251
|
Heinzel A, Mottaghy FM, Filss C, Stoffels G, Lohmann P, Friedrich M, Shah NJ, Caspers S, Lucas CW, Ruge MI, Galldiks N, Fink GR, Langen KJ, Kocher M. The impact of brain lesions on health-related quality of life in patients with WHO CNS grade 3 or 4 glioma: a lesion-function and resting-state fMRI analysis. J Neurooncol 2023; 161:643-654. [PMID: 36750534 PMCID: PMC9992025 DOI: 10.1007/s11060-023-04254-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE In glioma patients, tumor development and multimodality therapy are associated with changes in health-related quality of life (HRQoL). It is largely unknown how different types and locations of tumor- and treatment-related brain lesions, as well as their relationship to white matter tracts and functional brain networks, affect HRQoL. METHODS In 121 patients with pretreated gliomas of WHO CNS grades 3 or 4, structural MRI, O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET, resting-state functional MRI (rs-fMRI) and self-reported HRQoL questionnaires (EORTC QLQ-C30/BN20) were obtained. Resection cavities, T1-enhancing lesions, T2/FLAIR hyperintensities, and lesions with pathologically increased FET uptake were delineated. Effects of tumor lateralization, involvement of white matter tracts or resting-state network nodes by different types of lesions and within-network rs-fMRI connectivity were analyzed in terms of their interaction with HRQoL scores. RESULTS Right hemisphere gliomas were associated with significantly less favorable outcomes in physical, role, emotional and social functioning, compared with left-sided tumors. Most functional HRQoL scores correlated significantly with right-sided white-matter tracts involvement by T2/FLAIR hyperintensities and with loss of within-network functional connectivity of right-sided nodes. Tumors of the left hemisphere caused significantly more communication deficits. CONCLUSION In pretreated high-grade gliomas, right hemisphere lesions are associated with reduced HRQoL scores in most functional domains except communication ability, compared to tumors of the left hemisphere. These relationships are mainly observed for T2/FLAIR lesions involving structural and functional networks in the right hemisphere. The data suggest that sparing the right hemisphere from treatment-related tissue damage may improve HRQoL in glioma patients.
Collapse
Affiliation(s)
- Alexander Heinzel
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Department of Nuclear Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Christian Filss
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany
| | - Michel Friedrich
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany.,Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Institute for Anatomy I, Medical Faculty and, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Carolin Weiss Lucas
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of General Neurosurgery, Faculty of Medicine and, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I Ruge
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and, University Hospital Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Neurology, Faculty of Medicine and, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Neurology, Faculty of Medicine and, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine, Research Center Juelich, INM-1, -3, -4, -11, Juelich, Germany. .,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany. .,Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
252
|
Lee E, Lee EA, Kong E, Chon H, Llaiqui-Condori M, Park CH, Park BY, Kang NR, Yoo JS, Lee HS, Kim HS, Park SH, Choi SW, Vestweber D, Lee JH, Kim P, Lee WS, Kim I. An agonistic anti-Tie2 antibody suppresses the normal-to-tumor vascular transition in the glioblastoma invasion zone. Exp Mol Med 2023; 55:470-484. [PMID: 36828931 PMCID: PMC9981882 DOI: 10.1038/s12276-023-00939-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
Tumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity. Normal brain vessels underwent a gradual transition to severely impaired tumor vessels at the GBM periphery over several days. Increasing vasodilation from the tumor periphery to the tumor core was also found in human GBM. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) showed a spatial correlation with the extent of vascular abnormalities spanning the tumor-invading zone. Blockade of VEGFR2 suppressed vascular remodeling at the tumor periphery, confirming the role of VEGF-VEGFR2 signaling in the invasion-associated vascular transition. As angiopoietin-2 (ANGPT2) was expressed in only a portion of the central tumor vessels, we developed a ligand-independent tunica interna endothelial cell kinase 2 (Tie2)-activating antibody that can result in Tie2 phosphorylation in vivo. This agonistic anti-Tie2 antibody effectively normalized the vasculature in both the tumor periphery and tumor center, similar to the effects of VEGFR2 blockade. Mechanistically, this antibody-based Tie2 activation induced VE-PTP-mediated VEGFR2 dephosphorylation in vivo. Thus, our study reveals that the normal-to-tumor vascular transition is spatiotemporally associated with GBM invasion and may be controlled by Tie2 activation via a novel mechanism of action.
Collapse
Affiliation(s)
- Eunhyeong Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun-Ah Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Eunji Kong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haemin Chon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Melissa Llaiqui-Condori
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Cheon Ho Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Beom Yong Park
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Nu Ri Kang
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Jin-San Yoo
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea
| | - Hyun-Soo Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, 61463, Republic of Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seung-Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Dietmar Vestweber
- Max Planck Institute for Molecular Biomedicine, D-48149, Muenster, Germany
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.,SoVarGen, Inc., Daejeon, 34051, Republic of Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Graduate School of Nanoscience and Technology, Daejeon, 34141, Republic of Korea.,KI for Health Science and Technology, KAIST, Daejeon, 34141, Republic of Korea
| | - Weon Sup Lee
- R&D Center, PharmAbcine Inc., Daejeon, 34047, Republic of Korea.
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,BioMedical Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
253
|
Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in Glioblastoma. Cancers (Basel) 2023; 15:cancers15030830. [PMID: 36765787 PMCID: PMC9913517 DOI: 10.3390/cancers15030830] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant tumors of the central nervous system. Despite technological advancements and aggressive multimodal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A (VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its theoretical effectiveness, bevacizumab has failed to improve patients' overall survival. Furthermore, several other anti-angiogenic agents that target the VEGF signaling pathway have also not demonstrated survival improvement. This suggests the presence of other compensatory angiogenic signaling pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents, discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase the efficacy of this therapeutic approach.
Collapse
|
254
|
Ma Y, Wang Y, Nie C, Lin Y. The efficacy of targeted therapy combined with radiotherapy and temozolomide-based chemotherapy in the treatment of glioma: A systemic review and meta-analysis of phase II/III randomized controlled trials. Front Oncol 2023; 13:1082539. [PMID: 36776303 PMCID: PMC9909217 DOI: 10.3389/fonc.2023.1082539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Background Glioma is the most common intracranial tumor, accounting for about half of the primary intracranial tumors, with the characteristics of hidden onset and high mortality. Even after surgery, radiotherapy and chemotherapy, the prognosis of glioma is not ideal. Targeted therapy has developed rapidly in the treatment of other malignant tumors, which is also an important direction in the research and development of new therapies for glioma. So far, targeting combined with radiotherapy and chemotherapy have been used as the treatment of glioma in many clinical trials, but the role of targeted combined radiotherapy and chemotherapy in the treatment of glioma is still controversial. The purpose of this study was to evaluate the efficacy of targeted therapy combined with radiotherapy and temozolomide (TMZ)-based chemotherapy in the treatment of glioma. Methods Phase II or phase III clinical trials involving targeted therapy combined with radiotherapy and chemotherapy and temozolomide-based radiotherapy and chemotherapy for gliomas were searched using PubMed, Embase and Web of Science databases, and a comprehensive meta-analysis was conducted. The primary outcome was overall survival time (OS) and progression-free survival time (PFS), and the secondary outcome was adverse reaction. The time-to-event data is summarized as hazard ratio (HR), and the binary results are summarized as odds ratio (OR). Two researchers conducted literature screening, data extraction and quality evaluation according to inclusion and exclusion criteria. Stata16.0 software was used for analysis, random effect model was used for data merging, and forest map was used for display. Results A total of 11 eligible literatures and 12 prospective randomized controlled clinical trials of 1284 cases were included in the meta-analysis. The results showed that compared with radiotherapy and chemotherapy alone, targeted drugs combined with temozolomide-based radiotherapy and chemotherapy could significantly improve OS in phase II trial, but there was no improvement in Phase III trial, and PFS of newly diagnosed glioma patients was improved (HR=0.82(0.71-0.94) 95%CI, p =0.005). The PFS of the third phase of the experiment also improved. Compared with radiotherapy and chemotherapy alone, there was no statistically significant increase in adverse events in targeted combined radiotherapy and chemotherapy group. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022326012.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yue Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chen Nie
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Chen Nie, ; Yongzhong Lin,
| | - Yongzhong Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Chen Nie, ; Yongzhong Lin,
| |
Collapse
|
255
|
Pineda E, Domenech M, Hernández A, Comas S, Balaña C. Recurrent Glioblastoma: Ongoing Clinical Challenges and Future Prospects. Onco Targets Ther 2023; 16:71-86. [PMID: 36721854 PMCID: PMC9884437 DOI: 10.2147/ott.s366371] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Virtually all glioblastomas treated in the first-line setting will recur in a short period of time, and the search for alternative effective treatments has so far been unsuccessful. Various obstacles remain unresolved, and no effective salvage therapy for recurrent glioblastoma can be envisaged in the short term. One of the main impediments to progress is the low incidence of the disease itself in comparison with other pathologies, which will be made even lower by the recent WHO classification of gliomas, which includes molecular alterations. This new classification helps refine patient prognosis but does not clarify the most appropriate treatment. Other impediments are related to clinical trials: glioblastoma patients are often excluded from trials due to their advanced age and limiting neurological symptoms; there is also the question of how best to measure treatment efficacy, which conditions the design of trials and can affect the acceptance of results by oncologists and medicine agencies. Other obstacles are related to the drugs themselves: most treatments cannot cross the blood-brain-barrier or the brain-to-tumor barrier to reach therapeutic drug levels in the tumor without producing toxicity; the drugs under study may have adverse metabolic interactions with those required for symptom control; identifying the target of the drug can be a complex issue. Additionally, the optimal method of treatment - local vs systemic therapy, the choice of chemotherapy, irradiation, targeted therapy, immunotherapy, or a combination thereof - is not yet clear in glioblastoma in comparison with other cancers. Finally, in addition to curing or stabilizing the disease, glioblastoma therapy should aim at maintaining the neurological status of the patients to enable them to return to their previous lifestyle. Here we review currently available treatments, obstacles in the search for new treatments, and novel lines of research that show promise for the future.
Collapse
Affiliation(s)
- Estela Pineda
- Medical Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Ainhoa Hernández
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona, Spain
| | - Carmen Balaña
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Barcelona, Spain,Correspondence: Carmen Balaña, Institut Catala d’Oncologia (ICO) Badalona, Carretera Canyet s/n, Badalona, 08916, Spain, Tel +34 497 89 25, Fax +34 497 89 50, Email
| |
Collapse
|
256
|
Ghosh S, Huang J, Inkman M, Zhang J, Thotala S, Tikhonova E, Miheecheva N, Frenkel F, Ataullakhanov R, Wang X, DeNardo D, Hallahan D, Thotala D. Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Sci Transl Med 2023; 15:eabn6758. [PMID: 36696484 PMCID: PMC10501302 DOI: 10.1126/scitranslmed.abn6758] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Severe and prolonged lymphopenia frequently occurs in patients with glioblastoma after standard chemoradiotherapy and has been associated with worse survival, but its underlying biological mechanism is not well understood. To address this, we performed a correlative study in which we collected and analyzed peripheral blood of patients with glioblastoma (n = 20) receiving chemoradiotherapy using genomic and immune monitoring technologies. RNA sequencing analysis of the peripheral blood mononuclear cells (PBMC) showed an elevated concentration of myeloid-derived suppressor cell (MDSC) regulatory genes in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Additional analysis including flow cytometry and single-cell RNA sequencing further confirmed increased numbers of circulating MDSC in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Preclinical murine models were also established and demonstrated a causal relationship between radiation-induced MDSC and systemic lymphopenia using transfusion and depletion experiments. Pharmacological inhibition of MDSC using an arginase-1 inhibitor (CB1158) or phosphodiesterase-5 inhibitor (tadalafil) during radiation therapy (RT) successfully abrogated radiation-induced lymphopenia and improved survival in the preclinical models. CB1158 and tadalafil are promising drugs in reducing radiation-induced lymphopenia in patients with glioblastoma. These results demonstrate the promise of using these classes of drugs to reduce treatment-related lymphopenia and immunosuppression.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sukrutha Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - David DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
257
|
Intranasal delivery of full-length anti-Nogo-A antibody: A potential alternative route for therapeutic antibodies to central nervous system targets. Proc Natl Acad Sci U S A 2023; 120:e2200057120. [PMID: 36649432 PMCID: PMC9942809 DOI: 10.1073/pnas.2200057120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Antibody delivery to the CNS remains a huge hurdle for the clinical application of antibodies targeting a CNS antigen. The blood-brain barrier and blood-CSF barrier restrict access of therapeutic antibodies to their CNS targets in a major way. The very high amounts of therapeutic antibodies that are administered systemically in recent clinical trials to reach CNS targets are barely viable cost-wise for broad, routine applications. Though global CNS delivery of antibodies can be achieved by intrathecal application, these procedures are invasive. A non-invasive method to bring antibodies into the CNS reliably and reproducibly remains an important unmet need in neurology. In the present study, we show that intranasal application of a mouse monoclonal antibody against the neurite growth-inhibiting and plasticity-restricting membrane protein Nogo-A leads to a rapid transfer of significant amounts of antibody to the brain and spinal cord in intact adult rats. Daily intranasal application for 2 wk of anti-Nogo-A antibody enhanced growth and compensatory sprouting of corticofugal projections and functional recovery in rats after large unilateral cortical strokes. These findings are a starting point for clinical translation for a less invasive route of application of therapeutic antibodies to CNS targets for many neurological indications.
Collapse
|
258
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524504. [PMID: 36789415 PMCID: PMC9928061 DOI: 10.1101/2023.01.18.524504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
|
259
|
Johanssen T, McVeigh L, Erridge S, Higgins G, Straehla J, Frame M, Aittokallio T, Carragher NO, Ebner D. Glioblastoma and the search for non-hypothesis driven combination therapeutics in academia. Front Oncol 2023; 12:1075559. [PMID: 36733367 PMCID: PMC9886867 DOI: 10.3389/fonc.2022.1075559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma (GBM) remains a cancer of high unmet clinical need. Current standard of care for GBM, consisting of maximal surgical resection, followed by ionisation radiation (IR) plus concomitant and adjuvant temozolomide (TMZ), provides less than 15-month survival benefit. Efforts by conventional drug discovery to improve overall survival have failed to overcome challenges presented by inherent tumor heterogeneity, therapeutic resistance attributed to GBM stem cells, and tumor niches supporting self-renewal. In this review we describe the steps academic researchers are taking to address these limitations in high throughput screening programs to identify novel GBM combinatorial targets. We detail how they are implementing more physiologically relevant phenotypic assays which better recapitulate key areas of disease biology coupled with more focussed libraries of small compounds, such as drug repurposing, target discovery, pharmacologically active and novel, more comprehensive anti-cancer target-annotated compound libraries. Herein, we discuss the rationale for current GBM combination trials and the need for more systematic and transparent strategies for identification, validation and prioritisation of combinations that lead to clinical trials. Finally, we make specific recommendations to the preclinical, small compound screening paradigm that could increase the likelihood of identifying tractable, combinatorial, small molecule inhibitors and better drug targets specific to GBM.
Collapse
Affiliation(s)
- Timothy Johanssen
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura McVeigh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, United Kingdom
| | - Geoffrey Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Joelle Straehla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, United States
| | - Margaret Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Neil O. Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
260
|
Scherm A, Ippen FM, Hau P, Baurecht H, Wick W, Gempt J, Knüttel H, Leitzmann MF, Seliger C. Targeted therapies in patients with newly diagnosed glioblastoma-A systematic meta-analysis of randomized clinical trials. Int J Cancer 2023; 152:2373-2382. [PMID: 36647335 DOI: 10.1002/ijc.34433] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023]
Abstract
Glioblastoma (GB) is the most common malignant primary brain tumor in adults. The standard of care for newly diagnosed GB involves surgical resection followed by radiochemotherapy with temozolomide, with or without tumor-treating fields. In recent years, various efforts have been made to identify suitable molecularly targeted treatment options for malignant brain tumors. This meta-analysis provides an overview of recently published randomized controlled trials (RCTs) with and without molecular stratification, analyzing targeted agents in patients with newly diagnosed GB. The Cochrane Library, MEDLINE (Ovid), ClinicalTrials.gov, WHO's International Clinical Trials Registry Platform, and Google Scholar were searched for RCTs on targeted therapies in patients with newly diagnosed glioblastoma. Hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) were extracted and pooled in a random-effects meta-analysis. Twelve RCTs (n = 3941 patients) involving protein kinase inhibitors, proteasome and histone deacetylase inhibitors, anti-angiogenic approaches and poly (ADP-ribose) polymerase (PARP) inhibitors were included in the meta-analysis. None of the targeted agents achieved a significant benefit with regard to OS (HR = 0.98 [95% confidence interval (CI) 0.86-1.11, P = .7731]). By comparison, targeted therapy showed a benefit for PFS (HR = 0.83 [95% CI 0.74-0.94, P = .0037]), especially for patients with an unmethylated O6-methylguanine-DNA-methyltransferase (MGMT) promoter (0.75 [95% CI 0.56-0.99, P = .0440]). Prolongation of PFS was largely driven by VEGF inhibition with bevacizumab (HR = 0.70 [95% CI 0.61-0.80, P = .0000]). VEGF inhibition with bevacizumab prolonged PFS in patients with newly diagnosed glioblastoma compared to standard care. However, no improvement in OS was observed with any of the targeted agents.
Collapse
Affiliation(s)
- Angelika Scherm
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | | | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, Regensburg University Hospital, Regensburg, Germany
| | - Hansjörg Baurecht
- Institute of Epidemiology and Preventive Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Research Center (DKFZ) & German Cancer Center (DKTK), Heidelberg, Germany
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helge Knüttel
- University Library, Regensburg University, Regensburg, Germany
| | - Michael F Leitzmann
- Institute of Epidemiology and Preventive Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Corinna Seliger
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
261
|
Kotecha R, Odia Y, Khosla AA, Ahluwalia MS. Key Clinical Principles in the Management of Glioblastoma. JCO Oncol Pract 2023; 19:180-189. [PMID: 36638331 DOI: 10.1200/op.22.00476] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in the adult population and leads to considerable morbidity and mortality. It has a dismal prognosis with average survival of 15-18 months, and the current standard-of-care treatment paradigm includes maximal surgical resection and postoperative concurrent chemoradiotherapy and maintenance chemotherapy, with consideration of Tumor Treating Fields. There is a major emphasis to enroll patients onto ongoing clinical trials to further improve treatment outcomes, given the aggressive nature of the disease course and poor patient survival. Recent research efforts have focused on radiotherapy dose intensification, regulation of the tumor microenvironment, and exploration of immunotherapeutic approaches to overcome the barriers to treatment. This review article outlines the current evidence-based management principles as well as reviews recent clinical trial data and ongoing clinical studies evaluating novel therapeutic options.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.,Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL.,Division of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Atulya A Khosla
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL.,Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
262
|
Wang R, Peng L, Xiao Y, Zhou Q, Wang Z, Tang L, Xiao H, Yang K, Liu H, Li L. Single-cell RNA sequencing reveals changes in glioma-associated macrophage polarization and cellular states of malignant gliomas with high AQP4 expression. Cancer Gene Ther 2023; 30:716-726. [PMID: 36599974 DOI: 10.1038/s41417-022-00582-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Glioma is the most common primary central nervous system tumor in adults. Aquaporin-4, as a water channel protein encoded by AQP4 in the brain, is reported to alter its aggregation status to affect plasma membrane dynamics and provide the potential for metastasis of tumor cells and components of the tumor microenvironment. We performed single-cell RNA transcriptome sequencing of 53059 cells from 13 malignant glioma samples and spotted that the expression of AQP4 differed between samples. The same result was observed in the TCGA glioma database, showing poor overall survival and poor response to chemotherapy in AQP4 overexpressed populations. Concomitant with the overexpression of AQP4, genes related to the immune system were also over-expressed, such as CD74, HES1, CALD1, and HEBP2, indicating AQP4 may relate to immune factors of tumor progression. We also found that tumor-associated macrophages tended to polarize toward M2 macrophages in the high AQP4 group. In glioblastoma samples, we examined cell status differences and identified that cell status differs according to AQP4 expression levels. Briefly, our study revealed substantial heterogeneity within malignant gliomas with different AQP4 expression levels, indicating the intricate connection between tumor cells and the tumor immune environment.
Collapse
Affiliation(s)
- Ran Wang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Peng
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Xiao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Zhou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Tang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
263
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
264
|
Potent bystander effect and tumor tropism in suicide gene therapy using stem cells from human exfoliated deciduous teeth. Cancer Gene Ther 2023; 30:85-95. [PMID: 36076062 DOI: 10.1038/s41417-022-00527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 01/20/2023]
Abstract
Herpes simplex virus thymidine kinase (HSVTK)/ganciclovir (GCV) suicide gene therapy has a long history of treating malignant gliomas. Recently, stem cells from human exfoliated deciduous teeth (SHED), which are collected from deciduous teeth and have excellent harvestability, ethical aspects, and self-renewal, have been attracting attention mainly in the field of gene therapy. In the present study, we assessed SHED as a novel cellular vehicle for suicide gene therapy in malignant gliomas, as we have previously demonstrated with various cell types. SHED was transduced with the HSVTK gene (SHEDTK). In vitro experiments showed a significant bystander effect between SHEDTK and glioma cell lines in coculture. Furthermore, apoptotic changes caused by caspase 3/7 activation were simultaneously observed in SHEDTK and glioma cells. Mice implanted with a mixture of U87 and SHEDTK and treated with intraperitoneal GCV survived for longer than 100 days. Additionally, tumors in treatment model mice were significantly reduced in size during the treatment period. SHEDTK implanted at the contralateral hemisphere migrated toward the tumor crossing the corpus callosum. These results suggested that SHEDTK-based suicide gene therapy has potent tumor tropism and a bystander-killing effect, potentially offering a new promising therapeutic modality for malignant gliomas.
Collapse
|
265
|
Alcaniz J, Winkler L, Dahlmann M, Becker M, Orthmann A, Haybaeck J, Krassnig S, Skofler C, Kratzsch T, Kuhn SA, Jödicke A, Linnebacher M, Fichtner I, Walther W, Hoffmann J. Clinically relevant glioblastoma patient-derived xenograft models to guide drug development and identify molecular signatures. Front Oncol 2023; 13:1129627. [PMID: 37114125 PMCID: PMC10126369 DOI: 10.3389/fonc.2023.1129627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) heterogeneity, aggressiveness and infiltrative growth drastically limit success of current standard of care drugs and efficacy of various new therapeutic approaches. There is a need for new therapies and models reflecting the complex biology of these tumors to analyze the molecular mechanisms of tumor formation and resistance, as well as to identify new therapeutic targets. We established and screened a panel of 26 patient-derived subcutaneous (s.c.) xenograft (PDX) GBM models on immunodeficient mice, of which 15 were also established as orthotopic models. Sensitivity toward a drug panel, selected for their different modes of action, was determined. Best treatment responses were observed for standard of care temozolomide, irinotecan and bevacizumab. Matching orthotopic models frequently show reduced sensitivity, as the blood-brain barrier limits crossing of the drugs to the GBM. Molecular characterization of 23 PDX identified all of them as IDH-wt (R132) with frequent mutations in EGFR, TP53, FAT1, and within the PI3K/Akt/mTOR pathway. Their expression profiles resemble proposed molecular GBM subtypes mesenchymal, proneural and classical, with pronounced clustering for gene sets related to angiogenesis and MAPK signaling. Subsequent gene set enrichment analysis identified hallmark gene sets of hypoxia and mTORC1 signaling as enriched in temozolomide resistant PDX. In models sensitive for mTOR inhibitor everolimus, hypoxia-related gene sets reactive oxygen species pathway and angiogenesis were enriched. Our results highlight how our platform of s.c. GBM PDX can reflect the complex, heterogeneous biology of GBM. Combined with transcriptome analyses, it is a valuable tool in identification of molecular signatures correlating with monitored responses. Available matching orthotopic PDX models can be used to assess the impact of the tumor microenvironment and blood-brain barrier on efficacy. Our GBM PDX panel therefore represents a valuable platform for screening regarding molecular markers and pharmacologically active drugs, as well as optimizing delivery of active drugs to the tumor.
Collapse
Affiliation(s)
- Joshua Alcaniz
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- *Correspondence: Joshua Alcaniz,
| | - Lars Winkler
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | | | - Michael Becker
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Andrea Orthmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Johannes Haybaeck
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
- Institute of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Krassnig
- Department of Neuropathology, Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Tobias Kratzsch
- Department of Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| | - Susanne A. Kuhn
- Department of Neurosurgery, Ernst von Bergmann Hospital, Potsdam, Germany
| | - Andreas Jödicke
- Department of Neurosurgery, Vivantes Hospital Berlin Neukölln, Berlin, Germany
| | - Michael Linnebacher
- Department of Surgery, Molecular Oncology and Immunotherapy, University Medical Center Rostock, Rostock, Germany
| | - Iduna Fichtner
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Wolfgang Walther
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Jens Hoffmann
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| |
Collapse
|
266
|
Peng X, Zhang S, Wang Y, Zhou Z, Yu Z, Zhong Z, Zhang L, Chen Z, Claret FX, Elkabets M, Wang F, Sun F, Wang R, Liang H, Lin H, Kong D. Stellettin B Sensitizes Glioblastoma to DNA-Damaging Treatments by Suppressing PI3K-Mediated Homologous Recombination Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205529. [PMID: 36453577 PMCID: PMC9875605 DOI: 10.1002/advs.202205529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 06/02/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of cancer. Its current first-line postsurgery regimens are radiotherapy and temozolomide (TMZ) chemotherapy, both of which are DNA damage-inducing therapies but show very limited efficacy and a high risk of resistance. There is an urgent need to develop novel agents to sensitize GBM to DNA-damaging treatments. Here it is found that the triterpene compound stellettin B (STELB) greatly enhances the sensitivity of GBM to ionizing radiation and TMZ in vitro and in vivo. Mechanistically, STELB inhibits the expression of homologous recombination repair (HR) factors BRCA1/2 and RAD51 by promoting the degradation of PI3Kα through the ubiquitin-proteasome pathway; and the induced HR deficiency then leads to augmented DNA damage and cell death. It is further demonstrated that STELB has the potential to rapidly penetrate the blood-brain barrier to exert anti-GBM effects in the brain, based on zebrafish and nude mouse orthotopic xenograft tumor models. The study provides strong evidence that STELB represents a promising drug candidate to improve GBM therapy in combination with DNA-damaging treatments.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhicheng Zhou
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Liang Zhang
- Department of Pharmacology and Chemical BiologyState Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Francois X. Claret
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Fan Sun
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Ran Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Han Liang
- Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Hou‐Wen Lin
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200127China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| |
Collapse
|
267
|
Batchelor TT, Won M, Chakravarti A, Hadjipanayis CG, Shi W, Ashby LS, Stieber VW, Robins HI, Gray HJ, Voloschin A, Fiveash JB, Robinson CG, Chamarthy U, Kwok Y, Cescon TP, Sharma AK, Chaudhary R, Polley MY, Mehta MP. NRG/RTOG 0837: Randomized, phase II, double-blind, placebo-controlled trial of chemoradiation with or without cediranib in newly diagnosed glioblastoma. Neurooncol Adv 2023; 5:vdad116. [PMID: 38024244 PMCID: PMC10660192 DOI: 10.1093/noajnl/vdad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Background A randomized, phase II, placebo-controlled, and blinded clinical trial (NCT01062425) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, versus placebo in combination with radiation and temozolomide in newly diagnosed glioblastoma. Methods Patients with newly diagnosed glioblastoma were randomly assigned 2:1 to receive (1) cediranib (20 mg) in combination with radiation and temozolomide; (2) placebo in combination with radiation and temozolomide. The primary endpoint was 6-month progression-free survival (PFS) based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted MRI brain scans and was tested using a 1-sided Z test for 2 proportions. Adverse events (AEs) were evaluated per CTCAE version 4. Results One hundred and fifty-eight patients were randomized, out of which 9 were ineligible and 12 were not evaluable for the primary endpoint, leaving 137 eligible and evaluable. 6-month PFS was 46.6% in the cediranib arm versus 24.5% in the placebo arm (P = .005). There was no significant difference in overall survival between the 2 arms. There was more grade ≥ 3 AEs in the cediranib arm than in the placebo arm (P = .02). Conclusions This study met its primary endpoint of prolongation of 6-month PFS with cediranib in combination with radiation and temozolomide versus placebo in combination with radiation and temozolomide. There was no difference in overall survival between the 2 arms.
Collapse
Affiliation(s)
- Tracy T Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Minhee Won
- Department of Statistics, NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Costas G Hadjipanayis
- Department of Neuro-Oncology, Neurosurgery, University of Pittsburgh Medical Center, Pittsburg, Pennsylvania, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Lynn S Ashby
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Volker W Stieber
- Department of Radiation Oncology, Novant Health Forsyth Medical Center, Winston-Salem, North Carolina, USA
| | - H Ian Robins
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Heidi J Gray
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, Washington, USA
| | - Alfredo Voloschin
- Department of Neuro-Oncology, Orlando Health Cancer Institute, Orlando, Florida, USA
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham Medical Center, Birmingham, Alabama, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University, St. Louis, Missouri, USA
| | - UshaSree Chamarthy
- Department of Medical Oncology/Hematology, Sparrow HH Cancer Center, Lansing, Michigan, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland Medical Systems, Baltimore, Maryland, USA
| | - Terrence P Cescon
- Department of Hematology, Reading Hospital, Reading, Pennsylvania, USA
| | - Anand K Sharma
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rekha Chaudhary
- Department of Hematology Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mei-Yin Polley
- Department of Statistics, NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania, USA
- Department of Statistics, University of Chicago, Chicago, Illinois, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA (M.P.M.)
| |
Collapse
|
268
|
Harari-Turquie M, Moturi KR, Horton DD, Rabinowitz I. The Equipoise Between the Treatment of Glioblastoma and the Risk of Secondary Acute Myelogenous Leukemia: An Illustrative Case Report. J Investig Med High Impact Case Rep 2023; 11:23247096231193266. [PMID: 37596951 PMCID: PMC10440052 DOI: 10.1177/23247096231193266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/21/2023] Open
Abstract
We present a case report of a 56-year-old woman who was diagnosed with biopsy-proven left thalamic glioblastoma multiforme (GBM). She was treated with standard concurrent chemotherapy and radiation, as well as a 2-year period of adjuvant temozolomide. She relapsed 2 ½ years after starting her initial therapy and was treated with bevacizumab and lomustine, but she relapsed. She was then placed on a phase 1/2 clinical trial that included KHK2455 and mogamulizumab-kpkc individually and in combination for almost 4 years. She had a rapid demise due to the development of a neutropenic pneumonia and treatment-induced acute myeloid leukemia (AML) and elected for hospice care.
Collapse
|
269
|
Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, Tran DD, Ansstas G, Cobbs CS, Heth JA, Salacz ME, D’Andre S, Aiken RD, Moshel YA, Nam JY, Pillainayagam CP, Wagner SA, Walter KA, Chaudhary R, Goldlust SA, Lee IY, Bota DA, Elinzano H, Grewal J, Lillehei K, Mikkelsen T, Walbert T, Abram S, Brenner AJ, Ewend MG, Khagi S, Lovick DS, Portnow J, Kim L, Loudon WG, Martinez NL, Thompson RC, Avigan DE, Fink KL, Geoffroy FJ, Giglio P, Gligich O, Krex D, Lindhorst SM, Lutzky J, Meisel HJ, Nadji-Ohl M, Sanchin L, Sloan A, Taylor LP, Wu JK, Dunbar EM, Etame AB, Kesari S, Mathieu D, Piccioni DE, Baskin DS, Lacroix M, May SA, New PZ, Pluard TJ, Toms SA, Tse V, Peak S, Villano JL, Battiste JD, Mulholland PJ, Pearlman ML, Petrecca K, Schulder M, Prins RM, Boynton AL, Bosch ML. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncol 2023; 9:112-121. [PMID: 36394838 PMCID: PMC9673026 DOI: 10.1001/jamaoncol.2022.5370] [Citation(s) in RCA: 171] [Impact Index Per Article: 171.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022]
Abstract
Importance Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration ClinicalTrials.gov Identifier: NCT00045968.
Collapse
Affiliation(s)
- Linda M. Liau
- Department of Neurosurgery, University of California, Los Angeles
| | | | - Steven Brem
- Department of Neurosurgery, Penn Brain Tumor Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jian L. Campian
- Division of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - John E. Trusheim
- Givens Brain Tumor Center, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - Fabio M. Iwamoto
- Columbia University Irving Medical Center, New York, New York
- New York-Presbyterian Hospital, New York, New York
| | - David D. Tran
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, University of Florida College of Medicine, Gainesville
| | - George Ansstas
- Department of Neurological Surgery, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Charles S. Cobbs
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Medical Center, Seattle, Washington
| | - Jason A. Heth
- Taubman Medical Center, University of Michigan, Ann Arbor
| | - Michael E. Salacz
- Neuro-Oncology Program, Rutgers Cancer Institute of New Jersey, New Brunswick
| | | | - Robert D. Aiken
- Glasser Brain Tumor Center, Atlantic Healthcare, Summit, New Jersey
| | - Yaron A. Moshel
- Glasser Brain Tumor Center, Atlantic Healthcare, Summit, New Jersey
| | - Joo Y. Nam
- Department of Neurological Sciences, Rush Medical College, Chicago, Illinois
| | | | | | | | | | - Samuel A. Goldlust
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Daniela A. Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, University of California, Irvine
| | | | - Jai Grewal
- Long Island Brain Tumor Center at NSPC, Lake Success, New York
| | - Kevin Lillehei
- Department of Neurosurgery, University of Colorado Health Sciences Center, Boulder
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Steven Abram
- Ascension St Thomas Brain and Spine Tumor Center, Howell Allen Clinic, Nashville, Tennessee
| | | | - Matthew G. Ewend
- Department of Neurosurgery, UNC School of Medicine and UNC Health, Chapel Hill, North Carolina
| | - Simon Khagi
- The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California
| | - Lyndon Kim
- Division of Neuro-Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Nina L. Martinez
- Jefferson Hospital for Neurosciences, Jefferson University, Philadelphia, Pennsylvania
| | - Reid C. Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David E. Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts
| | - Karen L. Fink
- Baylor Scott & White Neuro-Oncology Associates, Dallas, Texas
| | | | - Pierre Giglio
- Medical University of South Carolina Neurosciences, Charleston
| | - Oleg Gligich
- Mount Sinai Medical Center, Miami Beach, Florida
| | | | - Scott M. Lindhorst
- Hollings Cancer Center, Medical University of South Carolina, Charleston
| | - Jose Lutzky
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | | | - Minou Nadji-Ohl
- Neurochirurgie Katharinenhospital, Klinikum der Landeshauptstadt Stuttgart, Stuttgart, Germany
| | | | - Andrew Sloan
- Seidman Cancer Center, University Hospitals–Cleveland Medical Center, Cleveland, Ohio
| | - Lynne P. Taylor
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Julian K. Wu
- Department of Neurosurgery, Tufts Medical Center, Boston, Massachusetts
| | - Erin M. Dunbar
- Piedmont Physicians Neuro-Oncology, Piedmont Brain Tumor Center, Atlanta, Georgia
| | | | - Santosh Kesari
- Pacific Neurosciences Institute and Saint John’s Cancer Institute, Santa Monica, California
| | - David Mathieu
- Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - David S. Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| | - Michel Lacroix
- Geisinger Neuroscience Institute, Danville, Pennsylvania
| | | | | | | | - Steven A. Toms
- Departments of Neurosurgery and Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Victor Tse
- Kaiser Permanente, Redwood City, California
| | - Scott Peak
- Kaiser Permanente, Redwood City, California
| | - John L. Villano
- University of Kentucky Markey Cancer Center, Department of Medicine, Neurosurgery, and Neurology, University of Kentucky, Lexington
| | | | | | | | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Uniondale, New York
| | | | | | | |
Collapse
|
270
|
Margalit O, Harmsen WS, Shacham-Shmueli E, Voss MM, Boursi B, Wagner AD, Cohen R, Olswold CL, Saltz LB, Goldstein DA, Hurwitz H, Tebbutt NC, Kabbinavar FF, Adams RA, Chibaudel B, Grothey A, Yoshino T, Zalcberg J, de Gramont A, Shi Q, Lenz HJ. Evaluating sex as a predictive marker for response to bevacizumab in metastatic colorectal carcinoma: Pooled analysis of 3,369 patients in the ARCAD database. Eur J Cancer 2023; 178:162-170. [PMID: 36446161 DOI: 10.1016/j.ejca.2022.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Previous studies suggest a possible sex-specific response to bevacizumab in metastatic colorectal carcinoma (mCRC), showing a benefit in males, while the effect in females is less significant. METHODS Data from 3369 patients with mCRC enrolled on four first-line randomised trials testing chemotherapy with or without bevacizumab (2000-2007) were pooled. Association between sex and progression-free survival and overall survival (OS) was evaluated by stratified Cox regression model, adjusted for potential confounders. Predictive value was evaluated by interaction effect between sex and treatment. In a pre-planned secondary analysis, analyses were stratified using an age cut point of 60 years to evaluate the possible role of menopausal-related effects. RESULTS Bevacizumab was associated with an improved median OS in males and females, with a 2.3- and 0.6-months benefit, respectively. Stratified by age, bevacizumab resulted in improved OS in males at both age categories. In females at or above the age of 60 (n = 731), bevacizumab resulted in improved OS. However, in females below the age of 60 (n = 634), OS benefit did not reach statistical significance (adjusted hazard ratio = 0.94, 95% confidence interval 0.74-1.20). CONCLUSIONS Our results confirmed the OS benefit from the addition of bevacizumab to first-line chemotherapy in mCRC in both sexes. Among females, the benefit was less than 1 month. For females under the age of 60, there was no survival benefit. These findings could be used to relieve financial toxicity or be redistributed within healthcare systems for other health-related purposes.
Collapse
Affiliation(s)
- Ofer Margalit
- Sheba Medical Center, Ramat-Gan, Israel; Tel-Aviv University, Tel-Aviv, Israel.
| | - William S Harmsen
- Department of Quantitative Science Research, Mayo Clinic, Rochester, MN, USA
| | | | - Molly M Voss
- Department of Quantitative Science Research, Mayo Clinic, Scottsdale, AZ, USA
| | - Ben Boursi
- Sheba Medical Center, Ramat-Gan, Israel; Tel-Aviv University, Tel-Aviv, Israel
| | - Anna D Wagner
- Department of Oncology, Division of Medical Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Romain Cohen
- Department of Quantitative Science Research, Mayo Clinic, Rochester, MN, USA; Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, F-75012 Paris, France; Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, F-75012 Paris, France
| | - Curtis L Olswold
- Department of Quantitative Science Research, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Niall C Tebbutt
- University of Melbourne, Australia; Austin Health, Heidelberg, Victoria, Australia
| | - Fairooz F Kabbinavar
- David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | | | - Benoist Chibaudel
- Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
| | | | - Takayuki Yoshino
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Japan
| | - John Zalcberg
- Department of Medical Oncology, Alfred Health and School of Public Health, Monash University, Melbourne, Australia
| | - Aimery de Gramont
- Department of Medical Oncology, Franco-British Institute, Levallois-Perret, France
| | - Qian Shi
- Department of Quantitative Science Research, Mayo Clinic, Rochester, MN, USA
| | - Heinz-Josef Lenz
- Department of Gastrointestinal Oncology, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
271
|
Zhao S, Chi H, Yang Q, Chen S, Wu C, Lai G, Xu K, Su K, Luo H, Peng G, Xia Z, Cheng C, Lu P. Identification and validation of neurotrophic factor-related gene signatures in glioblastoma and Parkinson's disease. Front Immunol 2023; 14:1090040. [PMID: 36825022 PMCID: PMC9941742 DOI: 10.3389/fimmu.2023.1090040] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common cancer of the central nervous system, while Parkinson's disease (PD) is a degenerative neurological condition frequently affecting the elderly. Neurotrophic factors are key factors associated with the progression of degenerative neuropathies and gliomas. Methods The 2601 neurotrophic factor-related genes (NFRGs) available in the Genecards portal were analyzed and 12 NFRGs with potential roles in the pathogenesis of Parkinson's disease and the prognosis of GBM were identified. LASSO regression and random forest algorithms were then used to screen the key NFRGs. The correlation of the key NFRGs with immune pathways was verified using GSEA (Gene Set Enrichment Analysis). A prognostic risk scoring system was constructed using LASSO (Least absolute shrinkage and selection operator) and multivariate Cox risk regression based on the expression of the 12 NFRGs in the GBM cohort from The Cancer Genome Atlas (TCGA) database. We also investigated differences in clinical characteristics, mutational landscape, immune cell infiltration, and predicted efficacy of immunotherapy between risk groups. Finally, the accuracy of the model genes was validated using multi-omics mutation analysis, single-cell sequencing, QT-PCR, and HPA. Results We found that 4 NFRGs were more reliable for the diagnosis of Parkinson's disease through the use of machine learning techniques. These results were validated using two external cohorts. We also identified 7 NFRGs that were highly associated with the prognosis and diagnosis of GBM. Patients in the low-risk group had a greater overall survival (OS) than those in the high-risk group. The nomogram generated based on clinical characteristics and risk scores showed strong prognostic prediction ability. The NFRG signature was an independent prognostic predictor for GBM. The low-risk group was more likely to benefit from immunotherapy based on the degree of immune cell infiltration, expression of immune checkpoints (ICs), and predicted response to immunotherapy. In the end, 2 NFRGs (EN1 and LOXL1) were identified as crucial for the development of Parkinson's disease and the outcome of GBM. Conclusions Our study revealed that 4 NFRGs are involved in the progression of PD. The 7-NFRGs risk score model can predict the prognosis of GBM patients and help clinicians to classify the GBM patients into high and low risk groups. EN1, and LOXL1 can be used as therapeutic targets for personalized immunotherapy for patients with PD and GBM.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenxi Wu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Ke Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People's Hospital, Nanchong, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peihua Lu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.,Department of Clinical Research Center, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
272
|
Oster C, Schmidt T, Agkatsev S, Lazaridis L, Kleinschnitz C, Sure U, Scheffler B, Kebir S, Glas M. Are we providing best-available care to newly diagnosed glioblastoma patients? Systematic review of phase III trials in newly diagnosed glioblastoma 2005-2022. Neurooncol Adv 2023; 5:vdad105. [PMID: 37811538 PMCID: PMC10558397 DOI: 10.1093/noajnl/vdad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Background Glioblastoma is the most aggressive primary brain cancer with a poor prognosis. Despite numerous studies in the past 17 years, effective treatment options for glioblastoma remain limited. In this study, we aimed to identify and compare phase III clinical trials for glioblastoma in terms of efficacy and baseline characteristics. Methods A systematic literature search was conducted using PubMed and ClinicalTrials.gov to identify phase III clinical trials for glioblastoma in adult patients. The target population included adult patients aged 18 years and above (younger cohort) and patients ≥60 years of age (elderly cohort). The search results were screened based on predefined inclusion criteria, and the included trials were analyzed for their study design, baseline characteristics, and survival results. Results Eleven trials met the inclusion criteria in the younger cohort. Of these, three reported a statistically significant improvement in overall survival (OS), including the EORTC/NCIC study (NCT00006353), EF-14 (NCT00916409), and CeTeG (NCT01149109). Of the 11 trials, eight were open-label randomized trials, including all of the positive ones, while three negative trials employed treatment blinding and a placebo control. The baseline characteristics of the trials [such as extent of resection, age, gender, and O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status] did not significantly differ between positive and negative trials. Isocitrate dehydrogenase (IDH) mutation status was analyzed in only two trials, with a small percentage of IDH-mutated tumors in each. Additionally, three more trials in the elderly cohort showed a statistically significant improvement of OS, the NOA-08 trial, the ISRCTN81470623-trial by Malmström et al. and NCT00482677-trial by Perry et al. Their baseline characteristics and implications are also analyzed. Conclusion This analysis of phase III clinical trials for glioblastoma conducted since 2005 showed that the majority of trials did not result in a significant improvement in OS. Among the trials included in this analysis, only the EORTC/NCIC, EF-14, and CeTeG studies demonstrated a positive OS outcome in the younger cohort.
Collapse
Affiliation(s)
- Christoph Oster
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Teresa Schmidt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Sarina Agkatsev
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Lazaros Lazaridis
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Sied Kebir
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Glas
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Division of Clinical Neurooncology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner Site, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
273
|
Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1838. [PMID: 35959642 DOI: 10.1002/wnan.1838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most common and fatal form of primary invasive brain tumors as it affects a great number of patients each year and has a median overall survival of approximately 14.6 months after diagnosis. Despite intensive treatment, almost all patients with GBM experience recurrence, and their 5-year survival rate is approximately 5%. At present, the main clinical treatment strategy includes surgical resection, radiotherapy, and chemotherapy. However, tumor heterogeneity, blood-brain barrier, glioma stem cells, and DNA damage repair mechanisms hinder efficient GBM treatment. The emergence of nanometer-scale diagnostic and therapeutic approaches in cancer medicine due to the establishment of nanotechnology provides novel and promising tools that will allow us to overcome these difficulties. This review summarizes the application and recent progress in nanotechnology-based monotherapies (e.g., chemotherapy) and combination cancer treatment strategies (chemotherapy-based combined cancer therapy) for GBM and describes the synergistic enhancement between these combination therapies as well as the current standard therapy for brain cancer and its deficiencies. These combination therapies that can reduce individual drug-related toxicities and significantly enhance therapeutic efficiency have recently undergone rapid development. The mechanisms underlying these different nanotechnology-based therapies as well as the application of nanotechnology in GBM (e.g., in photodynamic therapy and chemodynamic therapy) have been systematically summarized here in an attempt to review recent developments and to identify promising directions for future research. This review provides novel and clinically significant insights and directions for the treatment of GBM, which is of great clinical importance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
274
|
New therapeutic strategies based on molecularly targeted therapy in glioblastoma – a case report and review of the literature. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Glioblastomas are the most common and most lethal forms of malignant primary brain tumor. We present a case report of a patient with III-grade glioma who achieved stable disease (SD) and clinical improvement after trametinib administration. We also report a review of the literature to Current Treatment Guidelines of Glioblastoma and new therapeutic strategies based on molecularly targeted therapy. Traditional treatments, including surgery, radiotherapy, and chemotherapy, have many limitations concerning the prognosis of patients with glioblastomas. Unfortunately, these tumors’recur after primary resection in the majority of cases. There is no standard therapy for recurrence of GBM. Targeted therapy offers a promising new treatment strategy. Regardless of those outstanding results much more can be done in the field of therapeutic options. Most urgent concerns include potent combining molecular targeted therapy with other types of treatments, selecting a group of patients for whom they turn out to be the most beneficial, and addressing adverse events of these molecules.
Collapse
|
275
|
McGovern SL, Luo D, Johnson J, Nguyen K, Li J, McAleer MF, Yeboa D, Grosshans DR, Ghia AJ, Chung C, Bishop AJ, Song J, Thall PF, Brown PD, Mahajan A. A Prospective Study of Conventionally Fractionated Dose Constraints for Reirradiation of Primary Brain Tumors in Adults. Pract Radiat Oncol 2022; 13:231-238. [PMID: 36596356 DOI: 10.1016/j.prro.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Dose constraints for reirradiation of recurrent primary brain tumors are not well-established. This study was conducted to prospectively evaluate composite dose constraints for conventionally fractionated brain reirradiation. METHODS AND MATERIALS A single-institution, prospective study of adults with previously irradiated, recurrent brain tumors was performed. For 95% of patients, electronic dosimetry records from the first course of radiation (RT1) were obtained and deformed onto the simulation computed tomography for the second course of radiation (RT2). Conventionally fractionated treatment plans for RT2 were developed that met protocol-assigned dose constraints for RT2 alone and the composite dose of RT1 + RT2. Prospective composite dose constraints were based on histology, interval since RT1, and concurrent bevacizumab. Patients were followed with magnetic resonance imaging including spectroscopy and perfusion studies. Primary endpoint was the rate of symptomatic brain necrosis at 6 months after RT2. RESULTS Patients were enrolled from March 2017 to May 2018; 20 were evaluable. Eighteen had glioma, 1 had atypical choroid plexus papilloma, and 1 had hemangiopericytoma. Nineteen patients were treated with volumetric modulated arc therapy, and one was treated with protons. Median RT1 dose was 57 Gy (range, 50-60 Gy). Median RT1-RT2 interval was 49 months (range, 9-141 months). Median RT2 dose was 42.4 Gy (range, 36-60 Gy). Median planning target volume was 186 cc (range, 8-468 cc). Nineteen of 20 patients (95%) were free of grade 3+ central nervous system necrosis. One patient had grade 3+ necrosis 2 months after RT2; the patient recovered fully and lived another 18 months until dying of disease progression. Median overall survival from RT2 start for all patients was 13.3 months (95% credible interval, 6.3-20.7); for patients with glioblastoma, 11.5 months (95% credible interval, 6.1-20.1). CONCLUSIONS Brain reirradiation can be safely performed with conventionally fractionated regimens tailored to previous dose distributions. The prospective composite dose constraints described here are a starting point for future studies of conventionally fractionated reirradiation.
Collapse
Affiliation(s)
- Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Dershan Luo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Johnson
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kham Nguyen
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David R Grosshans
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amol J Ghia
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caroline Chung
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew J Bishop
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Juhee Song
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter F Thall
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
276
|
Foreman M, Patel A, Sheth S, Reddy A, Lucke-Wold B. Diabetes Mellitus Management in the Context of Cranial Tumors. BOHR INTERNATIONAL JOURNAL OF NEUROLOGY AND NEUROSCIENCE 2022; 1:29-39. [PMID: 36700856 PMCID: PMC9872258 DOI: 10.54646/bijnn.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of the relationship between cancer and diabetes mellitus (DM) has been under investigation for many decades. Particularly in the field of neurology and neurosurgery, increasing emphasis has been put on the examination of comorbid DM in patients with cranial tumors. Namely, as the most common and invasive type of malignant adult brain tumor, glioblastoma (GBS) has been the focus of said research. Several mechanisms have been described in the attempt to elucidate the underlying association between DM and GBS, with the metabolic phenomenon known as the Warburg effect and its consequential downstream effects serving as the resounding culprits in recent literature. Since the effect seen in cancers like GBS exploits an upregulated form of aerobic glycolysis, the role of a sequela of DM, known as hyperglycemia, will be investigated. In particular, in the treatment of GBS, surgical resection and subsequent chemotherapy and/or radiotherapy are used in conjunction with corticosteroid therapy, the latter of which has been linked to hyperglycemia. Unsurprisingly, comorbid DM patients are significantly susceptible to this disposition. Further, this fact is reflected in recent literature that demonstrates the impact of hyperglycemia on cancer advancement and patient outcomes in several preclinical and clinical studies. Thus, this review will aim to underline the significance of diabetes and glycemic control via standard-of-care treatments such as metformin administration, as well as to describe emerging treatments such as the signaling modulation of insulin-like growth factor and the employment of the ketogenic diet.
Collapse
Affiliation(s)
- Marco Foreman
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Aashay Patel
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Sohum Sheth
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Akshay Reddy
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
277
|
Takara K, Hayashi-Okada Y, Kidoya H. Neurovascular Interactions in the Development of the Vasculature. Life (Basel) 2022; 13:42. [PMID: 36675991 PMCID: PMC9862680 DOI: 10.3390/life13010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Vertebrates have developed a network of blood vessels and nerves throughout the body that enables them to perform complex higher-order functions and maintain homeostasis. The 16th-century anatomical text 'De humani corporis fabrica' describes the networks of blood vessels and nerves as having a branching pattern in which they are closely aligned and run parallel one to another. This close interaction between adjacent blood vessels and nerves is essential not only for organogenesis during development and repair at the time of tissue damage but also for homeostasis and functional expression of blood vessels and nerves. Furthermore, it is now evident that disruptions in neurovascular interactions contribute to the progression of various diseases including cancer. Therefore, we highlight recent advances in vascular biology research, with a particular emphasis on neurovascular interactions.
Collapse
Affiliation(s)
- Kazuhiro Takara
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Tenure-Track Program for Innovative Research, University of Fukui, Fukui 910-1193, Japan
| | - Yumiko Hayashi-Okada
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hiroyasu Kidoya
- Department of Integrative Vascular Biology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
278
|
Matsuda M, Kohzuki H, Tsurubuchi T, Ishikawa E. Timing of bevacizumab administration after biopsy for unresectable newly diagnosed glioblastoma. Surg Neurol Int 2022; 13:583. [PMID: 36600767 PMCID: PMC9805652 DOI: 10.25259/sni_959_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background Recent studies have revealed that bevacizumab (BEV) can improve the survival of patients with newly diagnosed unresectable glioblastoma (GBM) with poor performance status. For patients who develop early clinical deterioration, early initiation of BEV would be beneficial. However, the safety and feasibility of early initiation of BEV remain to be determined because of the lack of studies addressing adverse events associated with BEV initiation <28 days after surgery. The aim of this study was to analyze the risks and benefits of early BEV administration after biopsy in patients with newly diagnosed GBM. Methods Thirty-one consecutive patients with newly diagnosed GBM who underwent biopsy followed by BEV administration were investigated. The relationships between the timing of BEV administration and treatment response, survival outcome, and adverse events were analyzed. Results Response rates based on the RANO criteria and overall survival times were similar between the early and standard BEV groups. No wound dehiscence was observed in the early BEV group, and only one case was observed in the standard BEV group. Patients in the early BEV group were more likely to have undergone biopsy with a smaller skin incision than those in the standard BEV group. Equivalent treatment effects of BEV were achieved in patients who developed early clinical deterioration and those without clinical deterioration. Conclusion Early BEV administration is effective in controlling early clinical deterioration and does not increase the risk of wound-healing complications. Further studies with larger numbers of patients are needed to validate our results.
Collapse
Affiliation(s)
- Masahide Matsuda
- Corresponding author: Masahide Matsuda, Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
279
|
Bota DA, Taylor TH, Piccioni DE, Duma CM, LaRocca RV, Kesari S, Carrillo JA, Abedi M, Aiken RD, Hsu FPK, Kong XT, Hsieh C, Bota PG, Nistor GI, Keirstead HS, Dillman RO. Phase 2 study of AV-GBM-1 (a tumor-initiating cell targeted dendritic cell vaccine) in newly diagnosed Glioblastoma patients: safety and efficacy assessment. J Exp Clin Cancer Res 2022; 41:344. [PMID: 36517865 PMCID: PMC9749349 DOI: 10.1186/s13046-022-02552-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Vaccine immunotherapy may improve survival in Glioblastoma (GBM). A multicenter phase II trial was designed to determine: (1) the success rate of manufacturing the Aivita GBM vaccine (AV-GBM-1), (2) Adverse Events (AE) associated with AV-GBM-1 administration, and (3) survival.
Methods
Fresh suspected glioblastoma tissue was collected during surgery, and patients with pathology-confirmed GBM enrolled before starting concurrent Radiation Therapy and Temozolomide (RT/TMZ) with Intent to Treat (ITT) after recovery from RT/TMZ. AV-GBM-1 was made by incubating autologous dendritic cells with a lysate of irradiated autologous Tumor-Initiating Cells (TICs). Eligible patients were adults (18 to 70 years old) with a Karnofsky Performance Score (KPS) of 70 or greater, a successful TIC culture, and sufficient monocytes collected. A cryopreserved AV-GBM-1 dose was thawed and admixed with 500 μg of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) before every subcutaneous (s.c.) administration.
Results
Success rates were 97% for both TIC production and monocyte collection. AV-GBM-1 was manufactured for 63/63 patients; 60 enrolled per ITT; 57 started AV-GBM-1. The most common AEs attributed to AV-GBM-1 were local injection site reactions (16%) and flu-like symptoms (10%). Treatment-emergent AEs included seizures (33%), headache (37%), and focal neurologic symptoms (28%). One patient discontinued AV-GBM-1 because of seizures. Median Progression-Free Survival (mPFS) and median Overall Survival (mOS) from ITT enrollment were 10.4 and 16.0 months, respectively. 2-year Overall Survival (OS) is 27%.
Conclusions
AV-GBM-1 was reliably manufactured. Treatment was well-tolerated, but there were numerous treatment-emergent central nervous system AEs. mPFS was longer than historical benchmarks, though no mOS improvement was noted.
Trial registration
NCT, NCT03400917, Registered 10 January 2018,
Collapse
|
280
|
Lawler SE. Digging deeper for new targets in bevacizumab resistance. Neuro Oncol 2022; 25:261-262. [PMID: 36516222 PMCID: PMC9925704 DOI: 10.1093/neuonc/noac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sean E Lawler
- Corresponding Author: Sean E. Lawler, PhD, Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence RI 02903, USA ()
| |
Collapse
|
281
|
Zhu H, Wan Q, Tan J, Ouyang H, Pan X, Li M, Zhao Y. A novel prognostic signature of cuproptosis-related genes and the prognostic value of FDX1 in gliomas. Front Genet 2022; 13:992995. [PMID: 36579333 PMCID: PMC9792093 DOI: 10.3389/fgene.2022.992995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Gliomas are the most common malignant tumors of the central nervous system, with extremely bad prognoses. Cuproptosis is a novel form of regulated cell death. The impact of cuproptosis-related genes on glioma development has not been reported. Methods: The TCGA, GTEx, and CGGA databases were used to retrieve transcriptomic expression data. We employed Cox's regressions to determine the associations between clinical factors and cuproptosis-related gene expression. Overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were evaluated using the Kaplan-Meier method. We also used the least absolute shrinkage and selection operator (LASSO) regression technique. Results: The expression levels of all 10 CRGs varied considerably between glioma tumors and healthy tissues. In glioma patients, the levels of CDKN2A, FDX1, DLD, DLAT, LIAS, LIPT1, and PDHA1 were significantly associated with the OS, disease-specific survival, and progression-free interval. We used LASSO Cox's regression to create a prognostic model; the risk score was (0.882340) *FDX1 expression + (0.141089) *DLD expression + (-0.333875) *LIAS expression + (0.356469) *LIPT1 expression + (-0.123851) *PDHA1 expression. A high-risk score/signature was associated with poor OS (hazard ratio = 3.50, 95% confidence interval 2, -4.55, log-rank p < 0.001). Cox's regression revealed that the FDX1 level independently predicted prognosis; FDX1 may control immune cell infiltration of the tumor microenvironment. Conclusion: The CRG signature may be prognostic in glioma patients, and the FDX1 level may independently predict glioma prognosis. These data may afford new insights into treatment.
Collapse
Affiliation(s)
- HuaXin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinsi Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hengyang Ouyang
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Pan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, China
| | - MeiHua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: MeiHua Li, ; YeYu Zhao,
| | - YeYu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China,*Correspondence: MeiHua Li, ; YeYu Zhao,
| |
Collapse
|
282
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
283
|
Pati S, Baid U, Edwards B, Sheller M, Wang SH, Reina GA, Foley P, Gruzdev A, Karkada D, Davatzikos C, Sako C, Ghodasara S, Bilello M, Mohan S, Vollmuth P, Brugnara G, Preetha CJ, Sahm F, Maier-Hein K, Zenk M, Bendszus M, Wick W, Calabrese E, Rudie J, Villanueva-Meyer J, Cha S, Ingalhalikar M, Jadhav M, Pandey U, Saini J, Garrett J, Larson M, Jeraj R, Currie S, Frood R, Fatania K, Huang RY, Chang K, Balaña C, Capellades J, Puig J, Trenkler J, Pichler J, Necker G, Haunschmidt A, Meckel S, Shukla G, Liem S, Alexander GS, Lombardo J, Palmer JD, Flanders AE, Dicker AP, Sair HI, Jones CK, Venkataraman A, Jiang M, So TY, Chen C, Heng PA, Dou Q, Kozubek M, Lux F, Michálek J, Matula P, Keřkovský M, Kopřivová T, Dostál M, Vybíhal V, Vogelbaum MA, Mitchell JR, Farinhas J, Maldjian JA, Yogananda CGB, Pinho MC, Reddy D, Holcomb J, Wagner BC, Ellingson BM, Cloughesy TF, Raymond C, Oughourlian T, Hagiwara A, Wang C, To MS, Bhardwaj S, Chong C, Agzarian M, Falcão AX, Martins SB, Teixeira BCA, Sprenger F, Menotti D, Lucio DR, LaMontagne P, Marcus D, Wiestler B, Kofler F, Ezhov I, Metz M, Jain R, Lee M, Lui YW, McKinley R, Slotboom J, Radojewski P, Meier R, Wiest R, Murcia D, Fu E, Haas R, Thompson J, Ormond DR, Badve C, Sloan AE, Vadmal V, Waite K, Colen RR, Pei L, Ak M, Srinivasan A, Bapuraj JR, Rao A, Wang N, Yoshiaki O, Moritani T, Turk S, Lee J, Prabhudesai S, Morón F, Mandel J, Kamnitsas K, Glocker B, Dixon LVM, Williams M, Zampakis P, Panagiotopoulos V, Tsiganos P, Alexiou S, Haliassos I, Zacharaki EI, Moustakas K, Kalogeropoulou C, Kardamakis DM, Choi YS, Lee SK, Chang JH, Ahn SS, Luo B, Poisson L, Wen N, Tiwari P, Verma R, Bareja R, Yadav I, Chen J, Kumar N, Smits M, van der Voort SR, Alafandi A, Incekara F, Wijnenga MMJ, Kapsas G, Gahrmann R, Schouten JW, Dubbink HJ, Vincent AJPE, van den Bent MJ, French PJ, Klein S, Yuan Y, Sharma S, Tseng TC, Adabi S, Niclou SP, Keunen O, Hau AC, Vallières M, Fortin D, Lepage M, Landman B, Ramadass K, Xu K, Chotai S, Chambless LB, Mistry A, Thompson RC, Gusev Y, Bhuvaneshwar K, Sayah A, Bencheqroun C, Belouali A, Madhavan S, Booth TC, Chelliah A, Modat M, Shuaib H, Dragos C, Abayazeed A, Kolodziej K, Hill M, Abbassy A, Gamal S, Mekhaimar M, Qayati M, Reyes M, Park JE, Yun J, Kim HS, Mahajan A, Muzi M, Benson S, Beets-Tan RGH, Teuwen J, Herrera-Trujillo A, Trujillo M, Escobar W, Abello A, Bernal J, Gómez J, Choi J, Baek S, Kim Y, Ismael H, Allen B, Buatti JM, Kotrotsou A, Li H, Weiss T, Weller M, Bink A, Pouymayou B, Shaykh HF, Saltz J, Prasanna P, Shrestha S, Mani KM, Payne D, Kurc T, Pelaez E, Franco-Maldonado H, Loayza F, Quevedo S, Guevara P, Torche E, Mendoza C, Vera F, Ríos E, López E, Velastin SA, Ogbole G, Soneye M, Oyekunle D, Odafe-Oyibotha O, Osobu B, Shu'aibu M, Dorcas A, Dako F, Simpson AL, Hamghalam M, Peoples JJ, Hu R, Tran A, Cutler D, Moraes FY, Boss MA, Gimpel J, Veettil DK, Schmidt K, Bialecki B, Marella S, Price C, Cimino L, Apgar C, Shah P, Menze B, Barnholtz-Sloan JS, Martin J, Bakas S. Federated learning enables big data for rare cancer boundary detection. Nat Commun 2022; 13:7346. [PMID: 36470898 PMCID: PMC9722782 DOI: 10.1038/s41467-022-33407-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/16/2022] [Indexed: 12/12/2022] Open
Abstract
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satyam Ghodasara
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Zenk
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
| | - Evan Calabrese
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey Rudie
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Javier Villanueva-Meyer
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Manali Jadhav
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Umang Pandey
- Symbiosis Center for Medical Image Analysis, Symbiosis International University, Pune, Maharashtra, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - John Garrett
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Matthew Larson
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert Jeraj
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Stuart Currie
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Russell Frood
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Kavi Fatania
- Leeds Teaching Hospitals Trust, Department of Radiology, Leeds, UK
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Josep Puig
- Department of Radiology (IDI), Girona Biomedical Research Institute (IdIBGi), Josep Trueta University Hospital, Girona, Spain
| | - Johannes Trenkler
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Josef Pichler
- Department of Neurooncology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Georg Necker
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Andreas Haunschmidt
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
| | - Stephan Meckel
- Institute of Neuroradiology, Neuromed Campus (NMC), Kepler University Hospital Linz, Linz, Austria
- Institute of Diagnostic and Interventional Neuroradiology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, USA
| | - Spencer Liem
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gregory S Alexander
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, USA
| | - Joseph Lombardo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Adam E Flanders
- Department of Radiology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Haris I Sair
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Craig K Jones
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Meirui Jiang
- The Chinese University of Hong Kong, Hong Kong, China
| | - Tiffany Y So
- The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng Chen
- The Chinese University of Hong Kong, Hong Kong, China
| | | | - Qi Dou
- The Chinese University of Hong Kong, Hong Kong, China
| | - Michal Kozubek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Filip Lux
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Jan Michálek
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Petr Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
| | - Tereza Kopřivová
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Masaryk University, Brno and University Hospital Brno, Brno, Czech Republic
- Department of Biophysics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Václav Vybíhal
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, and University Hospital and Czech Republic, Brno, Czech Republic
| | - Michael A Vogelbaum
- Department of Neuro Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - J Ross Mitchell
- University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Joaquim Farinhas
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Marco C Pinho
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Divya Reddy
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Holcomb
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CaA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CaA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Talia Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Minh-Son To
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sargam Bhardwaj
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Chee Chong
- South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Marc Agzarian
- South Australia Medical Imaging, Flinders Medical Centre, Bedford Park, SA, Australia
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Bernardo C A Teixeira
- Instituto de Neurologia de Curitiba, Curitiba, Paraná, Brazil
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Flávia Sprenger
- Department of Radiology, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - David Menotti
- Department of Informatics, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Diego R Lucio
- Department of Informatics, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Pamela LaMontagne
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel Marcus
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
| | - Florian Kofler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ivan Ezhov
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
- TranslaTUM (Zentralinstitut für translationale Krebsforschung der Technischen Universität München), Klinikum rechts der Isar, Munich, Germany
- Image-Based Biomedical Modeling, Department of Informatics, Technical University of Munich, Munich, Germany
| | - Marie Metz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Matthew Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Yvonne W Lui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Richard McKinley
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Johannes Slotboom
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Piotr Radojewski
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Raphael Meier
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging, University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Derrick Murcia
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Eric Fu
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Rourke Haas
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - John Thompson
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - David Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Chaitra Badve
- Department of Radiology, University Hospitals Cleveland, Cleveland, OH, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, University Hospitals-Seidman Cancer Center, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vachan Vadmal
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kristin Waite
- National Cancer Institute, National Institute of Health, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Rivka R Colen
- Department of Radiology, Neuroradiology Division, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linmin Pei
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Murat Ak
- Department of Radiology, Neuroradiology Division, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashok Srinivasan
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - J Rajiv Bapuraj
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ota Yoshiaki
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Toshio Moritani
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Sevcan Turk
- Department of Neuroradiology, University of Michigan, Ann Arbor, MI, USA
| | - Joonsang Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Snehal Prabhudesai
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Fanny Morón
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Mandel
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Konstantinos Kamnitsas
- Department of Computing, Imperial College London, London, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ben Glocker
- Department of Computing, Imperial College London, London, UK
| | - Luke V M Dixon
- Department of Radiology, Imperial College NHS Healthcare Trust, London, UK
| | - Matthew Williams
- Computational Oncology Group, Institute for Global Health Innovation, Imperial College London, London, UK
| | - Peter Zampakis
- Department of NeuroRadiology, University of Patras, Patras, Greece
| | | | - Panagiotis Tsiganos
- Clinical Radiology Laboratory, Department of Medicine, University of Patras, Patras, Greece
| | - Sotiris Alexiou
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Ilias Haliassos
- Department of Neuro-Oncology, University of Patras, Patras, Greece
| | - Evangelia I Zacharaki
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | | | | | | | | | | | | | - Sung Soo Ahn
- Yonsei University College of Medicine, Seoul, Korea
| | - Bing Luo
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Laila Poisson
- Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
- SJTU-Ruijin-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | | | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
- Case Western Reserve University, Cleveland, OH, USA
| | - Rohan Bareja
- Case Western Reserve University, Cleveland, OH, USA
| | - Ipsa Yadav
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Neeraj Kumar
- University of Alberta, Edmonton, AB, Canada
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Sebastian R van der Voort
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Ahmed Alafandi
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Georgios Kapsas
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Renske Gahrmann
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Joost W Schouten
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Stefan Klein
- Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Yading Yuan
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sonam Sharma
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tzu-Chi Tseng
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saba Adabi
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Olivier Keunen
- Translation Radiomics, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National De Santé, Luxembourg, Luxembourg
| | - Martin Vallières
- Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - David Fortin
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Division of Neurosurgery and Neuro-Oncology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Martin Lepage
- Centre de Recherche du Centre Hospitalière Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Nuclear Medicine and Radiobiology, Sherbrooke Molecular Imaging Centre, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bennett Landman
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Karthik Ramadass
- Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kaiwen Xu
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Silky Chotai
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lola B Chambless
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akshitkumar Mistry
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid C Thompson
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Anousheh Sayah
- Division of Neuroradiology & Neurointerventional Radiology, Department of Radiology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Camelia Bencheqroun
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Anas Belouali
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington, DC, USA
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK
| | - Alysha Chelliah
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Haris Shuaib
- Stoke Mandeville Hospital, Mandeville Road, Aylesbury, UK
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Carmen Dragos
- Stoke Mandeville Hospital, Mandeville Road, Aylesbury, UK
| | | | | | | | | | - Shady Gamal
- University of Cairo School of Medicine, Giza, Egypt
| | | | | | | | - Ji Eun Park
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Jihye Yun
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, Seoul, South Korea
| | - Abhishek Mahajan
- The Clatterbridge Cancer Centre NHS Foundation Trust Pembroke Place, Liverpool, UK
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sean Benson
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, Netherlands
- GROW School of Oncology and Developmental Biology, Maastricht, Netherlands
| | - Jonas Teuwen
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | - William Escobar
- Clínica Imbanaco Grupo Quirón Salud, Cali, Colombia
- Universidad del Valle, Cali, Colombia
| | | | - Jose Bernal
- Universidad del Valle, Cali, Colombia
- The University of Edinburgh, Edinburgh, UK
| | | | - Joseph Choi
- Department of Industrial and Systems Engineering, University of Iowa, Iowa, USA
| | - Stephen Baek
- Department of Industrial and Systems Engineering, Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Yusung Kim
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Heba Ismael
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Bryan Allen
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - John M Buatti
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | | | - Hongwei Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bertrand Pouymayou
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Joel Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Sampurna Shrestha
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
| | - Kartik M Mani
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
- Department of Radiation Oncology, Stony Brook University, Stony Brook, NY, USA
| | - David Payne
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tahsin Kurc
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York, USA
- Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Enrique Pelaez
- Escuela Superior Politecnica del Litoral, Guayaquil, Guayas, Ecuador
| | | | - Francis Loayza
- Escuela Superior Politecnica del Litoral, Guayaquil, Guayas, Ecuador
| | | | | | | | | | - Franco Vera
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Elvis Ríos
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Eduardo López
- Universidad de Concepción, Concepción, Biobío, Chile
| | - Sergio A Velastin
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK
| | - Godwin Ogbole
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Mayowa Soneye
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Dotun Oyekunle
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | | | - Babatunde Osobu
- Department of Radiology, University College Hospital Ibadan, Oyo, Nigeria
| | - Mustapha Shu'aibu
- Department of Radiology, Muhammad Abdullahi Wase Teaching Hospital, Kano, Nigeria
| | - Adeleye Dorcas
- Department of Radiology, Obafemi Awolowo University Ile-Ife, Ile-Ife, Osun, Nigeria
| | - Farouk Dako
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber L Simpson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Mohammad Hamghalam
- School of Computing, Queen's University, Kingston, ON, Canada
- Department of Electrical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Jacob J Peoples
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Ricky Hu
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Anh Tran
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Danielle Cutler
- The Faculty of Arts & Sciences, Queen's University, Kingston, ON, Canada
| | - Fabio Y Moraes
- Department of Oncology, Queen's University, Kingston, ON, Canada
| | - Michael A Boss
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - James Gimpel
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Deepak Kattil Veettil
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Kendall Schmidt
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Brian Bialecki
- Data Science Institute, American College of Radiology, Reston, VA, USA
| | - Sailaja Marella
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Cynthia Price
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Lisa Cimino
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | - Charles Apgar
- Center for Research and Innovation, American College of Radiology, Philadelphia, PA, USA
| | | | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Bavaria, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Jill S Barnholtz-Sloan
- National Cancer Institute, National Institute of Health, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute (NCI), National Institute of Health, Bethesda, MD, USA
| | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
284
|
Haltom AR, Hassen WE, Hensel J, Kim J, Sugimoto H, Li B, McAndrews KM, Conner MR, Kirtley ML, Luo X, Xie B, Volpert OV, Olalekan S, Maltsev N, Basu A, LeBleu VS, Kalluri R. Engineered exosomes targeting MYC reverse the proneural-mesenchymal transition and extend survival of glioblastoma. EXTRACELLULAR VESICLE 2022; 1:100014. [PMID: 37503329 PMCID: PMC10373511 DOI: 10.1016/j.vesic.2022.100014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulated Myc signaling is a key oncogenic pathway in glioblastoma multiforme (GBM). Yet, effective therapeutic targeting of Myc continues to be challenging. Here, we demonstrate that exosomes generated from human bone marrow mesenchymal stem cells (MSCs) engineered to encapsulate siRNAs targeting Myc (iExo-Myc) localize to orthotopic GBM tumors in mice. Treatment of late stage GBM tumors with iExo-Myc inhibits proliferation and angiogenesis, suppresses tumor growth, and extends survival. Transcriptional profiling of tumors reveals that the mesenchymal transition and estrogen receptor signaling pathways are impacted by Myc inhibition. Single nuclei RNA sequencing (snRNA-seq) shows that iExo-Myc treatment induces transcriptional repression of multiple growth factor and interleukin signaling pathways, triggering a mesenchymal to proneural transition and shifting the cellular landscape of the tumor. These data confirm that Myc is an effective anti-glioma target and that iExo-Myc offers a feasible, readily translational strategy to inhibit challenging oncogene targets for the treatment of brain tumors.
Collapse
Affiliation(s)
- Amanda R. Haltom
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wafa E. Hassen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janine Hensel
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Meagan R. Conner
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle L. Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xin Luo
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| | - Bingqing Xie
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Olga V. Volpert
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Natalia Maltsev
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- Feinberg School of Medicine & Kellogg School of Management, Northwestern University, Chicago, IL
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX
- James P. Allison Institute at MD Anderson, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
| |
Collapse
|
285
|
Maswikiti EP, Yu Y, Li H, Wang C, Ma H, Xu B, He P, Ma Y, Wang B, Ma B, Yang J, Ma Z, Zhu J, Chen H. Application of intraoperative photodynamic therapy in patients suspected of recurrence post radical surgery: A single center experience. Photodiagnosis Photodyn Ther 2022; 40:103047. [PMID: 35931356 DOI: 10.1016/j.pdpdt.2022.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Difficult to resect tumors may be treated with a combination of radical surgery and photodynamic therapy to try to reduce recurrence. The aim of this single center study is to present results from a combined application of radical surgery with intraoperative PDT for patients with various cancers suspected of high risk for post-operative local recurrence. METHODS Radical surgery combined with intraoperative PDT was performed in each and every patient under study at different time points from June 2020 to July 2021, and the PDT irradiation time ranged from 10, 20, 25 and 30 min. Hematoporphyrin, as a photo synthesizer, was administered intravenously 48 h before surgery and during the operative period respectively, at a 3 mg/kg dose. In addition, the mean and median survival times for each of these patients were also evaluated. Patient's overall disease-Free Survival (DFS) and survival (OS) were immensely evaluated. RESULTS 12 patients (33.3% female and 66.7 % male) underwent radical surgery and PDT simultaneously. No photosensitivity events were reported in the included patients, except for one case with a moderate to severe erythema. Intraoperative PDT was tolerated in all included patients without serious liver and kidney damages. As from the time these patients underwent radical surgery and PDT, three mortalities were recorded and the remaining 9 patients had some remarkable outcomes with less or no recurrences. CONCLUSIONS Intraoperative PDT is a potentially safe therapeutic strategy for various tumor patients who undergo operation. Intraoperative PDT combined with surgery may improve local tumor control but this needs to be tested in a larger patient population.
Collapse
Affiliation(s)
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Huixia Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Caijuan Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Huanhuan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bo Xu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Puyi He
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Yanling Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bin Ma
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jinwei Yang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhen Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Jingyu Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China.
| |
Collapse
|
286
|
Andersen BM, Reardon DA. Immunotherapy approaches for adult glioma: knowledge gained from recent clinical trials. Curr Opin Neurol 2022; 35:803-813. [PMID: 36367046 DOI: 10.1097/wco.0000000000001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF REVIEW Summarize principles behind various immunotherapy approaches for high and low-grade glioma in the context of recently completed clinical trials and the new insights they provide. RECENT FINDINGS Despite the widespread success of therapies targeting the T-cell checkpoints programmed-death 1 and cytotoxic T lymphocyte antigen 4 in other malignancies, recent phase III trials in glioblastoma confirm the lack of efficacy of anti-programmed-death 1 monotherapy in more than 90% of patients. Vaccination approaches remain under investigation for high-grade glioma and have shown activity in some low-grade glioma patients. Chimeric antigen receptor T cells now feature a new generation of products engineered to potentially withstand glucocorticoid therapy. Oncolytic viral therapies have similarly advanced in sophistication, with drug-sensitive gene expression and tumor-selective modifications. Combinations of therapies hold promise for overcoming the numerous mechanisms of immune suppression in glioma. SUMMARY Although immunotherapies have yet to show rates of efficacy compared with other malignancies, new knowledge of immunology and combination therapies brings hope for improved efficacy in the future.
Collapse
Affiliation(s)
- Brian M Andersen
- Department of Neurology, Brigham and Women's Hospital
- Department of Neurology, Veterans Affairs Medical Center
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
287
|
Sugimoto S, Ishida T, Kawada K, Jobu K, Morisawa S, Tamura N, Takuma D, Yoshioka S, Miyamura M. Central Nervous System Ischemia Associated with Bevacizumab: An Analysis of the Japanese Adverse Drug Event Report Database. Biol Pharm Bull 2022; 45:1805-1811. [DOI: 10.1248/bpb.b22-00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shohei Sugimoto
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | | - Kei Kawada
- Graduate School of Integrated Arts and Sciences, Kochi University
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital
| | | | - Naohisa Tamura
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | | - Saburo Yoshioka
- Graduate School of Integrated Arts and Sciences, Kochi University
| | | |
Collapse
|
288
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
289
|
Lee JH, Wee CW. Treatment of Adult Gliomas: A Current Update. BRAIN & NEUROREHABILITATION 2022; 15:e24. [PMID: 36742086 PMCID: PMC9833488 DOI: 10.12786/bn.2022.15.e24] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Gliomas are the most common type of primary brain tumor in adults. Glioma treatment requires a multidisciplinary approach involving surgery, radiotherapy, and chemotherapy. Multiple trials have been conducted to establish the appropriate choice of treatment to achieve long-term survival and better quality of life. This review provides up-to-date evidence regarding treatment strategies for gliomas.
Collapse
Affiliation(s)
- Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Chan Woo Wee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
290
|
Impact of Blood-Brain Barrier to Delivering a Vascular-Disrupting Agent: Predictive Role of Multiparametric MRI in Rodent Craniofacial Metastasis Models. Cancers (Basel) 2022; 14:cancers14235826. [PMID: 36497308 PMCID: PMC9740057 DOI: 10.3390/cancers14235826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular-disrupting agents (VDAs) have shown a preliminary anti-cancer effect in extracranial tumors; however, the therapeutic potential of VDAs in intracranial metastatic lesions remains unclear. Simultaneous intracranial and extracranial tumors were induced by the implantation of rhabdomyosarcoma in 15 WAG/Rij rats. Pre-treatment characterizations were performed at a 3.0 T clinical magnet including a T2 relaxation map, T1 relaxation map, diffusion-weighted imaging (DWI), and perfusion-weighted imaging (PWI). Shortly afterward, a VDA was intravenously given and MRI scans at 1 h, 8 h, and 24 h after treatment were performed. In vivo findings were further confirmed by postmortem angiography and histopathology staining with H&E, Ki67, and CD31. Before VDA treatment, better perfusion (AUC30: 0.067 vs. 0.058, p < 0.05) and AUC300 value (0.193 vs. 0.063, p < 0.001) were observed in extracranial lesions, compared with intracranial lesions. After VDA treatment, more significant and persistent perfusion deficiency measured by PWI (AUC30: 0.067 vs. 0.008, p < 0.0001) and a T1 map (T1 ratio: 0.429 vs. 0.587, p < 0.05) were observed in extracranial tumors, in contrast to the intracranial tumor (AUC30: 0.058 vs. 0.049, p > 0.05, T1 ratio: 0.497 vs. 0.625, p < 0.05). Additionally, significant changes in the T2 value and apparent diffusion coefficient (ADC) value were observed in extracranial lesions, instead of intracranial lesions. Postmortem angiography and pathology showed a significantly larger H&E-stained area of necrosis (86.2% vs. 18.3%, p < 0.0001), lower CD31 level (42.7% vs. 54.3%, p < 0.05), and lower Ki67 level (12.2% vs. 32.3%, p < 0.01) in extracranial tumors, compared with intracranial lesions. The BBB functioned as a barrier against the delivery of VDA into intracranial tumors and multiparametric MRI may predict the efficacy of VDAs on craniofacial tumors.
Collapse
|
291
|
Lim JS, Shi Y, Park SH, Jeon SM, Zhang C, Park YY, Liu R, Li J, Cho WS, Du L, Lee JH. Mutual regulation between phosphofructokinase 1 platelet isoform and VEGF promotes glioblastoma tumor growth. Cell Death Dis 2022; 13:1002. [PMID: 36435833 PMCID: PMC9701207 DOI: 10.1038/s41419-022-05449-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells. Importantly, we demonstrate that EGFR-phosphorylated PFKP Y64 has critical roles in both AKT/SP1-mediated transcriptional expression of HIF-1α and in the AKT-mediated β-catenin S552 phosphorylation, to fully enhance VEGF transcription, subsequently promoting blood vessel formation and brain tumor growth. Levels of PFKP Y64 phosphorylation in human GBM specimens are positively correlated with HIF-1α expression, β-catenin S552 phosphorylation, and VEGF expression. Conversely, VEGF upregulates PFKP expression in a PFKP S386 phosphorylation-dependent manner, leading to increased PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells. These findings highlight a novel mechanism underlying the mutual regulation that occurs between PFKP and VEGF for promoting GBM tumor growth and also suggest that targeting the PFKP/VEGF regulatory loop might show therapeutic potential for treating GBM patients.
Collapse
Affiliation(s)
- Je Sun Lim
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - YuJie Shi
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Su Hwan Park
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - So Mi Jeon
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Chuanbao Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 P.R. China
| | - Yun-Yong Park
- grid.254224.70000 0001 0789 9563Department of life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Rui Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Jing Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| | - Wan-Seob Cho
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea
| | - Linyong Du
- grid.268099.c0000 0001 0348 3990Key Laboratory of Laboratory of Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000 P.R. China
| | - Jong-Ho Lee
- grid.255166.30000 0001 2218 7142Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315 Republic of Korea ,grid.255166.30000 0001 2218 7142Department of Biomedical Sciences, Dong-A University, Busan, 49315 Republic of Korea
| |
Collapse
|
292
|
Chen L, Ma J, Zou Z, Liu H, Liu C, Gong S, Gao X, Liang G. Clinical characteristics and prognosis of patients with glioblastoma: A review of survival analysis of 1674 patients based on SEER database. Medicine (Baltimore) 2022; 101:e32042. [PMID: 36451503 PMCID: PMC9704894 DOI: 10.1097/md.0000000000032042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To fully understand the clinical features and prognosis of Glioblastoma (GBM), we extracted the data from the Surveillance, Epidemiology, and End Results (SEER) database and performed a series of analyses. METHODS We retrospectively analyzed the data of 1674 patients with GBM obtained from the SEER database from 1983 to 2015. Kaplan-Meier analysis was performed to calculate the survival rate, and the log-rank test was used to analyze the survival outcomes. RESULTS Older patients with GBM had a worse survival period (P < .05). Laterality had no effect on the prognosis (P > .05). Patients with high-grade gliomas may have a shorter lifespan (P < .05). In terms of overall survival (OS) and disease specificity, all 3 classical treatments failed to improve the life expectancy (P > .05). In adult patients with GBM, we found that age, tumor grade, surgery, radiotherapy, and chemotherapy were independent risk factors for all-cause mortality. In the univariate disease-specific analysis, age, tumor grade, surgery, radiotherapy, and chemotherapy were independent risk factors. However, in multivariate disease-specific analysis, the results showed that only tumor grade and surgery were independent risk factors for GBM. CONCLUSIONS Older patients diagnosed with GBM have worse survival, and patients with glioma of higher grades have a shorter lifespan. Age, grade, surgery, radiation therapy, and chemotherapy were independent prognostic factors for patients with GBM.
Collapse
Affiliation(s)
- Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Ma
- Department of Pathology, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Zheng Zou
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Hongzhe Liu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenxin Liu
- Department of Pediatric Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Shun Gong, Department of Neurosurgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang 110016, China (e-mail: )
| | - Xu Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
293
|
Han JM, Jung HJ. Synergistic Anticancer Effect of a Combination of Berbamine and Arcyriaflavin A against Glioblastoma Stem-like Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227968. [PMID: 36432068 PMCID: PMC9699626 DOI: 10.3390/molecules27227968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Relapse is frequent and rapid due to glioblastoma stem-like cells (GSCs) that induce tumor initiation, drug resistance, high cancer invasion, immune evasion, and recurrence. Therefore, suppression of GSCs is a powerful therapeutic approach for GBM treatment. Natural compounds berbamine and arcyriaflavin A (ArcA) are known to possess anticancer activity by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) and cyclin-dependent kinase 4 (CDK4), respectively. In this study, we evaluated the effects of concurrent treatment with both compounds on GSCs. Combined treatment with berbamine and ArcA synergistically inhibited cell viability and tumorsphere formation in U87MG- and C6-drived GSCs. Furthermore, simultaneous administration of both compounds potently inhibited tumor growth in a U87MG GSC-grafted chick embryo chorioallantoic membrane (CAM) model. Notably, the synergistic anticancer effect of berbamine and ArcA on GSC growth is associated with the promotion of reactive oxygen species (ROS)- and calcium-dependent apoptosis via strong activation of the p53-mediated caspase cascade. Moreover, co-treatment with both compounds significantly reduced the expression levels of key GSC markers, including CD133, integrin α6, aldehyde dehydrogenase 1A1 (ALDH1A1), Nanog, Sox2, and Oct4. The combined effect of berbamine and ArcA on GSC growth also resulted in downregulation of cell cycle regulatory proteins, such as cyclins and CDKs, by potent inactivation of the CaMKIIγ-mediated STAT3/AKT/ERK1/2 signaling pathway. In addition, a genetic knockdown study using small interfering RNAs (siRNAs) targeting either CaMKIIγ or CDK4 demonstrated that the synergistic anticancer effect of the two compounds on GSCs resulted from dual inhibition of CaMKIIγ and CDK4. Collectively, our findings suggest that a novel combination therapy involving berbamine and ArcA could effectively eradicate GSCs.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Republic of Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
294
|
Chen S, Zhang S, Feng W, Li J, Yuan Y, Li W, Wang Z, Yang Y, Liu Y. Serine and glycine metabolism-related gene expression signature stratifies immune profiles of brain gliomas, and predicts prognosis and responses to immunotherapy. Front Pharmacol 2022; 13:1072253. [PMID: 36467068 PMCID: PMC9712738 DOI: 10.3389/fphar.2022.1072253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 03/13/2024] Open
Abstract
Glioma is one of the most lethal cancers and causes more than 200,000 deaths every year. Immunotherapy was an inspiring therapy for multiple cancers but failed in glioma treatment. The importance of serine and glycine and their metabolism has been well-recognized in the physiology of immune cells and microenvironment in multiple cancers. However, their correlation with prognosis, immune cells, and immune microenvironment of glioma remains unclear. In this study, we investigated the relationships between the expression pattern of serine and glycine metabolism-related genes (SGMGs) and clinicopathological features, prognosis, and tumor microenvironment in glioma based on comprehensive analyses of multiple public datasets and our cohort. According to the expression of SGMGs, we conducted the consensus clustering analysis to stratify all patients into four clusters with remarkably distinctive clinicopathological features, prognosis, immune cell infiltration, and immune microenvironment. Subsequently, a serine and glycine metabolism-related genes signature (SGMRS) was constructed based on five critical SGMGs in glioma to stratify patients into SGMRS high- and low-risk groups and tested for its prognostic value. Higher SGMRS expressed genes associated with the synthesis of serine and glycine at higher levels and manifested poorer prognosis. Besides, we confirmed that SGMRS was an independent prognostic factor and constructed nomograms with satisfactory prognosis prediction performance based on SGMRS and other factors. Analyzing the relationship between SGMRS and immune landscape, we found that higher SGMRS correlated with 'hotter' immunological phenotype and more immune cell infiltration. Furthermore, the expression levels of multiple immunotherapy-related targets, including PD-1, PD-L1, and B7-H3, were positively correlated with SGMRS, which was validated by the better predicted response to immune checkpoint inhibitors. In conclusion, our study explored the relationships between the expression pattern of SGMGs and tumor features and created novel models to predict the prognosis of glioma patients. The correlation of SGMRS with immune cells and microenvironment in gliomas suggested an essential role of serine and glycine metabolism in reforming immune cells and microenvironment. Finally, the results of our study endorsed the potential application of SGMRS to guide the selection of immunotherapy for gliomas.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Feng
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junhong Li
- Department of Neurosurgery, Chengdu Second People’s Hospital, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
295
|
Song P, Li H, Xu K, Li ZW, Ren X, Fu XJ. A bibliometric and visualization-based analysis of temozolomide research hotspots and frontier evolution. Front Oncol 2022; 12:905868. [DOI: 10.3389/fonc.2022.905868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
The literature related to TMZ research in the Web of Science (WOS) database was analyzed using bibliometrics and visualization by Citespace and VOSviewer.The publication status (number of publications, institutions, and frequency of citations), collaborations, and research focus was analyzed to clarify the current situation of TMZ research. And the recent research on TMZ provides a detailed summary. Based on objective data analysis, this study provides a complete analysis portraying the progression of historical milestones in TMZ development and future research directions from various TMZ research domains.
Collapse
|
296
|
Matsumura A, Asano T, Hirose K, Igaki H, Kawabata S, Kumada H. Initiatives Toward Clinical Boron Neutron Capture Therapy in Japan. Cancer Biother Radiopharm 2022; 38:201-207. [PMID: 36374236 PMCID: PMC10122211 DOI: 10.1089/cbr.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has been performed at nuclear research reactors for many years. The development of accelerators for BNCT resulted in a paradigm shift from research to real clinical applications. In Japan, BNCT was approved as a clinical therapy covered by the National Health Insurance in 2020. In this article, the status of BNCT in Japan is briefly introduced.
Collapse
Affiliation(s)
- Akira Matsumura
- Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | | | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku Hospital, Fukushima, Japan
| | - Hiroshi Igaki
- Division of Boron Neutron Capture Therapy Medical Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Hiroaki Kumada
- Proton Medical Research Center, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
297
|
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, Filss CP, Weiss Lucas C, Ruge MI, Langen KJ, Shah NJ, Fink GR, Galldiks N, Kocher M. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12:998069. [PMID: 36452509 PMCID: PMC9702073 DOI: 10.3389/fonc.2022.998069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND In glioma patients, multimodality therapy and recurrent tumor can lead to structural brain tissue damage characterized by pathologic findings in MR and PET imaging. However, little is known about the impact of different types of damage on the fiber architecture of the affected white matter. PATIENTS AND METHODS This study included 121 pretreated patients (median age, 52 years; ECOG performance score, 0 in 48%, 1-2 in 51%) with histomolecularly characterized glioma (WHO grade IV glioblastoma, n=81; WHO grade III anaplastic astrocytoma, n=28; WHO grade III anaplastic oligodendroglioma, n=12), who had a resection, radiotherapy, alkylating chemotherapy, or combinations thereof. After a median follow-up time of 14 months (range, 1-214 months), anatomic MR and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET images were acquired on a 3T hybrid PET/MR scanner. Post-therapeutic findings comprised resection cavities, regions with contrast enhancement or increased FET uptake and T2/FLAIR hyperintensities. Local fiber density was determined from high angular-resolution diffusion-weighted imaging and advanced tractography methods. A cohort of 121 healthy subjects selected from the 1000BRAINS study matched for age, gender and education served as a control group. RESULTS Lesion types differed in both affected tissue volumes and relative fiber densities compared to control values (resection cavities: median volume 20.9 mL, fiber density 16% of controls; contrast-enhanced lesions: 7.9 mL, 43%; FET uptake areas: 30.3 mL, 49%; T2/FLAIR hyperintensities: 53.4 mL, 57%, p<0.001). In T2/FLAIR-hyperintense lesions caused by peritumoral edema due to recurrent glioma (n=27), relative fiber density was as low as in lesions associated with radiation-induced gliosis (n=13, 48% vs. 53%, p=0.17). In regions with pathologically increased FET uptake, local fiber density was inversely related (p=0.005) to the extent of uptake. Total fiber loss associated with contrast-enhanced lesions (p=0.006) and T2/FLAIR hyperintense lesions (p=0.013) had a significant impact on overall ECOG score. CONCLUSIONS These results suggest that apart from resection cavities, reduction in local fiber density is greatest in contrast-enhancing recurrent tumors, but total fiber loss induced by edema or gliosis has an equal detrimental effect on the patients' performance status due to the larger volume affected.
Collapse
Affiliation(s)
- Michel Friedrich
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
| | - Christian P. Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Carolin Weiss Lucas
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maximilian I. Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Nadim J. Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Juelich-Aachen Research Alliance (JARA), Section JARA-Brain, Juelich, Germany
- Department of Neurology, University Hospital Aachen, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gereon R. Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4, -11), Research Center Juelich, Juelich, Germany
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
298
|
Wang J, Huang Y, Zhao F, Chen J, He L, Liu Z, Pei Y, Wei Z, Li R, Ai P, Peng X. Standard or extended STUPP? Optimal duration of temozolomide for patients with high-grade gliomas: a retrospective analysis. J Neurooncol 2022; 160:433-443. [DOI: 10.1007/s11060-022-04162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
|
299
|
Chen S, Zhang S, Wang Z, Li J, Yuan Y, Li T, Zuo M, Feng W, Li W, Chen M, Liu Y. Purine metabolism-related gene expression signature predicts survival outcome and indicates immune microenvironment profile of gliomas. Front Pharmacol 2022; 13:1038272. [PMID: 36438805 PMCID: PMC9685320 DOI: 10.3389/fphar.2022.1038272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system. The impact of metabolism on cancer development and the immune microenvironment landscape has recently gained broad attention. Purines are involved in multiple metabolic pathways. It has been proved that purine metabolism could regulate malignant biological behaviors and response to immune checkpoint inhibitors in multiple cancers. However, the relationship of purine metabolism with clinicopathological features and the immune landscape of glioma remains unclear. In this study, we explored the relationships between the expression of purine metabolism-related genes (PuMGs) and tumor features, including prognosis and microenvironment of glioma, based on analyses of 1,523 tumors from 4 public databases and our cohort. Consensus clustering based on 136 PuMGs classified the glioma patients into two clusters with significantly distinguished prognosis and immune microenvironment landscapes. Increased immune infiltration was associated with more aggressive gliomas. The prognostic Purine Metabolism-Related Genes Risk Signature (PuMRS), based on 11 critical PuMGs, stratified the patients into PuMRS low- and high-risk groups in the training set and was validated by validation sets from multiple cohorts. The high-risk group presented with significantly shorter overall survival, and further survival analysis demonstrated that the PuMRS was an independent prognostic factor in glioma. The nomogram combining PuMRS and other clinicopathological factors showed satisfactory accuracy in predicting glioma patients' prognosis. Furthermore, analyses of the tumor immune microenvironment suggested that higher PuMRS was correlated with increased immune cell infiltration and gene expression signatures of "hotˮ tumors. Gliomas in the PuMRS high-risk group presented a higher expression level of multiple immune checkpoints, including PD-1 and PD-L1, and a better-predicted therapy response to immune checkpoint inhibitors. In conclusion, our study elucidated the relationship between the expression level of PuMGs and the aggressiveness of gliomas. Our study also endorsed the application of PuMRS to construct a new robust model for the prognosis evaluation of glioma patients. The correlations between the profiles of PuMGs expression and tumor immune microenvironment potentially provided guidance for immunotherapy in glioma.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shuxin Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Surgery, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tengfei Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wentao Feng
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mina Chen
- Neuroscience and Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
300
|
Nagane M, Ichimura K, Onuki R, Narushima D, Honda-Kitahara M, Satomi K, Tomiyama A, Arai Y, Shibata T, Narita Y, Uzuka T, Nakamura H, Nakada M, Arakawa Y, Ohnishi T, Mukasa A, Tanaka S, Wakabayashi T, Aoki T, Aoki S, Shibui S, Matsutani M, Ishizawa K, Yokoo H, Suzuki H, Morita S, Kato M, Nishikawa R. Bevacizumab beyond Progression for Newly Diagnosed Glioblastoma (BIOMARK): Phase II Safety, Efficacy and Biomarker Study. Cancers (Basel) 2022; 14:cancers14225522. [PMID: 36428615 PMCID: PMC9688169 DOI: 10.3390/cancers14225522] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
We evaluated the efficacy and safety of bevacizumab beyond progression (BBP) in Japanese patients with newly diagnosed glioblastoma and explored predictors of response to bevacizumab. This phase II study evaluated a protocol-defined primary therapy by radiotherapy with concurrent and adjuvant temozolomide plus bevacizumab, followed by bevacizumab monotherapy, and secondary therapy (BBP: bevacizumab upon progression). Ninety patients received the protocol-defined primary therapy (BBP group, n = 25). Median overall survival (mOS) and median progression-free survival (mPFS) were 25.0 and 14.9 months, respectively. In the BBP group, in which O6-methylguanine-DNA methyltransferase (MGMT)-unmethylated tumors predominated, mOS and mPFS were 5.8 and 1.9 months from BBP initiation and 16.8 and 11.4 months from the initial diagnosis, respectively. The primary endpoint, the 2-year survival rate of the BBP group, was 27.0% and was unmet. No unexpected adverse events occurred. Expression profiling using RNA sequencing identified that Cluster 2, which was enriched with the genes involved in macrophage or microglia activation, was associated with longer OS and PFS independent of the MGMT methylation status. Cluster 2 was identified as a significantly favorable independent predictor for PFS, along with younger age and methylated MGMT. The novel expression classifier may predict the prognosis of glioblastoma patients treated with bevacizumab.
Collapse
Affiliation(s)
- Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
- Correspondence: ; Tel.: +81-422-47-5511
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ritsuko Onuki
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Daichi Narushima
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Mai Honda-Kitahara
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Arata Tomiyama
- Department of Brain Disease Translational Research, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takeo Uzuka
- Department of Neurosurgery, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Ehime 790-0052, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Aichi 464-8601, Japan
| | - Tomokazu Aoki
- Department of Neurosurgery, Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Shigeki Aoki
- Department of Radiology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Soichiro Shibui
- Department of Neurosurgery, Teikyo University Hospital, Kawasaki 213-8507, Japan
| | - Masao Matsutani
- Department of Neurosurgery, Kurosawa Hospital, Gunma 370-1203, Japan
| | - Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Saitama 350-0495, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, National Hospital Organization Sendai Medical Center, Miyagi 983-8520, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mamoru Kato
- Division of Bioinformatics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| |
Collapse
|