251
|
Choi S, Engelke R, Goswami N, Schmidt F. Proteomic profiling of metformin effects in 3T3-L1 adipocytes by SILAC-based quantification. Proteomics 2022; 22:e2100196. [PMID: 35275438 DOI: 10.1002/pmic.202100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/12/2022]
Abstract
Metformin is a common and generally the first medication prescribed for treatment of type 2 diabetes. Its mechanism involves affecting pathways that regulate glucose and lipid metabolism in metabolic cells such as that of muscle and liver cells. In spite of various studies exploring its effects, the proteome changes in adipocytes in response to metformin remains poorly understood. In this study, we performed SILAC-based quantitative proteomic profiling to study the effects of metformin specifically on 3T3-L1 adipocytes. We define proteins that exhibited altered levels with metformin treatment, 400 of them showing statistically significant changes in our study. Our results suggest that metformin affects not only the PPARγ signaling pathway, as well as glucose and lipid metabolism, but also protein folding, endoplasmic reticulum stress, negative regulation of appetite, and one-carbon folate metabolism in adipocytes. This proteomic investigation provides important insight into effects of metformin in adipocytes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Rudolf Engelke
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation - Education City, Doha, PO 24144, Qatar
| |
Collapse
|
252
|
The life history of
Drosophila
sperm involves molecular continuity between male and female reproductive tracts. Proc Natl Acad Sci U S A 2022; 119:e2119899119. [PMID: 35254899 PMCID: PMC8931355 DOI: 10.1073/pnas.2119899119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In species with internal fertilization, sperm spend an important part of their lives within the female. To examine the life history of the sperm during this time, we used semiquantitative proteomics and sex-specific isotopic labeling in fruit flies to determine the extent of molecular continuity between male and female reproductive tracts and provide a global catalog of sperm-associated proteins. Multiple seminal fluid proteins and female proteins associate with sperm immediately after mating. Few seminal fluid proteins remain after long-term sperm storage, whereas female-derived proteins constitute one-fifth of the postmating sperm proteome by then. Our data reveal a molecular “hand-off” from males to females, which we postulate to be an important component of sperm–female interactions. Interactions between sperm and the female reproductive tract (FRT) are critical to reproductive success and yet are poorly understood. Because sperm complete their functional maturation within the FRT, the life history of sperm is likely to include a molecular “hand-off” from males to females. Although such intersexual molecular continuity is likely to be widespread among all internally fertilizing species, the identity and extent of female contributions are largely unknown. We combined semiquantitative proteomics with sex-specific isotopic labeling to catalog the posttesticular life history of the sperm proteome and determine the extent of molecular continuity between male and FRTs. We show that the Drosophila melanogaster sperm proteome undergoes substantial compositional changes after being transferred to the FRT. Multiple seminal fluid proteins initially associate with sperm, but most become undetectable after sperm are stored. Female-derived proteins also begin to associate with sperm immediately after mating, and they comprise nearly 20% of the postmating sperm proteome following 4 d of storage in the FRT. Female-derived proteins that associate with sperm are enriched for processes associated with energy metabolism, suggesting that female contributions support sperm viability during the prolonged period between copulation and fertilization. Our research provides a comprehensive characterization of sperm proteome dynamics and expands our understanding of the critical process of sperm–FRT interactions.
Collapse
|
253
|
Kwon Y, Lee S, Park N, Ju S, Shin S, Yoo S, Lee H, Lee C. Phosphoproteome Profiling Using an Isobaric Carrier without the Need for Phosphoenrichment. Anal Chem 2022; 94:4192-4200. [PMID: 35239305 DOI: 10.1021/acs.analchem.1c04188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphorylation is a crucial component of cellular signaling cascades. It controls a variety of biological cellular functions, including cell growth and apoptosis. Owing to the low stoichiometry of phosphorylated proteins, the enrichment of phosphopeptides prior to LC-MS/MS is necessary for comprehensive phosphoproteome analysis, and quantitative phosphoproteomic workflows are typically limited by the amount of sample required. To address this issue, we developed an easy-to-establish, widely applicable, and reproducible strategy to increase phosphoproteomic signals from a small amount of sample without a phosphoenrichment step. By exploiting the multiplexing nature of isobaric labeling to generate a merged signal from multiple samples, and using a larger amount of enriched phosphopeptides as a carrier, we were able to increase trace amounts of phosphopeptides in the unpurified sample to an identifiable level and perform quantification using the reporter ion intensity of the isobaric tag. Our results showed that >1400 phosphopeptides were quantified from 250 ng of tryptic peptides prepared from cells. In a proof-of-concept of our strategy, we distinguished three types of lung cancer cell lines based on their quantitative phosphoproteomic data and identified changes in the phosphoproteome induced by drug treatment.
Collapse
Affiliation(s)
- Yumi Kwon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seonjeong Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Narae Park
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Shinyeong Ju
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sungho Shin
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Seongjin Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Hankyul Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
254
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1038/s41563-021-01108-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
255
|
Seetharaman S, Vianay B, Roca V, Farrugia AJ, De Pascalis C, Boëda B, Dingli F, Loew D, Vassilopoulos S, Bershadsky A, Théry M, Etienne-Manneville S. Microtubules tune mechanosensitive cell responses. NATURE MATERIALS 2022; 21:366-377. [PMID: 34663953 DOI: 10.1101/2020.07.22.205203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/20/2021] [Indexed: 05/24/2023]
Abstract
Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Descartes, Paris, France
| | - Benoit Vianay
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Vanessa Roca
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Aaron J Farrugia
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chiara De Pascalis
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Dingli
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | - Damarys Loew
- PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Paris, France
| | | | - Alexander Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Manuel Théry
- Paris University, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
256
|
Jia H, Chu H, Dai G, Cao T, Sun Z. Rv1258c acts as a drug efflux pump and growth controlling factor in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2022; 133:102172. [PMID: 35158297 DOI: 10.1016/j.tube.2022.102172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/27/2022]
Abstract
The possible role of efflux pump as a survival mechanism in Mycobacterium tuberculosis (M. tb) is gaining an increasing attention. Previously, Rv1258c (Tap) and its certain mutations confer the clinically relevant drug resistance. In this study, we found new mutations of Rv1258c in G195C, T297P and I328T. Effect of modulating T297P and I328T on the drug resistance by knockout and complement in M. tb H37Rv showed that M. tb ΔRv1258c showed a slightly lower MIC for rifampin, ethambutol, ofloxacin, amikacin, capreomycin and streptomycin than M. tb H37Rv WT and the complement. Rv1258c T297P and Rv1258c I328T showed an increased drug resistance to ethambutol and capreomycin than the complement of Rv1258c WT. Most importantly, M. tb ΔRv1258c exhibited a slow growth in the normal culture medium. TMT-based quantitative proteomics analysis of M. tb ΔRv1258c and WT showed that the knockout of Rv1258c greatly down-regulated the expression of the ribosome system and one of the special five type VII secretion systems, ESX-3, which impaired the bacterial growth. These results indicate that the newly found T297P and I328T mutations of Rv1258c contributed to an increased resistance to ethambutol and capreomycin, and Rv1258c as growth controlling factor influencing the growth of M. tb.
Collapse
Affiliation(s)
- Hongbing Jia
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China; Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Hongqian Chu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China; Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Guangming Dai
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China; Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Tingming Cao
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China; Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Zhaogang Sun
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, 101149, China; Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
257
|
Tracy TE, Madero-Pérez J, Swaney DL, Chang TS, Moritz M, Konrad C, Ward ME, Stevenson E, Hüttenhain R, Kauwe G, Mercedes M, Sweetland-Martin L, Chen X, Mok SA, Wong MY, Telpoukhovskaia M, Min SW, Wang C, Sohn PD, Martin J, Zhou Y, Luo W, Trojanowski JQ, Lee VMY, Gong S, Manfredi G, Coppola G, Krogan NJ, Geschwind DH, Gan L. Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell 2022; 185:712-728.e14. [PMID: 35063084 PMCID: PMC8857049 DOI: 10.1016/j.cell.2021.12.041] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/20/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Tau (MAPT) drives neuronal dysfunction in Alzheimer disease (AD) and other tauopathies. To dissect the underlying mechanisms, we combined an engineered ascorbic acid peroxidase (APEX) approach with quantitative affinity purification mass spectrometry (AP-MS) followed by proximity ligation assay (PLA) to characterize Tau interactomes modified by neuronal activity and mutations that cause frontotemporal dementia (FTD) in human induced pluripotent stem cell (iPSC)-derived neurons. We established interactions of Tau with presynaptic vesicle proteins during activity-dependent Tau secretion and mapped the Tau-binding sites to the cytosolic domains of integral synaptic vesicle proteins. We showed that FTD mutations impair bioenergetics and markedly diminished Tau’s interaction with mitochondria proteins, which were downregulated in AD brains of multiple cohorts and correlated with disease severity. These multimodal and dynamic Tau interactomes with exquisite spatial resolution shed light on Tau’s role in neuronal function and disease and highlight potential therapeutic targets to block Tau-mediated pathogenesis. By combining APEX and AP-MS proteomic approaches, Tau interactome mapping reveals that Tau interactors are modified by neuronal activity and FTD mutations in human iPSC-derived neurons.
Collapse
Affiliation(s)
- Tara E Tracy
- Gladstone Institutes, San Francisco, CA 94158, USA; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| | - Jesus Madero-Pérez
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Danielle L Swaney
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Timothy S Chang
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michelle Moritz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Erica Stevenson
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Grant Kauwe
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lauren Sweetland-Martin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xu Chen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Sang-Won Min
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | | | - Yungui Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Giovanni Coppola
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel H Geschwind
- Department of Neurology, Movement Disorders Program and Program in Neurogenetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
258
|
Palve V, Knezevic CE, Bejan DS, Luo Y, Li X, Novakova S, Welsh EA, Fang B, Kinose F, Haura EB, Monteiro AN, Koomen JM, Cohen MS, Lawrence HR, Rix U. The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chem Biol 2022; 29:202-214.e7. [PMID: 34329582 PMCID: PMC8782927 DOI: 10.1016/j.chembiol.2021.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 04/08/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
PARP inhibitors (PARPis) display single-agent anticancer activity in small cell lung cancer (SCLC) and other neuroendocrine tumors independent of BRCA1/2 mutations. Here, we determine the differential efficacy of multiple clinical PARPis in SCLC cells. Compared with the other PARPis rucaparib, olaparib, and niraparib, talazoparib displays the highest potency across SCLC, including SLFN11-negative cells. Chemical proteomics identifies PARP16 as a unique talazoparib target in addition to PARP1. Silencing PARP16 significantly reduces cell survival, particularly in combination with PARP1 inhibition. Drug combination screening reveals talazoparib synergy with the WEE1/PLK1 inhibitor adavosertib. Global phosphoproteomics identifies disparate effects on cell-cycle and DNA damage signaling thereby illustrating underlying mechanisms of synergy, which is more pronounced for talazoparib than olaparib. Notably, silencing PARP16 further reduces cell survival in combination with olaparib and adavosertib. Together, these data suggest that PARP16 contributes to talazoparib's overall mechanism of action and constitutes an actionable target in SCLC.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Claire E. Knezevic
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Daniel S. Bejan
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yunting Luo
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xueli Li
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Silvia Novakova
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Harshani R. Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA,Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
259
|
Gaye MM, Ward CM, Piasecki AJ, Stahl VL, Karagianni A, Costello CE, Ravid K. Characterization of Glycoproteoforms of Integrins α2 and β1 in Megakaryocytes in the Occurrence of JAK2V617F Mutation-Induced Primary Myelofibrosis. Mol Cell Proteomics 2022; 21:100213. [PMID: 35182768 PMCID: PMC8968581 DOI: 10.1016/j.mcpro.2022.100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation. Samples were derived from immunoprecipitation of MKs obtained from Vav1-hJAK2V617F and WT mice. Immunoprecipitated fractions were separated by SDS-PAGE and analyzed using LC-MS/MS techniques in a bottom-up glycoproteomics workflow. In the immunoprecipitate, glycopeptiforms corresponding to 11 out of the 12 potential N-glycosylation sites of integrin β1 and to all nine potential glycosylation sites of integrin α2 were observed. Glycopeptiforms were compared across WT and JAK2V617F phenotypes for both integrins. The overall trend observed is that JAK2V617F mutation in PMF MKs leads to changes in β1 glycosylation; in most cases, it results in an increase in the integrated area of glycopeptiforms. We also observed that in mutated MKs, changes in integrin α2 glycosylation were more substantial than those observed for integrin β1 glycosylation, a finding that suggests that altered integrin α2 glycosylation may also affect activation. Additionally, the identification of proteins associated to the cytoskeleton that were co-immunoprecipitated with integrins α2 and β1 demonstrated the potential of the methodology employed in this study to provide some insight, at the peptide level, into the consequences of integrin activation in MKs. The extensive and detailed glycosylation patterns we uncovered provide a basis for future functional studies of each site in control cells as compared to JAK2V617F-mutated cells. Data are available via ProteomeXchange with identifier PXD030550.
Collapse
Affiliation(s)
- Maissa M. Gaye
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christina M. Ward
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrew J. Piasecki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vanessa L. Stahl
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Aikaterini Karagianni
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA,Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Catherine E. Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA,For correspondence: Catherine E. Costello; Katya Ravid
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
260
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
261
|
Yan Y, Zhou B, Qian C, Vasquez A, Kamra M, Chatterjee A, Lee YJ, Yuan X, Ellis L, Di Vizio D, Posadas EM, Kyprianou N, Knudsen BS, Shah K, Murali R, Gertych A, You S, Freeman MR, Yang W. Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nat Commun 2022; 13:669. [PMID: 35115556 PMCID: PMC8813925 DOI: 10.1038/s41467-022-28340-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite progress in prostate cancer (PC) therapeutics, distant metastasis remains a major cause of morbidity and mortality from PC. Thus, there is growing recognition that preventing or delaying PC metastasis holds great potential for substantially improving patient outcomes. Here we show receptor-interacting protein kinase 2 (RIPK2) is a clinically actionable target for inhibiting PC metastasis. RIPK2 is amplified/gained in ~65% of lethal metastatic castration-resistant PC. Its overexpression is associated with disease progression and poor prognosis, and its genetic knockout substantially reduces PC metastasis. Multi-level proteomics analyses reveal that RIPK2 strongly regulates the stability and activity of c-Myc (a driver of metastasis), largely via binding to and activating mitogen-activated protein kinase kinase 7 (MKK7), which we identify as a direct c-Myc-S62 kinase. RIPK2 inhibition by preclinical and clinical drugs inactivates the noncanonical RIPK2/MKK7/c-Myc pathway and effectively impairs PC metastatic outgrowth. These results support targeting RIPK2 signaling to extend metastasis-free and overall survival.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- InterVenn Biosciences, South San Francisco, CA, USA
| | - Chen Qian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alex Vasquez
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohini Kamra
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yeon-Joo Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaopu Yuan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leigh Ellis
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dolores Di Vizio
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edwin M Posadas
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arkadiusz Gertych
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
262
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
263
|
Klaus T, Ninck S, Albersmeier A, Busche T, Wibberg D, Jiang J, Elcheninov AG, Zayulina KS, Kaschani F, Bräsen C, Overkleeft HS, Kalinowski J, Kublanov IV, Kaiser M, Siebers B. Activity-Based Protein Profiling for the Identification of Novel Carbohydrate-Active Enzymes Involved in Xylan Degradation in the Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1E. Front Microbiol 2022; 12:734039. [PMID: 35095781 PMCID: PMC8790579 DOI: 10.3389/fmicb.2021.734039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Activity-based protein profiling (ABPP) has so far scarcely been applied in Archaea in general and, especially, in extremophilic organisms. We herein isolated a novel Thermococcus strain designated sp. strain 2319x1E derived from the same enrichment culture as the recently reported Thermococcus sp. strain 2319x1. Both strains are able to grow with xylan as the sole carbon and energy source, and for Thermococcus sp. strain 2319x1E (optimal growth at 85°C, pH 6–7), the induction of xylanolytic activity in the presence of xylan was demonstrated. Since the solely sequence-based identification of xylanolytic enzymes is hardly possible, we established a complementary approach by conducting comparative full proteome analysis in combination with ABPP using α- or β-glycosidase selective probes and subsequent mass spectrometry (MS)-based analysis. This complementary proteomics approach in combination with recombinant protein expression and classical enzyme characterization enabled the identification of a novel bifunctional maltose-forming α-amylase and deacetylase (EGDIFPOO_00674) belonging to the GH57 family and a promiscuous β-glycosidase (EGIDFPOO_00532) with β-xylosidase activity. We thereby further substantiated the general applicability of ABPP in archaea and expanded the ABPP repertoire for the identification of glycoside hydrolases in hyperthermophiles.
Collapse
Affiliation(s)
- Thomas Klaus
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sabrina Ninck
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jianbing Jiang
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Farnusch Kaschani
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Herman S Overkleeft
- Section of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Markus Kaiser
- Department of Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Faculty of Chemistry, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
264
|
Dekker PM, Boeren S, van Goudoever JB, Vervoort JJM, Hettinga KA. Exploring Human Milk Dynamics: Interindividual Variation in Milk Proteome, Peptidome, and Metabolome. J Proteome Res 2022; 21:1002-1016. [PMID: 35104145 PMCID: PMC8981310 DOI: 10.1021/acs.jproteome.1c00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Human milk is a dynamic
biofluid, and its detailed composition
receives increasing attention. While most studies focus on changes
over time or differences between maternal characteristics, interindividual
variation receives little attention. Nevertheless, a comprehensive
insight into this can help interpret human milk studies and help human
milk banks provide targeted milk for recipients. This study aimed
to map interindividual variation in the human milk proteome, peptidome,
and metabolome and to investigate possible explanations for this variation.
A set of 286 milk samples was collected from 29 mothers in the third
month postpartum. Samples were pooled per mother, and proteins, peptides,
and metabolites were analyzed. A substantial coefficient of variation
(>100%) was observed for 4.6% and 36.2% of the proteins and peptides,
respectively. In addition, using weighted correlation network analysis
(WGCNA), 5 protein and 11 peptide clusters were obtained, showing
distinct characteristics. With this, several associations were found
between the different data sets and with specific sample characteristics.
This study provides insight into the dynamics of human milk protein,
peptide, and metabolite composition. In addition, it will support
future studies that evaluate the effect size of a parameter of interest
by enabling a comparison with natural variability.
Collapse
Affiliation(s)
- Pieter M Dekker
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.,Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC Vrije Universiteit Emma Children's Hospital, 1081 Amsterdam, The Netherlands
| | - Jacques J M Vervoort
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
265
|
The H. pylori CagA Oncoprotein Induces DNA Double Strand Breaks through Fanconi Anemia Pathway Downregulation and Replication Fork Collapse. Int J Mol Sci 2022; 23:ijms23031661. [PMID: 35163588 PMCID: PMC8836099 DOI: 10.3390/ijms23031661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen H. pylori exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the H. pylori virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with H. pylori. Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. H. pylori infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, H. pylori CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.
Collapse
|
266
|
Goyal S, Segarra VA, N, Stecher AM, Truman AW, Reitzel AM, Chi RJ. Vps501, a novel vacuolar SNX-BAR protein cooperates with the SEA complex to regulate TORC1 signaling. Traffic 2022; 23. [PMID: 35098628 PMCID: PMC9305297 DOI: 10.1111/tra.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
The sorting nexins (SNX), constitute a diverse family of molecules that play varied roles in membrane trafficking, cell signaling, membrane remodeling, organelle motility and autophagy. In particular, the SNX-BAR proteins, a SNX subfamily characterized by a C-terminal dimeric Bin/Amphiphysin/Rvs (BAR) lipid curvature domain and a conserved Phox-homology domain, are of great interest. In budding yeast, many SNX-BARs proteins have well-characterized endo-vacuolar trafficking roles. Phylogenetic analyses allowed us to identify an additional SNX-BAR protein, Vps501, with a novel endo-vacuolar role. We report that Vps501 uniquely localizes to the vacuolar membrane and has physical and genetic interactions with the SEA complex to regulate TORC1 inactivation. We found cells displayed a severe deficiency in starvation-induced/nonselective autophagy only when SEA complex subunits are ablated in combination with Vps501, indicating a cooperative role with the SEA complex during TORC1 signaling during autophagy induction. Additionally, we found the SEACIT complex becomes destabilized in vps501Δsea1Δ cells, which resulted in aberrant endosomal TORC1 activity and subsequent Atg13 hyperphosphorylation. We have also discovered that the vacuolar localization of Vps501 is dependent upon a direct interaction with Sea1 and a unique lipid binding specificity that is also required for its function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shreya Goyal
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | | | - Nitika
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Aaron M. Stecher
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Andrew W. Truman
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Adam M. Reitzel
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| | - Richard J. Chi
- Department of Biological SciencesUniversity of North CarolinaCharlotteNorth CarolinaUSA
| |
Collapse
|
267
|
High Throughput Screening of a Prescription Drug Library for Inhibitors of Organic Cation Transporter 3, OCT3. Pharm Res 2022; 39:1599-1613. [PMID: 35089508 DOI: 10.1007/s11095-022-03171-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The organic cation transporter 3 (OCT3, SLC22A3) is ubiquitously expressed and interacts with a wide array of compounds including endogenous molecules, environmental toxins and prescription drugs. Understudied as a determinant of pharmacokinetics and pharmacodynamics, OCT3 has the potential to be a major determinant of drug absorption and disposition and to be a target for drug-drug interactions (DDIs). GOAL The goal of the current study was to identify prescription drug inhibitors of OCT3. METHODS We screened a compound library consisting of 2556 prescription drugs, bioactive molecules, and natural products using a high throughput assay in HEK-293 cells stably expressing OCT3. RESULTS We identified 210 compounds that at 20 μM inhibit 50% or more of OCT3-mediated uptake of 4-Di-1-ASP (2 μM). Of these, nine were predicted to inhibit the transporter at clinically relevant unbound plasma concentrations. A Structure-Activity Relationship (SAR) model included molecular descriptors that could discriminate between inhibitors and non-inhibitors of OCT3 and was used to identify additional OCT3 inhibitors. Proteomics of human brain microvessels (BMVs) indicated that OCT3 is the highest expressed OCT in the human blood-brain barrier (BBB). CONCLUSIONS This study represents the largest screen to identify prescription drug inhibitors of OCT3. Several are sufficiently potent to inhibit the transporter at therapeutic unbound plasma levels, potentially leading to DDIs or off-target pharmacologic effects.
Collapse
|
268
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. Shotgun Proteomics as a Powerful Tool for the Study of the Proteomes of Plants, Their Pathogens, and Plant-Pathogen Interactions. Proteomes 2022; 10:5. [PMID: 35225985 PMCID: PMC8883913 DOI: 10.3390/proteomes10010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between plants and pathogenic microorganisms is a multifaceted process mediated by both plant- and pathogen-derived molecules, including proteins, metabolites, and lipids. Large-scale proteome analysis can quantify the dynamics of proteins, biological pathways, and posttranslational modifications (PTMs) involved in the plant-pathogen interaction. Mass spectrometry (MS)-based proteomics has become the preferred method for characterizing proteins at the proteome and sub-proteome (e.g., the phosphoproteome) levels. MS-based proteomics can reveal changes in the quantitative state of a proteome and provide a foundation for understanding the mechanisms involved in plant-pathogen interactions. This review is intended as a primer for biologists that may be unfamiliar with the diverse range of methodology for MS-based shotgun proteomics, with a focus on techniques that have been used to investigate plant-pathogen interactions. We provide a summary of the essential steps required for shotgun proteomic studies of plants, pathogens and plant-pathogen interactions, including methods for protein digestion, identification, separation, and quantification. Finally, we discuss how protein PTMs may directly participate in the interaction between a pathogen and its host plant.
Collapse
Affiliation(s)
- Sadegh Balotf
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Robert S. Tegg
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Calum R. Wilson
- New Town Research Laboratories, Tasmanian Institute of Agriculture, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| |
Collapse
|
269
|
Williams EG, Pfister N, Roy S, Statzer C, Haverty J, Ingels J, Bohl C, Hasan M, Čuklina J, Bühlmann P, Zamboni N, Lu L, Ewald CY, Williams RW, Aebersold R. Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Syst 2022; 13:43-57.e6. [PMID: 34666007 PMCID: PMC8776606 DOI: 10.1016/j.cels.2021.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
We profiled the liver transcriptome, proteome, and metabolome in 347 individuals from 58 isogenic strains of the BXD mouse population across age (7 to 24 months) and diet (low or high fat) to link molecular variations to metabolic traits. Several hundred genes are affected by diet and/or age at the transcript and protein levels. Orthologs of two aging-associated genes, St7 and Ctsd, were knocked down in C. elegans, reducing longevity in wild-type and mutant long-lived strains. The multiomics data were analyzed as segregating gene networks according to each independent variable, providing causal insight into dietary and aging effects. Candidates were cross-examined in an independent diversity outbred mouse liver dataset segregating for similar diets, with ∼80%-90% of diet-related candidate genes found in common across datasets. Together, we have developed a large multiomics resource for multivariate analysis of complex traits and demonstrate a methodology for moving from observational associations to causal connections.
Collapse
Affiliation(s)
- Evan G Williams
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Niklas Pfister
- Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cyril Statzer
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Jack Haverty
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Casey Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Moaraj Hasan
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Jelena Čuklina
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Peter Bühlmann
- Department of Mathematics, Seminar for Statistics, ETH Zürich, Zurich, Switzerland
| | - Nicola Zamboni
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Collin Y Ewald
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland; Faculty of Science, University of Zürich, Zurich, Switzerland
| |
Collapse
|
270
|
Strasser L, Oliviero G, Jakes C, Zaborowska I, Floris P, Ribeiro da Silva M, Füssl F, Carillo S, Bones J. Detection and quantitation of host cell proteins in monoclonal antibody drug products using automated sample preparation and data-independent acquisition LC-MS/MS. J Pharm Anal 2022; 11:726-731. [PMID: 35028177 PMCID: PMC8740166 DOI: 10.1016/j.jpha.2021.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg. The current standard analytical approach for this procedure is based on ELISA; however, this approach only measures the overall HCP content. Therefore, the use of orthogonal methods, such as liquid chromatography-mass spectrometry (LC-MS), has been established, as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present. In the present study, a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation, in combination with a data-independent acquisition (DIA) LC-MS analysis, was established. Employing the same instrumental setup commonly used for peptide mapping analysis of mAbs allows for its quick and easy implementation into pre-existing workflows, avoiding the need for dedicated instrumentation or personnel. Thereby, quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions. Reproducible HCP analysis using automated, magnetic bead-based sample preparation. Quick and easy implementation into pre-existing LC-MS peptide mapping workflows. DIA-LC-MS/MS for comprehensive analysis of low abundant HCPs, contaminating peptides without additional sample pretreatment.
Collapse
Affiliation(s)
- Lisa Strasser
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Giorgio Oliviero
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Craig Jakes
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Izabela Zaborowska
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Patrick Floris
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Meire Ribeiro da Silva
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Florian Füssl
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Sara Carillo
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland
| | - Jonathan Bones
- Characterization and Comparability Laboratory, NIBRT-National Institute for Bioprocessing Research and Training, Dublin, A94 X099, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
271
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
272
|
Kashirina DN, Brzhozovskiy AG, Sun W, Pastushkova LK, Popova OV, Rusanov VB, Nikolaev EN, Larina IM, Kononikhin AS. Proteomic Characterization of Dry Blood Spots of Healthy Women During Simulation the Microgravity Effects Using Dry Immersion. Front Physiol 2022; 12:753291. [PMID: 35087415 PMCID: PMC8787266 DOI: 10.3389/fphys.2021.753291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daria N. Kashirina
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Brzhozovskiy
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
- CDISE, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Wen Sun
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila Kh. Pastushkova
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Popova
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy B. Rusanov
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | | | - Irina M. Larina
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Kononikhin
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center, Russian Academy of Sciences, Moscow, Russia
- CDISE, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
273
|
Zandonadi FS, Yokoo S, Granato DC, Rivera C, Macedo CCS, Soares CD, Carnielli CM, Domingues RR, Pauletti BA, Consonni SR, Colleta RD, Paes Leme AF. Follistatin-related protein 1 interacting partner of Syndecan-1 promotes an aggressive phenotype on Oral Squamous cell carcinoma (OSCC) models. J Proteomics 2022; 254:104474. [PMID: 34990821 DOI: 10.1016/j.jprot.2021.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Syndecans belong to the family of transmembrane heparan sulfate proteoglycans and are associated with many physiopathological processes, including oral cancer. As previously shown soluble syndecan-1 (SDC1) fragments and synthetic SDC1 peptide were able to induce cell migration in oral cancer cell lines. In order to explore the role of SDC1 in oral cancer, we have investigated SDC1 interacting partners and its functional role in oral cancer models. Here we have shown that SDC1 interacts with follistatin-related protein 1 (FSTL1) by its ectodomain (ectoSDC1) and extracellular juxtamembrane peptide (pepSDC1) and that their transcript levels can affect tumor events. Using orthotopic mouse model we identified that the knock-down for FSTL1 (shFSTL1) or for both FSTL1 and SDC1 (sh2KD) produced less aggressive and infiltrative tumors, with lower keratinization deposition, but with increased levels of epithelial-mesenchymal transition and proliferation compared to control and SDC1 knock-down. Based on cell culture assays, we suggest that the shFSTL1 effect on tumor tissues might be from significant increase of mRNA levels of Activin A (ActA) and its resceptors. This study shows for the first time two different complexes, SDC1 and FSTL1; pepSDC1 and FSTL1, exhibiting a close relationship in cell signaling events, as FSTL1 promotes a more aggressive phenotype. SIGNIFICANCE: This work contributes to the understanding of new SDC1 functions, based on the investigation of protein-protein complex formation in Oral Squamous cell carcinoma (OSCC) models. The FSTL1 identification, as an interacting partner of SDC1 ectodomain and of its derived peptide promotes molecular events that favors cancer development and progression, as highlighted by Activin A (ActA) and Epithelial-mesenchymal transition (EMT) gene expression and by changes in the phenotype of orthotopic OSCC mouse tumor tissues when SDC1-FSTL1 expression is modulated.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - César Rivera
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Carolina Carneiro Soares Macedo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil; Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Ciro Dantas Soares
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Carolina Moretto Carnielli
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Romênia Ramos Domingues
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Bianca A Pauletti
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Sílvio Roberto Consonni
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil
| | - Ricardo D Colleta
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, UNICAMP, Piracicaba, SP, Brazil
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
274
|
Feng Y, Bui TPN, Stams AJM, Boeren S, Sánchez-Andrea I, de Vos WM. Comparative genomics and proteomics of Eubacterium maltosivorans: functional identification of trimethylamine methyltransferases and bacterial microcompartments in a human intestinal bacterium with a versatile lifestyle. Environ Microbiol 2022; 24:517-534. [PMID: 34978130 PMCID: PMC9303578 DOI: 10.1111/1462-2920.15886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Eubacterium maltosivorans YIT is a human intestinal isolate capable of acetogenic, propionogenic and butyrogenic growth. Its 4.3-Mb genome sequence contains coding sequences for 4227 proteins, including 41 different methyltransferases. Comparative proteomics of strain YIT showed the Wood-Ljungdahl pathway proteins to be actively produced during homoacetogenic growth on H2 and CO2 while butyrogenic growth on a mixture of lactate and acetate significantly upregulated the production of proteins encoded by the recently identified lctABCDEF cluster and accessory proteins. Growth on H2 and CO2 unexpectedly induced the production of two related trimethylamine methyltransferases. Moreover, a set of 16 different trimethylamine methyltransferases together with proteins for bacterial microcompartments were produced during growth and deamination of the quaternary amines, betaine, carnitine and choline. Growth of strain YIT on 1,2-propanediol generated propionate with propanol and induced the formation of bacterial microcompartments that were also prominently visible in betaine-grown cells. The present study demonstrates that E. maltosivorans is highly versatile in converting low-energy fermentation end-products in the human gut into butyrate and propionate whilst being capable of preventing the formation of the undesired trimethylamine by converting betaine and other quaternary amines in bacterial microcompartments into acetate and butyrate.
Collapse
Affiliation(s)
- Yuan Feng
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Thi Phuong Nam Bui
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Caelus Pharmaceuticals, Amsterdam, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Centre of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands.,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
275
|
Rodrigues MA, Gomes DA, Cosme AL, Sanches MD, Resende V, Cassali GD. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) is overexpressed in cholangiocarcinoma and its expression correlates with S100 calcium-binding protein A4 (S100A4). Biomed Pharmacother 2022; 145:112403. [PMID: 34798470 PMCID: PMC8678364 DOI: 10.1016/j.biopha.2021.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most malignant neoplasm in the liver that arises from the biliary tree. CCA is associated with a poor prognosis, and the key players involved in its pathogenesis are still not well understood. Receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), can mediate intracellular calcium (Ca2+) signaling pathways via inositol 1,4,5-trisphosphate (InsP3), activating inositol 1,4,5-trisphosphate receptors (ITPRs) and regulating tumor growth. ITPR isoform 3 (ITPR3) is the main intracellular Ca2+ release channel in cholangiocytes. The effects of intracellular Ca2+ are mediated by calcium-binding proteins such as Calmodulin and S100 calcium-binding protein A4 (S100A4). However, the clinicopathological and biological significance of EGFR, ITPR3 and S100A4 in CCA remains unclear. Thus, the present work investigates the immunoexpression of these three proteins in 59 CCAs from patients who underwent curative surgical treatment and correlates the data with clinicopathological features and survival. High ITPR3 expression was correlated with CA 19-9 levels, TNM stage and lymph node metastasis (N). Furthermore, ITPR3 expression was increased in distal CCA compared to control bile ducts and intrahepatic and perihilar CCAs. These observations were confirmed by proteomic analysis. ITPR3 and S100A4 clinical scores were significantly correlated. Furthermore, it was demonstrated that EGF induces calcium signaling in a cholangiocarcinoma cell line and ITPR3 colocalizes with nonmuscle myosin IIA (NMIIA). In summary, ITPR3 overexpression could contribute to CCA progression and it may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Michele A. Rodrigues
- Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil
| | - Dawidson A. Gomes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil
| | - Ana Luiza Cosme
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Marcelo Dias Sanches
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil.,Hepatopancreatobiliary Division, Clinical Hospital, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 110, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Vivian Resende
- School of Medicine, Department of Surgery, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil.,Hepatopancreatobiliary Division, Clinical Hospital, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 110, Belo Horizonte, Minas Gerais, CEP: 30130-100, Brazil
| | - Geovanni D. Cassali
- Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP: 31270-901, Brazil.,Corresponding author: Department of General Pathology, Instituto de Ciências Biológicas, Bloco C3, Sala 102, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Belo Horizonte–MG, Brazil 31270-901. Tel: +55 31 34092891.
| |
Collapse
|
276
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
277
|
Simpson JB, Sekela JJ, Graboski AL, Borlandelli VB, Bivins MM, Barker NK, Sorgen AA, Mordant AL, Johnson RL, Bhatt AP, Fodor AA, Herring LE, Overkleeft H, Lee JR, Redinbo MR. Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate. Gut Microbes 2022; 14:2107289. [PMID: 35953888 PMCID: PMC9377255 DOI: 10.1080/19490976.2022.2107289] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial β-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.
Collapse
Affiliation(s)
- Joshua B. Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh J. Sekela
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda L. Graboski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valentina B. Borlandelli
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marissa M. Bivins
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalie K. Barker
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alicia A. Sorgen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Angie L. Mordant
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca L. Johnson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hermen Overkleeft
- Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John R. Lee
- Department of Medicine, Division of Nephrology and Hypertension, New York, New York, USA
| | - Matthew. R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, Department of Microbiology and Immunology, and the Institute for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
278
|
Quantitative Mass Spectrometry by SILAC in Haloferax volcanii. Methods Mol Biol 2022; 2522:255-266. [PMID: 36125755 PMCID: PMC9926160 DOI: 10.1007/978-1-0716-2445-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of mass spectrometry (MS)-based proteomics methods has been critical in providing new insight about cellular processes and adaptations in all domains of life. While traditional MS-based methods are not inherently quantitative, technologies are now available to overcome this limitation. Of note, stable isotope labeling of amino acids in cell culture (SILAC) is reported as a reliable tool to label proteomes for quantitative MS-based proteomics that is accurate and flexible for multiplexing. The isotopically labeled lysine and arginine are easily incorporated into the proteome of cells auxotrophic for these amino acids. Microorganisms of the domain Archaea provide a fascinating alternative to understanding cellular adaptations and responses to environmental stresses. However, the availability of preferred SILAC-based quantitative analyses is limited. This protocol describes the use of SILAC to quantitatively analyze the proteome of Haloferax volcanii, a mesophilic halophilic archaeon that is easy to grow and requires no special equipment to maintain.
Collapse
|
279
|
Ribeiro DM, Coelho D, Osório H, Martins C, Bengala Freire JP, Almeida J, Moreira O, Almeida AM, Prates JA. Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigs. J Proteomics 2022; 256:104504. [DOI: 10.1016/j.jprot.2022.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
280
|
Hippmann AA, Schuback N, Moon K, McCrow JP, Allen AE, Foster LF, Green BR, Maldonado MT. Proteomic analysis of metabolic pathways supports chloroplast-mitochondria cross-talk in a Cu-limited diatom. PLANT DIRECT 2022; 6:e376. [PMID: 35079683 PMCID: PMC8777261 DOI: 10.1002/pld3.376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 05/19/2023]
Abstract
Diatoms are one of the most successful phytoplankton groups in our oceans, being responsible for over 20% of the Earth's photosynthetic productivity. Their chimeric genomes have genes derived from red algae, green algae, bacteria, and heterotrophs, resulting in multiple isoenzymes targeted to different cellular compartments with the potential for differential regulation under nutrient limitation. The resulting interactions between metabolic pathways are not yet fully understood. We previously showed how acclimation to Cu limitation enhanced susceptibility to overreduction of the photosynthetic electron transport chain and its reorganization to favor photoprotection over light harvesting in the oceanic diatom Thalassiosira oceanica (Hippmann et al., 2017, 10.1371/journal.pone.0181753). In order to gain a better understanding of the overall metabolic changes that help alleviate the stress of Cu limitation, we have further analyzed the comprehensive proteomic datasets generated in that study to identify differentially expressed proteins involved in carbon, nitrogen, and oxidative stress-related metabolic pathways. Metabolic pathway analysis showed integrated responses to Cu limitation. The upregulation of ferredoxin (Fdx) was correlated with upregulation of plastidial Fdx-dependent isoenzymes involved in nitrogen assimilation as well as enzymes involved in glutathione synthesis, thus suggesting an integration of nitrogen uptake and metabolism with photosynthesis and oxidative stress resistance. The differential expression of glycolytic isoenzymes located in the chloroplast and mitochondria may enable them to channel both excess electrons and/or ATP between these compartments. An additional support for chloroplast-mitochondrial cross-talk is the increased expression of chloroplast and mitochondrial proteins involved in the proposed malate shunt under Cu limitation.
Collapse
Affiliation(s)
- Anna A. Hippmann
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Nina Schuback
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kyung‐Mee Moon
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - John P. McCrow
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
| | - Andrew E. Allen
- Microbial and Environmental GenomicsJ. Craig Venter InstituteLa JollaCAUSA
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCAUSA
| | - Leonard F. Foster
- Biochemistry and Molecular BiologyMichael Smith LaboratoriesVancouverBritish ColumbiaCanada
| | - Beverley R. Green
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Maria T. Maldonado
- Department of Earth Ocean and Atmospheric ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
281
|
Ramsey JS, Ammar ED, Mahoney JE, Rivera K, Johnson R, Igwe DO, Thannhauser TW, MacCoss MJ, Hall DG, Heck M. Host Plant Adaptation Drives Changes in Diaphorina citri Proteome Regulation, Proteoform Expression, and Transmission of ' Candidatus Liberibacter asiaticus', the Citrus Greening Pathogen. PHYTOPATHOLOGY 2022; 112:101-115. [PMID: 34738832 DOI: 10.1094/phyto-06-21-0275-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Asian citrus psyllid (Diaphorina citri) is a pest of citrus and the primary insect vector of the bacterial pathogen, 'Candidatus Liberibacter asiaticus' (CLas), which is associated with citrus greening disease. The citrus relative Murraya paniculata (orange jasmine) is a host plant of D. citri but is more resistant to CLas compared with all tested Citrus genotypes. The effect of host switching of D. citri between Citrus medica (citron) and M. paniculata plants on the acquisition and transmission of CLas was investigated. The psyllid CLas titer and the proportion of CLas-infected psyllids decreased in the generations after transfer from CLas-infected citron to healthy M. paniculata plants. Furthermore, after several generations of feeding on M. paniculata, pathogen acquisition (20 to 40% reduction) and transmission rates (15 to 20% reduction) in psyllids transferred to CLas-infected citron were reduced compared with psyllids continually maintained on infected citron. Top-down (difference gel electrophoresis) and bottom-up (shotgun MS/MS) proteomics methods were used to identify changes in D. citri protein expression resulting from host plant switching between Citrus macrophylla and M. paniculata. Changes in expression of insect metabolism, immunity, and cytoskeleton proteins were associated with host plant switching. Both transient and sustained feeding on M. paniculata induced distinct patterns of protein expression in D. citri compared with psyllids reared on C. macrophylla. The results point to complex interactions that affect vector competence and may lead to strategies to control the spread of citrus greening disease.
Collapse
Affiliation(s)
- John S Ramsey
- U.S. Department of Agriculture-Agricultural Research Service-Emerging Pests and Pathogens Research Unit, Ithaca, NY
| | - El-Desouky Ammar
- U.S. Department of Agriculture-Agricultural Research Service, USHRL-SIRU, Fort Pierce, FL
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | | | - David O Igwe
- Cornell University College of Agriculture and Life Sciences-Plant Pathology and Plant Microbe Biology, Ithaca, NY
| | - Theodore W Thannhauser
- U.S. Department of Agriculture-Agricultural Research Service-Plant, Soil, and Nutrition Research Unit, Ithaca, NY
| | | | - David G Hall
- U.S. Department of Agriculture-Agricultural Research Service, USHRL-SIRU, Fort Pierce, FL
| | - Michelle Heck
- U.S. Department of Agriculture-Agricultural Research Service-Emerging Pests and Pathogens Research Unit, Ithaca, NY
- Cornell University College of Agriculture and Life Sciences-Plant Pathology and Plant Microbe Biology, Ithaca, NY
| |
Collapse
|
282
|
Prabahar A. Integration of Transcriptomics Data and Metabolomic Data Using Biomedical Literature Mining and Pathway Analysis. Methods Mol Biol 2022; 2496:301-316. [PMID: 35713871 DOI: 10.1007/978-1-0716-2305-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent progress in omics technologies such as transcriptomics and metabolomics offers an unprecedented opportunity to understand the disease mechanisms and determines the associated biomedical entities using biomedical literature mining. Tremendous data available in the biomedical literature helps in addressing complex biomedical problems. Advancements in genomics and transcriptomics helps in decoding the genetic information obtained from various high throughput techniques for its use in personalized medicine and therapeutics. Integration of data from biomedical literature and data from large-scale genomic studies aids in the determination of the etiology of a disease and drug targets. This chapter addresses the perspectives of transcriptomics and metabolomics in biomedical literature mining and gives an overview of state-of-the-art techniques in this field.
Collapse
Affiliation(s)
- Archana Prabahar
- R&D Division, Eriks-Precision Components India Pvt Ltd, Mohali, Punjab, India.
| |
Collapse
|
283
|
Mordant A, Kleiner M. Evaluation of Sample Preservation and Storage Methods for Metaproteomics Analysis of Intestinal Microbiomes. Microbiol Spectr 2021; 9:e0187721. [PMID: 34908431 PMCID: PMC8672883 DOI: 10.1128/spectrum.01877-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022] Open
Abstract
A critical step in studies of the intestinal microbiome using meta-omics approaches is the preservation of samples before analysis. Preservation is essential for approaches that measure gene expression, such as metaproteomics, which is used to identify and quantify proteins in microbiomes. Intestinal microbiome samples are typically stored by flash-freezing and storage at -80°C, but some experimental setups do not allow for immediate freezing of samples. In this study, we evaluated methods to preserve fecal microbiome samples for metaproteomics analyses when flash-freezing is not possible. We collected fecal samples from C57BL/6 mice and stored them for 1 and 4 weeks using the following methods: flash-freezing in liquid nitrogen, immersion in RNAlater, immersion in 95% ethanol, immersion in a RNAlater-like buffer, and combinations of these methods. After storage, we extracted protein and prepared peptides for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis to identify and quantify peptides and proteins. All samples produced highly similar metaproteomes, except for ethanol-preserved samples that were distinct from all other samples in terms of protein identifications and protein abundance profiles. Flash-freezing and RNAlater (or RNAlater-like treatments) produced metaproteomes that differed only slightly, with less than 0.7% of identified proteins differing in abundance. In contrast, ethanol preservation resulted in an average of 9.5% of the identified proteins differing in abundance between ethanol and the other treatments. Our results suggest that preservation at room temperature in RNAlater or an RNAlater-like solution performs as well as freezing for the preservation of intestinal microbiome samples before metaproteomics analyses. IMPORTANCE Metaproteomics is a powerful tool to study the intestinal microbiome. By identifying and quantifying a large number of microbial, dietary, and host proteins in microbiome samples, metaproteomics provides direct evidence of the activities and functions of microbial community members. A critical step for metaproteomics workflows is preserving samples before analysis because protein profiles are susceptible to fast changes in response to changes in environmental conditions (air exposure, temperature changes, etc.). This study evaluated the effects of different preservation treatments on the metaproteomes of intestinal microbiome samples. In contrast to prior work on preservation of fecal samples for metaproteomics analyses, we ensured that all steps of sample preservation were identical so that all differences could be attributed to the preservation method.
Collapse
Affiliation(s)
- Angie Mordant
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
284
|
Arico DS, Beati P, Wengier DL, Mazzella MA. A novel strategy to uncover specific GO terms/phosphorylation pathways in phosphoproteomic data in Arabidopsis thaliana. BMC PLANT BIOLOGY 2021; 21:592. [PMID: 34906086 PMCID: PMC8670200 DOI: 10.1186/s12870-021-03377-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Proteins are the workforce of the cell and their phosphorylation status tailors specific responses efficiently. One of the main challenges of phosphoproteomic approaches is to deconvolute biological processes that specifically respond to an experimental query from a list of phosphoproteins. Comparison of the frequency distribution of GO (Gene Ontology) terms in a given phosphoproteome set with that observed in the genome reference set (GenRS) is the most widely used tool to infer biological significance. Yet, this comparison assumes that GO term distribution between the phosphoproteome and the genome are identical. However, this hypothesis has not been tested due to the lack of a comprehensive phosphoproteome database. RESULTS In this study, we test this hypothesis by constructing three phosphoproteome databases in Arabidopsis thaliana: one based in experimental data (ExpRS), another based in in silico phosphorylation protein prediction (PredRS) and a third that is the union of both (UnRS). Our results show that the three phosphoproteome reference sets show default enrichment of several GO terms compared to GenRS, indicating that GO term distribution in the phosphoproteomes does not match that of the genome. Moreover, these differences overshadow the identification of GO terms that are specifically enriched in a particular condition. To overcome this limitation, we present an additional comparison of the sample of interest with UnRS to uncover GO terms specifically enriched in a particular phosphoproteome experiment. Using this strategy, we found that mRNA splicing and cytoplasmic microtubule compounds are important processes specifically enriched in the phosphoproteome of dark-grown Arabidopsis seedlings. CONCLUSIONS This study provides a novel strategy to uncover GO specific terms in phosphoproteome data of Arabidopsis that could be applied to any other organism. We also highlight the importance of specific phosphorylation pathways that take place during dark-grown Arabidopsis development.
Collapse
Affiliation(s)
- Denise S Arico
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Paula Beati
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
| | - Diego L Wengier
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA, 94305, USA
| | - Maria Agustina Mazzella
- INGEBI-CONICET Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Vuelta de Obligado 2490, 1428, CABA, Argentina.
| |
Collapse
|
285
|
Yan Y, Zhou B, Lee YJ, You S, Freeman MR, Yang W. BoxCar and shotgun proteomic analyses reveal molecular networks regulated by UBR5 in prostate cancer. Proteomics 2021; 22:e2100172. [PMID: 34897998 DOI: 10.1002/pmic.202100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Prostate cancer (PC) is a major health and economic problem in industrialized countries, yet our understanding of the molecular mechanisms of PC progression and drug response remains limited. Accumulating evidence showed that certain E3 ubiquitin ligases such as SIAH2, RNF7, and SPOP play important roles in PC development and progression. However, the roles and mechanisms of other E3s in PC progression remain largely unexplored. Through an integration analysis of clinical genomic and transcriptomic profiles of PC tumors, this study identified UBR5 as a top PC-relevant E3 ubiquitin ligase whose expression levels are strongly associated with PC progression and aggressiveness. BoxCar and shotgun proteomic analyses of control and UBR5-knockdown PC3 cells complementarily identified 75 UBR5-regulated proteins. Bioinformatic analysis suggested that the 75 proteins form four molecular networks centered around FANCD2, PAF1, YY1, and LAMB3 via direct protein-protein interactions. Experimental analyses demonstrated that UBR5 associates with and downregulates two key DNA damage repair proteins (XRCC3 and FANCD2) and confers PC cell sensitivity to olaparib, a PARP inhibitor in clinical use for cancer therapy. This study represents the first application of BoxCar in PC research, provides new insights into the molecular functions of UBR5 in PC, and suggests that PC patients with UBR5-high tumors may potentially benefit from PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yeon-Joo Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael R Freeman
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
286
|
Mühlhausen S, Schmitt HD, Plessmann U, Mienkus P, Sternisek P, Perl T, Weig M, Urlaub H, Bader O, Kollmar M. Proteogenomics analysis of CUG codon translation in the human pathogen Candida albicans. BMC Biol 2021; 19:258. [PMID: 34863173 PMCID: PMC8645108 DOI: 10.1186/s12915-021-01197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$\end{document}tRNACAGSer. Previously reported experiments have suggested that 3–5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$\end{document}tRNACAGSer. The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Results In this study, we reassess this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, including various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our data do not support a bias towards CUG codon mistranslation as leucine. Instead, our data suggest that (i) CUG codons are mistranslated at a frequency corresponding to the normal extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans’ strain pathogenicity or growth form. Conclusions Our findings imply that C. albicans does not decode CUG ambiguously. This suggests that the proposed misleucylation of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathrm{tRNA}}_{\mathrm{CAG}}^{\mathrm{Ser}} $$\end{document}tRNACAGSer might be as prevalent as every other misacylation or mistranslation event and, if at all, be just one of many reasons causing phenotypic diversity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01197-9.
Collapse
Affiliation(s)
- Stefanie Mühlhausen
- Theoretical Computer Science and Algorithmic Methods Group, Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Hans Dieter Schmitt
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Uwe Plessmann
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Peter Mienkus
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Pia Sternisek
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Thorsten Perl
- Intermediate Care, University Medical Center Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Michael Weig
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | - Martin Kollmar
- Theoretical Computer Science and Algorithmic Methods Group, Institute of Computer Science, University of Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany. .,Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
287
|
Couso I, Smythers AL, Ford MM, Umen JG, Crespo JL, Hicks LM. Inositol polyphosphates and target of rapamycin kinase signalling govern photosystem II protein phosphorylation and photosynthetic function under light stress in Chlamydomonas. THE NEW PHYTOLOGIST 2021; 232:2011-2025. [PMID: 34529857 DOI: 10.1111/nph.17741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 05/28/2023]
Abstract
Stress and nutrient availability influence cell proliferation through complex intracellular signalling networks. In a previous study it was found that pyro-inositol polyphosphates (InsP7 and InsP8 ) produced by VIP1 kinase, and target of rapamycin (TOR) kinase signalling interacted synergistically to control cell growth and lipid metabolism in the green alga Chlamydomonas reinhardtii. However, the relationship between InsPs and TOR was not completely elucidated. We used an in vivo assay for TOR activity together with global proteomic and phosphoproteomic analyses to assess differences between wild-type and vip1-1 in the presence and absence of rapamycin. We found that TOR signalling is more severely affected by the inhibitor rapamycin in a vip1-1 mutant compared with wild-type, indicating that InsP7 and InsP8 produced by VIP1 act independently but also coordinately with TOR. Additionally, among hundreds of differentially phosphorylated peptides detected, an enrichment for photosynthesis-related proteins was observed, particularly photosystem II proteins. The significance of these results was underscored by the finding that vip1-1 strains show multiple defects in photosynthetic physiology that were exacerbated under high light conditions. These results suggest a novel role for inositol pyrophosphates and TOR signalling in coordinating photosystem phosphorylation patterns in Chlamydomonas cells in response to light stress and possibly other stresses.
Collapse
Affiliation(s)
- Inmaculada Couso
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Avda. Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Megan M Ford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Avda. Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
288
|
Shi LD, Lv PL, McIlroy SJ, Wang Z, Dong XL, Kouris A, Lai CY, Tyson GW, Strous M, Zhao HP. Methane-dependent selenate reduction by a bacterial consortium. THE ISME JOURNAL 2021; 15:3683-3692. [PMID: 34183781 PMCID: PMC8630058 DOI: 10.1038/s41396-021-01044-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Methanotrophic microorganisms play a critical role in controlling the flux of methane from natural sediments into the atmosphere. Methanotrophs have been shown to couple the oxidation of methane to the reduction of diverse electron acceptors (e.g., oxygen, sulfate, nitrate, and metal oxides), either independently or in consortia with other microbial partners. Although several studies have reported the phenomenon of methane oxidation linked to selenate reduction, neither the microorganisms involved nor the underlying trophic interaction has been clearly identified. Here, we provide the first detailed evidence for interspecies electron transfer between bacterial populations in a bioreactor community where the reduction of selenate is linked to methane oxidation. Metagenomic and metaproteomic analyses of the community revealed a novel species of Methylocystis as the most abundant methanotroph, which actively expressed proteins for oxygen-dependent methane oxidation and fermentation pathways, but lacked the genetic potential for selenate reduction. Pseudoxanthomonas, Piscinibacter, and Rhodocyclaceae populations appeared to be responsible for the observed selenate reduction using proteins initially annotated as periplasmic nitrate reductases, with fermentation by-products released by the methanotrophs as electron donors. The ability for the annotated nitrate reductases to reduce selenate was confirmed by gene knockout studies in an isolate of Pseudoxanthomonas. Overall, this study provides novel insights into the metabolic flexibility of the aerobic methanotrophs that likely allows them to thrive across natural oxygen gradients, and highlights the potential role for similar microbial consortia in linking methane and other biogeochemical cycles in environments where oxygen is limited.
Collapse
Affiliation(s)
- Ling-Dong Shi
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Pan-Long Lv
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Simon J. McIlroy
- grid.489335.00000000406180938Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD Australia ,grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD Australia
| | - Zhen Wang
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Xiao-Li Dong
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - Angela Kouris
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - Chun-Yu Lai
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China ,grid.1003.20000 0000 9320 7537Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD Australia
| | - Gene W. Tyson
- grid.489335.00000000406180938Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD Australia
| | - Marc Strous
- grid.22072.350000 0004 1936 7697Department of Geoscience, University of Calgary, Calgary, AB Canada
| | - He-Ping Zhao
- grid.13402.340000 0004 1759 700XMOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
289
|
Dall M, Hassing AS, Niu L, Nielsen TS, Ingerslev LR, Sulek K, Trammell SAJ, Gillum MP, Barrès R, Larsen S, Poulsen SS, Mann M, Ørskov C, Treebak JT. Hepatocyte-specific perturbation of NAD + biosynthetic pathways in mice induces reversible nonalcoholic steatohepatitis-like phenotypes. J Biol Chem 2021; 297:101388. [PMID: 34762911 PMCID: PMC8648833 DOI: 10.1016/j.jbc.2021.101388] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lili Niu
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Department of Biomedical Sciences, Xlab, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Steen S Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Cathrine Ørskov
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
290
|
Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 12:100052. [PMID: 35755950 PMCID: PMC9216660 DOI: 10.1016/j.iotech.2021.100052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, immunotherapy has shown significant therapeutic efficacy in a broad range of cancer types. Antitumor immune responses are contingent on the recognition of tumor-specific antigens, which are termed neoantigens. Tumor neoantigens are ideal targets for immunotherapy since they can be recognized as non-self antigens by the host immune system and thus are able to elicit an antitumor T-cell response. There are an increasing number of studies that highlight the importance of tumor neoantigens in immunoediting and in the sensitivity to immune checkpoint blockade. Therefore, one of the most fundamental tasks in the field of immuno-oncology research is the identification of patient-specific neoantigens. To this end, a plethora of computational approaches have been developed in order to predict tumor-specific aberrant peptides and quantify their likelihood of binding to patients' human leukocyte antigen molecules in order to be recognized by T cells. In this review, we systematically summarize and present the most recent advances in computational neoantigen prediction, and discuss the challenges and novel methods that are being developed to resolve them. Tumors have the ability to acquire immune escape mechanisms. Tumor-specific aberrant peptides (neoantigens) can elicit an immune response by the host immune system. The identification of neoantigens is one of the most fundamental tasks in the field of immuno-oncology research. A plethora of computational approaches have been developed in order to predict patient-specificneoantigens.
Collapse
Affiliation(s)
- G Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
291
|
Zimmermann R, Lang S, Lerner M, Förster F, Nguyen D, Helms V, Schrul B. Quantitative Proteomics and Differential Protein Abundance Analysis after the Depletion of PEX3 from Human Cells Identifies Additional Aspects of Protein Targeting to the ER. Int J Mol Sci 2021; 22:ijms222313028. [PMID: 34884833 PMCID: PMC8658024 DOI: 10.3390/ijms222313028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein import into the endoplasmic reticulum (ER) is the first step in the biogenesis of around 10,000 different soluble and membrane proteins in humans. It involves the co- or post-translational targeting of precursor polypeptides to the ER, and their subsequent membrane insertion or translocation. So far, three pathways for the ER targeting of precursor polypeptides and four pathways for the ER targeting of mRNAs have been described. Typically, these pathways deliver their substrates to the Sec61 polypeptide-conducting channel in the ER membrane. Next, the precursor polypeptides are inserted into the ER membrane or translocated into the ER lumen, which may involve auxiliary translocation components, such as the TRAP and Sec62/Sec63 complexes, or auxiliary membrane protein insertases, such as EMC and the TMCO1 complex. Recently, the PEX19/PEX3-dependent pathway, which has a well-known function in targeting and inserting various peroxisomal membrane proteins into pre-existent peroxisomal membranes, was also found to act in the targeting and, putatively, insertion of monotopic hairpin proteins into the ER. These either remain in the ER as resident ER membrane proteins, or are pinched off from the ER as components of new lipid droplets. Therefore, the question arose as to whether this pathway may play a more general role in ER protein targeting, i.e., whether it represents a fourth pathway for the ER targeting of precursor polypeptides. Thus, we addressed the client spectrum of the PEX19/PEX3-dependent pathway in both PEX3-depleted HeLa cells and PEX3-deficient Zellweger patient fibroblasts by an established approach which involved the label-free quantitative mass spectrometry of the total proteome of depleted or deficient cells, as well as differential protein abundance analysis. The negatively affected proteins included twelve peroxisomal proteins and two hairpin proteins of the ER, thus confirming two previously identified classes of putative PEX19/PEX3 clients in human cells. Interestingly, fourteen collagen-related proteins with signal peptides or N-terminal transmembrane helices belonging to the secretory pathway were also negatively affected by PEX3 deficiency, which may suggest compromised collagen biogenesis as a hitherto-unknown contributor to organ failures in the respective Zellweger patients.
Collapse
Affiliation(s)
- Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
- Correspondence: (R.Z.); (B.S.)
| | - Sven Lang
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
| | - Monika Lerner
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
| | - Friedrich Förster
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Duy Nguyen
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (D.N.); (V.H.)
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany; (D.N.); (V.H.)
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (S.L.); (M.L.)
- Correspondence: (R.Z.); (B.S.)
| |
Collapse
|
292
|
Dougherty U, Mustafi R, Zhu H, Zhu X, Deb D, Meredith SC, Ayaloglu-Butun F, Fletcher M, Sanchez A, Pekow J, Deng Z, Amini N, Konda VJ, Rao VL, Sakuraba A, Kwesi A, Kupfer SS, Fichera A, Joseph L, Hart J, He F, He TC, West-Szymanski D, Li YC, Bissonnette M. Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated colon cancer. Epigenetics 2021; 16:1317-1334. [PMID: 33356812 PMCID: PMC8813074 DOI: 10.1080/15592294.2020.1863117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Because ADAM17 promotes colonic tumorigenesis, we investigated potential miRNAs regulating ADAM17; and examined effects of diet and tumorigenesis on these miRNAs. We also examined pre-miRNA processing and tumour suppressor roles of several of these miRNAs in experimental colon cancer. Using TargetScan, miR-145, miR-148a, and miR-152 were predicted to regulate ADAM17. miR-143 was also investigated as miR-143 and miR-145 are co-transcribed and associated with decreased tumour growth. HCT116 colon cancer cells (CCC) were co-transfected with predicted ADAM17-regulating miRNAs and luciferase reporters controlled by ADAM17-3'UTR. Separately, pre-miR-143 processing by colonic cells was measured. miRNAs were quantified by RT-PCR. Tumours were induced with AOM/DSS in WT and transgenic mice (Tg) expressing pre-miR-143/miR-145 under villin promoter. HCT116 transfection with miR-145, -148a or -152, but not scrambled miRNA inhibited ADAM17 expression and luciferase activity. The latter was suppressed by mutations in ADAM17-3'UTR. Lysates from colonocytes, but not CCC, processed pre-miR-143 and mixing experiments suggested CCC lacked a competency factor. Colonic miR-143, miR-145, miR-148a, and miR-152 were downregulated in tumours and more moderately by feeding mice a Western diet. Tg mice were resistant to DSS colitis and had significantly lower cancer incidence and tumour multiplicity. Tg expression blocked up-regulation of putative targets of miR-143 and miR-145, including ADAM17, K-Ras, XPO5, and SET. miR-145, miR-148a, and miR-152 directly suppress colonocyte ADAM17 and are down-regulated in colon cancer. This is the first direct demonstration of tumour suppressor roles for miR-143 and miR-145 in an in vivo model of colonic tumorigenesis.
Collapse
Affiliation(s)
| | - Reba Mustafi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Hongyan Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Dilip Deb
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | | | | | - Arantxa Sanchez
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Nader Amini
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Vani J Konda
- Department of Medicine, Baylor University, Dallas, TX, USA
| | - Vijaya L. Rao
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Akushika Kwesi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Loren Joseph
- Departments of Pathology, Beth Israel, Harvard Medical School, Boston, MA, USA
| | - John Hart
- Departments of Pathology, University of Chicago, Chicago IL, USA
| | - Fang He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | | | - Yan Chun Li
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | |
Collapse
|
293
|
Moyer TB, Brechbill AM, Hicks LM. Mass Spectrometric Identification of Antimicrobial Peptides from Medicinal Seeds. Molecules 2021; 26:molecules26237304. [PMID: 34885884 PMCID: PMC8659199 DOI: 10.3390/molecules26237304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/02/2022] Open
Abstract
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.
Collapse
|
294
|
Mollaei M, Suarez-Diez M, Sedano-Nunez VT, Boeren S, Stams AJM, Plugge CM. Proteomic Analysis of a Syntrophic Coculture of Syntrophobacter fumaroxidans MPOB T and Geobacter sulfurreducens PCA T. Front Microbiol 2021; 12:708911. [PMID: 34950111 PMCID: PMC8691401 DOI: 10.3389/fmicb.2021.708911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
We established a syntrophic coculture of Syntrophobacter fumaroxidans MPOBT (SF) and Geobacter sulfurreducens PCAT (GS) growing on propionate and Fe(III). Neither of the bacteria was capable of growth on propionate and Fe(III) in pure culture. Propionate degradation by SF provides acetate, hydrogen, and/or formate that can be used as electron donors by GS with Fe(III) citrate as electron acceptor. Proteomic analyses of the SF-GS coculture revealed propionate conversion via the methylmalonyl-CoA (MMC) pathway by SF. The possibility of interspecies electron transfer (IET) via direct (DIET) and/or hydrogen/formate transfer (HFIT) was investigated by comparing the differential abundance of associated proteins in SF-GS coculture against (i) SF coculture with Methanospirillum hungatei (SF-MH), which relies on HFIT, (ii) GS pure culture growing on acetate, formate, hydrogen as propionate products, and Fe(III). We noted some evidence for DIET in the SF-GS coculture, i.e., GS in the coculture showed significantly lower abundance of uptake hydrogenase (43-fold) and formate dehydrogenase (45-fold) and significantly higher abundance of proteins related to acetate metabolism (i.e., GltA; 62-fold) compared to GS pure culture. Moreover, SF in the SF-GS coculture showed significantly lower abundance of IET-related formate dehydrogenases, Fdh3 (51-fold) and Fdh5 (29-fold), and the rate of propionate conversion in SF-GS was 8-fold lower than in the SF-MH coculture. In contrast, compared to GS pure culture, we found lower abundance of pilus-associated cytochrome OmcS (2-fold) and piliA (5-fold) in the SF-GS coculture that is suggested to be necessary for DIET. Furthermore, neither visible aggregates formed in the SF-GS coculture, nor the pili-E of SF (suggested as e-pili) were detected. These findings suggest that the IET mechanism is complex in the SF-GS coculture and can be mediated by several mechanisms rather than one discrete pathway. Our study can be further useful in understanding syntrophic propionate degradation in bioelectrochemical and anaerobic digestion systems.
Collapse
Affiliation(s)
- Monir Mollaei
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
295
|
Kang YJ, Li JY, Ke L, Jiang S, Yang DC, Hou M, Gao G. Quantitative model suggests both intrinsic and contextual features contribute to the transcript coding ability determination in cells. Brief Bioinform 2021; 23:6445106. [PMID: 34849565 DOI: 10.1093/bib/bbab483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Gene transcription and protein translation are two key steps of the 'central dogma.' It is still a major challenge to quantitatively deconvolute factors contributing to the coding ability of transcripts in mammals. Here, we propose ribosome calculator (RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome. In addition to effectively predicting the experimentally confirmed coding abundance via sequence and transcription features with high accuracy, RiboCalc provides interpretable parameters with biological information. Large-scale analysis further revealed a number of transcripts with a variety of coding ability for distinct types of cells (i.e. context-dependent coding transcripts), suggesting that, contrary to conventional wisdom, a transcript's coding ability should be modeled as a continuous spectrum with a context-dependent nature.
Collapse
Affiliation(s)
- Yu-Jian Kang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jing-Yi Li
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lan Ke
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Shuai Jiang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - De-Chang Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Mei Hou
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ge Gao
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), and State Key Laboratory of Protein and Plant Gene Research at School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
296
|
Szydzik J, Lind DE, Arefin B, Kurhe Y, Umapathy G, Siaw JT, Claeys A, Gabre JL, Van den Eynden J, Hallberg B, Palmer RH. ATR inhibition enables complete tumour regression in ALK-driven NB mouse models. Nat Commun 2021; 12:6813. [PMID: 34819497 PMCID: PMC8613282 DOI: 10.1038/s41467-021-27057-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention. Effective therapeutic options are still needed in neuroblastoma treatment. Here, the authors, through a comprehensive proteomics analysis, identify ATR as a potential therapeutic target of neuroblastoma and demonstrate the efficacy of the ATR inhibitor BAY1895344 in combination with the ALK tyrosine kinase inhibitor lorlatinib.
Collapse
Affiliation(s)
- Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jonatan L Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
297
|
Dorsch M, Kowalczyk M, Planque M, Heilmann G, Urban S, Dujardin P, Forster J, Ueffing K, Nothdurft S, Oeck S, Paul A, Liffers ST, Kaschani F, Kaiser M, Schramm A, Siveke JT, Winslow MM, Fendt SM, Nalbant P, Grüner BM. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep 2021; 37:110056. [PMID: 34818551 PMCID: PMC8640221 DOI: 10.1016/j.celrep.2021.110056] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.
Collapse
Affiliation(s)
- Madeleine Dorsch
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Manuela Kowalczyk
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Geronimo Heilmann
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Sebastian Urban
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Philip Dujardin
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Jan Forster
- Department of Genome Informatics, Institute for Human Genetics, University of Duisburg-Essen, Duisburg, Germany; German Cancer Consortium (DKTK) partner site Essen, Essen, Germany
| | - Kristina Ueffing
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Silke Nothdurft
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Sebastian Oeck
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Annika Paul
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Sven T Liffers
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Markus Kaiser
- Department of Chemical Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany
| | - Jens T Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Medicine Essen, Essen, Germany; Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site Essen, Heidelberg, Germany
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Perihan Nalbant
- Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - Barbara M Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen at the University Duisburg-Essen, Duisburg, Germany; German Cancer Consortium (DKTK) partner site Essen, Essen, Germany.
| |
Collapse
|
298
|
Uçkun E, Wolfstetter G, Anthonydhason V, Sukumar SK, Umapathy G, Molander L, Fuchs J, Palmer RH. In vivo Profiling of the Alk Proximitome in the Developing Drosophila Brain. J Mol Biol 2021; 433:167282. [PMID: 34624297 DOI: 10.1016/j.jmb.2021.167282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Anaplastic lymphoma kinase (Alk) is an evolutionary conserved receptor tyrosine kinase belonging to the insulin receptor superfamily. In addition to its well-studied role in cancer, numerous studies have revealed that Alk signaling is associated with a variety of complex traits such as: regulation of growth and metabolism, hibernation, regulation of neurotransmitters, synaptic coupling, axon targeting, decision making, memory formation and learning, alcohol use disorder, as well as steroid hormone metabolism. In this study, we used BioID-based in vivo proximity labeling to identify molecules that interact with Alk in the Drosophila central nervous system (CNS). To do this, we used CRISPR/Cas9 induced homology-directed repair (HDR) to modify the endogenous Alk locus to produce first and next generation Alk::BioID chimeras. This approach allowed identification of Alk proximitomes under physiological conditions and without overexpression. Our results show that the next generation of BioID proteins (TurboID and miniTurbo) outperform the first generation BirA* fusion in terms of labeling speed and efficiency. LC-MS3-based BioID screening of AlkTurboID and AlkminiTurbo larval brains revealed an extensive neuronal Alk proximitome identifying numerous potential components of Alk signaling complexes. Validation of Alk proximitome candidates further revealed co-expression of Stardust (Sdt), Discs large 1 (Dlg1), Syntaxin (Syx) and Rugose (Rg) with Alk in the CNS and identified the protein-tyrosine-phosphatase Corkscrew (Csw) as a modulator of Alk signaling.
Collapse
Affiliation(s)
- Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@uckunezgii
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Vimala Anthonydhason
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Sanjay Kumar Sukumar
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden. https://twitter.com/@sanjayssukumar
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Linnea Molander
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine at the Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
299
|
Handin N, Mickols E, Ölander M, Rudfeldt J, Blom K, Nyberg F, Senkowski W, Urdzik J, Maturi V, Fryknäs M, Artursson P. Conditions for maintenance of hepatocyte differentiation and function in 3D cultures. iScience 2021; 24:103235. [PMID: 34746700 PMCID: PMC8551077 DOI: 10.1016/j.isci.2021.103235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research. 3D spheroid cultures were established in 384-well format Eight different media variants were used to optimize the 3D cultures Optimized William's medium was as good as expensive commercial medium The 3D cultures were used to study drug metabolism and toxicity
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Evgeniya Mickols
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Jakob Rudfeldt
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Kristin Blom
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Frida Nyberg
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden.,Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Varun Maturi
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Division of Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
300
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|