestinal epithelium in vivo mediated by oral delivery of chitosan-DNA nanoparticles. World J Gastroenterol 2004; 10:112-6. [PMID: 14695780 PMCID: PMC4717060 DOI: 10.3748/wjg.v10.i1.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To prepare the chitosan-pmEpo nanoparticles and to study their ability for transcellular and paracellular transport across intestinal epithelia by oral administration.
METHODS: ICR mice were fed with recombinant plasmid AAV-tetO-CMV-mEpo (containing mEpo gene) or pCMVβ (containing LacZ gene), whether it was wrapped by chitosan or no. Its size and shape were observed by transmission electron microscopy. Agarose gel electrophoresis was used to assess the efficiency of encapsulation and stability against nuclease digestion. Before and after oral treatmant, blood samples were collected by retro-orbital puncture, and hematocrits were used to show the physiological effect of mEpo.
RESULTS: Chitosan was able to successfully wrap the plasmid and to protect it from DNase degradation. Transmission electron microscopy showed that freshly prepared particles were approximately 70-150 nm in size and fairly spherical. Three days after fed the chitosan-pCMVβ complex was fed, the mice were killed and most of the stomach and 30% of the small intestine were stained. Hematocrit was not modified in naive and ‘naked’ mEpo-fed mice, a rapid increase of hematocrit was observed during the first 4 days of treatment in chitosan-mEpo-fed animals, reaching 60.9 ± 1.2% (P < 0.01), and sustained for a week. The second feed (6 days after the first feed) was still able to promote a second hematocrit increase in chitosan-mEpo-fed animals, reaching 65.9 ± 1.4% (P < 0.01), while the second hematocrit increase did not appear in the ‘naked’ mEpo-second-fed mice.
CONCLUSION: Oral chitosan-DNA nanoparticles can efficiently deliver genes to enterocytes, and may be used as a useful tool for gene transfer.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
284
|
Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:1759-67. [PMID: 14698343 DOI: 10.1016/s0301-5629(03)00976-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The aim of this study was to assess the relative efficacy and mechanism of gene transfection by ultrasound (US) destruction of plasmid-bearing microbubbles. Luciferase reporter plasmid was charge-coupled to cationic lipid microbubbles. Rat hindlimb skeletal muscle was exposed to intermittent high-power US during dose-adjusted intra-arterial (IA) or IV administration of plasmid-bearing microbubbles via the carotid artery or jugular vein, respectively. At 4 days, luciferase activity in US-exposed skeletal muscle was 200-fold greater with IA than with IV administration of plasmid-bearing microbubbles, and was similar to transfection achieved by IM injection of plasmid (positive control). No transfection occurred with US and IA injection of plasmid alone. Intravital microscopy of the cremaster muscle in mice following administration of microbubbles and US exposure demonstrated perivascular deposition of fluorescent plasmid, the extent of which was twofold greater for IA compared to IV injection. Electron microscopy demonstrated a greater extent of myocellular microporations in US-exposed muscle after IA injection of microbubbles. We conclude that muscle transfection by US destruction of plasmid-bearing cationic microbubbles is amplified by IA, rather than IV, injection of microbubbles due to greater extravascular deposition of plasmid and to greater extent of myocellular microporation.
Collapse
Affiliation(s)
- Jonathan P Christiansen
- Cardiovascular Division, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
285
|
Abstract
Ultrasound has received less attention than other imaging modalities for molecular imaging, but has a number of potential advantages. It is cheap, widely available and portable. Using Doppler methods, flow information can be obtained easily and non-invasively. It is arguably the most physiological modality, able to image structure and function with less sedation than other modalities. This means that function is minimally disturbed, and multiple repeat studies or the effect of interventions can easily be assessed. High frame rates of over 200 frames a second are achievable on current commercial systems, allowing for convenient cardiac studies in small animals. It can be used to guide interventional or invasive studies, such as needle placement. Ultrasound is also unique in being both an imaging and therapeutic tool and its value in gene therapy has received much recent interest. Ultrasound biomicroscopy has been used for in utero imaging and can guide injection of virus and cells. Ultrahigh frequency ultrasound can be used to determine cell mechanical properties. The development of microbubble contrast agents has opened many new opportunities, including new functional imaging methods, the ability to image capillary flow and the possibility of molecular targeting using labelled microbubbles.
Collapse
Affiliation(s)
- H-D Liang
- Ultrasound Group, Imaging Sciences Department, Imperial College London, Clinical Sciences Centre, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
| | | |
Collapse
|
286
|
Hiraoka K, Koike H, Yamamoto S, Tomita N, Yokoyama C, Tanabe T, Aikou T, Ogihara T, Kaneda Y, Morishita R. Enhanced Therapeutic Angiogenesis by Cotransfection of Prostacyclin Synthase Gene or Optimization of Intramuscular Injection of Naked Plasmid DNA. Circulation 2003; 108:2689-96. [PMID: 14568901 DOI: 10.1161/01.cir.0000093275.78676.f4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although clinical trials of therapeutic angiogenesis by angiogenic growth factors with intramuscular injection of naked plasmid DNA have been successful, there are still unresolved problems such as low transfection efficiency. From this viewpoint, we performed the following modifications: (1) combination with vasodilation using prostacyclin and (2) changing the agents or volume of naked plasmid DNA in vivo.
Methods and Results—
First, we examined cotransfection of the
VEGF
gene with the prostacyclin synthase gene in a mouse hindlimb ischemia model. Cotransfection of the
VEGF
gene with the prostacyclin synthase gene resulted in a further increase in blood flow and capillary density compared with single
VEGF
gene. Similar results were obtained with other angiogenic growth factors, such as hepatocyte growth factor (HGF). Alternatively, we changed the injection volume of the solution of plasmid DNA. Luciferase activity was increased in a volume-dependent manner. An increase in injection volume at 1 site rather than separate injections at multiple sites resulted in high transfection efficiency, which suggests that transfection of naked plasmid DNA is mediated by pressure. Interestingly, treatment with hyperbaric oxygen increased the transfection efficiency. Finally, we also examined the effects of different solutions. Saline and PBS, but not water, achieved high transfection efficiency. In addition, sucrose solution but not glucose solution resulted in high luciferase activity.
Conclusions—
Overall, angiogenesis might be enhanced by cotransfection of prostacyclin synthase gene or an increase in injection volume and osmotic pressure. These data provide important information for the clinical application of therapeutic angiogenesis to treat peripheral arterial disease.
Collapse
Affiliation(s)
- Kazuya Hiraoka
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
287
|
Affiliation(s)
- Martin Blomley
- Imaging Sciences Department, Imperial College, Hammersmith Hospital Campus, London W12 0HS, England.
| |
Collapse
|
288
|
Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE, Dower SK, Crossman DC, Newman CM. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:1453-1461. [PMID: 14597342 DOI: 10.1016/s0301-5629(03)01032-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although acoustic cavitation is clearly important in ultrasound (US)-enhanced gene delivery (UEGD), the relative importance of mechanical and sonochemical (free radical) bioeffects remains unclear, as does the mechanism of gene delivery at the cellular level. Porcine vascular smooth muscle cells (VSMC) were transfected with luciferase or green fluorescent protein (GFP) plasmid +/- pulsed 956 kHz US (2.0 mechanical index (MI), 128 W cm(-2) spatial peak pulse average intensity, ISPPA) for 60 s, in the presence or absence of 20 mM cysteamine or N-acetyl-L-cysteine. Both compounds effectively scavenged free radical production following US, leaving unaffected the 50- to 100-fold enhancements in luciferase expression seen in US-treated VSMC. US exposure enhanced plasmid uptake (25 +/- 4.6 vs. 3 +/- 1.9 cells/field, n=4, p<0.05), most likely directly into the cytoplasm, and increased both the total number (>sevenfold) and average fluorescence intensity (>sixfold) of GFP-transfected cells. UEGD is not dependent upon cavitation-induced free radical generation and has potential for use with a wide range of therapeutic transgenes.
Collapse
Affiliation(s)
- Allan Lawrie
- Cardiovascular Research Group, Division of Clinical Sciences (North), University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Akowuah EF, Sheridan PJ, Cooper GJ, Newman C. Preventing saphenous vein graft failure: does gene therapy have a role? Ann Thorac Surg 2003; 76:959-66. [PMID: 12963247 DOI: 10.1016/s0003-4975(03)00505-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene therapy potentially allows local delivery and expression of cytokines, growth factors, and other mediators. In spite of increasing knowledge of the human genome, applications in clinical practice are only just beginning. The main limitations of effective clinical gene therapy are safety and low transfection efficiency. Saphenous vein grafts permit the transfection of the conduit ex vivo. This allows a variety of transfection techniques to be used, enhancing the transfection efficiency while limiting the risk of systemic complications. This review examines the potential mechanisms of gene delivery and genetic targets that may be applied to saphenous vein graft failure.
Collapse
Affiliation(s)
- Enoch F Akowuah
- Cardiovascular Research Group, The University of Sheffield, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
290
|
Huber PE, Mann MJ, Melo LG, Ehsan A, Kong D, Zhang L, Rezvani M, Peschke P, Jolesz F, Dzau VJ, Hynynen K. Focused ultrasound (HIFU) induces localized enhancement of reporter gene expression in rabbit carotid artery. Gene Ther 2003; 10:1600-7. [PMID: 12907952 DOI: 10.1038/sj.gt.3302045] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of accurate, safe, and efficient gene delivery remains a major challenge towards the realization of gene therapeutic prevention and treatment of cardiovascular diseases. In this study, we investigated the ability of high-intensity focused ultrasound (HIFU), a form of mechanical wave transmission, to act as a noninvasive tool for the enhancement of in vivo gene transfer into rabbit carotid arteries. Segments of the common carotid arteries of New Zealand white rabbits were isolated and infused with plasmid DNA encoding the reporter beta-galactosidase either with or without the addition of ultrasound contrast agent consisting of small (approximately 2-5 microm) gas-filled human albumin microspheres to augment cavitation. Infused arteries were exposed to pulsed ultrasound for 1 min (frequency 0.85 MHz, burst length 50 ms, repetition frequency 1 Hz, duration 60 s, peak pressure amplitude of 15 MPa). At 6.3 MPa, HIFU enhanced gene expression eight-fold, and 17.5-fold in the presence of contrast. We found increasing amounts of beta-galactosidase expression in the carotid vessel with increasing pressure amplitude. This dose-response relation was present with and without contrast. Without contrast, no vessel damage was detected up to 15 MPa, while the addition of contrast induced side effects above a threshold of 6.3 MPa peak pressure. The entire procedure was feasible and safe for the animals, and the results suggest that HIFU has the potential to assist in the noninvasive spatial regulation of gene transfer into the vascular system.
Collapse
Affiliation(s)
- P E Huber
- Department of Radiology, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
291
|
Abstract
Further understanding of the mechanisms involved in cellular and intracellular delivery of transgene is needed to produce clinical applications of gene therapy. The compartmental and computational model designed in this work is integrated with data from previous experiments to quantitatively estimate rate constants of plasmid translocation across cellular barriers in transgene delivery in vitro. The experimental conditions between two cellular studies were held constant, varying only the cell type, to investigate how the rates differed between cell lines. Two rate constants were estimated per barrier for active transport and passive diffusion. Translocation rates of intact plasmid across the cytoplasmic and nuclear barriers varied between cell lines. CV1 cells were defined by slower rates (0.23 h(-1) cytoplasmic, 0.08 h(-1) nuclear) than those of the HeLa cells (1.87 h(-1) cytoplasmic, 0.45 h(-1) nuclear). The nuclear envelope was identified as a rate-limiting barrier by comparing the rate of intact plasmid translocation at each barrier. Slower intact plasmid translocation in CV1 cells was correlated with a reduced absolute capacity for transgene efficiency in comparison with HeLa cells. HeLa cells were three times more efficient than CV1 cells at producing green fluorescent protein per intact plasmid delivered to the nucleus. Mathematical modeling coordinated with experimental studies can provide detailed, quantitative understanding of nonviral gene therapy.
Collapse
Affiliation(s)
- G A Banks
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
292
|
Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, Tavor E, Honigman A, Lewis A, Galun E. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 2003; 8:342-50. [PMID: 12907157 DOI: 10.1016/s1525-0016(03)00184-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major advantages of "naked DNA gene therapy" are its simplicity and a low or negligible immune response. Gene delivery by DNA electroporation (EP) involves injection of DNA and the application of a brief electric pulse to enhance cellular permeability. Although EP is an efficient gene transduction technique in rodents, it requires much higher voltages (>500 V) in larger animals, and hence, in practice it would be hazardous for human patients, as it would cause serious tissue damage. To overcome the obstacles associated with EP-mediated gene delivery in vivo, we developed a new method of gene transduction that uses laser energy. The femtosecond infrared titanium sapphire laser beam was developed specifically for enhancing in vivo gene delivery without risks of tissue damage. System optimization revealed that injection of 10 micro g naked DNA into the tibial muscle of mice followed by application of the laser beam for 5 s, focused to 2 mm depth upon an area of 95 x 95 micro m(2), resulted in the highest intensity and duration of gene expression with no histological or biochemical evidence of muscle damage. We assessed the potential clinical application of LBGT technology by using it to transfer the murine erythropoietin (mEpo) gene into mice. LBGT-mediated mEpo gene delivery resulted in elevated (>22%) hematocrit levels that were sustained for 8 weeks. Gene expression following LBGT was detected for >100 days. Hence, LBGT is a simple, safe, effective, and reproducible method for therapeutic gene delivery with significant clinical potential.
Collapse
Affiliation(s)
- Evelyne Zeira
- Goldyne Savad Institute of Gene Therapy, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Lan HY, Mu W, Tomita N, Huang XR, Li JH, Zhu HJ, Morishita R, Johnson RJ. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol 2003; 14:1535-48. [PMID: 12761254 DOI: 10.1097/01.asn.0000067632.04658.b8] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
TGF-beta is a key mediator in renal fibrosis. Kidney-targeted gene therapy with anti-TGF-beta strategies is expected to have therapeutic potential, but this has been hampered by concerns over the safety and practicability of viral vectors and the inefficiency of nonviral transfection techniques. The present study explored the potential role of TGF-beta/Smad signaling in renal fibrosis in vivo and developed a safe and effective gene therapy to specifically block TGF-beta signaling and renal fibrosis in a rat unilateral ureteral obstruction (UUO) model by transferring a doxycycline-regulated Smad7 gene or control empty vectors using an ultrasound-microbubble (Optison)-mediated system. The Smad7 transgene expression was tightly controlled by addition of doxycycline in the daily drinking water. Groups of six rats were sacrificed at day 7, and the transfection rate, Smad7 transgene expression, and tubulointerstitial fibrosis including alpha-smooth muscle actin and collagen matrix mRNA and protein expression were determined. Compared with the non-ultrasound treatment, the combination of ultrasound with Optison largely increased the transfection rate of FITC-ODN and Smad7 transgene expression up to a 1000-fold, and this was found in all kidney tissues. Compared with normal rats, Smad7 expression within the UUO kidney was significantly reduced, and this was associated with up to a sixfold increase in Smad2 and Smad3 activation and severe tubulointerstitial fibrosis. In contrast, treatment with inducible Smad7 resulted in a fivefold increase in Smad7 expression with complete inhibition of Smad2 and Smad3 activation and tubulointerstitial fibrosis in terms of tubulointerstitial myofibroblast accumulation (85% downward arrow ) and collagen I and III mRNA and protein expression (60 to 70% downward arrow ). In conclusion, the ultrasound-mediated inducible Smad7 gene transfer is a safe, effective, and controllable gene therapy. TGF-beta-mediated renal fibrosis is regulated positively by Smad2/3, but negatively by Smad7. Target blockade of TGF-beta/Smad signaling by expression of Smad7 may provide a new therapeutic potential for renal fibrosis.
Collapse
Affiliation(s)
- Hui Y Lan
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003; 14:591-7. [PMID: 12718768 DOI: 10.1089/104303403764539369] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are morphogens implicated in embryonic and regenerative odontogenic differentiation. Gene therapy has the potential to induce reparative dentin formation for potential pulp capping. We have optimized the gene transfer of Growth/differentiation factor 11 (Gdf11)/Bmp11 plasmid DNA into dental pulp stem cells by sonoporation in vivo. Dental pulp tissue treated with plasmid pEGFP or CMV-LacZ in 5-10% Optison (Molecular Biosystems Inc., San Diego, CA) and stimulated by ultrasound (1 MHz, 0.5 W/cm(2), 30 sec) showed significant efficiency of gene transfer and high level of protein production selectively in the local region, within 500 microm of the amputated site of the pulp tissue. The Gdf11 cDNA plasmid transferred into dental pulp tissue by sonoporation in vitro, induced the expression of dentin sialoprotein (Dsp), a differentiation marker for odontoblasts. The transfection of Gdf11 by sonoporation stimulated a large amount of reparative dentin formation on the amputated dental pulp in canine teeth in vivo. These results suggest the possible use of BMPs using ultrasound-mediated gene therapy for endodontic dental treatment.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Clinical Oral Molecular Biology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
295
|
Abstract
Vascular smooth muscle cell (VSMC) proliferation after arterial injury results in neointima formation and plays an important role in the pathogenesis of restenosis after angioplasty, in-stent restenosis, vascular bypass graft occlusion, and allograft vasculopathy. Major progress has been made recently in elucidating the cellular and molecular mechanisms underlying neointima formation. However, no known curative treatment currently exists. In cases in which pharmacologic and surgical interventions have had limited success, gene therapy remains a potential strategy for the treatment of such vascular proliferative diseases. To date, recombinant adenoviral vectors continue to be the most efficient methods of gene transfer into the arterial wall. However, concerns over the safety of using viral vectors in a clinical situation have inspired the considerable progress that has been made in improving both viral and nonviral modes of gene transfer. This review discusses some of the recent insights and outstanding progress in vascular gene therapeutic approaches to inhibit neointima both from a biologic and therapeutic perspective.
Collapse
Affiliation(s)
- Martin F Crook
- Cardiovascular Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
296
|
Lu QL, Liang HD, Partridge T, Blomley MJK. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10:396-405. [PMID: 12601394 DOI: 10.1038/sj.gt.3301913] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Intramuscular injection of naked plasmid DNA is a safe approach to the systemic delivery of therapeutic gene products, but with limited efficiency. We have investigated the use of microbubble ultrasound to augment naked plasmid DNA delivery by direct injection into mouse skeletal muscle in vivo, in both young (4 weeks) and older (6 months) mice. We observed that the albumin-coated microbubble, Optison (licensed for echocardiography in patients), significantly improves the transfection efficiency even in the absence of ultrasound. The increase in transgene expression is age related as Optison improves transgene expression less efficiently in older mice than in younger mice. More importantly, Optison markedly reduces muscle damage associated with naked plasmid DNA and the presence of cationic polymer PEI 25000. Ultrasound at moderate power (3 W/cm2 1 MHz, 60 s exposure, duty cycle 20%), combined with Optison, increases transfection efficiency in older, but not in young, mice. The safe clinical use of microbubbles and therapeutic ultrasound and, particularly, the protective effect of the microbubbles against tissue damage provide a highly promising approach for gene delivery in muscle in vivo.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
297
|
Abstract
Non-viral DNA vectors have several advantages over viral vectors. For example, virus production is expensive and there are safety concerns regarding viral manipulations. In addition, the size of the delivered plasmid is limited by the size of the viral capsid, whereas this is not a problem with non-viral vectors. The major disadvantage of using non-viral DNA delivery vectors, compared with their viral counterparts, is the low transfection efficiency. This has resulted in low levels of usage in clinical trials. Consequently, the majority of research into non-viral gene therapy has been focused on developing more efficient vectors.
Collapse
Affiliation(s)
- Gabriele D Schmidt-Wolf
- Medizinische Klinik und Poliklinik I, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | | |
Collapse
|
298
|
Khan TA, Sellke FW, Laham RJ. Gene therapy progress and prospects: therapeutic angiogenesis for limb and myocardial ischemia. Gene Ther 2003; 10:285-91. [PMID: 12595887 DOI: 10.1038/sj.gt.3301969] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
After extensive investigation in preclinical studies and recent clinical trials, gene therapy has been established as a potential method to induce therapeutic angiogenesis in ischemic myocardial and limb disease. Advancements in viral and nonviral vector technology including cell-based gene transfer will continue to improve transgene transmission and expression efficiency. An alternative strategy to the use of transgenes encoding angiogenic growth factors is therapy based on transcription factors such as hypoxia-inducible factor-1alpha (HIF-1alpha) that regulate the expression of multiple angiogenic genes. Further understanding of the underlying biology of neovascularization is needed to determine the ability of growth factors to induce functionally significant angiogenesis in patients with atherosclerotic disease and associated comorbid conditions including endothelial dysfunction, which may inhibit blood vessel growth. The safety and tolerability of therapeutic angiogenesis by gene transfer has been demonstrated in phase I clinical trials. However, limited evidence of efficacy resulted from early phase II studies of angiogenic gene therapy for ischemic myocardial and limb disease. The utility of therapeutic angiogenesis by gene transfer as a treatment option for ischemic cardiovascular disease will be determined by adequately powered, randomized, placebo-controlled phase II and III clinical trials.
Collapse
Affiliation(s)
- T A Khan
- Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
299
|
Abstract
PURPOSE OF REVIEW To provide an update on clinical trials of gene therapy for atherosclerotic cardiovascular disease published since 1 August 2001 and summarize the general advantages and potential problems of gene transfer in these disorders. RECENT FINDINGS There are two major areas in which gene therapy has entered clinical trials. The first is angiogenesis for coronary and peripheral arterial disease. Two relatively small placebo-controlled trials for coronary disease were reported, one using intramyocardial plasmid VEGF-2 gene, the other using intracoronary adenoviral FGF-4 gene. The VEGF-2 study in no-option patients showed reduced angina, and significant improvement in perfusion and function, whereas the FGF-4 study in less severely affected patients showed promising results in some subsets. In peripheral artery disease two phase 1 studies of adenoviral NV1FGF and VEGF showed some objective improvement in pain, ulcer size and ankle:brachial index in one study and endothelial function in the other. Both adenoviral and plasmid VEGF gene transfer at angioplasty increased vascularity in a phase 2 double-blind study. The other major area is the prevention of graft disease and restenosis using antisense oligodeoxynucleotides. E2F decoy led to a significant reduction in venous graft complications after ex-vivo transfection at the time of coronary bypass surgery, whereas the c-Myc oligodeoxynucleotide was ineffective in preventing in-stent coronary restenosis. SUMMARY There are more reviews of gene therapy for atherosclerosis in the literature than publications with original data or trials, but in the past year the imbalance is being redressed, with some promising results from controlled studies.
Collapse
Affiliation(s)
- Saul Benedict Freedman
- Department of Cardiology, University of Sydney, Concord Repatriation General Hospital, Australia.
| |
Collapse
|
300
|
Miura SI, Tachibana K, Okamoto T, Saku K. In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem Biophys Res Commun 2002; 298:587-90. [PMID: 12408992 DOI: 10.1016/s0006-291x(02)02467-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Since antisense oligodeoxynucleotides (AS-ODNs) have been recognized as a new generation of putative therapeutic agents, we established a delivery technique that could transfect AS-ODNs, which are designed for endothelin type B receptor (ETB), into cultured human coronary endothelial cells (HCECs) by exposure to ultrasound in the presence of echo contrast microbubbles. Ultrasound offers several advantages such as being nontoxic, nonantigenic and providing rapid gene transfer. We standardized the optimal conditions, which consisted of 2 x 10(6) cells suspended in phosphate buffer with 900nM ODN, 50 microl of echo contrast microbubbles (Optison), and ultrasound exposure (1.0 W/cm(2), 10% duty cycle, and 10s duration). The percentage of transfected cells was 25.2+/-2.0% after ultrasound treatment. This is the first demonstration of the use of the ultrasound exposure technique in conjunction with microbubbles in HCECs.
Collapse
Affiliation(s)
- Shin-ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka 814-0180, Japan.
| | | | | | | |
Collapse
|