251
|
Tissier ML, Kletty F, Handrich Y, Habold C. Monocultural sowing in mesocosms decreases the species richness of weeds and invertebrates and critically reduces the fitness of the endangered European hamster. Oecologia 2017; 186:589-599. [PMID: 29209843 DOI: 10.1007/s00442-017-4025-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Intensive cereal monoculture is currently the main cause of biodiversity decline in Europe. However, it is difficult to disentangle the effects of intensive monoculture (e.g. pesticide use, mechanical ploughing and reduced protective cover), let alone evaluate how far the reduction of crop diversity affects biodiversity. It remains unclear to which extent the consequent decrease in food resources affects farmland biodiversity, and particularly vertebrate species. We therefore designed this study in mesocosms to investigate the effects of monoculture crops (organic wheat or corn seeds) and mixed crops (a combination of organic wheat, corn, sunflower and alfalfa seeds) on (1) the species richness of weeds and invertebrates and (2) the reproductive success of the European hamster (Cricetus cricetus), a critically endangered umbrella species of European farmlands. We found a negative impact of organic monoculture crops on plant and invertebrate species richness, with values respectively 38% and 28% lower than those obtained for mixed organic crops. The reproductive success of hamsters was reduced by 82% in monoculture mesocosms. These results highlight that monoculture per se can be detrimental for farmland biodiversity (i.e. from plants to vertebrates), even before taking into account the use of pesticide and mechanization. We believe that future research should further consider how food reduction in agroecosystems affects farmland wildlife, including vertebrates. Moreover, we argue that conservation actions must focus on restoring plant diversity on farmland to reverse the observed trend in farmland wildlife decline.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France.
| | - Florian Kletty
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| | - Caroline Habold
- Université de Strasbourg, CNRS, IPHC, UMR 7178, 67000, Strasbourg, France
| |
Collapse
|
252
|
Lynsdale CL, Mumby HS, Hayward AD, Mar KU, Lummaa V. Parasite-associated mortality in a long-lived mammal: Variation with host age, sex, and reproduction. Ecol Evol 2017; 7:10904-10915. [PMID: 29299268 PMCID: PMC5743535 DOI: 10.1002/ece3.3559] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/23/2017] [Accepted: 09/28/2017] [Indexed: 01/03/2023] Open
Abstract
Parasites can cause severe host morbidity and threaten survival. As parasites are generally aggregated within certain host demographics, they are likely to affect a small proportion of the entire population, with specific hosts being at particular risk. However, little is known as to whether increased host mortality from parasitic causes is experienced by specific host demographics. Outside of theoretical studies, there is a paucity of literature concerning dynamics of parasite-associated host mortality. Empirical evidence mainly focuses on short-lived hosts or model systems, with data lacking from long-lived wild or semi-wild vertebrate populations. We investigated parasite-associated mortality utilizing a multigenerational database of mortality, health, and reproductive data for over 4,000 semi-captive timber elephants (Elephas maximus), with known causes of death for mortality events. We determined variation in mortality according to a number of host traits that are commonly associated with variation in parasitism within mammals: age, sex, and reproductive investment in females. We found that potentially parasite-associated mortality varied significantly across elephant ages, with individuals at extremes of lifespan (young and old) at highest risk. Mortality probability was significantly higher for males across all ages. Female reproducers experienced a lower probability of potentially parasite-associated mortality than females who did not reproduce at any investigated time frame. Our results demonstrate increased potentially parasite-associated mortality within particular demographic groups. These groups (males, juveniles, elderly adults) have been identified in other studies as susceptible to parasitism, stressing the need for further work investigating links between infection and mortality. Furthermore, we show variation between reproductive and non-reproductive females, with mothers being less at risk of potentially parasite mortality than nonreproducers.
Collapse
Affiliation(s)
- Carly L. Lynsdale
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Hannah S. Mumby
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Department of Environmental SciencesApplied Behavioural Ecology and Ecosystem Research UnitUniversity of South AfricaJohannesburgSouth Africa
| | - Adam D. Hayward
- Department of Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Khyne U. Mar
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Virpi Lummaa
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
253
|
Vekhnik VA. The Edible Dormouse (Glis glis, Gliridae, Rodentia) in the Periphery of Its Distribution Range: Body Size and Life History Parameters. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017090163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
254
|
Cope HR, Hogg CJ, Fagg K, Barnard O, White PJ, Herbert CA. Effects of deslorelin implants on reproduction and feeding behavior in Tasmanian devils (Sarcophilus harrisii) housed in free-range enclosures. Theriogenology 2017; 107:134-141. [PMID: 29149677 DOI: 10.1016/j.theriogenology.2017.10.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
In captive breeding programs, it is becoming increasingly important to maximize the retention of genetic diversity by managing the reproductive contribution of each individual, which can be facilitated through the use of selective contraception. This becomes critical when captive populations are held for several generations, and managers must prevent the confines of housing space and financial support from compromising genetic integrity. For example, the Tasmanian devil insurance population, established in 2006, is strategically managed to equalize founder representation. This becomes difficult when devils are housed in large groups in free-range enclosures (FREs). This study examined the efficacy, duration and potential side effects of Suprelorin® contraceptive implants (containing 4.7 mg of deslorelin) on Tasmanian devils housed in FREs. Females were monitored to assess post-treatment reproductive rates, feeding behavior and weight changes. Suprelorin® successfully prevented reproduction in all treated females (P < 0.001) for at least one breeding season. For one year after contraception, there was no difference in proportion of time spent feeding between contraception and control groups (P > 0.05) and there was no effect of contraception on order of arrival at food (P = 0.632), suggesting no alterations to social structure. Devils with pouch young spent more time feeding than those without (P < 0.001). Treatment and month had an interactive effect on weight (P < 0.001), yet contracepted females were only heavier than controls in one season, indicating no overall excessive weight gain. Suprelorin® implants inhibit reproduction for at least one breeding season, with no apparent negative effects on feeding behavior or social dynamic. Selective contraception has the potential to become an important tool for conservation managers, to meet multiple reproductive, genetic and behavioral goals for this species.
Collapse
Affiliation(s)
- Holly R Cope
- The University of Sydney, Faculty of Science, SOLES, J.D. Stewart Building B01, Camperdown, 2006, NSW, Australia
| | - Carolyn J Hogg
- The University of Sydney, Faculty of Science, SOLES, J.D. Stewart Building B01, Camperdown, 2006, NSW, Australia; Zoo and Aquarium Association Australasia, Mosman, 2088, NSW, Australia
| | - Karen Fagg
- Save the Tasmanian Devil Program, Captive Management and Translocation Section, Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment, Australia
| | - Olivia Barnard
- Save the Tasmanian Devil Program, Captive Management and Translocation Section, Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment, Australia
| | - Peter J White
- The University of Sydney, Faculty of Science, SSVS, R.M.C. Gunn Building B19, Camperdown, 2006, NSW, Australia
| | - Catherine A Herbert
- The University of Sydney, Faculty of Science, SOLES, J.D. Stewart Building B01, Camperdown, 2006, NSW, Australia.
| |
Collapse
|
255
|
Vander Haegen WM, Orth GR, Johnston AN, Linders MJ. Endemic diseases affect population dynamics of tree squirrels in contrasting landscapes. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Gene R. Orth
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| | - Aaron N. Johnston
- School of Environmental and Forest SciencesUniversity of WashingtonBox 352100SeattleWA 98195USA
| | - Mary J. Linders
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| |
Collapse
|
256
|
Reproduction affects locomotor behaviour and muscle physiology in the sea cucumber, Apostichopus japonicus. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
257
|
Antonio SB, Cerutti RD, Scaglione MC, Piccione G, Refinetti R. Daily rhythmicity of behavior of nine species of South American feral felids in captivity. Physiol Behav 2017; 180:107-112. [PMID: 28842189 DOI: 10.1016/j.physbeh.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022]
Abstract
The authors analyzed the daily activity rhythms of the domestic cat and of eight of the ten feral felid species that are indigenous to South America. All species showed daily rhythmicity of activity in captivity under a natural light-dark cycle. The robustness of the rhythmicity varied from species to species, but the grand mean of 34% was within the range of robustness previously described for mammalian species ranging in size from mice to cattle. There was not a sharp division between diurnal and nocturnal felids. Instead, what was found was a gradient of diurnality going from the predominantly nocturnal margay (72% of activity counts during the night) to the predominantly diurnal jaguarundi (87% of activity counts during the day) with the remaining species lying in between these two extremes. The ecological implications of temporal niche variations are discussed.
Collapse
Affiliation(s)
- Sciabarrasi Bagilet Antonio
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina; Estación Biológica Experimental Granja La Esmeralda, 3000 Santa Fe, Argentina
| | - Raúl Delmar Cerutti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Giuseppe Piccione
- Laboratorio di Cronofisiologia Veterinaria, Dipartimento di Scienze Veterinarie, Università degli Studi di Messina, 98168 Messina, Italy
| | - Roberto Refinetti
- Circadian Rhythm Laboratory, Department of Psychological Science, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
258
|
Ziomkiewicz A, Frumkin A, Zhang Y, Sancilio A, Bribiescas RG. The cost of reproduction in women: Reproductive effort and oxidative stress in premenopausal and postmenopausal American women. Am J Hum Biol 2017; 30. [PMID: 28984395 DOI: 10.1002/ajhb.23069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Life history theory predicts a trade-off between female investment in reproduction and somatic maintenance, which can result in accelerated senescence. Oxidative stress has been shown to be a causal physiological mechanism for accelerated aging and a possible contributor to this trade-off. We aimed to test the hypothesis for the existence of significant associations between measures of reproductive effort and the level of oxidative stress biomarkers in premenopausal and postmenopausal American women. METHODS Serum samples and questionnaire data were collected from 63 premenopausal and postmenopausal women (mean age 53.4 years), controls in the Connecticut Thyroid Health Study, between May 2010 and December 2013. Samples were analyzed for levels of 8-OHdG and Cu/Zn-SOD using immunoassay method. RESULTS Levels of oxidative damage (8-OHdG) but not oxidative defense (Cu/Zn-SOD) were negatively associated with parity and number of sons in premenopausal women (r = -0.52 for parity, r = -0.52 for number of sons, P < .01). Together, measures of reproductive effort, women's BMI, age, and menopausal status explained around 15% of variance in level of 8-OHdG. No association between reproductive effort characteristics and oxidative damage was found for postmenopausal women. CONCLUSIONS We found no evidence of a trade-off between somatic maintenance as measured by 8-OHdG and reproductive effort in women from this American population. On the contrary, higher gravidity and parity in premenopausal women was associated with lower damage to cellular DNA caused by oxidative stress. These results highlight the importance of population variation and environmental conditions when testing the occurrence of life-history trade-offs.
Collapse
Affiliation(s)
- Anna Ziomkiewicz
- Polish Academy of Sciences, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, 50-449, Poland.,Department of Anthropology, Yale University, New Haven, Connecticut 06511
| | - Amara Frumkin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut 06510.,Yale School of Public Health, Department of Environmental Health Sciences, New Haven, Connecticut 06510
| | - Amelia Sancilio
- Department of Anthropology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
259
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
260
|
Schielke CKM, Burda H, Henning Y, Okrouhlík J, Begall S. Higher resting metabolic rate in long-lived breeding Ansell's mole-rats ( Fukomys anselli). Front Zool 2017; 14:45. [PMID: 29018488 PMCID: PMC5610445 DOI: 10.1186/s12983-017-0229-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023] Open
Abstract
Background Reproduction is an energetically expensive process that supposedly impairs somatic integrity in the long term, because resources are limited and have to be allocated between reproduction and somatic maintenance, as predicted by the life history trade-off model. The consequence of reduced investment in somatic maintenance is a gradual deterioration of function, i.e. senescence. However, this classical trade-off model gets challenged by an increasing number of contradicting studies. Here we report about an animal model, which adds more complexity to the ongoing debate. Ansell’s mole-rats are long-lived social subterranean rodents with only the founder pair reproducing, while most of their offspring remain in the parental burrow system and do not breed. Despite of a clear reproductive trade-off, breeders live up to twice as long as non-breeders, a unique feature amongst mammals. Methods We investigated mass-specific resting metabolic rates (msRMR) of breeders and non-breeders to gain information about the physiological basis underlying the reproduction-associated longevity in Ansell’s mole-rats. We assessed the thermoneutral zone (TNZ) for breeders and non-breeders separately by means of indirect calorimetry. We applied generalized linear mixed-effects models for repeated measurements using the msRMR in the respective TNZs. Results TNZ differed between reproductive and non-reproductive Ansell’s mole-rats. Contrary to classical aging models, the shorter-lived non-breeders had significantly lower msRMR within the thermoneutral zone compared to breeders. Conclusion This is the first study reporting a positive correlation between msRMR and lifespan based on reproductive status. Our finding contradicts common aging theories, but supports recently introduced models which do not necessarily link reproductive trade-offs to lifespan reduction.
Collapse
Affiliation(s)
| | - Hynek Burda
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | | | - Jan Okrouhlík
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Sabine Begall
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
261
|
Pettett CE, Johnson PJ, Moorhouse TP, Hambly C, Speakman JR, Macdonald DW. Daily energy expenditure in the face of predation: hedgehog energetics in rural landscapes. ACTA ACUST UNITED AC 2017; 220:460-468. [PMID: 28148819 DOI: 10.1242/jeb.150359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/17/2016] [Indexed: 02/05/2023]
Abstract
Failure to balance daily energy expenditure (DEE) with energy intake can have an impact on survival and reproduction, and therefore on the persistence of populations. Here we study the DEE of the European hedgehog (Erinaceus europaeus), which is declining in the UK. We hypothesise that there is a gradient of suitable habitat for hedgehogs in rural areas, which is a result of fewer food resources, a higher risk from predation by badgers (Meles meles) and colder ambient temperatures, as distance to the nearest building increases. We used the doubly labelled water method to obtain 44 measurements of DEE from hedgehogs on four predominately arable sites, to determine the energetic costs associated with proximity to buildings, on sites with and without badgers. The mean±s.e.m. DEE was 508.9±34.8 kJ day-1 DEE increased the further a hedgehog was from buildings during the study, possibly as they ranged larger distances on arable land, supporting the hypothesis that hedgehogs select villages owing to the lower energy demands in comparison to arable farmland. Hedgehogs had an approximately 30% lower DEE on sites with badgers. We speculate that on badger-occupied sites, hedgehogs may restrict movement and foraging in response to a threat from predation and thus have reduced DEE. Therefore, hedgehogs may also seek refuge in villages where the perceived threat of predation is lower and foraging is unrestricted. In a broader context, we demonstrate that individual differences in DEE can aid in understanding habitat selection in a patchily distributed species.
Collapse
Affiliation(s)
- Carly E Pettett
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxfordshire OX13 5QL, UK
| | - Paul J Johnson
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxfordshire OX13 5QL, UK
| | - Tom P Moorhouse
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxfordshire OX13 5QL, UK
| | - Catherine Hambly
- Energetics Research Group, Zoology Department, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John R Speakman
- Energetics Research Group, Zoology Department, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David W Macdonald
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Recanati-Kaplan Centre, Tubney House, Abingdon Road, Tubney, Oxfordshire OX13 5QL, UK
| |
Collapse
|
262
|
Cooper-Mullin C, McWilliams SR. The role of the antioxidant system during intense endurance exercise: lessons from migrating birds. ACTA ACUST UNITED AC 2017; 219:3684-3695. [PMID: 27903627 DOI: 10.1242/jeb.123992] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During migration, birds substantially increase their metabolic rate and burn fats as fuel and yet somehow avoid succumbing to overwhelming oxidative damage. The physiological means by which vertebrates such as migrating birds can counteract an increased production of reactive species (RS) are rather limited: they can upregulate their endogenous antioxidant system and/or consume dietary antioxidants (prophylactically or therapeutically). Thus, birds can alter different components of their antioxidant system to respond to the demands of long-duration flights, but much remains to be discovered about the complexities of RS production and antioxidant protection throughout migration. Here, we use bird migration as an example to discuss how RS are produced during endurance exercise and how the complex antioxidant system can protect against cellular damage caused by RS. Understanding how a bird's antioxidant system responds during migration can lend insights into how antioxidants protect birds during other life-history stages when metabolic rate may be high, and how antioxidants protect other vertebrates from oxidative damage during endurance exercise.
Collapse
Affiliation(s)
- Clara Cooper-Mullin
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Scott R McWilliams
- The Department of Natural Resources Science, The University of Rhode Island, 105 Coastal Institute, 1 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
263
|
Genoud M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev Camb Philos Soc 2017; 93:404-438. [PMID: 28752629 DOI: 10.1111/brv.12350] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Basal rate of metabolism (BMR) is a physiological parameter that should be measured under strictly defined experimental conditions. In comparative analyses among mammals BMR is widely used as an index of the intensity of the metabolic machinery or as a proxy for energy expenditure. Many databases with BMR values for mammals are available, but the criteria used to select metabolic data as BMR estimates have often varied and the potential effect of this variability has rarely been questioned. We provide a new, expanded BMR database reflecting compliance with standard criteria (resting, postabsorptive state; thermal neutrality; adult, non-reproductive status for females) and examine potential effects of differential selectivity on the results of comparative analyses. The database includes 1739 different entries for 817 species of mammals, compiled from the original sources. It provides information permitting assessment of the validity of each estimate and presents the value closest to a proper BMR for each entry. Using different selection criteria, several alternative data sets were extracted and used in comparative analyses of (i) the scaling of BMR to body mass and (ii) the relationship between brain mass and BMR. It was expected that results would be especially dependent on selection criteria with small sample sizes and with relatively weak relationships. Phylogenetically informed regression (phylogenetic generalized least squares, PGLS) was applied to the alternative data sets for several different clades (Mammalia, Eutheria, Metatheria, or individual orders). For Mammalia, a 'subsampling procedure' was also applied, in which random subsamples of different sample sizes were taken from each original data set and successively analysed. In each case, two data sets with identical sample size and species, but comprising BMR data with different degrees of reliability, were compared. Selection criteria had minor effects on scaling equations computed for large clades (Mammalia, Eutheria, Metatheria), although less-reliable estimates of BMR were generally about 12-20% larger than more-reliable ones. Larger effects were found with more-limited clades, such as sciuromorph rodents. For the relationship between BMR and brain mass the results of comparative analyses were found to depend strongly on the data set used, especially with more-limited, order-level clades. In fact, with small sample sizes (e.g. <100) results often appeared erratic. Subsampling revealed that sample size has a non-linear effect on the probability of a zero slope for a given relationship. Depending on the species included, results could differ dramatically, especially with small sample sizes. Overall, our findings indicate a need for due diligence when selecting BMR estimates and caution regarding results (even if seemingly significant) with small sample sizes.
Collapse
Affiliation(s)
- Michel Genoud
- Department of Ecology and Evolution, University of Lausanne, CH-1015, Lausanne, Switzerland.,Division of Conservation Biology, Institute of Ecology and Evolution, Department of Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| | - Robert D Martin
- Integrative Research Center, The Field Museum, Chicago, IL, 60605-2496, U.S.A.,Institute of Evolutionary Medicine, University of Zürich-Irchel, CH-8057, Zürich, Switzerland
| |
Collapse
|
264
|
Zhang Y, Kallenberg C, Hyatt HW, Kavazis AN, Hood WR. Change in the Lipid Transport Capacity of the Liver and Blood during Reproduction in Rats. Front Physiol 2017; 8:517. [PMID: 28798692 PMCID: PMC5527701 DOI: 10.3389/fphys.2017.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
To support the high energetic demands of reproduction, female mammals display plasticity in many physiological processes, such as the lipid transport system. Lipids support the energy demands of females during reproduction, and energy and structural demands of the developing offspring via the placenta in utero or milk during the suckling period. We hypothesized that key proteins supporting lipid transport in reproductive females will increase during pregnancy and lactation, but drop to non-reproductive levels shortly after reproduction has ended. We compared the relative protein levels of liver-type cytosolic fatty acid transporter (L-FABPc), plasma membrane fatty acid transporter (FABPpm), fatty acid translocase (FAT/CD36) in the liver, a key site of lipid storage and synthesis, and free fatty acid transporter albumin and triglyceride transporter [represented by apolipoprotein B (apoB)] levels in serum in reproductive Sprague-Dawley rats during late pregnancy, peak-lactation, and 1-week post-lactation as well as in non-reproductive rats. We found that all lipid transporter levels were greater in pregnant rats compared to non-reproductive rats. Lactating rats also showed higher levels of FAT/CD36 and FABPpm than non-reproductive rats. Moreover, all fat transporters also dropped back to non-reproductive levels during post-lactation except for FAT/CD36. These results indicate that fat uptake and transport capacities in liver cells are elevated during late gestation and lactation. Liver lipid secretion is up-regulated during gestation but not during lactation. These data supported the plasticity of lipid transport capacities in liver and blood during reproductive stages.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biological Science, Auburn UniversityAuburn, AL, United States
| | | | - Hayden W Hyatt
- School of Kinesiology, Auburn UniversityAuburn, AL, United States
| | | | - Wendy R Hood
- Department of Biological Science, Auburn UniversityAuburn, AL, United States
| |
Collapse
|
265
|
Woodroffe R, Groom R, McNutt JW. Hot dogs: High ambient temperatures impact reproductive success in a tropical carnivore. J Anim Ecol 2017; 86:1329-1338. [DOI: 10.1111/1365-2656.12719] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | - Rosemary Groom
- Institute of Zoology Zoological Society of London London UK
- Department of Zoology University of Johannesburg Auckland Park South Africa
- African Wildlife Conservation Fund Chishakwe Ranch Zimbabwe
| | | |
Collapse
|
266
|
Banuet-Martínez M, Espinosa-de Aquino W, Elorriaga-Verplancken FR, Flores-Morán A, García OP, Camacho M, Acevedo-Whitehouse K. Climatic anomaly affects the immune competence of California sea lions. PLoS One 2017; 12:e0179359. [PMID: 28658317 PMCID: PMC5489150 DOI: 10.1371/journal.pone.0179359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST) anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator.
Collapse
Affiliation(s)
- Marina Banuet-Martínez
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Wendy Espinosa-de Aquino
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Fernando R. Elorriaga-Verplancken
- Department of Fisheries and Marine Biology, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional (CICIMAR-IPN), La Paz, Mexico
| | - Adriana Flores-Morán
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Olga P. García
- Department of Human Nutrition, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Mariela Camacho
- Department of Human Nutrition, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Karina Acevedo-Whitehouse
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
- The Marine Mammal Center, Sausalito, California, United States of America
- * E-mail:
| |
Collapse
|
267
|
Setash CM, Zohdy S, Gerber BD, Karanewsky CJ. A biogeographical perspective on the variation in mouse lemur density throughout Madagascar. Mamm Rev 2017. [DOI: 10.1111/mam.12093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Casey M. Setash
- Colorado Cooperative Fish and Wildlife Research Unit; Department of Fish, Wildlife and Conservation Biology; Colorado State University; Fort Collins CO 80523-1484 USA
| | - Sarah Zohdy
- Centre ValBio Research Station; BP 33 Ranomafana 312 Ifanadiana Madagascar
- School of Forestry and Wildlife Sciences; Auburn University; Auburn AL 36849 USA
- College of Veterinary Medicine; Auburn University; Auburn AL 36849 USA
| | - Brian D. Gerber
- Colorado Cooperative Fish and Wildlife Research Unit; Department of Fish, Wildlife and Conservation Biology; Colorado State University; Fort Collins CO 80523-1484 USA
| | - Caitlin J. Karanewsky
- Centre ValBio Research Station; BP 33 Ranomafana 312 Ifanadiana Madagascar
- Department of Ecology and Evolution; Stony Brook University; Stony Brook NY 11794 USA
- Department of Biochemistry; Stanford University; Stanford CA 94305-5307 USA
| |
Collapse
|
268
|
Wanlong Z, Di Z, Dongmin H, Guang Y. Roles of hypothalamic neuropeptide gene expression in body mass regulation in Eothenomys miletus (Mammalia: Rodentia: Cricetidae). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1334840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Z. Wanlong
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Z. Di
- School of Life Sciences, Kunming, People’s Republic of China
| | - H. Dongmin
- Key Laboratory of Adaptive Evolution and Ecological Conservation on Plants and Animals in Southwest Mountain Ecosystem of Yunnan Higher Education Institutes, School of Life Sciences, Yunnan Normal University, Kunming, People’s Republic of China
| | - Y. Guang
- College of Life Sciences, Nanjing Normal University, Nanjing, People’s Republic of China
| |
Collapse
|
269
|
Debeffe L, Poissant J, McLoughlin PD. Individual quality and age but not environmental or social conditions modulate costs of reproduction in a capital breeder. Ecol Evol 2017; 7:5580-5591. [PMID: 28811876 PMCID: PMC5552958 DOI: 10.1002/ece3.3082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 11/10/2022] Open
Abstract
Costs associated with reproduction are widely known to play a role in the evolution of reproductive tactics with consequences to population and eco-evolutionary dynamics. Evaluating these costs as they pertain to species in the wild remains an important goal of evolutionary ecology. Individual heterogeneity, including differences in individual quality (i.e., among-individual differences in traits associated with survival and reproduction) or state, and variation in environmental and social conditions can modulate the costs of reproduction; however, few studies have considered effects of these factors simultaneously. Taking advantage of a detailed, long-term dataset for a population of feral horses (Sable Island, Nova Scotia, Canada), we address the question of how intrinsic (quality, age), environmental (winter severity, location), and social conditions (group size, composition, sex ratio, density) influence the costs of reproduction on subsequent reproduction. Individual quality was measured using a multivariate analysis on a combination of four static and dynamic traits expected to depict heterogeneity in individual performance. Female quality and age interacted with reproductive status of the previous year to determine current reproductive effort, while no effect of social or environmental covariates was found. High-quality females showed higher probabilities of giving birth and weaning their foal regardless of their reproductive status the previous year, while those of lower quality showed lower probabilities of producing foals in successive years. Middle-aged (prime) females had the highest probability of giving birth when they had not reproduced the year before, but no such relationship with age was found among females that had reproduced the previous year, indicating that prime-aged females bear higher costs of reproduction. We show that individual quality and age were key factors modulating the costs of reproduction in a capital breeder but that environmental or social conditions were not, highlighting the importance of considering multiple factors when studying costs of reproduction.
Collapse
Affiliation(s)
- Lucie Debeffe
- Department of Biology University of Saskatchewan Saskatoon SK Canada.,Present address: Centre for Ecological and Evolutionary Synthesis Department of Biosciences University of Oslo Oslo Norway
| | - Jocelyn Poissant
- College of Life and Environmental Sciences University of Exeter Penryn UK
| | | |
Collapse
|
270
|
Heldstab SA, van Schaik CP, Isler K. Getting fat or getting help? How female mammals cope with energetic constraints on reproduction. Front Zool 2017; 14:29. [PMID: 28616058 PMCID: PMC5468974 DOI: 10.1186/s12983-017-0214-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fat deposits enable a female mammal to bear the energy costs of offspring production and thus greatly influence her reproductive success. However, increasing locomotor costs and reduced agility counterbalance the fitness benefits of storing body fat. In species where costs of reproduction are distributed over other individuals such as fathers or non-breeding group members, reproductive females might therefore benefit from storing less energy in the form of body fat. RESULTS Using a phylogenetic comparative approach on a sample of 87 mammalian species, and controlling for possible confounding variables, we found that reproductive females of species with allomaternal care exhibit reduced annual variation in body mass (estimated as CV body mass), which is a good proxy for the tendency to store body fat. Differential analyses of care behaviours such as allonursing or provisioning corroborated an energetic interpretation of this finding. The presumably most energy-intensive form of allomaternal care, provisioning of the young, had the strongest effect on CV body mass. In contrast, allonursing, which involves no additional influx of energy but distributes maternal help across different mothers, was not correlated with CV body mass. CONCLUSIONS Our results suggest that reproducing females in species with allomaternal care can afford to reduce reliance on fat reserves because of the helpers' energetic contribution towards offspring rearing.
Collapse
Affiliation(s)
- Sandra A. Heldstab
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Carel P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin Isler
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
271
|
Actis EA, Mosconi S, Jahn GA, Superina M. Reproductive implications of bone mineral density in an armadillo, the pichi (Zaedyus pichiy). J Mammal 2017. [DOI: 10.1093/jmammal/gyx060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
272
|
Five-year population dynamics of plateau pikas (Ochotona curzoniae) on the east of Tibetan Plateau. EUR J WILDLIFE RES 2017. [DOI: 10.1007/s10344-017-1109-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
273
|
Harvanek ZM, Lyu Y, Gendron CM, Johnson JC, Kondo S, Promislow DEL, Pletcher SD. Perceptive costs of reproduction drive ageing and physiology in male Drosophila. Nat Ecol Evol 2017; 1:152. [PMID: 28812624 PMCID: PMC5657004 DOI: 10.1038/s41559-017-0152] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 03/23/2017] [Indexed: 12/31/2022]
Abstract
Costs of reproduction are thought to result from natural selection optimizing organismal fitness within putative physiological constraints. Phenotypic and population genetic studies of reproductive costs are plentiful across taxa, but an understanding of their mechanistic basis would provide important insight into the diversity in life history traits, including reproductive effort and aging. Here we dissect the causes and consequences of specific costs of reproduction in male Drosophila melanogaster. We find that key survival and physiological costs of reproduction arise from perception of the opposite sex, and they are reversed by the act of mating. In the absence of pheromone perception, males are free from reproductive costs on longevity, stress resistance, and fat storage. Both the costs of perception and the benefits of mating are mediated by evolutionarily conserved neuropeptidergic signaling molecules, as well as the transcription factor dFoxo. These results provide a molecular framework in which certain costs of reproduction arise as a result of self-imposed ‘decisions’ in response to perceptive neural circuits, which then orchestrate the control of life-history traits independent of physical or energetic effects associated with mating itself.
Collapse
Affiliation(s)
- Zachary M Harvanek
- Department of Molecular &Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yang Lyu
- Department of Molecular &Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christi M Gendron
- Department of Molecular &Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jacob C Johnson
- Department of Molecular &Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.,Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Scott D Pletcher
- Department of Molecular &Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
274
|
Wood mice modify food intake under different degrees of predation risk: influence of acquired experience and degradation of predator’s faecal volatile compounds. CHEMOECOLOGY 2017. [DOI: 10.1007/s00049-017-0237-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
275
|
Rocha CR, Ribeiro R, Marinho-Filho J. Influence of temporal variation and seasonality on population dynamics of three sympatric rodents. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
276
|
Sullivan JD, Ditchkoff SS, Collier BA, Ruth CR, Raglin JB. Breeding behavior of female white-tailed deer relative to conception: Evidence for female mate choice. Ecol Evol 2017; 7:2395-2402. [PMID: 28405302 PMCID: PMC5383498 DOI: 10.1002/ece3.2845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 02/10/2017] [Indexed: 11/10/2022] Open
Abstract
Female white-tailed deer (Odocoileus virginianus) are thought to choose between two behavioral strategies to maximize the quality of potential mates: sit and wait, characterized by concentrating activity within a restricted area, and excursive behavior, characterized by increased activity and excursions outside the home range. As movement patterns may influence conception, our goal was to examine the patterns of female white-tailed deer movements to evaluate which breeding strategy was employed. We equipped 36 female white-tailed deer with GPS collars from August 2013 to December 2015. We found that movement rate and probability of activity were greatest near the peak of the breeding season, and we observed increases in both metrics during the 40 days prior to estimated conception. Peak size of home range and core area occurred in the days surrounding conception. We found that 11 deer performed an excursion, ranging from 43 days before until 36 days after conception, with the peak probability of being outside of an individual home range occurring 1 day prior to conception. Our results suggest that female white-tailed deer may attempt to maximize the quality of their mates by advertising availability for breeding through excursive behaviors just prior to entering estrus.
Collapse
Affiliation(s)
- Jeffery D Sullivan
- School of Forestry and Wildlife Sciences Auburn University Auburn AL USA
| | | | - Bret A Collier
- School of Renewable Natural Resources Louisiana State University Agricultural Center Baton Rouge LA USA
| | - Charles R Ruth
- South Carolina Department of Natural Resources Columbia SC USA
| | | |
Collapse
|
277
|
Zhao M, Garland T, Chappell MA, Andrew JR, Saltzman W. Metabolic and affective consequences of fatherhood in male California mice. Physiol Behav 2017; 177:57-67. [PMID: 28414073 DOI: 10.1016/j.physbeh.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023]
Abstract
Physiological and affective condition can be modulated by the social environment and parental state in mammals. However, in species in which males assist with rearing offspring, the metabolic and affective effects of pair bonding and fatherhood on males have rarely been explored. In this study we tested the hypothesis that fathers, like mothers, experience energetic costs as well as behavioral and affective changes (e.g., depression, anxiety) associated with parenthood. We tested this hypothesis in the monogamous, biparental California mouse (Peromyscus californicus). Food intake, blood glucose and lipid levels, blood insulin and leptin levels, body composition, pain sensitivity, and depression-like behavior were compared in males from three reproductive groups: virgin males (VM, housed with another male), non-breeding males (NB, housed with a tubally ligated female), and breeding males (BM, housed with a female and their first litter). We found statistically significant (P<0.007, when modified for Adaptive False Discovery Rate) or nominally significant (0.007<P<0.05) differences among reproductive groups in relative testis mass, circulating glucose, triglyceride, and insulin concentrations, pain sensitivity, and anxiety-like behaviors. A priori contrasts indicated that VM produced significantly more fecal pellets than BM in the tail-suspension test, had significantly higher glucose levels than NB, and had significantly lower average testis masses than did NB and BM. A priori contrasts also indicated that VM had a nominally longer latency to the pain response than NB and that VM had nominally higher insulin levels than did NB. For breeding males, litter size (one to three pups) was a nominally significant positive predictor of body mass, food consumption, fat mass, and plasma leptin concentration. These results indicate that cohabitation with a female and/or fatherhood influences several metabolic, morphological, and affective measures in male California mice. Overall, the changes we observed in breeding males were minor, but stronger effects might occur in long-term breeding males and/or under more challenging environmental conditions.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Biology, University of California, Riverside, USA; Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, USA; Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, USA
| | - Mark A Chappell
- Department of Biology, University of California, Riverside, USA; Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, USA
| | - Jacob R Andrew
- Department of Biology, University of California, Riverside, USA; Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, USA
| | - Wendy Saltzman
- Department of Biology, University of California, Riverside, USA; Evolution, Ecology and Organismal Biology Graduate Program, University of California, Riverside, USA.
| |
Collapse
|
278
|
Crommenacker J, Hammers M, Woude J, Louter M, Santema P, Richardson DS, Komdeur J. Oxidative status and fitness components in the Seychelles warbler. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Janske Crommenacker
- Behavioural & Physiological Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen P.O. Box 11103 9700 CC Groningen The Netherlands
| | - Martijn Hammers
- Behavioural & Physiological Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen P.O. Box 11103 9700 CC Groningen The Netherlands
| | - Jildou Woude
- Behavioural & Physiological Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen P.O. Box 11103 9700 CC Groningen The Netherlands
| | - Marina Louter
- School of Biological Sciences Flinders University G.P.O. Box 2100 Adelaide 5001 Australia
| | - Peter Santema
- Department of Behavioural Ecology & Evolutionary Genetics Max Planck Institute for Ornithology Eberhard‐Gwinner‐Strasse 7 82319 Seewiesen Germany
| | - David S. Richardson
- Nature Seychelles PO Box 1310, Victoria Mahé Republic of Seychelles
- Centre for Ecology, Evolution and Conservation School of Biological Sciences University of East Anglia Norwich NR4 7TJ UK
| | - Jan Komdeur
- Behavioural & Physiological Ecology Groningen Institute for Evolutionary Life Sciences University of Groningen P.O. Box 11103 9700 CC Groningen The Netherlands
| |
Collapse
|
279
|
Mowry AV, Donoviel ZS, Kavazis AN, Hood WR. Mitochondrial function and bioenergetic trade-offs during lactation in the house mouse ( Mus musculus). Ecol Evol 2017; 7:2994-3005. [PMID: 28479999 PMCID: PMC5415517 DOI: 10.1002/ece3.2817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 01/16/2023] Open
Abstract
Energy allocation theory predicts that a lactating female should alter the energetic demands of its organ systems in a manner that maximizes nutrient allocation to reproduction while reducing nutrient use for tasks that are not vital to immediate survival. We posit that organ‐specific plasticity in the function of mitochondria plays a key role in mediating these energetic trade‐offs. The goal of this project was to evaluate mitochondrial changes that occur in response to lactation in two of the most energetically demanding organs in the body of a rodent, the liver and skeletal muscle. This work was conducted in wild‐derived house mice (Mus musculus) kept in seminatural enclosures that allow the mice to maintain a natural social structure and move within a home range size typical of wild mice. Tissues were collected from females at peak lactation and from age‐matched nonreproductive females. Mitochondrial respiration, oxidative damage, antioxidant, PGC‐1α, and uncoupling protein levels were compared between lactating and nonreproductive females. Our findings suggest that both liver and skeletal muscle downregulate specific antioxidant proteins during lactation. The liver, but not skeletal muscle, of lactating females displayed higher oxidative damage than nonreproductive females. The liver mass of lactating females increased, but the liver displayed no change in mitochondrial respiratory control ratio. Skeletal muscle mass and mitochondrial respiratory control ratio were not different between groups. However, the respiratory function of skeletal muscle did vary among lactating females as a function of stage of concurrent pregnancy, litter size, and mass of the mammary glands. The observed changes are predicted to increase the efficiency of skeletal muscle mitochondria, reducing the substrate demands of skeletal muscle during lactation. Differences between our results and prior studies highlight the role that an animals’ social and physical environment could play in how it adapts to the energetic demands of reproduction.
Collapse
Affiliation(s)
- Annelise V Mowry
- Department of Biological Sciences Auburn University Auburn AL USA
| | | | | | - Wendy R Hood
- Department of Biological Sciences Auburn University Auburn AL USA
| |
Collapse
|
280
|
Nurul-Ain E, Rosli H, Kingston T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 2017. [DOI: 10.1111/btp.12430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elias Nurul-Ain
- Department of Biological Sciences; Texas Tech University; Lubbock TX 79409 USA
- School of Biological Sciences; Universiti Sains Malaysia; 11800 Penang Malaysia
| | - Hashim Rosli
- Institute of Biological Sciences; Faculty of Science; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Tigga Kingston
- Department of Biological Sciences; Texas Tech University; Lubbock TX 79409 USA
| |
Collapse
|
281
|
Noguera JC. Interacting effects of early dietary conditions and reproductive effort on the oxidative costs of reproduction. PeerJ 2017; 5:e3094. [PMID: 28316895 PMCID: PMC5354074 DOI: 10.7717/peerj.3094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothesis that oxidative damage accumulation can mediate the trade-off between reproduction and lifespan has recently been questioned. However, in captive conditions, studies reporting no evidence in support of this hypothesis have usually provided easy access to food which may have mitigated the cost of reproduction. Here, I test the hypothesis that greater investment in reproduction should lead to oxidative damage accumulation and telomere loss in domestic zebra finches Taeniopygia guttata. Moreover, since the change or fluctuation in diet composition between early and late postnatal period can impair the ability to produce antioxidant defences in zebra finches, I also tested if early nutritional conditions (constant vs fluctuating early diet) influenced the magnitude of any subsequent costs of reproduction (e.g., oxidative damage and/or telomere shortening). In comparison to pairs with reduced broods, the birds that had to feed enlarged broods showed a higher level of oxidative DNA damage (8-OHdG), but brood size had no effect on telomeres. Fluctuating early diet composition reduced the capacity to maintain the activity of endogenous antioxidants (GPx), particularly when reproductive costs were increased (enlarged brood). The decline in GPx in birds feeding enlarged broods was accompanied by a change in bill colouration. This suggests that birds with lower endogenous antioxidant defences might have strategically increased the mobilization of antioxidants previously stored in other tissues (i.e., bill and liver) and thus, preventing an excessive accumulation of damage during reproduction.
Collapse
Affiliation(s)
- Jose Carlos Noguera
- Departamento de Ecología y Biología Animal, Universidad de Vigo , Vigo , Galicia , Spain
| |
Collapse
|
282
|
Fokkema RW, Ubels R, Tinbergen JM. Is parental competitive ability in winter negatively affected by previous springs' family size? Ecol Evol 2017; 7:1410-1420. [PMID: 28261453 PMCID: PMC5330910 DOI: 10.1002/ece3.2752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/26/2022] Open
Abstract
Reproductive behavior cannot be understood without taking the local level of competition into account. Experimental work in great tits (Parus major) showed that (1) a survival cost of reproduction was paid in environments with high levels of competition during the winter period and (2) experimentally manipulated family size negatively affected the ability of parents to compete for preferred breeding boxes in the next spring. The fact that survival was affected in winter suggests that the competitive ability of parents in winter may also be affected by previous reproductive effort. In this study, we aim to investigate whether (1) such carryover effects of family size on the ability of parents to compete for resources in the winter period occurred and (2) this could explain the occurrence of a survival cost of reproduction under increased competition. During two study years, we manipulated the size of in total 168 great tit broods. Next, in winter, we induced competition among the parents by drastically reducing the availability of roosting boxes in their local environment for one week. Contrary to our expectation, we found no negative effect of family size manipulation on the probability of parents to obtain a roosting box. In line with previous work, we did find that a survival cost of reproduction was paid only in plots in which competition for roosting boxes was shortly increased. Our findings thus add to the scarce experimental evidence that survival cost of reproduction are paid under higher levels of local competition but this could not be linked to a reduced competitive ability of parents in winter.
Collapse
Affiliation(s)
- Rienk W Fokkema
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Richard Ubels
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Joost M Tinbergen
- Conservation Ecology Group Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| |
Collapse
|
283
|
Barclay RMR, Jacobs DS, Harding CT, McKechnie AE, McCulloch SD, Markotter W, Paweska J, Brigham RM. Thermoregulation by captive and free-ranging Egyptian rousette bats (Rousettus aegyptiacus) in South Africa. J Mammal 2017. [DOI: 10.1093/jmammal/gyw234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
284
|
Merkling T, Blanchard P, Chastel O, Glauser G, Vallat‐Michel A, Hatch SA, Danchin E, Helfenstein F. Reproductive effort and oxidative stress: effects of offspring sex and number on the physiological state of a long‐lived bird. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Merkling
- Université Toulouse 3 Paul Sabatier CNRS ENFA UMR5174 EDB (Laboratoire Évolution & Diversité Biologique) 118 route de Narbonne F‐31062 Toulouse France
| | - Pierrick Blanchard
- Université Toulouse 3 Paul Sabatier CNRS ENFA UMR5174 EDB (Laboratoire Évolution & Diversité Biologique) 118 route de Narbonne F‐31062 Toulouse France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC) UMR 7372 – CNRS & Université de la Rochelle 79360 Villiers‐en‐Bois France
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry Institute of Chemistry University of Neuchâtel Avenue de Bellevaux 51 CH‐2000 Neuchâtel Switzerland
| | - Armelle Vallat‐Michel
- Neuchâtel Platform of Analytical Chemistry Institute of Chemistry University of Neuchâtel Avenue de Bellevaux 51 CH‐2000 Neuchâtel Switzerland
| | - Scott A. Hatch
- Institute for Seabird Research and Conservation 12850 Mountain Place Anchorage AK99516 USA
| | - Etienne Danchin
- Université Toulouse 3 Paul Sabatier CNRS ENFA UMR5174 EDB (Laboratoire Évolution & Diversité Biologique) 118 route de Narbonne F‐31062 Toulouse France
| | - Fabrice Helfenstein
- Institute of Biology University of Neuchâtel Rue Emile‐Argand 11 CH‐2000 Neuchâtel Switzerland
| |
Collapse
|
285
|
Alonso-Alvarez C, Canelo T, Romero-Haro AÁ. The Oxidative Cost of Reproduction: Theoretical Questions and Alternative Mechanisms. Bioscience 2017. [DOI: 10.1093/biosci/biw176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
286
|
Ciechanowski M, Zapart A, Kokurewicz T, Rusiński M, Lazarus M. Habitat selection of the pond bat (Myotis dasycneme) during pregnancy and lactation in northern Poland. J Mammal 2017. [DOI: 10.1093/jmammal/gyw108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
287
|
Stockley P, Hobson L. Paternal care and litter size coevolution in mammals. Proc Biol Sci 2017; 283:rspb.2016.0140. [PMID: 27097924 PMCID: PMC4855383 DOI: 10.1098/rspb.2016.0140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/24/2016] [Indexed: 02/03/2023] Open
Abstract
Biparental care of offspring occurs in diverse mammalian genera and is particularly common among species with socially monogamous mating systems. Despite numerous well-documented examples, however, the evolutionary causes and consequences of paternal care in mammals are not well understood. Here, we investigate the evolution of paternal care in relation to offspring production. Using comparative analyses to test for evidence of evolutionary associations between male care and life-history traits, we explore if biparental care is likely to have evolved because of the importance of male care to offspring survival, or if evolutionary increases in offspring production are likely to result from the evolution of biparental care. Overall, we find no evidence that paternal care has evolved in response to benefits of supporting females to rear particularly costly large offspring or litters. Rather, our findings suggest that increases in offspring production are more likely to follow the evolution of paternal care, specifically where males contribute depreciable investment such as provisioning young. Through coevolution with litter size, we conclude that paternal care in mammals is likely to play an important role in stabilizing monogamous mating systems and could ultimately promote the evolution of complex social behaviours.
Collapse
Affiliation(s)
- Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Liane Hobson
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
288
|
Trade-offs between reproduction and health in free-ranging African striped mice. J Comp Physiol B 2017; 187:625-637. [DOI: 10.1007/s00360-016-1054-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023]
|
289
|
Pikula J, Bandouchova H, Kovacova V, Linhart P, Piacek V, Zukal J. Reproduction of Rescued Vespertilionid Bats (Nyctalus noctula) in Captivity: Veterinary and Physiologic Aspects. Vet Clin North Am Exot Anim Pract 2017; 20:665-677. [PMID: 28169186 DOI: 10.1016/j.cvex.2016.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-term conservation and educational activities of numerous nongovernmental organizations have greatly increased public awareness about bats and their lifestyle. As a result, there is growing public concern about threats to bat populations. Many species of bats declined over recent decades and there is great demand for medical services to help injured or diseased bats. Veterinary clinicians dealing with such cases have to consider many issues, including ethical issues associated with the delayed fertilization reproduction strategy of temperate insectivorous bats. An outline of veterinary and physiologic requirements for treatment of and keeping vespertilionid bats in captivity is highlighted.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
| | - Hana Bandouchova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Petr Linhart
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Kvetna 8, 603 65 Brno, Czech Republic
| |
Collapse
|
290
|
Tissier ML, Handrich Y, Dallongeville O, Robin JP, Habold C. Diets derived from maize monoculture cause maternal infanticides in the endangered European hamster due to a vitamin B3 deficiency. Proc Biol Sci 2017; 284:20162168. [PMID: 28100816 PMCID: PMC5310035 DOI: 10.1098/rspb.2016.2168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/19/2016] [Indexed: 02/03/2023] Open
Abstract
From 1735 to 1940, maize-based diets led to the death of hundreds of thousands of people from pellagra, a complex disease caused by tryptophan and vitamin B3 deficiencies. The current cereal monoculture trend restricts farmland animals to similarly monotonous diets. However, few studies have distinguished the effects of crop nutritional properties on the reproduction of these species from those of other detrimental factors such as pesticide toxicity or agricultural ploughing. This study shows that maize-based diets cause high rates of maternal infanticides in the European hamster, a farmland species on the verge of extinction in Western Europe. Vitamin B3 supplementation is shown to effectively restore reproductive success in maize-fed females. This study pinpoints how nutritional deficiencies caused by maize monoculture could affect farmland animal reproduction and hence their fitness.
Collapse
Affiliation(s)
- Mathilde L Tissier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Yves Handrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | | | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Caroline Habold
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
291
|
Segner H, Verburg-van Kemenade BML, Chadzinska M. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:43-60. [PMID: 27404794 DOI: 10.1016/j.dci.2016.07.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
The present review discusses the communication between the hypothalamic-pituitary-gonad (HPG) axis and the immune system of vertebrates, attempting to situate the HPG-immune interaction into the context of life history trade-offs between reproductive and immune functions. More specifically, (i) we review molecular and cellular interactions between hormones of the HPG axis, and, as far as known, the involved mechanisms on immune functions, (ii) we evaluate whether the HPG-immune crosstalk serves as proximate mechanism mediating reproductive-immune trade-offs, and (iii) we ask whether the nature of the HPG-immune interaction is conserved throughout vertebrate evolution, despite the changes in immune functions, reproductive modes, and life histories. In all vertebrate classes studied so far, HPG hormones have immunomodulatory functions, and indications exist that they contribute to reproduction-immunity resource trade-offs, although the very limited information available for most non-mammalian vertebrates makes it difficult to judge how comparable or different the interactions are. There is good evidence that the HPG-immune crosstalk is part of the proximate mechanisms underlying the reproductive-immune trade-offs of vertebrates, but it is only one factor in a complex network of factors and processes. The fact that the HPG-immune interaction is flexible and can adapt to the functional and physiological requirements of specific life histories. Moreover, the assumption of a relatively fixed pattern of HPG influence on immune functions, with, for example, androgens always leading to immunosuppression and estrogens always being immunoprotective, is probably oversimplified, but the HPG-immune interaction can vary depending on the physiological and envoironmental context. Finally, the HPG-immune interaction is not only driven by resource trade-offs, but additional factors such as, for instance, the evolution of viviparity shape this neuroendocrine-immune relationship.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Dept of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, P.O. Box, CH-3001, Bern, Switzerland.
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept. of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
292
|
Patriquin KJ, Leonard ML, Broders HG, Ford WM, Britzke ER, Silvis A. Weather as a proximate explanation for fission–fusion dynamics in female northern long-eared bats. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
293
|
Ohrnberger SA, Monclús R, Rödel HG, Valencak TG. Ambient temperature affects postnatal litter size reduction in golden hamsters. Front Zool 2016; 13:51. [PMID: 27904644 PMCID: PMC5121935 DOI: 10.1186/s12983-016-0183-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters (Mesocricetus auratus) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning. RESULTS Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother's lactational performance, were lower at higher ambient temperatures. CONCLUSIONS We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and milk production.
Collapse
Affiliation(s)
- Sarah A. Ohrnberger
- Institute of Physiology, Pathophysiology and Biophysics, Veterinary University Vienna, Vienna, Austria
| | - Raquel Monclús
- Ecologie Systématique Evolution, University Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91400 Orsay, France
| | - Heiko G. Rödel
- Laboratoire d’Ethologie Expérimentale et Comparée E.A. 4443, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France
| | - Teresa G. Valencak
- Institute of Physiology, Pathophysiology and Biophysics, Veterinary University Vienna, Vienna, Austria
| |
Collapse
|
294
|
Heemann FM, da Silva ACA, Salomon TB, Putti JS, Engers VK, Hackenhaar FS, Benfato MS. Redox changes in the brains of reproductive female rats during aging. Exp Gerontol 2016; 87:8-15. [PMID: 27871821 DOI: 10.1016/j.exger.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
Abstract
Reproduction is a critical and demanding phase of an animal's life. In mammals, females usually invest much more in parental care than males, and lactation is the most energetically demanding period of a female's life. Here, we tested whether oxidative stress is a consequence of reproduction in the brains of female Wistar rats. We evaluated the activities of glutathione peroxidase, glutathione S-transferase, and superoxide dismutase; H2O2 consumption; protein carbonylation; NO2 & NO3 levels; and total glutathione, as well as sex hormone levels in brain tissue of animals at 3, 6, 12, and 24months of age. Animals were grouped according to reproductive experience: breeders or non-breeders. Most of the studied parameters showed a difference between non-breeders and breeders at 12 and 24months. At 24months of age, breeders showed higher superoxide dismutase activity, H2O2 consumption, glutathione peroxidase activity, and carbonyl levels than non-breeders. In 12-month-old non-breeders, we observed a higher level of H2O2 consumption and higher superoxide dismutase and glutathione peroxidase activities than breeders. By evaluating the correlation network, we found that there were a larger number of influential nodes and positive links in breeder animals than in non-breeders, indicating a greater number of redox changes in breeder animals. Here, we also demonstrated that the aging process caused higher oxidative damage and higher antioxidant defenses in the brains of breeder female rats at 24months, suggesting that the reproduction process is costly, at least for the female brain. This study shows that there is a strong potential for a link between the cost of reproduction and oxidative stress.
Collapse
Affiliation(s)
- Fernanda Maciel Heemann
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Carolina Almeida da Silva
- Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Boeira Salomon
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jordana Salete Putti
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vanessa Krüger Engers
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Schäfer Hackenhaar
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mara Silveira Benfato
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Estresse Oxidativo, Departamento de Biofísica, IB, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
295
|
Jothery AHA, Vaanholt LM, Mody N, Arnous A, Lykkesfeldt J, Bünger L, Hill WG, Mitchell SE, Allison DB, Speakman JR. Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance. Sci Rep 2016; 6:36353. [PMID: 27841266 PMCID: PMC5107891 DOI: 10.1038/srep36353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Oxidative damage caused by reactive oxygen species has been hypothesised to underpin the trade-off between reproduction and somatic maintenance, i.e., the life-history-oxidative stress theory. Previous tests of this hypothesis have proved equivocal, and it has been suggested that the variation in responses may be related to the tissues measured. Here, we measured oxidative damage (protein carbonyls, 8-OHdG) and antioxidant protection (enzymatic antioxidant activity and serum antioxidant capacity) in multiple tissues of reproductive (R) and non-reproductive (N) mice from two mouse strains selectively bred for high (H) or low (L) food intake, which differ in their reproductive performance, i.e., H mice have increased milk energy output (MEO) and wean larger pups. Levels of oxidative damage were unchanged (liver) or reduced (brain and serum) in R versus N mice, and no differences in multiple measures of oxidative protection were found between H and L mice in liver (except for Glutathione Peroxidase), brain or mammary glands. Also, there were no associations between an individual’s energetic investment (e.g., MEO) and most of the oxidative stress measures detected in various tissues. These data are inconsistent with the oxidative stress theory, but were more supportive of, but not completely consistent, with the ‘oxidative shielding’ hypothesis.
Collapse
Affiliation(s)
- Aqeel H Al Jothery
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Karbala, Karbala, Iraq
| | - Lobke M Vaanholt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, College of Life Sciences and Medicine, Foresterhill Health Campus, Aberdeen, United Kingdom
| | - Anis Arnous
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Faculty of Health &Medical Sciences,University of Copenhagen, Denmark
| | - Lutz Bünger
- Animal and Veterinary Science Group, Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK
| | - William G Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.,Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
296
|
Johnson JS, Treanor JJ, Lacki MJ, Baker MD, Falxa GA, Dodd LE, Waag AG, Lee EH. Migratory and winter activity of bats in Yellowstone National Park. J Mammal 2016. [DOI: 10.1093/jmammal/gyw175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
297
|
Schmidt CM, Hood WR. Female White-Footed Mice (Peromyscus leucopus) Trade Off Offspring Skeletal Quality for Self-Maintenance When Dietary Calcium Intake is Low. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL GENETICS AND PHYSIOLOGY 2016; 325:581-587. [PMID: 27901312 DOI: 10.1002/jez.2051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
During gestation and lactation in mammals, calcium and other minerals are transferred from female to offspring to support skeletal ossification. To meet mineral requirements, females commonly mobilize mineral from their own skeleton to augment dietary intake. Because the fitness costs of bone loss are expected to limit the amount of endogenous mineral that females transfer to their young, the amount of mineral allocated to offspring is predicted to be influenced by the availability of mineral in the female's diet. Calcium is the most abundant element in bone, and exogenous calcium appears to be limiting for many species. Thus, we expected that females would adjust mineral allocation to offspring relative to calcium abundance in the diet. We provided breeding female white-footed mice (Peromyscus leucopus) with a low-calcium (0.1% Ca) or a standard diet (0.85% Ca) for approximately 1 year. Body mass and skeletal size of pups did not differ between diets. Relative to pups from females on the standard diet, pups from females on the low-calcium diet had less calcium and phosphorus in their femurs and humeri, less body calcium content, reduced mass of their femurs and humeri, and had femurs with a reduced width. Reproducing white-footed mice mobilize more bone when calcium intake is low; however, our results suggest that this does not completely compensate for a reduction in calcium intake. Thus, it appears that when calcium availability is low, female white-footed mice reduce the quantity of mineral allocated per offspring as a means of maintaining their own skeletal condition.
Collapse
Affiliation(s)
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
298
|
Medger K, Chimimba C, Bennett N. Is reproduction of male eastern rock sengis (Elephantulus myurus) from southern Africa affected by photoperiod? CAN J ZOOL 2016. [DOI: 10.1139/cjz-2016-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many mammals use the change in day length to time physiological and behavioural activities on a seasonal basis. Particularly, mammals from temperate regions use photoperiod to regulate reproductive functions; however, information on the role of photoperiod in small mammals from the tropics and subtropics is scarce. We studied the response of the reproductive system of male eastern rock sengis (Elephantulus myurus Thomas and Schwann, 1906) from southern Africa to photoperiods of differing length. Elephantulus myurus breeds seasonally during the spring and summer months of the southern hemisphere despite its subtropical distribution. It is one of only three sengi species known to breed seasonally. Fourteen male E. myurus were subjected to either long-day (LD; 16 h light (L) : 8 h dark (D)) or short-day (SD; 8 h L : 16 h D) photoperiods and the photoperiodic effects on the testes, testosterone concentration, and body mass were examined. Testicular volume and mass, seminiferous tubule diameter, and body mass were not significantly different between LD and SD conditions. However, plasma testosterone concentration was significantly lower in males on LD photoperiods compared with SD photoperiods. Male E. myurus may not use photoperiod as a cue to control seasonal reproductive changes. Other environmental factors such as temperature, rainfall, food abundance, or social factors are possibly influencing seasonal reproduction in this species.
Collapse
Affiliation(s)
- K. Medger
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - C.T. Chimimba
- DST–NRF Centre of Excellence for Invasion Biology (CIB), Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| | - N.C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028 South Africa
| |
Collapse
|
299
|
Zhang Y, Hood WR. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms. J Exp Biol 2016; 219:3177-3189. [PMID: 27802148 PMCID: PMC5091378 DOI: 10.1242/jeb.132183] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
300
|
Rubach K, Wu M, Abebe A, Dobson FS, Murie JO, Viblanc VA. Testing the reproductive and somatic trade-off in female Columbian ground squirrels. Ecol Evol 2016; 6:7586-7595. [PMID: 30128113 PMCID: PMC6093145 DOI: 10.1002/ece3.2215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 12/04/2022] Open
Abstract
Energetic trade‐offs in resource allocation form the basis of life‐history theory, which predicts that reproductive allocation in a given season should negatively affect future reproduction or individual survival. We examined how allocation of resources differed between successful and unsuccessful breeding female Columbian ground squirrels to discern any effects of resource allocation on reproductive and somatic efforts. We compared the survival rates, subsequent reprodction, and mass gain of successful breeders (females that successfully weaned young) and unsuccessful breeders (females that failed to give birth or wean young) and investigated “carryover” effects to the next year. Starting capital was an important factor influencing whether successful reproduction was initiated or not, as females with the lowest spring emergence masses did not give birth to a litter in that year. Females that were successful and unsuccessful at breeding in one year, however, were equally likely to be successful breeders in the next year and at very similar litter sizes. Although successful and unsuccessful breeding females showed no difference in over winter survival, females that failed to wean a litter gained additional mass during the season when they failed. The next year, those females had increased energy “capital” in the spring, leading to larger litter sizes. Columbian ground squirrels appear to act as income breeders that also rely on stored capital to increase their propensity for future reproduction. Failed breeders in one year “prepare” for future reproduction by accumulating additional mass, which is “carried over” to the subsequent reproductive season.
Collapse
Affiliation(s)
- Kristin Rubach
- Department of Biological Sciences Auburn University Auburn Alabama 36840
| | - Mingyan Wu
- Department of Mathematics and Statistics Auburn University Auburn Alabama 36840
| | - Asheber Abebe
- Department of Mathematics and Statistics Auburn University Auburn Alabama 36840
| | - F Stephen Dobson
- Department of Biological Sciences Auburn University Auburn Alabama 36840
| | - Jan O Murie
- Department of Biological Sciences University of Alberta Edmonton Alberta T6G 2E9
| | - Vincent A Viblanc
- Département Ecologie, Physiologie et Ethologie (DEPE) Institut Pluridisciplinaire Hubert Curien (IPHC) Université de Strasbourg 23 rue Becquerel 67087 Strasbourg France.,Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178 67087 Strasbourg France
| |
Collapse
|