251
|
Cell-autonomous megakaryopoiesis associated with polyclonal hematopoiesis in triple-negative essential thrombocythemia. Sci Rep 2021; 11:17702. [PMID: 34489506 PMCID: PMC8421373 DOI: 10.1038/s41598-021-97106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
A subset of essential thrombocythemia (ET) cases are negative for disease-defining mutations on JAK2, MPL, and CALR and defined as triple negative (TN). The lack of recurrent mutations in TN-ET patients makes its pathogenesis ambiguous. Here, we screened 483 patients with suspected ET in a single institution, centrally reviewed bone marrow specimens, and identified 23 TN-ET patients. Analysis of clinical records revealed that TN-ET patients were mostly young female, without a history of thrombosis or progression to secondary myelofibrosis and leukemia. Sequencing analysis and human androgen receptor assays revealed that the majority of TN-ET patients exhibited polyclonal hematopoiesis, suggesting a possibility of reactive thrombocytosis in TN-ET. However, the serum levels of thrombopoietin (TPO) and interleukin-6 in TN-ET patients were not significantly different from those in ET patients with canonical mutations and healthy individuals. Rather, CD34-positive cells from TN-ET patients showed a capacity to form megakaryocytic colonies, even in the absence of TPO. No signs of thrombocytosis were observed before TN-ET development, denying the possibility of hereditary thrombocytosis in TN-ET. Overall, these findings indicate that TN-ET is a distinctive disease entity associated with polyclonal hematopoiesis and is paradoxically caused by hematopoietic stem cells harboring a capacity for cell-autonomous megakaryopoiesis.
Collapse
|
252
|
The Power of Extracellular Vesicles in Myeloproliferative Neoplasms: "Crafting" a Microenvironment That Matters. Cells 2021; 10:cells10092316. [PMID: 34571965 PMCID: PMC8464728 DOI: 10.3390/cells10092316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in "education" and "crafting" of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.
Collapse
|
253
|
Kiem D, Wagner S, Magnes T, Egle A, Greil R, Melchardt T. The Role of Neutrophilic Granulocytes in Philadelphia Chromosome Negative Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22179555. [PMID: 34502471 PMCID: PMC8431305 DOI: 10.3390/ijms22179555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Philadelphia chromosome negative myeloproliferative neoplasms (MPN) are composed of polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The clinical picture is determined by constitutional symptoms and complications, including arterial and venous thromboembolic or hemorrhagic events. MPNs are characterized by mutations in JAK2, MPL, or CALR, with additional mutations leading to an expansion of myeloid cell lineages and, in PMF, to marrow fibrosis and cytopenias. Chronic inflammation impacting the initiation and expansion of disease in a major way has been described. Neutrophilic granulocytes play a major role in the pathogenesis of thromboembolic events via the secretion of inflammatory markers, as well as via interaction with thrombocytes and the endothelium. In this review, we discuss the molecular biology underlying myeloproliferative neoplasms and point out the central role of leukocytosis and, specifically, neutrophilic granulocytes in this group of disorders.
Collapse
Affiliation(s)
- Dominik Kiem
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Sandro Wagner
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Teresa Magnes
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alexander Egle
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Richard Greil
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
| | - Thomas Melchardt
- Oncologic Center, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.K.); (S.W.); (T.M.); (A.E.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-57255-25801
| |
Collapse
|
254
|
Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, Gallì A, Castellano CA, McConkey M, Tarun A, Wong W, Schenone M, Stanclift C, Tanenbaum B, Malolepsza E, Nilsson B, Bick AG, Weinstock JS, Miller M, Niroula A, Dunford A, Taylor-Weiner A, Wood T, Barbera A, Anand S, Psaty BM, Desai P, Cho MH, Johnson AD, Loos R, MacArthur DG, Lek M, Neuberg DS, Lage K, Carr SA, Hellstrom-Lindberg E, Malcovati L, Papaemmanuil E, Stewart C, Getz G, Bradley RK, Jaiswal S, Ebert BL. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov 2021; 2:500-517. [PMID: 34568833 PMCID: PMC8462124 DOI: 10.1158/2643-3230.bcd-20-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.
Collapse
Affiliation(s)
- Ellen M Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Matthew Leventhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gallì
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia A Castellano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Akansha Tarun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Waihay Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caroline Stanclift
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Benjamin Tanenbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Edyta Malolepsza
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Björn Nilsson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Andrew Dunford
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Amaro Taylor-Weiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Timothy Wood
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Alex Barbera
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Michael H Cho
- Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute Center for Population Studies, the Framingham Heart Study, Framingham, Massachusetts
| | - Ruth Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G MacArthur
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasper Lage
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Eva Hellstrom-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
255
|
Alvarez-Larrán A, Sant'Antonio E, Harrison C, Kiladjian JJ, Griesshammer M, Mesa R, Ianotto JC, Palandri F, Hernández-Boluda JC, Birgegård G, Nangalia J, Koschmieder S, Rumi E, Barbui T. Unmet clinical needs in the management of CALR-mutated essential thrombocythaemia: a consensus-based proposal from the European LeukemiaNet. Lancet Haematol 2021; 8:e658-e665. [PMID: 34450103 DOI: 10.1016/s2352-3026(21)00204-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Recommendations regarding management of essential thrombocythaemia rely on studies done before the discovery of the CALR mutation. On May 20, 2020, the European LeukemiaNet annual meeting was held with the goal to identify unmet clinical needs in myeloproliferative neoplasms. Because patients with a CALR mutation have specific clinical characteristics, treatment of CALR-mutated essential thrombocythaemia was considered an unmet clinical need by the European LeukemiaNet. The elaboration of a consensus document with recommendations according to current evidence was proposed as a solution for resolving uncertainties in the treatment of CALR-mutated essential thrombocythaemia. A steering committee comprising four European LeukemiaNet members was then formed and a panel of ten experts in the field was recruited. The experts proposed 51 potential unmet clinical needs in the management of CALR-mutated essential thrombocythaemia and were asked to score the relevance of each topic. Those topics that obtained the highest scores as relevant unmet clinical needs were identified, including antiplatelet therapy in patients at low risk, definition of extreme thrombocytosis and its management in patients at low risk, indications of cytoreduction and targets of therapy, first-line treatment of choice in young patients (<60 years), and management of pregnancy. After the steering committee revised the available evidence for each topic, a consensus on management and proposal for improving knowledge was achieved by use of an email-based, two round, Delphi approach. Consensus was achieved when 90% of the panellists agreed with a statement and included 14 recommendations and six solution proposals. Key recommendations included careful observation for asymptomatic patients with classical, low-risk, CALR-mutated essential thrombocythaemia without cardiovascular risk factors; caution in the use of antiplatelet therapy for symptomatic patients at low risk with platelet counts of 1000-1500 × 109 platelets per L, in such cases cytoreduction is an adequate option, especially if adquired Von Willebrand disease is present; cytoreduction is recommended for extreme thrombocytosis (platelet count >1500 × 109 platelets per L) with pegylated interferon alfa being the preferred option for younger patients; both hydroxycarbamide and anagrelide might be given to patients ineligible for pegylated interferon alfa; and treatment algorithms for patients with high-risk pregnancies should not be changed according to genotype. The European LeukemiaNet proposes to use these recommendations in the routine management of patients with CALR-mutated essential thrombocythaemia, and designing new clinical studies in this field might be useful.
Collapse
Affiliation(s)
- Alberto Alvarez-Larrán
- Hematology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jean-Jacques Kiladjian
- Université de Paris, AP-HP, HÔpital Saint-Louis, Centre d'Investigations Cliniques, INSERM, CIC1427, Paris, France
| | - Martin Griesshammer
- Oncology, Hemostaseology and Palliative Care, Johannes Wesling Medical Center Minden UKRUB, University of Bochum, Germany
| | - Ruben Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Jean Christophe Ianotto
- Service d'Hématologie Clinique, Institut de Cancero-Hematologie, CHRU de Brest, Brest, France
| | - Francesca Palandri
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy
| | | | - Gunnar Birgegård
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Elisa Rumi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| |
Collapse
|
256
|
El-Sharkawy F, Margolskee E. Pediatric Myeloproliferative Neoplasms. Clin Lab Med 2021; 41:529-540. [PMID: 34304780 DOI: 10.1016/j.cll.2021.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myeloproliferative neoplasms can present early in life and may present a diagnostic challenge. Very few studies have focused on the diagnosis, prognosis, and therapy for pediatric myeloproliferative neoplasms. This article focuses on chronic myeloid leukemia, essential thrombocythemia, polycythemia vera, and primary myelofibrosis in children.
Collapse
Affiliation(s)
- Farah El-Sharkawy
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
257
|
Oppliger Leibundgut E, Haubitz M, Burington B, Ottmann OG, Spitzer G, Odenike O, McDevitt MA, Röth A, Snyder DS, Baerlocher GM. Dynamics of mutations in patients with essential thrombocythemia treated with imetelstat. Haematologica 2021; 106:2397-2404. [PMID: 32732354 PMCID: PMC8409045 DOI: 10.3324/haematol.2020.252817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 01/14/2023] Open
Abstract
In a phase II study, the telomerase inhibitor imetelstat induced rapid hematologic responses in all patients with essential thrombocythemia who were refractory to or intolerant of prior therapies. Significant molecular responses were achieved within 3-6 months in 81% of patients with phenotypic driver mutations in JAK2, CALR and MPL. Here, we investigated the dynamics of additional somatic mutations in response to imetelstat. At study entry, 50% of patients carried one to five additional mutations in the genes ASXL1, CBL, DNMT3A, EZH2, IDH1, SF3B1, TET2, TP53 and U2AF1. Three patients with baseline mutations also had late-emerging mutations in TP53, IDH1 and TET2. Most clones with additional mutations were responsive to imetelstat and decreased with the driver mutation, including the poor prognostic ASXL1, EZH2 and U2AF1 mutations, while SF3B1 and TP53 mutations were associated with poorer molecular response. Overall, phenotypic driver mutation response was significantly deeper in patients without additional mutations (P=0.04) and correlated with longer duration of response. In conclusion, this detailed molecular analysis of heavily pretreated and partly resistant patients with essential thrombocythemia reveals a high individual patient complexity. Moreover, imetelstat demonstrates potential to inhibit efficiently co-incident mutations occurring in neoplastic clones in patients with essential thrombocythemia. (ClinicalTrials.gov number, NCT01243073).
Collapse
Affiliation(s)
| | - Monika Haubitz
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Oliver G Ottmann
- Department of Haematology, Cardiff University, Cardiff, United Kingdom
| | | | | | - Michael A McDevitt
- Divisions of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Röth
- Department of Hematology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - David S Snyder
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, USA
| | | |
Collapse
|
258
|
Roy A, Shrivastva S, Naseer S. In and out: Traffic and dynamics of thrombopoietin receptor. J Cell Mol Med 2021; 25:9073-9083. [PMID: 34448528 PMCID: PMC8500957 DOI: 10.1111/jcmm.16878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombopoiesis had long been a challenging area of study due to the rarity of megakaryocyte precursors in the bone marrow and the incomplete understanding of its regulatory cytokines. A breakthrough was achieved in the early 1990s with the discovery of the thrombopoietin receptor (TpoR) and its ligand thrombopoietin (TPO). This accelerated research in thrombopoiesis, including the uncovering of the molecular basis of myeloproliferative neoplasms (MPN) and the advent of drugs to treat thrombocytopenic purpura. TpoR mutations affecting its membrane dynamics or transport were increasingly associated with pathologies such as MPN and thrombocytosis. It also became apparent that TpoR affected hematopoietic stem cell (HSC) quiescence while priming hematopoietic stem cells (HSCs) towards the megakaryocyte lineage. Thorough knowledge of TpoR surface localization, dimerization, dynamics and stability is therefore crucial to understanding thrombopoiesis and related pathologies. In this review, we will discuss the mechanisms of TpoR traffic. We will focus on the recent progress in TpoR membrane dynamics and highlight the areas that remain unexplored.
Collapse
Affiliation(s)
- Anita Roy
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saurabh Shrivastva
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Saadia Naseer
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
259
|
Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021. [PMID: 34050866 DOI: 10.1007/978-3-030-67696-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The endoplasmic reticulum (ER) performs key cellular functions including protein synthesis, lipid metabolism and signaling. While these functions are spatially isolated in structurally distinct regions of the ER, there is cross-talk between the pathways. One vital player that is involved in ER function is the ER-resident protein calreticulin (CALR). It is a calcium ion-dependent lectin chaperone that primarily assists in glycoprotein synthesis in the ER as part of the protein quality control machinery. CALR also buffers calcium ion release and mediates other glycan-independent protein interactions. Mutations in CALR have been reported in a subset of chronic blood tumors called myeloproliferative neoplasms. The mutations consist of insertions or deletions in the CALR gene that all cause a + 1 bp shift in the reading frame and lead to a dramatic alteration of the amino acid sequence of the C-terminal domain of CALR. This alters CALR function and affects cell homeostasis. This chapter will discuss how CALR and mutant CALR affect ER health and disease.
Collapse
|
260
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
261
|
Tillmann S, Olschok K, Schröder SK, Bütow M, Baumeister J, Kalmer M, Preußger V, Weinbergerova B, Kricheldorf K, Mayer J, Kubesova B, Racil Z, Wessiepe M, Eschweiler J, Isfort S, Brümmendorf TH, Becker W, Schemionek M, Weiskirchen R, Koschmieder S, Chatain N. The Unfolded Protein Response Is a Major Driver of LCN2 Expression in BCR-ABL- and JAK2V617F-Positive MPN. Cancers (Basel) 2021; 13:cancers13164210. [PMID: 34439364 PMCID: PMC8391615 DOI: 10.3390/cancers13164210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Lipocalin 2 (LCN2), a proinflammatory mediator, is involved in the pathogenesis of myeloproliferative neoplasms (MPN). Here, we investigated the molecular mechanisms of LCN2 overexpression in MPN. LCN2 mRNA expression was 20-fold upregulated in peripheral blood (PB) mononuclear cells of chronic myeloid leukemia (CML) and myelofibrosis (MF) patients vs. healthy controls. In addition, LCN2 serum levels were significantly increased in polycythemia vera (PV) and MF and positively correlated with JAK2V617F and mutated CALR allele burden and neutrophil counts. Mechanistically, we identified endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) as a main driver of LCN2 expression in BCR-ABL- and JAK2V617F-positive 32D cells. The UPR inducer thapsigargin increased LCN2 expression >100-fold, and this was not affected by kinase inhibition of BCR-ABL or JAK2V617F. Interestingly, inhibition of the UPR regulators inositol-requiring enzyme 1 (IRE1) and c-Jun N-terminal kinase (JNK) significantly reduced thapsigargin-induced LCN2 RNA and protein expression, and luciferase promoter assays identified nuclear factor kappa B (NF-κB) and CCAAT binding protein (C/EBP) as critical regulators of mLCN2 transcription. In conclusion, the IRE1-JNK-NF-κB-C/EBP axis is a major driver of LCN2 expression in MPN, and targeting UPR and LCN2 may represent a promising novel therapeutic approach in MPN.
Collapse
Affiliation(s)
- Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Sarah K. Schröder
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Vera Preußger
- Institute of Pharmacology and Toxicology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (V.P.); (W.B.)
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
| | - Zdenek Racil
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, 625 00 Brno, Czech Republic; (B.W.); (J.M.); (B.K.); (Z.R.)
- Institute of Hematology and Blood Transfusion, 12820 Prague, Czech Republic
| | - Martina Wessiepe
- Institute of Transfusion Medicine, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (V.P.); (W.B.)
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Ralf Weiskirchen
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, 520674 Aachen, Germany; (S.T.); (K.O.); (M.B.); (J.B.); (M.K.); (K.K.); (S.I.); (T.H.B.); (M.S.); (S.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), 52074 Aachen, Germany; (S.K.S.); (R.W.)
- Correspondence: ; Tel.: +49-241-8037798
| |
Collapse
|
262
|
Dutta A, Nath D, Yang Y, Le BT, Mohi G. CDK6 Is a Therapeutic Target in Myelofibrosis. Cancer Res 2021; 81:4332-4345. [PMID: 34145036 PMCID: PMC8373692 DOI: 10.1158/0008-5472.can-21-0590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/05/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Myelofibrosis (myelofibrosis) is a deadly blood neoplasia with the worst prognosis among myeloproliferative neoplasms (MPN). The JAK2 inhibitors ruxolitinib and fedratinib have been approved for treatment of myelofibrosis, but they do not offer significant improvement of bone marrow fibrosis. CDK6 expression is significantly elevated in MPN/myelofibrosis hematopoietic progenitor cells. In this study, we investigated the efficacy of CDK4/6 inhibitor palbociclib alone or in combination with ruxolitinib in Jak2V617F and MPLW515L murine models of myelofibrosis. Treatment with palbociclib alone significantly reduced leukocytosis and splenomegaly and inhibited bone marrow fibrosis in Jak2V617F and MPLW515L mouse models of myelofibrosis. Combined treatment of palbociclib and ruxolitinib resulted in normalization of peripheral blood leukocyte counts, marked reduction of spleen size, and abrogation of bone marrow fibrosis in murine models of myelofibrosis. Palbociclib treatment also preferentially inhibited Jak2V617F mutant hematopoietic progenitors in mice. Mechanistically, treatment with palbociclib or depletion of CDK6 inhibited Aurora kinase, NF-κB, and TGFβ signaling pathways in Jak2V617F mutant hematopoietic cells and attenuated expression of fibrotic markers in the bone marrow. Overall, these data suggest that palbociclib in combination with ruxolitinib may have therapeutic potential for treatment of myelofibrosis and support the clinical investigation of this drug combination in patients with myelofibrosis. SIGNIFICANCE: These findings demonstrate that CDK6 inhibitor palbociclib in combination with ruxolitinib ameliorates myelofibrosis, suggesting this drug combination could be an effective therapeutic strategy against this devastating blood disorder.
Collapse
Affiliation(s)
- Avik Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Dipmoy Nath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yue Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Bao T Le
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Golam Mohi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.
- University of Virginia Cancer Center, Charlottesville, Virginia
| |
Collapse
|
263
|
Baumeister J, Maié T, Chatain N, Gan L, Weinbergerova B, de Toledo MAS, Eschweiler J, Maurer A, Mayer J, Kubesova B, Racil Z, Schuppert A, Costa I, Koschmieder S, Brümmendorf TH, Gezer D. Early and late stage MPN patients show distinct gene expression profiles in CD34 + cells. Ann Hematol 2021; 100:2943-2956. [PMID: 34390367 PMCID: PMC8592960 DOI: 10.1007/s00277-021-04615-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN.
Collapse
Affiliation(s)
- Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tiago Maié
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Lin Gan
- IZKF Genomics Core Facility, RWTH Aachen University Medical School, Aachen, Germany
| | - Barbora Weinbergerova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Marcelo A S de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedic Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Blanka Kubesova
- Department of Internal Medicine, Hematology and Oncology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Zdenek Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andreas Schuppert
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen, Aachen, Germany
| | - Ivan Costa
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.,Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. .,Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
264
|
Hui W, Zhang W, Liu C, Wan S, Sun W, Su L. Alterations of Signaling Pathways in Essential Thrombocythemia with Calreticulin Mutation. Cancer Manag Res 2021; 13:6231-6238. [PMID: 34393515 PMCID: PMC8357313 DOI: 10.2147/cmar.s316919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Though mutations of the calreticulin (CALR) gene have been identified in essential thrombocythemia patients, the detailed mechanisms for CALR mutations have not been completely clarified. Our study is aimed at characterizing alteration of protein expression in ET patients with mutated CALRdel52 and further recognizing possible involvement of signaling pathways associated with CALR mutations. Patients and Methods Protein pathway array was performed to analyze the expression levels of proteins involved in various signaling pathways in peripheral blood neutrophils from 18 ET patients with mutated CALRdel52, 20 ET patients with JAK2V617F mutation and 20 controls. Results We found 20 proteins differentially expressed in ET patients with mutated CALRdel52 compared with healthy controls. These proteins were associated with molecular mechanisms of cancer in ingenuity pathways analysis (IPA) network. We identified top ten canonical pathways which including apoptotic pathways and cellular cytokine pathways might participate in pathogenesis of ET with mutated CALRdel52. Additionally, there were 8 proteins found to be dysregulated differently between ET patients with mutated CALRdel52 and those with JAK2V617F mutation. These proteins might be related to the unique signaling pathways activated by CALRdel52 mutation which were different to JAK/STATs pathway by JAK2V617F mutation. Conclusion Our study demonstrated that numerous alterations of signaling proteins and pathways in ET patients with mutated CALRdel52. These findings could help to gain insights into the pathological mechanisms of ET.
Collapse
Affiliation(s)
- Wuhan Hui
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wei Zhang
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Congyan Liu
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Suigui Wan
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Li Su
- Department of Hematology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
265
|
Bergmann AC, Kyllesbech C, Slibinskas R, Ciplys E, Højrup P, Trier NH, Houen G. Epitope Mapping of Monoclonal Antibodies to Calreticulin Reveals That Charged Amino Acids Are Essential for Antibody Binding. Antibodies (Basel) 2021; 10:antib10030031. [PMID: 34449535 PMCID: PMC8395503 DOI: 10.3390/antib10030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 02/01/2023] Open
Abstract
Calreticulin is a chaperone protein, which is associated with myeloproliferative diseases. In this study, we used resin-bound peptides to characterize two monoclonal antibodies (mAbs) directed to calreticulin, mAb FMC 75 and mAb 16, which both have significantly contributed to understanding the biological function of calreticulin. The antigenicity of the resin-bound peptides was determined by modified enzyme-linked immunosorbent assay. Specific binding was determined to an 8-mer epitope located in the N-terminal (amino acids 34–41) and to a 12-mer peptide located in the C-terminal (amino acids 362–373). Using truncated peptides, the epitopes were identified as TSRWIESK and DEEQRLKEEED for mAb FMC 75 and mAb 16, respectively, where, especially the charged amino acids, were found to have a central role for a stable binding. Further studies indicated that the epitope of mAb FMC 75 is assessable in the oligomeric structure of calreticulin, making this epitope a potential therapeutic target.
Collapse
Affiliation(s)
| | - Cecilie Kyllesbech
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
| | - Rimantas Slibinskas
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Evaldas Ciplys
- Institute of Biotechnology, University of Vilnius, 01513 Vilnius, Lithuania; (R.S.); (E.C.)
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, 2600 Glostrup, Denmark;
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark;
- Correspondence: (N.H.T.); (G.H.)
| |
Collapse
|
266
|
Integration of Molecular Information in Risk Assessment of Patients with Myeloproliferative Neoplasms. Cells 2021; 10:cells10081962. [PMID: 34440731 PMCID: PMC8391705 DOI: 10.3390/cells10081962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) are clonal disorders of a hematopoietic stem cell, characterized by an abnormal proliferation of largely mature cells driven by mutations in JAK2, CALR, and MPL. All these mutations lead to a constitutive activation of the JAK-STAT signaling, which represents a target for therapy. Beyond driver ones, most patients, especially with myelofibrosis, harbor mutations in an array of "myeloid neoplasm-associated" genes that encode for proteins involved in chromatin modification and DNA methylation, RNA splicing, transcription regulation, and oncogenes. These additional mutations often arise in the context of clonal hematopoiesis of indeterminate potential (CHIP). The extensive characterization of the pathologic genome associated with MPN highlighted selected driver and non-driver mutations for their clinical informativeness. First, driver mutations are enlisted in the WHO classification as major diagnostic criteria and may be used for monitoring of residual disease after transplantation and response to treatment. Second, mutation profile can be used, eventually in combination with cytogenetic, histopathologic, hematologic, and clinical variables, to risk stratify patients regarding thrombosis, overall survival, and rate of transformation to secondary leukemia. This review outlines the molecular landscape of MPN and critically interprets current information for their potential impact on patient management.
Collapse
|
267
|
Hoffbrand AV. Haematology in the UK: A 60-year personal perspective. EJHAEM 2021; 2:569-576. [PMID: 35844697 PMCID: PMC9175951 DOI: 10.1002/jha2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022]
Abstract
The advances in understanding the pathogenesis, in the diagnosis and classification of blood diseases and in their treatment that have been achieved over the six decades from 1960 to 2020, are reviewed. Emphasis is given to the new techniques, especially in immunology and molecular biology, that have enabled this remarkable progress. The review also highlights the major contributions of UK haematologists and non-clinical scientists to these advances.
Collapse
|
268
|
Tajbakhsh A, Gheibi Hayat SM, Movahedpour A, Savardashtaki A, Loveless R, Barreto GE, Teng Y, Sahebkar A. The complex roles of efferocytosis in cancer development, metastasis, and treatment. Biomed Pharmacother 2021; 140:111776. [PMID: 34062411 DOI: 10.1016/j.biopha.2021.111776] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
When tumor cells are killed by targeted therapy, radiotherapy, or chemotherapy, they trigger their primary tumor by releasing pro-inflammatory cytokines. Microenvironmental interactions can also promote tumor heterogeneity and development. In this line, several immune cells within the tumor microenvironment, including macrophages, dendritic cells, regulatory T-cells, and CD8+ and CD4+ T cells, are involved in the clearance of apoptotic tumor cells through a process called efferocytosis. Although the efficiency of apoptotic tumor cell efferocytosis is positive under physiological conditions, there are controversies regarding its usefulness in treatment-induced apoptotic tumor cells (ATCs). Efferocytosis can show the limitation of cytotoxic treatments, such as chemotherapy and radiotherapy. Since cytotoxic treatments lead to extensive cell mortality, efferocytosis, and macrophage polarization toward an M2 phenotype, the immune response may get involved in tumor recurrence and metastasis. Tumor cells can use the anti-inflammatory effect of apoptotic tumor cell efferocytosis to induce an immunosuppressive condition that is tumor-tolerant. Since M2 polarization and efferocytosis are tumor-promoting processes, the receptors on macrophages act as potential targets for cancer therapy. Moreover, researchers have shown that efferocytosis-related molecules/pathways are potential targets for cancer therapy. These include phosphatidylserine and calreticulin, Tyro3, Axl, and Mer tyrosine kinase (MerTK), receptors of tyrosine kinase, indoleamine-2,3-dioxygenase 1, annexin V, CD47, TGF-β, IL-10, and macrophage phenotype switch are combined with conventional therapy, which can be more effective in cancer treatment. Thus, we set out to investigate the advantages and disadvantages of efferocytosis in treatment-induced apoptotic tumor cells.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Medical Laboratory, Imaging and Radiologic Sciences, College of Allied Health, Augusta University, Augusta, GA 30912, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
269
|
Jia R, Kutzner L, Koren A, Runggatscher K, Májek P, Müller AC, Schuster M, Bock C, Loizou JI, Kubicek S, Kralovics R. High-throughput drug screening identifies the ATR-CHK1 pathway as a therapeutic vulnerability of CALR mutated hematopoietic cells. Blood Cancer J 2021; 11:137. [PMID: 34333533 PMCID: PMC8325683 DOI: 10.1038/s41408-021-00531-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations of calreticulin (CALR) are the second most prevalent driver mutations in essential thrombocythemia and primary myelofibrosis. To identify potential targeted therapies for CALR mutated myeloproliferative neoplasms, we searched for small molecules that selectively inhibit the growth of CALR mutated cells using high-throughput drug screening. We investigated 89 172 compounds using isogenic cell lines carrying CALR mutations and identified synthetic lethality with compounds targeting the ATR-CHK1 pathway. The selective inhibitory effect of these compounds was validated in a co-culture assay of CALR mutated and wild-type cells. Of the tested compounds, CHK1 inhibitors potently depleted CALR mutated cells, allowing wild-type cell dominance in the co-culture over time. Neither CALR deficient cells nor JAK2V617F mutated cells showed hypersensitivity to ATR-CHK1 inhibition, thus suggesting specificity for the oncogenic activation by the mutant CALR. CHK1 inhibitors induced replication stress in CALR mutated cells revealed by elevated pan-nuclear staining for γH2AX and hyperphosphorylation of RPA2. This was accompanied by S-phase cell cycle arrest due to incomplete DNA replication. Transcriptomic and phosphoproteomic analyses revealed a replication stress signature caused by oncogenic CALR, suggesting an intrinsic vulnerability to CHK1 perturbation. This study reveals the ATR-CHK1 pathway as a potential therapeutic target in CALR mutated hematopoietic cells.
Collapse
Affiliation(s)
- Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leon Kutzner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kathrin Runggatscher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
270
|
CRISPR/Cas12a-Based Ultrasensitive and Rapid Detection of JAK2 V617F Somatic Mutation in Myeloproliferative Neoplasms. BIOSENSORS-BASEL 2021; 11:bios11080247. [PMID: 34436049 PMCID: PMC8394843 DOI: 10.3390/bios11080247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
The JAK2 V617F mutation is a major diagnostic, therapeutic, and monitoring molecular target of Philadelphia-negative myeloproliferative neoplasms (MPNs). To date, numerous methods of detecting the JAK2 V617F mutation have been reported, but there is no gold-standard diagnostic method for clinical applications. Here, we developed and validated an efficient Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 12a (Cas12a)-based assay to detect the JAK2 V617F mutation. Our results showed that the sensitivity of the JAK2 V617F/Cas12a fluorescence detection system was as high as 0.01%, and the JAK2 V617F/Cas12a lateral flow strip assay could unambiguously detect as low as 0.5% of the JAK2 V617F mutation, which was much higher than the sensitivity required for clinical application. The minimum detectable concentration of genomic DNA achieved was 0.01 ng/μL (~5 aM, ~3 copies/μL). In addition, the whole process only took about 1.5 h, and the cost of an individual test was much lower than that of the current assays. Thus, our methods can be applied to detect the JAK2 V617F mutation, and they are highly sensitive, rapid, cost-effective, and convenient.
Collapse
|
271
|
Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021; 137:1145-1153. [PMID: 33237986 DOI: 10.1182/blood.2020008043] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are hematopoietic stem cell disorders that are defined by activating mutations in signal transduction pathways and are characterized clinically by the overproduction of platelets, red blood cells, and neutrophils, significant burden of disease-specific symptoms, and high rates of vascular events. The focus of this review is to critically reevaluate the clinical burden of thrombosis in MPNs, to review the clinical associations among clonal hematopoiesis, JAK2V617F burden, inflammation, and thrombosis, and to provide insights into novel primary and secondary thrombosis-prevention strategies.
Collapse
|
272
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
273
|
Nann D, Fend F. Synoptic Diagnostics of Myeloproliferative Neoplasms: Morphology and Molecular Genetics. Cancers (Basel) 2021; 13:cancers13143528. [PMID: 34298741 PMCID: PMC8303289 DOI: 10.3390/cancers13143528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary The diagnosis of myeloproliferative neoplasms requires assessment of a combination of clinical, morphological, immunophenotypic and genetic features, and this integrated, multimodal approach forms the basis for precise classification. Evaluation includes cell counts and morphology in the peripheral blood, bone marrow aspiration and trephine biopsy, and may encompass flow cytometry for specific questions. Diagnosis nowadays is completed by targeted molecular analysis for the detection of recurrent driver and, optionally, disease-modifying mutations. According to the current World Health Organization classification, all myeloproliferative disorders require assessment of molecular features to support the diagnosis or confirm a molecularly defined entity. This requires a structured molecular analysis workflow tailored for a rapid and cost-effective diagnosis. The review focuses on the morphological and molecular features of Ph-negative myeloproliferative neoplasms and their differential diagnoses, addresses open questions of classification, and emphasizes the enduring role of histopathological assessment in the molecular era. Abstract The diagnosis of a myeloid neoplasm relies on a combination of clinical, morphological, immunophenotypic and genetic features, and an integrated, multimodality approach is needed for precise classification. The basic diagnostics of myeloid neoplasms still rely on cell counts and morphology of peripheral blood and bone marrow aspirate, flow cytometry, cytogenetics and bone marrow trephine biopsy, but particularly in the setting of Ph− myeloproliferative neoplasms (MPN), the trephine biopsy has a crucial role. Nowadays, molecular studies are of great importance in confirming or refining a diagnosis and providing prognostic information. All myeloid neoplasms of chronic evolution included in this review, nowadays feature the presence or absence of specific genetic markers in their diagnostic criteria according to the current WHO classification, underlining the importance of molecular studies. Crucial differential diagnoses of Ph− MPN are the category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2, and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). This review focuses on morphological, immunophenotypical and molecular features of BCR-ABL1-negative MPN and their differential diagnoses. Furthermore, areas of difficulties and open questions in their classification are addressed, and the persistent role of morphology in the area of molecular medicine is discussed.
Collapse
Affiliation(s)
- Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980207
| |
Collapse
|
274
|
Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. HLA-dependent heterogeneity and macrophage immunoproteasome activation during lung COVID-19 disease. J Transl Med 2021; 19:290. [PMID: 34225749 PMCID: PMC8256232 DOI: 10.1186/s12967-021-02965-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The worldwide pandemic caused by the SARS-CoV-2 virus is characterized by significant and unpredictable heterogeneity in symptoms that remains poorly understood. METHODS Transcriptome and single cell transcriptome of COVID19 lung were integrated with deeplearning analysis of MHC class I immunopeptidome against SARS-COV2 proteome. RESULTS An analysis of the transcriptomes of lung samples from COVID-19 patients revealed that activation of MHC class I antigen presentation in these tissues was correlated with the amount of SARS-CoV-2 RNA present. Similarly, a positive relationship was detected in these samples between the level of SARS-CoV-2 and the expression of a genomic cluster located in the 6p21.32 region (40 kb long, inside the MHC-II cluster) that encodes constituents of the immunoproteasome. An analysis of single-cell transcriptomes of bronchoalveolar cells highlighted the activation of the immunoproteasome in CD68 + M1 macrophages of COVID-19 patients in addition to a PSMB8-based trajectory in these cells that featured an activation of defense response during mild cases of the disease, and an impairment of alveolar clearance mechanisms during severe COVID-19. By examining the binding affinity of the SARS-CoV-2 immunopeptidome with the most common HLA-A, -B, and -C alleles worldwide, we found higher numbers of stronger presenters in type A alleles and in Asian populations, which could shed light on why this disease is now less widespread in this part of the world. CONCLUSIONS HLA-dependent heterogeneity in macrophage immunoproteasome activation during lung COVID-19 disease could have implications for efforts to predict the response to HLA-dependent SARS-CoV-2 vaccines in the global population.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Ali G Turhan
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France
- Division of Hematology, Kremlin-Bicetre Hospital, 94270, Kremlin Bicetre, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France
- Division of Hematology, Kremlin-Bicetre Hospital, 94270, Kremlin Bicetre, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Frank Griscelli
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France.
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France.
- University of Paris, Faculty Sorbonne Paris Cité, Faculté Des Sciences Pharmaceutiques Et Biologiques, Paris, France.
- Department of Biopathology, Gustave-Roussy Cancer Institute, 94800, Villejuif, France.
- INSERM UA9, Institut André Lwoff, Hôpital Paul Brousse, Bâtiment A CNRS, 7 rue Guy Moquet, 94802, Villejuif, France.
| |
Collapse
|
275
|
Teimouri H, Kolomeisky AB. Temporal order of mutations influences cancer initiation dynamics. Phys Biol 2021; 18. [PMID: 34130273 DOI: 10.1088/1478-3975/ac0b7e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023]
Abstract
Cancer is a set of genetic diseases that are driven by mutations. It was recently discovered that the temporal order of genetic mutations affects the cancer evolution and even the nature of the decease itself. The mechanistic origin of these observations, however, remain not well understood. Here we present a theoretical model for cancer initiation dynamics that allows us to quantify the impact of the temporal order of mutations. In our approach, the cancer initiation process is viewed as a set of stochastic transitions between discrete states defined by the different numbers of mutated cells. Using a first-passage analysis, probabilities and times before the cancer initiation are explicitly evaluated for two alternative sequences of two mutations. It is found that the probability of cancer initiation is determined only by the first mutation, while the dynamics depends on both mutations. In addition, it is shown that the acquisition of a mutation with higher fitness before mutation with lower fitness increases the probability of the tumor formation but delays the cancer initiation. Theoretical results are explained using effective free-energy landscapes.
Collapse
Affiliation(s)
- Hamid Teimouri
- Department of Chemistry, Rice University, Houston, Texas, United States of America.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas, United States of America.,Center for Theoretical Biological Physics, Rice University, Houston, Texas, United States of America.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America.,Department of Physics and Astronomy, Rice University, Houston, Texas, United States of America
| |
Collapse
|
276
|
Shide K. Calreticulin mutations in myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 365:179-226. [PMID: 34756244 DOI: 10.1016/bs.ircmb.2021.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calreticulin (CALR) is a chaperone present in the endoplasmic reticulum, which is involved in the quality control of N-glycosylated proteins and storage of calcium ions. In 2013, the C-terminal mutation in CALR was identified in half of the patients with essential thrombocythemia and primary myelofibrosis who did not have a JAK2 or MPL mutation. The results of 8 years of intensive research are changing the clinical practice associated with treating myeloproliferative neoplasms (MPNs). The presence or absence of CALR mutations and their mutation types already provide important information for diagnosis and treatment decision making. In addition, the interaction with the thrombopoietin receptor MPL, which is the main mechanism of transformation by CALR mutation, and the expression of the mutant protein on the cell surface have a great potential as targets for molecular-targeted drugs and immunotherapy. This chapter presents recent findings on the clinical significance of the CALR mutation and the molecular basis by which this mutation drives MPNs.
Collapse
Affiliation(s)
- Kotaro Shide
- Division of Haematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
277
|
Zeeh FC, Meyer SC. Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Hamostaseologie 2021; 41:197-205. [PMID: 34192778 DOI: 10.1055/a-1447-6667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms are hematopoietic stem cell disorders characterized by dysregulated proliferation of mature myeloid blood cells. They can present as polycythemia vera, essential thrombocythemia, or myelofibrosis and are characterized by constitutive activation of JAK2 signaling. They share a propensity for thrombo-hemorrhagic complications and the risk of progression to acute myeloid leukemia. Attention has also been drawn to JAK2 mutant clonal hematopoiesis of indeterminate potential as a possible precursor state of MPN. Insight into the pathogenesis as well as options for the treatment of MPN has increased in the last years thanks to modern sequencing technologies and functional studies. Mutational analysis provides information on the oncogenic driver mutations in JAK2, CALR, or MPL in the majority of MPN patients. In addition, molecular markers enable more detailed prognostication and provide guidance for therapeutic decisions. While JAK2 inhibitors represent a standard of care for MF and resistant/refractory PV, allogeneic hematopoietic stem cell transplantation remains the only therapy with a curative potential in MPN so far but is reserved to a subset of patients. Thus, novel concepts for therapy are an important need, particularly in MF. Novel JAK2 inhibitors, combination therapy approaches with ruxolitinib, as well as therapeutic approaches addressing new molecular targets are in development. Current standards and recent advantages are discussed in this review.
Collapse
Affiliation(s)
- Franziska C Zeeh
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Sara C Meyer
- Division of Hematology, University Hospital Basel, Basel, Switzerland.,Division of Hematology and Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
278
|
Greenfield G, McMullin MF, Mills K. Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol 2021; 14:103. [PMID: 34193229 PMCID: PMC8246678 DOI: 10.1186/s13045-021-01116-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia negative myeloproliferative neoplasms (MPN) compromise a heterogeneous group of clonal myeloid stem cell disorders comprising polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Despite distinct clinical entities, these disorders are linked by morphological similarities and propensity to thrombotic complications and leukaemic transformation. Current therapeutic options are limited in disease-modifying activity with a focus on the prevention of thrombus formation. Constitutive activation of the JAK/STAT signalling pathway is a hallmark of pathogenesis across the disease spectrum with driving mutations in JAK2, CALR and MPL identified in the majority of patients. Co-occurring somatic mutations in genes associated with epigenetic regulation, transcriptional control and splicing of RNA are variably but recurrently identified across the MPN disease spectrum, whilst epigenetic contributors to disease are increasingly recognised. The prognostic implications of one MPN diagnosis may significantly limit life expectancy, whilst another may have limited impact depending on the disease phenotype, genotype and other external factors. The genetic and clinical similarities and differences in these disorders have provided a unique opportunity to understand the relative contributions to MPN, myeloid and cancer biology generally from specific genetic and epigenetic changes. This review provides a comprehensive overview of the molecular pathophysiology of MPN exploring the role of driver mutations, co-occurring mutations, dysregulation of intrinsic cell signalling, epigenetic regulation and genetic predisposing factors highlighting important areas for future consideration.
Collapse
Affiliation(s)
- Graeme Greenfield
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | | | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| |
Collapse
|
279
|
Yasuda S, Aoyama S, Yoshimoto R, Li H, Watanabe D, Akiyama H, Yamamoto K, Fujiwara T, Najima Y, Doki N, Sakaida E, Edahiro Y, Imai M, Araki M, Komatsu N, Miura O, Kawamata N. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations. Int J Hematol 2021; 114:424-440. [PMID: 34165774 DOI: 10.1007/s12185-021-03180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/26/2022]
Abstract
Ruxolitinib (RUX), a JAK1/2-inhibitor, is effective for myeloproliferative neoplasm (MPN) with both JAK2V617 F and calreticulin (CALR) mutations. However, many MPN patients develop resistance to RUX. Although mechanisms of RUX-resistance in cells with JAK2V617 F have already been characterized, those in cells with CALR mutations remain to be elucidated. In this study, we established RUX-resistant human cell lines with CALR mutations and characterized mechanisms of RUX-resistance. Here, we found that RUX-resistant cells had high levels of MPL transcripts, overexpression of both MPL and JAK2, and increased phosphorylation of JAK2 and STAT5. We also found that mature MPL proteins were more stable in RUX-resistant cells. Knockdown of MPL in RUX-resistant cells by shRNAs decreased JAK/STAT signaling. Immunoprecipitation assays showed that binding of mutant CALR to MPL was increased in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells. When resistant cells were cultured in the absence of RUX, the RUX-resistance was reversed, with reduction of the mutant-CALR/MPL complex. In conclusion, MPL overexpression induces higher levels of a mutant-CALR/MPL complex, which may cause RUX-resistance in cells with CALR mutations. This mechanism may be a new therapeutic target to overcome RUX-resistance.
Collapse
Affiliation(s)
- Shunichiro Yasuda
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | - Satoru Aoyama
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | - Huixin Li
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Daisuke Watanabe
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Hematology, TMDU, Tokyo, Japan
| | | | | | - Takeo Fujiwara
- Department of Global Health Promotion, TMDU, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University, Chiba, Japan
| | - Yoko Edahiro
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Misa Imai
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Leading center for the development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, TMDU, Tokyo, Japan
| | - Norihiko Kawamata
- Department of Immunotherapy for Hematopoietic Disorders, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
280
|
Lemoine S, Renard M, Bouvier A, Orvain C, Giltat A, Cottin L, Blanchet O, Hunault-Berger M, Ugo V, Luque Paz D. No detection of atypical one-base deletion of CALR exon 9 with fragment analysis: A molecular trap to avoid. Blood Cells Mol Dis 2021; 90:102589. [PMID: 34214802 DOI: 10.1016/j.bcmd.2021.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Sandrine Lemoine
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France.
| | - Maxime Renard
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France
| | - Anne Bouvier
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France
| | - Corentin Orvain
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France; CHU Angers, Service des maladies du sang, Angers, France
| | - Aurélien Giltat
- Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France; CHU Angers, Service des maladies du sang, Angers, France
| | - Laurane Cottin
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France
| | - Odile Blanchet
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France; CHU Angers, Centre de Ressources Biologiques, BB-0033-00038, Angers, France
| | - Mathilde Hunault-Berger
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France; CHU Angers, Service des maladies du sang, Angers, France
| | - Valérie Ugo
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France
| | - Damien Luque Paz
- Univ Angers, Inserm, CRCINA, F-49000 Angers, France; CHU Angers, Laboratoire d'hématologie, F-49000 Angers, France; Fédération Hospitalo-Universitaire 'Grand Ouest Against Leukemia' (FHU GOAL), France
| |
Collapse
|
281
|
Chia YC, Islam MA, Hider P, Woon PY, Johan MF, Hassan R, Ramli M. The Prevalence of TET2 Gene Mutations in Patients with BCR- ABL-Negative Myeloproliferative Neoplasms (MPN): A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:3078. [PMID: 34203097 PMCID: PMC8235080 DOI: 10.3390/cancers13123078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple recurrent somatic mutations have recently been identified in association with myeloproliferative neoplasms (MPN). This meta-analysis aims to assess the pooled prevalence of TET2 gene mutations among patients with MPN. Six databases (PubMed, Scopus, ScienceDirect, Google Scholar, Web of Science and Embase) were searched for relevant studies from inception till September 2020, without language restrictions. The eligibility criteria included BCR-ABL-negative MPN adults with TET2 gene mutations. A random-effects model was used to estimate the pooled prevalence with 95% confidence intervals (CIs). Subgroup analyses explored results among different continents and countries, WHO diagnostic criteria, screening methods and types of MF. Quality assessment was undertaken using the Joanna Briggs Institute critical appraisal tool. The study was registered with PROSPERO (CRD42020212223). Thirty-five studies were included (n = 5121, 47.1% female). Overall, the pooled prevalence of TET2 gene mutations in MPN patients was 15.5% (95% CI: 12.1-19.0%, I2 = 94%). Regional differences explained a substantial amount of heterogeneity. The prevalence of TET2 gene mutations among the three subtypes PV, ET and MF were 16.8%, 9.8% and 15.7%, respectively. The quality of the included studies was determined to be moderate-high among 83% of the included studies. Among patients with BCR-ABL-negative MPN, the overall prevalence of TET2 gene mutations was 15.5%.
Collapse
Affiliation(s)
- Yuh Cai Chia
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Phil Hider
- Department of Population Health, University of Otago, Christchurch 8140, New Zealand;
| | - Peng Yeong Woon
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| | - Marini Ramli
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Y.C.C.); (M.F.J.); (R.H.)
| |
Collapse
|
282
|
Zakaria NA, Rosle NA, Siti Asmaa MJ, Aziee S, Haiyuni MY, Samat NA, Husin A, Hassan R, Ramli M, Mohamed Yusoff S, Ibrahim IK, Al-Jamal HAN, Johan MF. Conformation sensitive gel electrophoresis for the detection of calreticulin mutations in BCR-ABL1-negative myeloproliferative neoplasms. Int J Lab Hematol 2021; 43:1451-1457. [PMID: 34125992 DOI: 10.1111/ijlh.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Calreticulin (CALR) mutations in myeloproliferative neoplasms (MPN) have been reported to be key markers in the molecular diagnosis, particularly in patients lacking JAK2 V617F mutation. In most current reports, CALR mutations were analysed by either allele-specific PCR (AS-PCR), or the more expensive quantitative real-time PCR, pyrosequencing and next-generation sequencing. Hence, we report the use of an alternative method, the conformation sensitive gel electrophoresis (CSGE) for the detection of CALR mutations in BCR-ABL1-negative MPN patients. METHODS Forty BCR-ABL1-negative MPN patients' DNA: 19 polycythemia vera (PV), 7 essential thrombocytosis (ET) and 14 primary myelofibrosis (PMF), were screened for CALR mutations by CSGE. PCR primers were designed to amplify sequences spanning between exons 8 and 9 to target the mutation hotspots in CALR. Amplicons displaying abnormal CSGE profiles by electrophoresis were directly sequenced, and results were analysed by BioEdit Sequence Alignment Editor v7.2.6. CSGE results were compared with AS-PCR and confirmed by Sanger sequencing. RESULTS CSGE identified 4 types of mutations; 2 PMF patients with either CALR type 1 (c.1099_1150del52) or type 2 (c.1155_1156insTTGTC), 1 ET patient with nucleotide deletion (c.1121delA) and insertion (c.1190insA) and 1 PV patient with p.K368del (c.1102_1104delAAG) and insertion (c.1135insA) inframe mutations. Three patients have an altered KDEL motif at the C-terminal of CALR protein. In comparison, AS-PCR only able to detect two PMF patients with mutations, either type 1 and type 2. CONCLUSION CSGE is inexpensive, sensitive and reliable alternative method for the detection of CALR mutations in BCR-ABL1-negative MPN patients.
Collapse
Affiliation(s)
- Nur Atikah Zakaria
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Norfifiana Alisa Rosle
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mat Jusoh Siti Asmaa
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Universiti Sains Malaysia (USM)-RIKEN Interdisciplinary Collaboration for Advanced Sciences (URICAS), Penang, Malaysia
| | - Sudin Aziee
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Yassim Haiyuni
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Ameera Samat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Marini Ramli
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ibrahim Khidir Ibrahim
- Faculty of Medical Laboratory Sciences, Department of Haematology, Al-Neelain University, Khartoum, Sudan
| | - Hamid Ali Nagi Al-Jamal
- Diagnostic and Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Hospital USM, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
283
|
Naseem S, Binota J, Varma N, Satyarthi P, Rana P, Malhotra P. Polymerase chain reaction-restriction fragment length polymorphism method for detection of Calreticulin type-1 and type-2 mutations in myeloproliferative neoplasm. J Hematop 2021. [DOI: 10.1007/s12308-021-00462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
284
|
Induced Pluripotent Stem Cells Enable Disease Modeling and Drug Screening in Calreticulin del52 and ins5 Myeloproliferative Neoplasms. Hemasphere 2021; 5:e593. [PMID: 34131633 PMCID: PMC8196125 DOI: 10.1097/hs9.0000000000000593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mutations in the calreticulin (CALR) gene are seen in about 30% of essential thrombocythemia and primary myelofibrosis patients. To address the contribution of the human CALR mutants to the pathogenesis of myeloproliferative neoplasms (MPNs) in an endogenous context, we modeled the CALRdel52 and CALRins5 mutants by induced pluripotent stem cell (iPSC) technology using CD34+ progenitors from 4 patients. We describe here the generation of several clones of iPSC carrying heterozygous CALRdel52 or CALRins5 mutations. We showed that CALRdel52 induces a stronger increase in progenitors than CALRins5 and that both CALRdel52 and CALRins5 mutants favor an expansion of the megakaryocytic lineage. Moreover, we found that both CALRdel52 and CALRins5 mutants rendered colony forming unit–megakaryocyte (CFU-MK) independent from thrombopoietin (TPO), and promoted a mild constitutive activation level of signal transducer and activator of transcription 3 in megakaryocytes. Unexpectedly, a mild increase in the sensitivity of colony forming unit-granulocyte (CFU-G) to granulocyte-colony stimulating factor was also observed in iPSC CALRdel52 and CALRins5 compared with control iPSC. Moreover, CALRdel52-induced megakaryocytic spontaneous growth is more dependent on Janus kinase 2/phosphoinositide 3-kinase/extracellular signal-regulated kinase than TPO-mediated growth and opens a therapeutic window for treatments in CALR-mutated MPN. The iPSC models described here represent an interesting platform for testing newly developed inhibitors. Altogether, this study shows that CALR-mutated iPSC recapitulate MPN phenotypes in vitro and may be used for drug screening.
Collapse
|
285
|
Patel AA, Odenike O. The Next Generation of JAK Inhibitors: an Update on Fedratinib, Momelotonib, and Pacritinib. Curr Hematol Malig Rep 2021; 15:409-418. [PMID: 32780250 DOI: 10.1007/s11899-020-00596-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Ruxolitinib is the first FDA-approved JAK inhibitor for the treatment of myeloproliferative neoplasms and is an effective means of controlling symptom burden and improving splenomegaly. However, a majority of patients will develop disease progression with long-term use. Fedratinib, momelotinib, and pacritinib are three newer-generation JAK inhibitors being prospectively evaluated and we will discuss their roles in the treatment of myeloproliferative neoplasms. RECENT FINDINGS Fedratinib has a role in both JAK-inhibitor naive intermediate-/high-risk myelofibrosis patients and in patients that have previously received ruxolitinib. It has recently received FDA approval for these indications as well. Momelotinib does not appear to have an advantage over ruxolitinib with regards to improving splenomegaly in intermediate-/high-risk JAK-inhibitor naive myelofibrosis. However, increased rates of transfusion independence have been noted with momelotinib. Pacritinib has been studied in myelofibrosis patients with significant baseline anemia and thrombocytopenia; these trials support the use of pacritinib in myelofibrosis patients with significant thrombocytopenia. While ruxolitinib is effective in reducing the symptom burden and splenomegaly of patients with myeloproliferative neoplasms, a majority of patients will ultimately progress on therapy. Newer-generation JAK inhibitors including fedratinib, momelotinib, and pacritinib are being prospectively evaluated to determine their appropriate roles in the management of myeloproliferative neoplasms. In addition, both combination therapies with JAK inhibitors and novel investigational therapies are being actively explored.
Collapse
Affiliation(s)
- Anand A Patel
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
286
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
287
|
Functional Consequences of Mutations in Myeloproliferative Neoplasms. Hemasphere 2021; 5:e578. [PMID: 34095761 PMCID: PMC8171364 DOI: 10.1097/hs9.0000000000000578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Driver mutations occur in Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), and calreticulin (CALR) in BCR-ABL1 negative myeloproliferative neoplasms (MPNs). From mutations leading to one amino acid substitution in JAK2 or MPL, to frameshift mutations in CALR resulting in a protein with a different C-terminus, all the mutated proteins lead to pathologic and persistent JAK2-STAT5 activation. The most prevalent mutation, JAK2 V617F, is associated with the 3 entities polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF), while CALR and MPL mutations are associated only with ET and MF. Triple negative ET and MF patients may harbor noncanonical mutations in JAK2 or MPL. One major fundamental question is whether the conformations of JAK2 V617F, MPL W515K/L/A, or CALR mutants differ from those of their wild type counterparts so that a specific treatment could target the clone carrying the mutated driver and spare physiological hematopoiesis. Of great interest, a set of epigenetic mutations can co-exist with the phenotypic driver mutations in 35%–40% of MPNs. These epigenetic mutations, such as TET2, EZH2, ASXL1, or DNMT3A mutations, promote clonal hematopoiesis and increased fitness of aged hematopoietic stem cells in both clonal hematopoiesis of indeterminate potential (CHIP) and MPNs. Importantly, the main MPN driver mutation JAK2 V617F is also associated with CHIP. Accumulation of several epigenetic and splicing mutations favors progression of MPNs to secondary acute myeloid leukemia. Another major fundamental question is how epigenetic rewiring due to these mutations interacts with persistent JAK2-STAT5 signaling. Answers to these questions are required for better therapeutic interventions aimed at preventing progression of ET and PV to MF, and transformation of these MPNs in secondary acute myeloid leukemia.
Collapse
|
288
|
Achyutuni S, Nivarthi H, Majoros A, Hug E, Schueller C, Jia R, Varga C, Schuster M, Senekowitsch M, Tsiantoulas D, Kavirayani A, Binder CJ, Bock C, Zagrijtschuk O, Kralovics R. Hematopoietic expression of a chimeric murine-human CALR oncoprotein allows the assessment of anti-CALR antibody immunotherapies in vivo. Am J Hematol 2021; 96:698-707. [PMID: 33761144 DOI: 10.1002/ajh.26171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by a pathologic expansion of myeloid lineages. Mutations in JAK2, CALR and MPL genes are known to be three prominent MPN disease drivers. Mutant CALR (mutCALR) is an oncoprotein that interacts with and activates the thrombopoietin receptor (MPL) and represents an attractive target for targeted therapy of CALR mutated MPN. We generated a transgenic murine model with conditional expression of the human mutant exon 9 (del52) from the murine endogenous Calr locus. These mice develop essential thrombocythemia like phenotype with marked thrombocytosis and megakaryocytosis. The disease exacerbates with age showing prominent signs of splenomegaly and anemia. The disease is transplantable and mutCALR stem cells show proliferative advantage when compared to wild type stem cells. Transcriptome profiling of hematopoietic stem cells revealed oncogenic and inflammatory gene expression signatures. To demonstrate the applicability of the transgenic animals for immunotherapy, we treated mice with monoclonal antibody raised against the human mutCALR. The antibody treatment lowered platelet and stem cell counts in mutant mice. Secretion of mutCALR did not constitute a significant antibody sink. This animal model not only recapitulates human MPN but also serves as a relevant model for testing immunotherapeutic strategies targeting epitopes of the human mutCALR.
Collapse
Affiliation(s)
- Sarada Achyutuni
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Harini Nivarthi
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Eva Hug
- MyeloPro Diagnostics and Research GmbH, Vienna, Austria
| | - Christina Schueller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ruochen Jia
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- MyeloPro Diagnostics and Research GmbH, Vienna, Austria
| | - Cecilia Varga
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Schuster
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Martin Senekowitsch
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dimitris Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Robert Kralovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
289
|
Activated IL-6 signaling contributes to the pathogenesis of, and is a novel therapeutic target for, CALR-mutated MPNs. Blood Adv 2021; 5:2184-2195. [PMID: 33890979 DOI: 10.1182/bloodadvances.2020003291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/14/2021] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), an endoplasmic reticulum-associated chaperone, is frequently mutated in myeloproliferative neoplasms (MPNs). Mutated CALR promotes downstream JAK2/STAT5 signaling through interaction with, and activation of, the thrombopoietin receptor (MPL). Here, we provide evidence of a novel mechanism contributing to CALR-mutated MPNs, represented by abnormal activation of the interleukin 6 (IL-6)-signaling pathway. We found that UT7 and UT7/mpl cells, engineered by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) to express the CALR type 1-like (DEL) mutation, acquired cytokine independence and were primed to the megakaryocyte (Mk) lineage. Levels of IL-6 messenger RNA (mRNA), extracellular-released IL-6, membrane-associated glycoprotein 130 (gp130), and IL-6 receptor (IL-6R), phosphorylated JAK1 and STAT3 (p-JAK1 and p-STAT3), and IL-6 promoter region occupancy by STAT3 all resulted in increased CALR DEL cells in the absence of MPL stimulation. Wild-type, but not mutated, CALR physically interacted with gp130 and IL-6R, downregulating their expression on the cell membrane. Agents targeting gp130 (SC-144), IL-6R (tocilizumab [TCZ]), and cell-released IL-6 reduced proliferation of CALR DEL as well as CALR knockout cells, supporting a mutated CALR loss-of-function model. CD34+ cells from CALR-mutated patients showed increased levels of IL-6 mRNA and p-STAT3, and colony-forming unit-Mk growth was inhibited by either SC144 or TCZ, as well as an IL-6 antibody, supporting cell-autonomous activation of the IL-6 pathway. Targeting IL-6 signaling also reduced colony formation by CD34+ cells of JAK2V617F-mutated patients. The combination of TCZ and ruxolitinib was synergistic at very low nanomolar concentrations. Overall, our results suggest that target inhibition of IL-6 signaling may have therapeutic potential in CALR, and possibly JAK2V617F, mutated MPNs.
Collapse
|
290
|
Kurochkin DV, Maslyukova IE, Subbotina TN, Khazieva AS, Vasiliev EV, Mikhalev MA, Dunaeva EA, Mironov KO. Screening of somatic mutations in the JAK2 and CALR genes by high-resolution melting curve analysis. Klin Lab Diagn 2021; 66:315-320. [PMID: 34047519 DOI: 10.51620/0869-2084-2021-66-5-315-320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Somatic mutations associated with oncological diseases, including Ph-myeloproliferative neoplasms (Ph-MPN), are very diverse, occur with different frequencies and different allelic burden levels. Therefore, at the initial stage of performing molecular-genetic diagnostic procedures, it is desirable to be able to conduct screening tests in the laboratory. This is especially important when analyzing rare and diverse mutations. Analysis of high resolution melting curves (HRM analysis), which has high sensitivity and is suitable for screening all types of mutations, in a number of studies is proposed for the analysis of Ph-MPN associated mutations in the JAK2 and CALR genes. For analysis of somatic mutations in the majority of literature sources that we reviewed, the authors use the LightCycler (Roche) thermocycler and much rarely the CFX96 (Bio-Rad), which is often presented in Russian scientific and practical and medical organizations. The aim of the study was to screen the somatic JAK2 and CALR mutations by HRM analysis using the CFX96 thermocycler and the Precision Melt Analysis software (Bio-Rad, USA) for patients with Ph-MPN. In the present research, HRM analysis was conducted on the DNA samples from patients with mutations in the JAK2 or in the CALR gene. The Precision Melt Analysis software identified all variants of the analyzed mutations, both a single nucleotide substitution in the JAK2 gene (with allelic burden level in the range of 5-40%), and various indel mutations in the CALR gene (with allelic burden level in the range of 40-50%) Therefore, the HRM analysis that was conducted on the CFX96 allows screening of highly specific mutation for the diagnosis of Ph-MPN in the exon 14 of the JAK2 gene and in the exon 9 of the CALR gene. The inclusion of this screening research in the laboratory testing algorithm improves the efficiency and accessibility of molecular genetic technologies in the diagnosis of Ph-MPN.
Collapse
Affiliation(s)
| | | | - T N Subbotina
- Siberian Federal University.,The Federal Siberian Research Clinical Center under FMBA of Russia
| | | | | | | | - E A Dunaeva
- Central Research Institute of Epidemiology Rospotrebnadzor
| | - K O Mironov
- Central Research Institute of Epidemiology Rospotrebnadzor
| |
Collapse
|
291
|
Shallis RM, Podoltsev NA. Emerging agents and regimens for polycythemia vera and essential thrombocythemia. Biomark Res 2021; 9:40. [PMID: 34049597 PMCID: PMC8161993 DOI: 10.1186/s40364-021-00298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are both driven by JAK-STAT pathway activation and consequently much of the recent research efforts to improve the management and outcomes of patients with these neoplasms have centered around inhibition of this pathway. In addition to newer JAK inhibitors and improved interferons, promising novel agents exploiting a growing understanding of PV and ET pathogenesis and disease evolution mechanisms are being developed. These agents may modify the disease course in addition to cytoreduction. Histone deacetylase, MDM2 and telomerase inhibitors in patients with PV/ET have demonstrated clinically efficacy and serve as chief examples. Hepcidin mimetics, limiting iron availability to red blood cell precursors, offer an exciting alternative to therapeutic phlebotomy and have the potential to revolutionize management for patients with PV. Many of these newer agents are found to improve hematologic parameters and symptom burden, but their role in thrombotic risk reduction and disease progression control is currently unknown. The results of larger, randomized studies to confirm the early efficacy signals observed in phase 1/2 trials are eagerly awaited.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Nikolai A Podoltsev
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
292
|
Acute promyelocyte leukemia arose from CALR 1 mutated post essential thrombocythemia- myelofibrosis with splanchnic vein thrombosis: A case report. Leuk Res Rep 2021; 15:100243. [PMID: 34040959 PMCID: PMC8142272 DOI: 10.1016/j.lrr.2021.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 11/23/2022] Open
Abstract
Major disease complications for patients with essential thrombocythemia (ET) include thrombosis and fibrotic or leukemic transformation. Calreticulin (CALR) mutation type 1 frequencies in ET are estimated between 7% and 11% and ET patients carrying CALR type 1 mutation are associated with lower risk of thrombosis but higher risk of myelofibrosis transformation compared to ET patients with JAK2 mutation. Leukemic transformation rates at 20 years are estimated at less than 5% for ET and risk factors for leukemic transformation are advanced age, thrombosis history, leukocytosis, and anemia. Amongst the subtypes of blast phase myeloproliferative neoplasms, acute promyelocytic leukemia is extremely rare. Herein, we present a case of a promyelocytic blast crisis of post-ET myelofibrosis with associated life-threatening splanchnic vein thrombosis. This case suggests that inflammation plays a key role in thrombotic events and fibrotic/leukemic transformation in ET patients, regardless the molecular landscape.
Collapse
|
293
|
Kanduła Z, Lewandowski K. Calreticulin – a multifaced protein. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calreticulin (CALR) is a highly conserved multi-function protein that primarily localizes within
the lumen of the endoplasmic reticulum (ER). It participates in various processes in the cells,
including glycoprotein chaperoning, regulation of Ca2+ homeostasis, antigen processing and
presentation for adaptive immune response, cell adhesion/migration, cell proliferation, immunogenic
cell death, gene expression and RNA stability. The role of CALR in the assembly,
retrieval and cell surface expression of MHC class I molecules is well known. A fraction of
the total cellular CALR is localized in the cytosol, following its retro-translocation from the
ER. In the cell stress conditions, CALR is also expressed on the cell surface via an interaction
with phosphatidylserine localized on the inner leaflet of the plasma membrane. The abovementioned
mechanism is relevant for the recognition of the cells, as well as immunogenicity
and phagocytic uptake of proapoptotic and apoptotic cells.
Lastly, the presence of CALR exon 9 gene mutations was confirmed in patients with myeloproliferative
neoplasms. Their presence results in an abnormal CALR structure due to the
loss of its ER-retention sequence, CALR extra-ER localisation, the formation of a complex
with thrombopoietin receptor, and oncogenic transformation of hematopoietic stem cells. It
is also known that CALR exon 9 mutants are highly immunogenic and induce T cell response.
Despite this fact, CALR mutant positive hematopoietic cells emerge. The last phenomenon is
probably the result of the inhibition of phagocytosis of the cancer cells exposing CALR mutant
protein by dendritic cells.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| |
Collapse
|
294
|
Molecular profiling and risk classification of patients with myeloproliferative neoplasms and splanchnic vein thromboses. Blood Adv 2021; 4:3708-3715. [PMID: 32777065 DOI: 10.1182/bloodadvances.2020002414] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are the most frequent underlying causes of splanchnic vein thromboses (SVTs). MPN patients with SVTs (MPN-SVT) often have a unique presentation including younger age, female predominance, and low Janus kinase 2 (JAK2) mutation allele burden. This study aimed at identifying risk factors for adverse hematologic outcomes in MPN-SVT patients. We performed a retrospective study of a fully characterized cohort of MPN-SVT patients. The primary outcome was the incidence of evolution to myelofibrosis, acute leukemia, or death. Eighty patients were included in the testing cohort. Median follow-up was 11 years. Most of the patients were women with a mean age of 42 years and a diagnosis of polycythemia vera. The primary outcome was met in 13% of the patients and was associated with a JAK2V617F allele burden ≥50% (odds ratio [OR], 14.7) and presence of additional mutations in genes affecting chromatin/spliceosome (OR, 9). We identified high-risk patients (29% of the cohort) as those harboring at least 1 molecular risk factor: JAK2-mutant allele burden ≥50%, presence of chromatin/spliceosome/TP53 mutation. High-risk patients had worse event-free survival (81% vs 100%; P = .001) and overall survival at 10 years (89% vs 100%; P = .01) than low-risk patients. These results were confirmed in an independent validation cohort of 30 MPN-SVT patients. In conclusion, molecular profiling identified MPN-SVT patients with dismal outcome. In this high-risk population, a disease-modifying therapy should be taken into consideration to minimize the probability of transformation.
Collapse
|
295
|
Ross DM, Babon JJ, Tvorogov D, Thomas D. Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications. Haematologica 2021; 106:1244-1253. [PMID: 33472356 PMCID: PMC8094080 DOI: 10.3324/haematol.2020.262691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of JAK-STAT signaling is one of the hallmarks of myelofibrosis, a myeloproliferative neoplasm that leads to inflammation, progressive bone marrow failure, and a risk of leukemic transformation. Around 90% of patients with myelofibrosis have a mutation in JAK2, MPL, or CALR: so-called 'driver' mutations that lead to activation of JAK2. Ruxolitinib, and other JAK2 inhibitors in clinical use, provide clinical benefit but do not have a major impact on the abnormal hematopoietic clone. This phenomenon is termed 'persistence', in contrast to usual patterns of resistance. Multiple groups have shown that type 1 inhibitors of JAK2, which bind the active conformation of the enzyme, lead to JAK2 becoming resistant to degradation with consequent accumulation of phospho-JAK2. In turn, this can lead to exacerbation of inflammatory manifestations when the JAK inhibitor is discontinued, and it may also contribute to disease persistence. The ways in which JAK2 V617F and CALR mutations lead to activation of JAK-STAT signaling are incompletely understood. We summarize what is known about pathological JAK-STAT activation in myelofibrosis and how this might lead to future novel therapies for myelofibrosis with greater disease-modifying potential.
Collapse
Affiliation(s)
- David M Ross
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide; Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology
| | - Daniel Thomas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide
| |
Collapse
|
296
|
Guy A, Bidet A, Ling C, Caumont C, Boureau L, Viallard JF, Parrens M. Novel findings of splenic extramedullary hematopoiesis during primary myelofibrosis, post-essential thrombocythemia, and post-polycythemia vera myelofibrosis. Virchows Arch 2021; 479:755-764. [PMID: 33934231 DOI: 10.1007/s00428-021-03110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 01/14/2023]
Abstract
BCR-ABL-fusion-negative myeloproliferative neoplasms (MPNs) with myelofibrosis (MF) include primary MF, post-polycythemia vera MF and post-essential thrombocythemia MF. Clonal extramedullary hematopoiesis (EMH) can occur during MPN pathogenesis. Although histopathological bone-marrow (BM) features during clonal EMH have been investigated, those of the spleen have been poorly described. We analyzed splenectomy samples from 28 patients with MF and BM samples from 20 of them. Slides were stained with hematoxylin and eosin, reticulin, and trichrome, with immunohistochemical labeling of glycophorin A, myeloperoxidase, CD61, CD34, and CD117. We also subjected splenectomy and BM samples from six patients and spleen samples from seven patients to next-generation sequencing (NGS). Megakaryocyte-rich spleen nodules (MRSNs), seen in seven of the 28 patients, were significantly associated with megakaryocyte proliferation in the spleen (p = 0.04). We devised a grading system for spleen fibrosis (SF) and found that SF was increased in 20 of 28 patients. Notably, patients with SF were more likely to have MRSNs, suggesting that megakaryocytes might participate in SF, as previously described in BM. Comparisons of spleen and BM NGS findings of six patients' specimens revealed identical mutational status in the two organs for half of the patients. We observed additional mutations in the spleen of two patients. However, the meaning of this finding remains unknown since there was a long interval between BM and spleen samplings (68 and 82 months, respectively).
Collapse
Affiliation(s)
- Alexandre Guy
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France. .,Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.
| | - Audrey Bidet
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Catherine Ling
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Charline Caumont
- Tumor Biology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Lisa Boureau
- Laboratory of Hematology, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Jean-François Viallard
- UMR 1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, 33600, Pessac, France.,Internal Medicine Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France
| | - Marie Parrens
- Pathology Department, University Hospital Center of Bordeaux, Haut-Lévêque Hospital, 33600, Pessac, France.,INSERM U1053, University of Bordeaux, 33076, Bordeaux, France
| |
Collapse
|
297
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 808] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
298
|
Lee SE. Disease modifying agents of myeloproliferative neoplasms: a review. Blood Res 2021; 56:S26-S33. [PMID: 33935032 PMCID: PMC8093995 DOI: 10.5045/br.2021.2020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
The identification of driver mutations in Janus kinase (JAK) 2, calreticulin (CALR), and myeloproliferative leukemia (MPL) has contributed to a better understanding of disease pathogenesis by highlighting the importance of JAK signal transducer and activator of transcription (STAT) signaling in classical myeloproliferative neoplasms (MPNs). This has led to the therapeutic use of novel targeted treatments, such as JAK2 inhibitors. More recently, with the development of next-generation sequencing, additional somatic mutations, which are not restricted to MPNs, have been elucidated. Treatment decisions for MPN patients are influenced by the MPN subtype, symptom burden, and risk classification. Although prevention of vascular events is the main objective of therapy for essential thrombocythemia (ET) and polycythemia vera (PV) patients, disease-modifying drugs are needed to eradicate clonal hematopoiesis and prevent progression to more aggressive myeloid neoplasms. JAK inhibitors are a valuable therapeutic strategy for patients with myelofibrosis (MF) who have splenomegaly and/or disease-related symptoms, but intolerance, refractory, resistance, and disease progression still present challenges. Currently, allogeneic stem cell transplantation remains the only curative treatment for MF, but it is typically limited by age-related comorbidities and high treatment-related mortality. Therefore, a better understanding of the molecular pathogenesis and potential new therapies with the aim of modifying the natural history of the disease is important. In this article, I review the current understanding of the molecular basis of MPNs and clinical studies on potential disease-modifying agents.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
299
|
Yoon SY, Won JH. The clinical role of interferon alpha in Philadelphia-negative myeloproliferative neoplasms. Blood Res 2021; 56:S44-S50. [PMID: 33935035 PMCID: PMC8093996 DOI: 10.5045/br.2021.2020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell malignancies. Chronic inflammation and a dysregulated immune system are central to the pathogenesis and progression of MPNs. Interferon alpha (IFNα) was first used for the treatment of MPNs approximately 40 years ago. It has significant antiviral effects and plays a role in anti-proliferative, pro-apoptotic, and immunomodulatory responses. IFNα is an effective drug that can simultaneously induce significant rates of clinical, hematological, molecular, and histopathological responses, suggesting that the disease may be cured in some patients. However, its frequent dosage and toxicity profile are major barriers to its widespread use. Pegylated IFNα (peg-IFNα), and more recently, ropeginterferon alpha-2b (ropeg-IFNα-2b), are expected to overcome these drawbacks. The objective of this article is to discuss the clinical role of IFNα in Philadelphia-negative MPNs through a review of recent studies. In particular, it is expected that new IFNs, such as peg-IFNα and ropeg-IFNα-2b, with lower rates of discontinuation due to fewer adverse effects, will play important clinical roles.
Collapse
Affiliation(s)
- Seug Yun Yoon
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jong-Ho Won
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
300
|
Feldman T, Bercovich A, Moskovitz Y, Chapal-Ilani N, Mitchell A, Medeiros JJF, Biezuner T, Kaushansky N, Minden MD, Gupta V, Milyavsky M, Livneh Z, Tanay A, Shlush LI. Recurrent deletions in clonal hematopoiesis are driven by microhomology-mediated end joining. Nat Commun 2021; 12:2455. [PMID: 33911081 PMCID: PMC8080710 DOI: 10.1038/s41467-021-22803-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.
Collapse
Affiliation(s)
- Tzah Feldman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoni Moskovitz
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Chapal-Ilani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amanda Mitchell
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Jessie J F Medeiros
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tamir Biezuner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nathali Kaushansky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, University Health Network, Toronto, ON, Canada
| | - Michael Milyavsky
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Liran I Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.
- Division of Hematology, Rambam Healthcare Campus, Haifa, Israel.
| |
Collapse
|