251
|
Wolosker H. NMDA Receptor Regulation by D-serine: New Findings and Perspectives. Mol Neurobiol 2007; 36:152-64. [DOI: 10.1007/s12035-007-0038-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 02/28/2007] [Indexed: 10/22/2022]
|
252
|
Poeggeler B, Rassoulpour A, Wu HQ, Guidetti P, Roberts RC, Schwarcz R. Dopamine receptor activation reveals a novel, kynurenate-sensitive component of striatal N-methyl-D-aspartate neurotoxicity. Neuroscience 2007; 148:188-97. [PMID: 17629627 PMCID: PMC2034343 DOI: 10.1016/j.neuroscience.2007.05.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/04/2007] [Accepted: 05/07/2007] [Indexed: 11/24/2022]
Abstract
The N-methyl-d-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in two- to threefold increases in excitotoxic lesion size. Pre-treatment with a kynurenine 3-hydroxylase inhibitor or with dopamine receptor antagonists, i.e., two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum.
Collapse
Affiliation(s)
- B Poeggeler
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
253
|
Sas K, Robotka H, Toldi J, Vécsei L. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 2007; 257:221-39. [PMID: 17462670 DOI: 10.1016/j.jns.2007.01.033] [Citation(s) in RCA: 326] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mitochondria have several important functions in the cell. A mitochondrial dysfunction causes an abatement in ATP production, oxidative damage and the induction of apoptosis, all of which are involved in the pathogenesis of numerous disorders. This review focuses on mitochondrial dysfunctions and discusses their consequences and potential roles in the pathomechanism of neurodegenerative disorders. Other pathogenetic factors are also briefly surveyed. The second part of the review deals with the kynurenine metabolic pathway, its alterations and their potential association with cellular energy impairment in certain neurodegenerative diseases. During energy production, most of the O(2) consumed by the mitochondria is reduced fully to water, but 1-2% of the O(2) is reduced incompletely to give the superoxide anion (O(2)(-)). If the function of one or more respiratory chain complexes is impaired for any reason, the enhanced production of free radicals further worsens the mitochondrial function by causing oxidative damage to macromolecules, and by opening the mitochondrial permeability transition pores thereby inducing apoptosis. These high-conductance pores offer a pathway which can open in response to certain stimuli, leading to the induction of the cells' own suicide program. This program plays an essential role in regulating growth and development, in the differentiation of immune cells, and in the elimination of abnormal cells from the organism. Both failure and exaggeration of apoptosis in a human body can lead to disease. The increasing amount of superoxide anions can react with nitric oxide to yield the highly toxic peroxynitrite anion, which can destroy cellular macromolecules. The roles of oxidative, nitrative and nitrosative damage are discussed. Senescence is accompanied by a higher degree of reactive oxygen species production, and by diminished functions of the endoplasmic reticulum and the proteasome system, which are responsible for maintenance of the normal protein homeostasis of the cell. In the event of a dysfunction of the endoplasmic reticulum, unfolded proteins aggregate in it, forming potentially toxic deposits which tend to be resistant to degradation. Cells possess adaptive mechanisms with which to avoid the accumulation of incorrectly folded proteins. These involve molecular chaperones that fold proteins correctly, and the ubiquitin proteasome system which degrades misfolded, unwanted proteins. Both the endoplasmic reticulum and the ubiquitin proteasome system fulfill cellular protein quality control functions. The kynurenine system: Tryptophan is metabolized via several pathways, the main one being the kynurenine pathway. A central compound of the pathway is kynurenine (KYN), which can be metabolized in two separate ways: one branch furnishing kynurenic acid, and the other 3-hydroxykynurenine and quinolinic acid, the precursors of NAD. An important feature of kynurenic acid is the fact that it is one of the few known endogenous excitatory amino acid receptor blockers with a broad spectrum of antagonistic properties in supraphysiological concentrations. One of its recently confirmed sites of action is the alpha7-nicotinic acetylcholine receptor and interestingly, a more recently identified one is a higher affinity positive modulatory binding site at the AMPA receptor. Kynurenic acid has proven to be neuroprotective in several experimental settings. On the other hand, quinolinic acid is a specific agonist at the N-methyl-d-aspartate receptors, and a potent neurotoxin with an additional and marked free radical-producing property. There are a number of neurodegenerative disorders whose pathogenesis has been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism. These changes may disturb normal brain function and can add to the pathomechanisms of the diseases. In certain disorders, there is a quinolinic acid overproduction, while in others the alterations in brain kynurenic acid levels are more pronounced. A more precise knowledge of these alterations yields a basis for getting better therapeutic possibilities. The last part of the review discusses metabolic disturbances and changes in the kynurenine metabolic pathway in Parkinson's, Alzheimer's and Huntington's diseases.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, University of Szeged, POB 427, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
254
|
Nilsson-Todd LK, Nordin C, Jönsson EG, Skogh E, Erhardt S. Cerebrospinal fluid kynurenic acid in male patients with schizophrenia - correlation with monoamine metabolites. Acta Neuropsychiatr 2007; 19:45-52. [PMID: 26952797 DOI: 10.1111/j.1601-5215.2006.00170.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The tryptophan metabolite kynurenic acid (KYNA) is an endogenous glutamate/nicotinic receptor antagonist. Previous studies have shown that the concentration of the compound is increased in cerebrospinal fluid (CSF) of patients with schizophrenia. Furthermore, it has been found that the CSF concentration of KYNA is positively correlated to CSF concentrations of the monoamine metabolites homovanillic acid (HVA) and 5-hydroxy indoleacetic acid (5-HIAA) in healthy control subjects. OBJECTIVES To study the correlations between KYNA and the monoamine metabolites HVA, 5-HIAA and 4-hydroxy-3-methoxyphenylglycol (HMPG) in CSF of male patients (n= 53, ranging from 20 to 48 years of age) with verified schizophrenia. METHODS CSF was obtained by lumbar puncture, and KYNA analysis was performed with an isocratic reversed-phase high-performance liquid chromatography system connected to a fluorescence detector. HVA, 5-HIAA and HMPG concentrations were measured by mass fragmentography with deuterium-labelled internal standards. RESULTS Positive intercorrelations were found between CSF KYNA, HVA and 5-HIAA, while CSF content of HMPG did not correlate to KYNA or any of the monoamine metabolites in CSF. CONCLUSION The results of this study suggest that increased KYNA formation is associated with an increased dopamine and serotonin turnover in male patients with schizophrenia.
Collapse
Affiliation(s)
- Linda K Nilsson-Todd
- 1Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Conny Nordin
- 2Department of Neuroscience and Locomotion, Psychiatry Section, Linköpings Universitet, Linköping, Sweden
| | - Erik G Jönsson
- 3Department of Clinical Neuroscience, Psychiatry Section, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden
| | - Elisabeth Skogh
- 2Department of Neuroscience and Locomotion, Psychiatry Section, Linköpings Universitet, Linköping, Sweden
| | - Sophie Erhardt
- 1Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
255
|
Atlas A, Gisslén M, Nordin C, Lindström L, Schwieler L. Acute psychotic symptoms in HIV-1 infected patients are associated with increased levels of kynurenic acid in cerebrospinal fluid. Brain Behav Immun 2007; 21:86-91. [PMID: 16603336 DOI: 10.1016/j.bbi.2006.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/27/2006] [Accepted: 02/26/2006] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is associated with psychiatric complications including cognitive impairment, affective disorders, and psychosis. Previous studies have revealed a disturbed kynurenine metabolism in these patients leading to increased levels of neuroactive compounds acting at glutamatergic neurotransmission. Kynurenic acid (KYNA), one of these metabolites is a glutamate-receptor antagonist, preferentially blocking the glycine site of the N-methyl-d-aspartate (NMDA) receptor. Increased levels of brain KYNA have been suggested to induce a NMDA receptor hypofunction that is associated with psychotic symptoms. In the present study, we analyze the concentration of KYNA in the cerebrospinal fluid (CSF) from HIV-1 infected patients (n=22), including HIV-1 infected patients with psychotic symptoms (n=8) and HIV-1 infected patients without psychiatric symptoms (n=14). We found that HIV-1 infected patients had significantly higher median concentration of CSF KYNA (3.02nM) compared to healthy controls (1.17nM). Furthermore, CSF KYNA levels were significantly elevated in HIV-1 infected patients with psychotic symptoms (4.54nM) compared to patients with HIV-1 without psychiatric symptoms (2.28nM). Present results indicate that increased levels of CSF KYNA may be associated with development of psychotic symptoms in HIV-1 infected patients.
Collapse
Affiliation(s)
- Ann Atlas
- Infectious Diseases Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
256
|
Wu HQ, Rassoulpour A, Schwarcz R. Kynurenic acid leads, dopamine follows: A new case of volume transmission in the brain? J Neural Transm (Vienna) 2006; 114:33-41. [PMID: 16932989 DOI: 10.1007/s00702-006-0562-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 07/11/2006] [Indexed: 12/01/2022]
Abstract
Intrastriatal infusion of nanomolar concentrations of kynurenic acid (KYNA), an astrocyte-derived neuroinhibitory tryptophan metabolite, reduces basal extracellular dopamine (DA) levels in the rat striatum. This effect is initiated by the inhibition of alpha7 nicotinic acetylcholine receptors (alpha7nAChRs) on glutamatergic afferents. The present study was designed to further investigate this functional link between KYNA and DA using striatal microdialysis in awake animals. In rats, increases in KYNA, caused by intrastriatal infusions of KYNA itself (100 nM) or of KYNA's bioprecursor L-kynurenine (2 microM), were associated with substantial reductions in DA. Co-infusion of KYNA with the alpha7nAChR agonist galantamine (5 microM), but not with the NMDA receptor agonist D-serine (100 nM), prevented this effect. Moreover, KYNA also reduced DA levels in the NMDA-lesioned striatum. Conversely, extracellular DA levels were enhanced when KYNA formation was compromised, either by astrocyte poisoning with fluorocitrate or by perfusion with aminooxyacetic acid (AOAA; 5 mM), a non-specific inhibitor of KYNA synthesis. Notably, this effect of AOAA was prevented by co-perfusion with 100 nM KYNA. In the striatum of 21 day-old mice with a targeted deletion of kynurenine aminotransferase II, extracellular KYNA levels were reduced by 67 +/- 6%, while extracellular DA levels were simultaneously increased by 170 +/- 14%. Taken together, a picture emerges where fluctuations in the astrocytic production of KYNA, possibly through volume transmission, inversely regulate dopaminergic tone. This newly uncovered mechanism may profoundly influence DA function under physiological and pathological conditions.
Collapse
Affiliation(s)
- H-Q Wu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA
| | | | | |
Collapse
|
257
|
Müller N, Schwarz MJ. Neuroimmune-endocrine crosstalk in schizophrenia and mood disorders. Expert Rev Neurother 2006; 6:1017-38. [PMID: 16831116 DOI: 10.1586/14737175.6.7.1017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review focuses on possible causes and the impact of different immune states in schizophrenia and major depression. It discusses the fact that, in schizophrenia, an over-activation of the type 2 immune response may dominate, while the type 1 and the pro-inflammatory immune responses are over-activated in major depression. The consequence of these diverse immune states is the activation and, respectively, inhibition of different enzymes in tryptophan/kynurenine metabolism, which may lead to an overemphasis of N-methyl-D-aspartate (NMDA) receptor antagonism in schizophrenia and of NMDA-receptor agonism in depression, resulting in glutamatergic hypofunction in schizophrenia and glutamatergic hyperfunction in major depression. In addition, the activation of the type 1 and the pro-inflammatory immune responses in major depression result in increased serotonin degradation and a serotonergic deficit. While antipsychotics and antidepressants today mainly act on the dopaminergic-glutamatergic and the noradrenergic-serotonergic neurotransmission, anti-inflammatory and immune-modulating therapies might act more basically at the pathophysiological mechanism. The limitations of this concept, however, are critically discussed.
Collapse
Affiliation(s)
- Norbert Müller
- Ludwig-Maximilians-Universität München, Hospital for Psychiatry and Psychotherapy, 80336 München, Germany.
| | | |
Collapse
|
258
|
Knyihár-Csillik E, Chadaide Z, Mihály A, Krisztin-Péva B, Fenyo R, Vécsei L. Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol 2006; 112:127-37. [PMID: 16788821 DOI: 10.1007/s00401-006-0086-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by a preferential loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC). Neurons in the SNPC are known to express tyrosine hydroxylase (TH); therefore, in a commonly used PD model, 6-hydroxydopamine (6-OHDA), a selective catecholamine neurotoxin, induces neuronal death in SNPC. We have shown with immunohistochemical techniques that kynurenine aminotransferase-I (KAT-I), the enzyme taking part in the formation of kynurenic acid (KYNA)--the only known endogenous selective NMDA receptor antagonist and a potent neuroprotective agent--is also expressed in the rat SNPC. We found that KAT-I and TH co-exist in the very same neurons of SNPC and that 6-OHDA injected into the lateral ventricle produced loss of the majority of nigral neurons. Densitometric analysis proved that, in consequence of 6-OHDA treatment, not only TH but also KAT-I immunoreactivity diminished considerably in the remaining SNPC neurons. Astrocytes in the substantia nigra were found to express KAT-I under normal conditions; the amount of this enzyme increased after administration of 6-OHDA, whereas microglial cells became KAT-I immunoreactive only after 6-OHDA treatment. Since intrinsic KYNA in SNPC neurons is perceptibly insufficient to protect them from the deleterious effect of 6-OHDA, it is hypothesized that biochemical approaches which increase KYNA content of the central nervous system might prevent the deleterious effect of 6-OHDA and, supposedly, also the neuronal degradation characterizing PD.
Collapse
Affiliation(s)
- Elizabeth Knyihár-Csillik
- Department of Neurology, Albert Szent-Györgyi Medical and Pharmaceutical Center, University of Szeged, 6701, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
259
|
Dappen MS, Markos CS, Gresk CJ, Cordi AA. Synthesis of [3H] aminocyclopropane carboxylic acid (ACC) as a ligand for the glycine b receptor. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580280714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
260
|
Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 2006; 281:22021-22028. [PMID: 16754668 DOI: 10.1074/jbc.m603503200] [Citation(s) in RCA: 507] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Local catabolism of the essential amino acid tryptophan is considered an important mechanism in regulating immunological and neurological responses. The kynurenine pathway is the main route for the non-protein metabolism of tryptophan. The intermediates of the kynurenine pathway are present at micromolar concentrations in blood and are regulated by inflammatory stimuli. Here we show that GPR35, a previously orphan G protein-coupled receptor, functions as a receptor for the kynurenine pathway intermediate kynurenic acid. Kynurenic acid elicits calcium mobilization and inositol phosphate production in a GPR35-dependent manner in the presence of G(qi/o) chimeric G proteins. Kynurenic acid stimulates [35S]guanosine 5'-O-(3-thiotriphosphate) binding in GPR35-expressing cells, an effect abolished by pertussis toxin treatment. Kynurenic acid also induces the internalization of GPR35. Expression analysis indicates that GPR35 is predominantly detected in immune cells and the gastrointestinal tract. Furthermore, we show that kynurenic acid inhibits lipopolysaccharide-induced tumor necrosis factor-alpha secretion in peripheral blood mononuclear cells. Our results suggest unexpected signaling functions for kynurenic acid through GPR35 activation.
Collapse
Affiliation(s)
| | | | - Xiaosu Wu
- Amgen Inc., South San Francisco, California 94080
| | | | - Jeff Reagan
- Amgen Inc., South San Francisco, California 94080
| | - Hui Tian
- Amgen Inc., South San Francisco, California 94080
| | - Lei Ling
- Amgen Inc., South San Francisco, California 94080.
| |
Collapse
|
261
|
Schwieler L, Erhardt S, Nilsson L, Linderholm K, Engberg G. Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons--possible involvement of endogenous kynurenic acid. Synapse 2006; 59:290-8. [PMID: 16416446 DOI: 10.1002/syn.20241] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kynurenic acid (KYNA) is an endogenous glutamate-receptor antagonist with a preferential action at the glycine-site of the NMDA-receptor. In the present in vivo study, the importance of brain KYNA to modulate the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) was analyzed by utilizing the decrease in brain KYNA formation induced by the cyclooxygenase (COX)-2 inhibitor parecoxib. A reduction in brain KYNA concentration (39-44%) by parecoxib (25 mg/kg, i.v., 1 h or, i.p., 3.5 h) was associated with a decreased firing rate and burst firing activity. In concordance, an increase in brain KYNA concentration (150-300%), induced by the COX-1 inhibitor indomethacin (50 mg/kg, i.v., 1 h or, i.p., 3.5 h), produced opposite effects, that is, increased firing rate and burst firing activity. The decrease and increase in neuronal firing of VTA DA neurons by the COX-inhibitors was reversed by L-701,324 (antagonist at the NMDA-glycine site; 0.06-2 mg/kg, i.v.) and by D-cycloserine (partial agonist at the NMDA-glycine site; 2-32 mg/kg, i.v.), respectively. In addition, the parecoxib-induced decrease in firing rate and burst firing activity was effectively blocked by pretreatment with kynurenine (5 mg/kg, i.p., 30 min), the immediate precursor of KYNA. Present results suggest that the action of COX-inhibitors on the firing of VTA DA neurons are linked to their effects on KYNA formation and that endogenous KYNA is tonically modulating the neuronal activity of VTA DA neurons. Such a modulatory action of KYNA should be of importance for the functioning of mesocorticolimbic DA pathway.
Collapse
Affiliation(s)
- Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
262
|
Pellicciari R, Rizzo RC, Costantino G, Marinozzi M, Amori L, Guidetti P, Wu HQ, Schwarcz R. Modulators of the Kynurenine Pathway of Tryptophan Metabolism: Synthesis and Preliminary Biological Evaluation of (S)-4-(Ethylsulfonyl)benzoylalanine, a Potent and Selective Kynurenine Aminotransferase II (KAT II) Inhibitor. ChemMedChem 2006; 1:528-31. [PMID: 16892388 DOI: 10.1002/cmdc.200500095] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
263
|
Yu P, Li Z, Zhang L, Tagle DA, Cai T. Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 2006; 365:111-8. [PMID: 16376499 DOI: 10.1016/j.gene.2005.09.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/12/2005] [Accepted: 09/27/2005] [Indexed: 11/24/2022]
Abstract
Kynurenine aminotransferase (KAT) is an enzyme responsible for synthesis of kynurenic acid (KYNA), a well established neuroprotective and anticonvulsant agent, involved in synaptic transmission and implicated in the pathophysiology of schizophrenia, Huntington's disease and other neurological disorders. We have shown previously that kat2-/- mice had lower hippocampal KYNA levels and were more hyperactive than wild-type mice. However, these abnormalities occur early and are transitory coinciding with restoration of KYNA levels, suggesting that compensatory changes or ontogenetic expression of another unknown homolog may account for the normalization of KYNA levels in the adult kat2-/- mice brain. Here, we report the isolation of a novel KAT molecule, kat3, from mouse and human brain cDNA libraries. The encoded 454 amino acids of human KAT III share 64.8% similarity to that of KAT I and 30.1% to KAT II. Northern blot analysis demonstrated that kat3 mRNA is widely expressed but with higher expression levels in liver, kidney, heart, and neuroendocrine tissues. RT-PCR and Northern analysis showed that kat3 expression starts as early as postnatal day (PND) 7 and peaks in adult. The mRNA level of kat3 and kat1 when measured together is significantly higher at PND 60 in kat2-/- mice than those of wild-type mice indicating possible co-regulation of expression levels. RNA-interference (RNAi) directed towards transcripts for either R03A10.4 or F28H6.3 in Caenorhabditis elegans which are kat1 and kat3 orthologs, respectively, did not result in any gross abnormalities. Our results show that upregulation of kat3 and kat1 may be responsible for the phenotypic rescue on kat2-/- mice.
Collapse
Affiliation(s)
- Ping Yu
- Protein-nucleic acid interactions section, Structure Biophysics Laboratory, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
264
|
Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindström LH, Nordin C, Karanti A, Persson P, Erhardt S. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 2005; 80:315-22. [PMID: 16125901 DOI: 10.1016/j.schres.2005.07.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/19/2005] [Accepted: 07/19/2005] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that endogenous brain levels of kynurenic acid (KYNA), a glutamate receptor antagonist, are elevated in patients with schizophrenia. Here we analyse KYNA in the cerebrospinal fluid (CSF) from a large cohort, including male healthy controls (n=49) and male patients with schizophrenia (n=90). We found that male patients with schizophrenia had significantly higher levels of CSF KYNA compared to healthy male controls (1.45 nM+/-0.10 vs. 1.06 nM+/-0.06 in the control group). Furthermore, when the patients with schizophrenia were divided into subgroups we found that CSF KYNA levels were significantly elevated in drug-naïve, first episode patients (1.53 nM+/-0.19, n=37) and in patients undergoing treatment with antipsychotic drugs (1.53 nM+/-0.17, n=34) compared to healthy male controls. No elevated CSF KYNA levels were detected in drug-free patients with schizophrenia, i.e. patients previously undergoing antipsychotic medications but drug-free at time of sampling (1.16 nM+/-0.10, n=19). Present results confirm that CSF KYNA concentration is elevated in patients with schizophrenia and are consistent with the hypothesis that KYNA contributes to the pathophysiology of the disease.
Collapse
Affiliation(s)
- L K Nilsson
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
León D, Albasanz JL, Ruíz MA, Iglesias I, Martín M. Effect of chronic gestational treatment with caffeine or theophylline on Group I metabotropic glutamate receptors in maternal and fetal brain. J Neurochem 2005; 94:440-51. [PMID: 15998294 DOI: 10.1111/j.1471-4159.2005.03211.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pregnant rats were treated throughout the gestational period with either caffeine or theophylline, and its effect on the metabotropic glutamate receptor (mGluRs) signal transduction pathway was studied in both maternal and fetal brain. In maternal brain, radioligand binding assays showed that chronic treatment with methylxanthines caused a significant decrease in the total number of mGluRs. This decrease was accompanied by an increase in receptor affinity. Immunodetection showed that mGluR1a and phospholipase C beta1 (PLCbeta1) were significantly decreased in response to chronic methylxanthine treatment, whereas alphaG(q/11) was not affected. A loss was also detected of PLC stimulation mediated by (S)-3,5-dihydroxyphenylglycine (DHPG), a selective Group I mGluR agonist, suggesting desensitization of the mGluR/PLC pathway. In fetal brain, a loss in total mGluRs was observed in fetuses from mothers treated with caffeine or theophylline, without variation in receptor affinity. A decrease in mGluR1a, alphaG(q/11) and PLCbeta1 levels was also observed in response to treatment. However, changes detected in this immature tissue were not associated with variations in PLC activity. These results suggest that chronic caffeine or theophylline treatment down-regulates several mGluR/PLC transduction pathway components in both maternal and fetal brain, causing a loss of receptor responsiveness only in maternal brain.
Collapse
Affiliation(s)
- D León
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
266
|
Serio CD, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, Mirone P, Masotti G, Moroni F, Tarantini F. Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol 2005; 25:981-93. [PMID: 16392031 PMCID: PMC11529496 DOI: 10.1007/s10571-005-8469-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
1. Kynurenic (KYNA) and quinolinic (QUIN) acids are neuroactive tryptophan metabolites formed along the kynurenine pathway: the first is considered a non-competitive antagonist and the second an agonist of glutamate receptors of NMDA type. The affinity of these compounds for glutamate receptors is, however, relatively low and does not explain KYNA neuroprotective actions in models of post-ischemic brain damage. 2. We evaluated KYNA effects on the release of fibroblast growth factor (FGF)-1, a potent neurotrophic cytokine. Because KYNA exhibits a neuroprotective profile in vitro and in vivo, we anticipated that it could function as an autocrine/paracrine inducer of FGF-1 release. Studies were performed in several models of FGF-1 secretion (FGF-1 transfected NIH 3T3 cells exposed to heat shock, A375 melanoma cells exposed to serum starvation, growth factor deprived human endothelial cells). To our surprise, KYNA, at low concentration, inhibited FGF-1 release in all cellular models. QUIN, a compound having opposite effects on glutamate receptors, also reduced this release, but its potency was significantly lower than that of KYNA. 3. KYNA and QUIN also displayed a major stimulatory effect on the proliferation rate of mouse microglia and human glioblastoma cells, in vitro. 4. Our data suggest that minor changes of local KYNA concentration may modulate FGF-1 release, cell proliferation, and ultimately tissue damage in different pathological conditions.
Collapse
Affiliation(s)
- Claudia Di Serio
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Andrea Cozzi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Ilaria Angeli
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Laura Doria
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Isabella Micucci
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Silvia Pellerito
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Patrizia Mirone
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Giulio Masotti
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| | - Flavio Moroni
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Francesca Tarantini
- Department of Critical Care Medicine and Surgery, Geriatric Medicine Unit, University of Florence, School of Medicine, Centro Polivalente per la Didattica e la Ricerca (Cubo Alto), Viale Pieraccini n. 6, Florence, 50139 Italy
| |
Collapse
|
267
|
Nilsson LK, Linderholm KR, Erhardt S. Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm (Vienna) 2005; 113:557-71. [PMID: 16082514 DOI: 10.1007/s00702-005-0343-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 05/28/2005] [Indexed: 11/30/2022]
Abstract
Acute elevation of the endogenous NMDA-receptor antagonist kynurenic acid (KYNA) is associated with an increased neuronal activity of rat ventral tegmental area (VTA) dopamine (DA) neurons and disruption in prepulse inhibition (PPI). In the present study, the effects of subchronic exposure to kynurenine and probenecid (20 mg/kg/day and 10 mg/kg/day, respectively for 14 days), aiming at increasing brain KYNA turnover, on rat VTA dopaminergic firing and on PPI were investigated. This treatment increased neuronal firing of VTA DA neurons, changed the response of these neurons to systemically administered nicotine (3-400 microg/kg, i.v.) and tended to disrupt PPI. Present results show that the effect on firing of VTA DA neurons by acutely elevated levels of brain KYNA also persists following subchronic exposure. In addition, no adaptive changes seem to occur with regard to the electrophysiological effects of KYNA on VTA DA neurons following subchronic treatment with kynurenine and probenecid.
Collapse
Affiliation(s)
- L K Nilsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
268
|
Rassoulpour A, Wu HQ, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 2005; 93:762-5. [PMID: 15836634 DOI: 10.1111/j.1471-4159.2005.03134.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precise regulation of dopaminergic activity is of obvious importance for the physiology and pathology of basal ganglia. We report here that nanomolar concentrations of the astrocyte-derived neuroinhibitory metabolite kynurenic acid (KYNA) potently reduce the extracellular levels of striatal dopamine in unanesthetized rats in vivo. This effect, which is initiated by the KYNA-induced blockade of alpha7 nicotinic acetylcholine receptors, highlights the functional relevance of glia-neuron interactions in the striatum and indicates that even modest increases in the brain levels of endogenous KYNA are capable of interfering with dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Arash Rassoulpour
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
269
|
Robotka H, Németh H, Somlai C, Vécsei L, Toldi J. Systemically administered glucosamine-kynurenic acid, but not pure kynurenic acid, is effective in decreasing the evoked activity in area CA1 of the rat hippocampus. Eur J Pharmacol 2005; 513:75-80. [PMID: 15878711 DOI: 10.1016/j.ejphar.2005.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/22/2022]
Abstract
The metabolism of tryptophan along the kynurenine pathway yields several neuroactive intermediates, including kynurenic acid, which is one of the few known endogenous N-methyl-d-aspartate receptor inhibitors; in parallel with this, it is an alpha7 nicotinic acetylcholinergic receptor antagonist. On the basis of these properties, kynurenic acid might therefore come into consideration as a therapeutic agent in certain neurobiological disorders. However, the use of kynurenic acid as a neuroprotective agent is practically excluded because kynurenic acid hardly crosses the blood-brain barrier. We recently synthetized a new compound, glucosamine-kynurenic acid, which is presumed to cross the blood-brain barrier more easily. In this study, the effects of systemically administered kynurenic acid and glucosamine-kynurenic acid on CA3 stimulation-evoked population spike activity in region CA1 of the rat hippocampus were compared. The effect of kynurenic acid or glucosamine-kynurenic acid was augmented by probenecid (200 mg/kg), which inhibits kynurenic acid excretion from the cerebrospinal fluid. The results showed that, while kynurenic acid administered i.p. or i.v. in doses of 17, 34, 68 or 136 micromol/kg did not cause any observable change in the animals, 136 micromol/kg glucosamine-kynurenic acid (either i.p. or i.v.) resulted in the sudden death of all the animals. The dose of 68 micromol/kg i.v., but not i.p., resulted in a sudden stoppage of breath, but the animals could be reanimated. As small a dose of glucosamine-kynurenic acid as 17 micromol/kg i.p. resulted in a reduction in population spike amplitudes; this effect was further augmented by probenecid, whereas neither 17 micromol/kg nor higher doses of pure kynurenic acid had a similar effect. The results presented here suggest that glucosamine-kynurenic acid passes the blood-brain barrier much more readily than does kynurenic acid.
Collapse
Affiliation(s)
- Hermina Robotka
- Department of Comparative Physiology, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
270
|
Rassoulpour A, Wu HQ, Albuquerque EX, Schwarcz R. Prolonged nicotine administration results in biphasic, brain-specific changes in kynurenate levels in the rat. Neuropsychopharmacology 2005; 30:697-704. [PMID: 15496939 DOI: 10.1038/sj.npp.1300583] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The content of the endogenous NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenate (KYNA) is increased in the cerebral cortex and cerebrospinal fluid of patients with schizophrenia. In view of the very high incidence of smoking in schizophrenic individuals, a study was designed to examine the effect of acute and prolonged nicotine administration on brain KYNA levels in experimental animals. Adult male rats received subcutaneous nicotine injections twice daily for up to 10 days, and animals were routinely killed 1 h after the last injection. Neither acute treatment nor a 2-day regimen with 1 mg/kg nicotine (= 0.35 mg/kg pure base) caused changes in cerebral KYNA levels. Four- or 6 day-treatment with this dose resulted in 20-40% decreases in cerebral KYNA content. Animals treated with 1 or 10 mg/kg nicotine for 10 days showed dose-dependent, significant increases in KYNA in hippocampus, striatum, and cortex, but not in the serum. Discontinuation of nicotine treatment for 7 days restored brain KYNA to control levels. Separate animals, implanted with osmotic minipumps delivering 2 mg/kg of nicotine/day for 10 days also showed significant elevations in brain KYNA. Hippocampal microdialysis, performed in animals receiving nicotine (1 mg/kg) for 10 days, revealed a significant increase in basal extracellular KYNA levels compared to controls, whereas acute treatment with this dose produced no such change. Measurements of KYNA's bioprecursor kynurenine in brain or blood did not reveal any nicotine-induced changes. These results indicate that nicotine has a brain-specific, biphasic effect on the transamination of kynurenine to KYNA. Such nicotine-induced fluctuations in brain KYNA may cause functional changes in processes that regulate glutamatergic and cholinergic neurotransmission in the normal and diseased brain.
Collapse
Affiliation(s)
- Arash Rassoulpour
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | |
Collapse
|
271
|
Affiliation(s)
- D Attwell
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
272
|
León D, Albasanz JL, Ruíz MA, Martín M. Chronic caffeine or theophylline intake during pregnancy inhibits A1 receptor function in the rat brain. Neuroscience 2005; 131:481-9. [PMID: 15708489 DOI: 10.1016/j.neuroscience.2004.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 11/25/2022]
Abstract
The aim of this work was to study whether caffeine or theophylline chronically consumed during pregnancy affect inhibitory adenylyl cyclase pathway mediated by adenosine, in rat brain of both mothers and full-term fetuses. Immunoblotting analysis revealed a significant decrease in alphaGi(1,2) subunit level (27-29% in mothers, 15-18% in fetuses), associated with a significant increase in the mRNA level coding alphaGi(1) in both maternal and fetal rat brain (12-22%) after methylxanthine intake. No significant differences in alphaGi(3) level were detected in any case. On the other hand, forskolin- and forskolin plus guanosine-5'-O(3-thiotriphosphate) tetralithium salt-stimulated adenylyl cyclase activity was significantly decreased (30-36%) in maternal brain. Moreover, adenylyl cyclase inhibition elicited by N(6)-cyclohexyladenosine, specific adenosine A(1) receptor agonist, was also significantly decreased in caffeine- (40.5%) and theophylline- (55.0%) treated mothers, suggesting a desensitization of adenosine A(1) receptor/adenylyl cyclase pathway in maternal brain. However, no significant differences were detected in fetal brain between control and treated animals. Therefore, caffeine or theophylline chronic intake during pregnancy differently modulates inhibitory adenylyl cyclase pathway mediated by adenosine in maternal and fetal brain causing a loss of the system responsiveness only in maternal brain but down-regulating Gi(1) protein in both mother and fetus brain.
Collapse
Affiliation(s)
- D León
- Area de Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Avenida Camilo José Cela 10, 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
273
|
Dalfó E, Albasanz JL, Martín M, Ferrer I. Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C (PLCbeta1) interactions. Brain Pathol 2004; 14:388-98. [PMID: 15605986 PMCID: PMC8095885 DOI: 10.1111/j.1750-3639.2004.tb00082.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diffuse Lewy body disease (DLBD) is a degenerative disease of the nervous system, involving the brain stem, diencephalic nuclei and cerebral cortex, associated with abnormal a-synuclein aggregation and widespread formation of Lewy bodies and Lewy neurites. DLBD presents as pure forms (DLBDp) or in association with Alzheimer disease (AD) in the common forms (DLBDc). Several neurotransmitter abnormalities have been reported including those of the nigrostriatal and mesocorticolimbic dopaminergic system, and central noradrenergic, serotoninergic and cholinergic pathways. The present work examines metabotropic glutamate receptor (mGluR) expression and signaling in the frontal cortex of DLBDp and DLBDc cases in comparison with age-matched controls. Abnormal L-[3H]glutamate specific binding to group I and II mGluRs, and abnormal mGluR1 levels have been found in DLBD. This is associated with reduced expression levels of phospholipase C beta1 (PLCbeta1), the effector of group I mGluRs following protein G activation upon glutamate binding. Additional modification in the solubility of PLCbeta1 and reduced PLCbeta1 activity in pure and common DLBD further demonstrates for the first time abnormal mGluR signaling in the cerebral cortex in DLBD. In order to look for a possible link between abnormal mGluR signaling and a-synuclein accumulation in DLBD, immunoprecipitation studies have shown alpha-synuclein/PLCbeta1 binding in controls and decreased alpha-synuclein/PLCbeta1 binding in DLBD. This is accompanied by a shift in the distribution of a-synuclein, but not of PLCbeta1, in DLBD when compared with controls. Together, these results support the concept that abnormal a-synuclein in DLBD produces functional effects on cortical glutamatergic synapses, which are associated with reduced alpha-synuclein/PLCbeta1 interactions, and, therefore, that mGluRs are putative pharmacological targets in DLBD. Finally, these results emphasize the emergence of a functional neuropathology that has to be explored for a better understanding of the effects of abnormal protein interactions in degenerative diseases of the nervous system.
Collapse
Affiliation(s)
- E. Dalfó
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
| | - J. L. Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - M. Martín
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla‐La Mancha, Ciudad Real, Spain
| | - I. Ferrer
- Instituto de Neuropatología, Servicio de Anatomía Patológica, IDIBELL‐Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Spain
- Departamento de Biología Celular y Anatomía Patológica, Facultad de Medicina, Universidad de Barcelona, campus de Bellvitge, Hospitalet de Llobregat, Spain
| |
Collapse
|
274
|
Füvesi J, Somlai C, Németh H, Varga H, Kis Z, Farkas T, Károly N, Dobszay M, Penke Z, Penke B, Vécsei L, Toldi J. Comparative study on the effects of kynurenic acid and glucosamine-kynurenic acid. Pharmacol Biochem Behav 2004; 77:95-102. [PMID: 14724046 DOI: 10.1016/j.pbb.2003.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kynurenic acid (KYNA) is the only known endogenous N-methyl-D-aspartate (NMDA) receptor inhibitor and might therefore come into consideration as a therapeutic agent in certain neurobiological disorders. However, its use as a neuroprotective compound is practically excluded because KYNA does not readily cross the blood-brain barrier (BBB). We recently synthetized a new compound, glucosamine-kynurenic acid (KYNA-NH-GLUC), which is presumed to cross the BBB more easily. In this study, the effects of KYNA and KYNA-NH-GLUC on behavior and cortical activity were investigated in adult rats. The results show that (1) on intracerebroventricular application, the behavioral changes induced by KYNA and by KYNA-NH-GLUC are quite similar; (2) on intravenous administration, KYNA (25 mg/kg) has no effect on the somatosensory-evoked cortical potentials, whereas KYNA-NH-GLUC (25 mg/kg) causes transient but appreciable reductions in the amplitudes of the evoked responses within 5 min after application; and (3) the results of in vitro studies demonstrated that both KYNA and KYNA-NH-GLUC reduced the amplitudes of the field excitatory postsynaptic potentials (fEPSPs). These observations suggest that the two compounds have similar effects, but that KYNA-NH-GLUC passes the BBB much more readily than does KYNA. These results imply that the conjugated NH-GLUC is of importance in the passage across the BBB.
Collapse
Affiliation(s)
- Judit Füvesi
- Department of Comparative Physiology, University of Szeged, P.O. Box 533, H-6701, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Pérez-León JA, López-Vera E, Salceda R. Pharmacological properties of glycine transport in the frog retina. Neurochem Res 2004; 29:313-8. [PMID: 14992291 DOI: 10.1023/b:nere.0000010460.34646.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The high-affinity glycine transport in neurons and glial cells is the primary means for inactivating synaptic glycine. Two different glycine transporter genes, Glyt-1 and Glyt-2, have been cloned. Glyt-1 has been reported to occur in the retina, but there is no evidence for expression of the Glyt-2 transporter. We have pharmacologically characterized glycine transport in the frog retina. 3H-Glycine uptake in the retina was insensitive to modulation by phorbol esters or changes in cAMP levels, and was partially inhibited by sarcosine. Differential sensitivity of glycine transport to sarcosine was exhibited by synaptosomal fractions from the inner and outer plexiform layers of the frog retina. The Na+ Hill coefficient of glycine uptake was 2.0, as has been reported for Glyt-2. In addition, amoxapine, a specific inhibitor of the Glyt-2a isoform, reduced by 60% glycine uptake by P2 synaptosomal fraction. Our results indicate the presence of different glycine transporter isoforms in the frog retina, acting mainly through the classical inhibitory glycine system.
Collapse
Affiliation(s)
- Jorge A Pérez-León
- Departamento de Neurociencias, Instituto de Fisiología Celular, UNAM, México, DF
| | | | | |
Collapse
|
276
|
Erhardt S, Schwieler L, Emanuelsson C, Geyer M. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 2004; 56:255-60. [PMID: 15312813 DOI: 10.1016/j.biopsych.2004.06.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 05/17/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies show that endogenous levels of kynurenic acid (KYNA) are increased in the cerebrospinal fluid of schizophrenic patients. Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating that is reduced in neuropsychiatric disorders, such as schizophrenia. Previous studies show that administration of N-methyl-D-aspartate (NMDA) receptor antagonists, such as phencyclidine or MK-801, leads to deficits in sensorimotor gating that mimic those observed in schizophrenic patients. METHODS The present study examined the effects of the endogenous NMDA receptor antagonist KYNA on startle and PPI in rats. Elevation of endogenous brain levels of KYNA was achieved through intraperitoneal (IP) administration of kynurenine (100 mg/kg), the precursor of KYNA, or by intravenous administration of PNU 156561A (10 mg/kg). RESULTS A fourfold increase in brain KYNA levels, as induced by kynurenine or PNU 156561A, significantly reduced PPI. There were no differences in startle magnitudes between control rats and drug-treated rats. The disruption of PPI was restored by administration of the antipsychotic drugs haloperidol (.2 mg/kg, IP) or clozapine (7.5 mg/kg, IP). CONCLUSIONS The present results suggest that brain KYNA serves as an endogenous modulator of PPI and are consistent with the hypothesis that KYNA contributes to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
277
|
Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO, Guidetti P, Schwarcz R, Tagle DA. Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol 2004; 24:6919-30. [PMID: 15282294 PMCID: PMC479723 DOI: 10.1128/mcb.24.16.6919-6930.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/23/2004] [Accepted: 05/26/2004] [Indexed: 11/20/2022] Open
Abstract
Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.
Collapse
Affiliation(s)
- Ping Yu
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Kiss C, Shepard PD, Bari F, Schwarcz R. Cortical spreading depression augments kynurenate levels and reduces malonate toxicity in the rat cortex. Brain Res 2004; 1002:129-35. [PMID: 14988042 DOI: 10.1016/j.brainres.2004.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2004] [Indexed: 11/25/2022]
Abstract
Cortical spreading depression (CSD) is characterized by slowly propagating neuronal and astrocytic depolarization, resulting in transient, heightened resistance to subsequent neuronal injury. This study was designed to examine a possible role of the endogenous neuroprotective agent kynurenate (KYNA) in this phenomenon. Unilateral, consecutive CSDs, induced by topical application of 2 M KCl to the cortical surface of adult male rats, resulted in an ipsilateral increase (201-222% compared to controls) in KYNA levels, which was observed in the frontal, parietal and occipital cortex but not in other brain areas. This effect peaked on day 3 after CSD, and KYNA levels returned to normal on day 7. In separate rats, the lesion caused by an intracortical microinjection of the indirect excitotoxin malonate (500 nmol/0.5 microl) on days 1, 3 or 7 after CSD was reduced by 56-75% in the ipsilateral hemisphere. In normal rats, single or multiple injections of the kynurenine 3-hydroxylase inhibitor 4,5-dichlorobenzoylalanine (PNU 156561; 50 mg/kg, i.p.), which results in selective increases in brain KYNA levels, failed to protect cortical neurons against a focal malonate injection. Taken together, these findings indicate that the observed increase in brain KYNA is not responsible for CSD-induced tolerance to malonate-induced neuronal damage.
Collapse
Affiliation(s)
- Csaba Kiss
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA
| | | | | | | |
Collapse
|
279
|
León D, Albasanz JL, Fernández M, Ruíz MA, Martín M. Down-regulation of rat brain adenosine A1 receptors at the end of pregnancy. J Neurochem 2004; 88:993-1002. [PMID: 14756821 DOI: 10.1046/j.1471-4159.2003.02220.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The status of the adenosine A1 receptor/adenylyl cyclase (A1R/AC) transduction pathway in rat brain was analysed at the end of pregnancy using different approaches. Pregnancy at term caused a significant decrease in the Bmax value obtained by saturation binding assays using [3H]DPCPX as radioligand, suggesting a down-regulation of adenosine A1 receptor. Moreover, A1 receptor immunodetection in pregnant rat membranes and the level of mRNA coding A1 receptor were significantly decreased. This loss of A1 receptor was associated with a significant increase in receptor affinity, since the KD value from the [3H]DPCPX saturation curve and Ki for N6-cyclohexyladenosine (CHA) were decreased in pregnant rats. Surprisingly, CHA-mediated inhibition of adenylyl cyclase was increased, reflecting enhanced receptor responsiveness. On the other hand, immunoblotting of different alphaGi-protein isoforms revealed a significant increase in alphaGi3 level in membranes from pregnant rats. Pre-incubation of membranes with anti-alphaGi3 antibody blocked the guanosine triphosphate (GTP) or CHA inhibitory effect on adenylyl cyclase in both pregnant and non-pregnant rats, pointing to alphaGi3 as the main isoform involved in the A1 receptor response. These results suggest that, at the end of pregnancy, there is a down-regulation of adenosine A1 receptors counterbalanced with a strengthened functionality, probably due to an increase in both alphaGi3 protein and receptor affinity.
Collapse
Affiliation(s)
- David León
- Area de Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
280
|
Knyihár-Csillik E, Csillik B, Pákáski M, Krisztin-Péva B, Dobó E, Okuno E, Vécsei L. Decreased expression of kynurenine aminotransferase-I (KAT-I) in the substantia nigra of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Neuroscience 2004; 126:899-914. [PMID: 15207325 DOI: 10.1016/j.neuroscience.2004.04.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 03/05/2004] [Accepted: 04/07/2004] [Indexed: 11/22/2022]
Abstract
Nerve cells in the substantia nigra pars compacta (SNPC) are known to express tyrosine hydroxylase (TH). By means of light and electron microscopical immunohistochemical techniques, we have shown that the dopaminergic neurons of SNPC express also kynurenine aminotransferase (KAT-I), the enzyme taking part in the formation of kynurenic acid, a neuroprotectant which is one of the endogeneous antagonists of N-methyl-d-aspartate receptors. It was also found that microglial cells and astrocytes express KAT-I. It has been shown that the highly selective dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), widely used as a model of Parkinson's disease (PD), affects not only TH of dopaminergic neurons in the SNPC but also their KAT-I immunoreactivity as well: MPTP treatment decreased the number and optical density of KAT-I immunoreactive SNPC neurons. Decrease of KAT-I after MPTP treatment has been proved also by Western blot analysis. MPTP also reduced KAT-I immunoreactivity of microglial cells, except for those involved in reactive gliosis, which were arranged in groups surrounding affected neurons of the SNPC; also the number of KAT-I immunoreactive (IR) astroglial cells was increased in SNPC. We conclude that MPTP treatment may have a dual effect: in addition to being deleterious for neurons expressing TH and KAT-I, it also affects glial cells which could exacerbate the neurodegenerative process characterizing PD.
Collapse
Affiliation(s)
- E Knyihár-Csillik
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
281
|
Schwieler L, Engberg G, Erhardt S. Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 2004; 52:114-22. [PMID: 15034917 DOI: 10.1002/syn.20008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and negative symptoms is still relatively unknown. A recent study shows that a pharmacologically increased concentration of brain kynurenic acid, an endogenous antagonist at the glycine-site of the NMDA receptor as well as at the alpha7* nicotinic receptor, reverses the excitatory effects of clozapine on ventral tegmental area (VTA) dopamine (DA) neurons into an inhibitory action. In the present in vivo electrophysiological study, we further investigated the mechanisms of action of clozapine on VTA DA neurons. In control rats intravenously administered clozapine (1.25-10 mg/kg) was associated with increased firing rate and burst firing activity of VTA DA neurons. However, administration of the N-methyl-D-aspartate (NMDA)-receptor antagonist MK 801 blocked the excitatory action of clozapine. Moreover, in rats pretreated with the antagonist of the glycine-site of the NMDA receptor, L-701,324, the effects of clozapine on VTA DA neurons were converted to purely inhibitory responses, including a decrease in firing rate and burst firing activity. Pretreatment with the alpha7* nicotinic receptor antagonist MLA did not affect the excitatory action of clozapine on VTA DA neurons. The results of the present study suggest that clozapine interacts with the NMDA receptor complex. In this regard, clozapine could affect the glycine site of the NMDA receptor or tentatively inhibit the glycine transporter. The inhibitory action of clozapine on VTA DA neurons may account for its beneficial effects in ameliorating symptoms of schizophrenia and may suggest further studies to investigate a role of the glycine site of the NMDA receptor as a target for novel antipsychotics.
Collapse
Affiliation(s)
- Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, SE 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
282
|
Klivényi P, Toldi J, Vécsei L. Kynurenines in neurodegenerative disorders: therapeutic consideration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 541:169-83. [PMID: 14977214 DOI: 10.1007/978-1-4419-8969-7_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Péter Klivényi
- Department of Neurology, University of Szeged POB 427, H-6701, Szeged, Hungary
| | | | | |
Collapse
|
283
|
Schwieler L, Erhardt S. Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 2003; 28:1770-7. [PMID: 12865892 DOI: 10.1038/sj.npp.1300255] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mode of action by which the atypical antipsychotic drug clozapine exerts its superior efficacy to ameliorate both positive and negative symptoms is still unknown. In the present in vivo electrophysiological study, we investigate the effects of haloperidol (a typical antipsychotic drug) and clozapine on ventral tegmental area (VTA) dopamine (DA) neurons in a situation of hyperdopaminergic activity in order to mimic tentatively a condition similar to that seen in schizophrenia. Increased DA transmission was induced by elevating endogenous levels of the N-methyl-D-aspartate receptor and alpha7(*) nicotinic receptor antagonist kynurenic acid (KYNA; by means of PNU 156561A, 40 mg /kg, i.v.). In control rats, i.v. administered haloperidol (0.05-0.8 mg/kg) or clozapine (1.25-10 mg/kg) was associated with increased firing rate and burst firing activity of VTA DA neurons. However, in rats displaying hyperdopaminergia (induced by elevated levels of KYNA), the effects of clozapine on VTA DA neurons were converted into pure inhibitory responses, including decrease in burst firing activity. In contrast, haloperidol still produced an excitatory action on VTA DA neurons in rats with elevated levels of endogenous brain KYNA. The results of the present study suggest that clozapine facilitates or inhibits VTA DA neurotransmission, depending on brain concentration of KYNA. Such an effect of clozapine may be related to its unique effect in also ameliorating negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Lilly Schwieler
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
284
|
Edwards SR, Mather LE. Diclofenac increases the accumulation of kynurenate following tryptophan pretreatment in the rat: a possible factor contributing to its antihyperalgesic effect. Inflammopharmacology 2003; 11:277-92. [PMID: 15035810 DOI: 10.1163/156856003322315622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kynurenate, a metabolite of tryptophan formed serially from kynurenine, inhibits N-methyl-D-aspartate (NMDA) receptor responses. Non-steroidal anti-inflammatory drugs (NSAIDs) may produce anti-hyperalgesic effects by altering tryptophan metabolism to increase kynurenate concentrations. We examined whether the NSAID diclofenac (40 mg/kg, s.c.) or saline (control) increased kynurenine and kynurenate accumulation in tissues following pretreatment with tryptophan (200 mg/kg, i.p., 150 min before tissue harvesting). Significantly larger increases in kynurenine and kynurenate concentrations occurred when diclofenac followed tryptophan pretreatment (maximal, 60 min: plasma: by 58% and 49%; kidney: by 205% and 203%) when compared to control. Brain and spinal cord kynurenine concentrations increased maximally (120 min: by 39% and 95%) when diclofenac challenge followed tryptophan pretreatment. In brain, diclofenac increased kynurenate concentrations (20 min: by 274%). Diclofenac facilitated kynurenine and kynurenate accumulation in plasma and kidney, apparently by inhibiting renal elimination. This raises the possibility that (some) NSAIDs could act indirectly, with central and/or peripheral NMDA receptors contributing to their antihyperalgesic effects.
Collapse
Affiliation(s)
- Stephen R Edwards
- Centre for Anaesthesia and Pain Management Research, University of Sydney at Royal North Shore Hospital, St Leonard's, NSW 2065, Australia
| | | |
Collapse
|
285
|
Sas K, Csete K, Vécsei L, Papp JG. Effect of systemic administration of L-kynurenine on corticocerebral blood flow under normal and ischemic conditions of the brain in conscious rabbits. J Cardiovasc Pharmacol 2003; 42:403-9. [PMID: 12960686 DOI: 10.1097/00005344-200309000-00012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Kynurenic acid, the only known endogenous antagonist of the excitatory amino acid receptors, exerts neuroprotective effect in focal cerebral ischemia. Kynurenic acid poorly while its bioprecursor, l-kynurenine (L-KYN) completely crosses the blood-brain barrier. The aim of our study was to investigate the effect of intravenous l-KYN (0.3, 1, and 3 mg/kg) on the normal and the unilateral carotid artery occlusion induced ischemic corticocerebral blood flow (cCBF) measured by hydrogen polarography in conscious rabbits. Administration of l-KYN produced a significant increase in the normal cCBF; the peak values were recorded at the dose of 1 mg/kg (187% at 120 and 150 mins. respectively). The cCBF-improving effect of l-KYN was immediate and highly pronounced also in rabbits with carotid occlusion (peak value was 192% at 120 mins. at the dose of 1 mg/kg). Pretreatment with either atropine or Nomega-nitro-L-arginine-methyl-ester (L-NAME) prevented the l-KYN induced enhancement of the normal and the ischemic cCBF alike. It is suggested that the cCBF-increasing effect of l-KYN might be mediated by activation of cholinergic and nitric oxide pathways.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary.
| | | | | | | |
Collapse
|
286
|
Shepard PD, Joy B, Clerkin L, Schwarcz R. Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 2003; 28:1454-62. [PMID: 12700696 DOI: 10.1038/sj.npp.1300188] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain levels of kynurenic acid (KYNA), an endogenous antagonist of glycine(B)/NMDA and alpha-7 nicotinic acetylcholine receptors, are elevated in individuals with schizophrenia. Both receptors are broadly implicated in the pathophysiology of this disease, particularly in the deficits many patients show in filtering the sensorium. In the present study, we sought to determine whether elevated brain levels of KYNA disrupt auditory gating in anesthetized rats. A mid-latency evoked potential was recorded from the hippocampus in response to a pair of auditory tones. Gating was assessed by determining the ratio of the amplitude of test and conditioning responses (T/C ratio) in rats that had received KYNA's precursor L-kynurenine (KYN; 150 mg/kg, i.p.) together with probenecid (PBCD; 200 mg/kg, i.p.) 2 h prior to the start of the recording session. KYNA levels in the hippocampus of KYN+PBCD-treated rats were increased 500-fold, and accompanied by a significant increase in T/C ratio consistent with a disruption in sensory gating. PBCD alone increased hippocampal KYNA 12-fold, but did not significantly elevate T/C ratio. L-701,324 (3-30 mg/kg, i.v.), a centrally acting glycine(B) site antagonist, also failed to disrupt gating; however, large quantities of the competitive NMDA receptor antagonist DL-2-amino-5-phosphopentanoate (200 nmol, i.c.v.) markedly increased T/C ratio. Thus, while total blockade of NMDA receptors disrupts auditory gating, partial blockade achieved by antagonism of its glycine coagonist binding site does not. These observations indicate that the disruption in auditory processing in rats with greatly elevated KYNA levels is not attributable to the compound's antagonist actions at the glycine(B) receptor.
Collapse
Affiliation(s)
- Paul D Shepard
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, Baltimore, MD 21228, USA.
| | | | | | | |
Collapse
|
287
|
Rejdak R, Zielinska E, Shenk Y, Turski WA, Okuno E, Zarnowski T, Zagorski Z, Zrenner E, Kohler K. Ontogenic changes of kynurenine aminotransferase I activity and its expression in the chicken retina. Vision Res 2003; 43:1513-7. [PMID: 12782065 DOI: 10.1016/s0042-6989(03)00233-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kynurenine aminotransferases are key enzymes for the synthesis of kynurenic acid (KYNA), an endogenous glutamate receptor antagonist. The study described here examined ontogenic changes of kynurenine aminotransferase I (KAT I) activity and its expression in the chicken retina. KAT I activity measured on embryonic day 16 (E16) was significantly higher than at all other stages (E12, P0 and P7). Double labeling with antibodies against glutamine synthetase showed that on P7 KAT I was expressed in Müller cell endfeet and their processes in the inner retina. Since KAT I activity is high in the late embryonic stages, it is conceivable that it plays a neuromodulatory role in the retina during the late phase of embryogenesis.
Collapse
Affiliation(s)
- Robert Rejdak
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, University Eye Hospital, Röntgenweg 11, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Pellicciari R, Amori L, Costantino G, Giordani A, Macchiarulo A, Mattoli L, Pevarello P, Speciale C, Varasi M. Modulation of the Kynurine Pathway of Tryptophan Metabolism in Search for Neuroprotective Agents. Focus on Kynurenine-3-Hydroxylase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 527:621-8. [PMID: 15206781 DOI: 10.1007/978-1-4615-0135-0_71] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel potent and selective kynurenine-3-hydroxylase inhibitor is descibed along a preliminary evaluation in a in vivo gerbil model of its ability to increase the kynurenine and kynurenic acid concentration in both plasma and brain. These data support the notion that kynurenine-3-hydroxylase inhibitors may have a sustained therapeutic potential in those diseases characterized by unbalance in the QUIN/KYNA branches of the kynurenine pathway.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
289
|
Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 2002; 303:1-10. [PMID: 12235226 DOI: 10.1124/jpet.102.034439] [Citation(s) in RCA: 429] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Degradation of the essential amino acid tryptophan along the kynurenine pathway (KP) yields several neuroactive intermediates, including the free radical generator 3-hydroxykynurenine, the excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid, and the NMDA and alpha7 nicotinic acetylcholine receptor antagonist kynurenic acid. The ambient levels of these compounds are determined by several KP enzymes, which in the brain are preferentially localized in astrocytes and microglial cells. Normal fluctuations in the brain levels of neuroactive KP intermediates might modulate several neurotransmitter systems. Impairment of KP metabolism is functionally significant and occurs in a variety of diseases that affect the brain. Pharmacological agents targeting specific KP enzymes are now available to manipulate the concentration of neuroactive KP intermediates in the brain. These compounds can be used to normalize KP defects, show remarkable efficacy in animal models of central nervous system disorders, and offer novel therapeutic opportunities.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA.
| | | |
Collapse
|
290
|
León D, Albasanz JL, Ruíz MA, Fernández M, Martín M. Adenosine A1 receptor down-regulation in mothers and fetal brain after caffeine and theophylline treatments to pregnant rats. J Neurochem 2002; 82:625-34. [PMID: 12153486 DOI: 10.1046/j.1471-4159.2002.01008.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pregnant rats were treated daily with 1 g/L of caffeine or theophylline in their drinking water during pregnancy and the effect of these methylxanthines on adenosine A1 receptor was assayed using binding and reverse transcription polymerase chain reaction (RT-PCR) assays in brains from both mothers and full-term fetuses. In plasma membranes from pregnant rat brain, caffeine and theophylline caused a significant decrease in total receptor numbers, of the same order in both cases (30%), with no significant changes on receptor affinity. The effect of these adenosine receptor antagonists on plasma membranes from fetal brains was more marked, being detected at approximately 50% of the total receptors detected in control conditions. However, in this tissue, a significant increase in the receptor affinity, of the same order in both cases, was also detected after antagonist administration. No significant variation on the potency of caffeine and theophylline as antagonists was detected after treatments in mothers; however, higher affinities were detected in fetuses. A decrease in the total receptor numbers in fetal brain was associated with an increase in the mRNA coding A1 receptor, as determined by RT-PCR assays, not having detected any mRNA difference in maternal brain. No variation in the levels of mRNA coding A2A receptor was detected in any case. These results suggest that maternal caffeine or theophylline intake modulates adenosine A1 receptor, causing a down-regulation of adenosine A1 receptor in brain in both mothers and fetuses.
Collapse
Affiliation(s)
- David León
- Area de Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha,Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
291
|
Wu HQ, Baran H, Ungerstedt U, Schwarcz R. Kynurenic Acid in the Quinolinate-lesioned Rat Hippocampus: Studies In Vitro and In Vivo. Eur J Neurosci 2002; 4:1264-1270. [PMID: 12106390 DOI: 10.1111/j.1460-9568.1992.tb00152.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was designed to examine the cellular localization and biosynthetic machinery of the broad-spectrum excitatory amino acid receptor antagonist kynurenic acid in the lesioned rat hippocampus. Seven days after an intrahippocampal injection of 120 nmol quinolinic acid, which causes massive neurodegeneration in the dorsal hippocampus, kynurenic acid tissue levels and the activity of kynurenic acid's anabolic enzyme, kynurenine aminotransferase, were increased by 92% and 67%, respectively, as compared to controls. The steady-state levels of extracellular kynurenic acid, examined by microdialysis in unanaesthetized rats, were also increased in the lesioned tissue (from 93.6 +/- 10.2 to 207.6 +/- 18.6 fmol/30 microl dialysate). Using microdialysis, three compounds which are known to decrease kynurenic acid production from its bioprecursor l-kynurenine in brain slices and in vivo were tested for their ability to reduce the levels of endogenous kynurenic acid. In unlesioned tissue, aminooxyacetic acid (300 microM), veratridine (50 microM) and glutamate (5 mM), all administered through the dialysis probe, decreased extracellular kynurenic acid concentrations by 30 - 40%, i.e. to a lesser degree than in previous experiments in which kynurenine was used as a bioprecursor. Only the effect of veratridine was abolished in the quinolinate-lesioned hippocampus. These data indicate that kynurenic acid is produced in and liberated from astrocytes, and that aminooxyacetic acid and glutamate (but not veratridine) exert their action by directly affecting glial kynurenic acid biosynthesis. The results also suggest the existence of two distinct intracellular kynurenic acid pools, which are responsible for kynurenic acid storage and rapid kynurenic acid mobilization, respectively. Taken together, these features of kynurenic acid neurobiology may be of relevance in the control of excitatory amino acid receptor function under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hui-Qiu Wu
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, USA
| | | | | | | |
Collapse
|
292
|
Hartley DM, Monyer H, Colamarino SA, Choi DW. 7-Chlorokynurenate Blocks NMDA Receptor-Mediated Neurotoxicity in Murine Cortical Culture. Eur J Neurosci 2002; 2:291-295. [PMID: 12106035 DOI: 10.1111/j.1460-9568.1990.tb00420.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examined the neuroprotective actions of the glycine site N-methyl-D-aspartate (NMDA) antagonist, 7-chlorokynurenate, in murine neocortical cell cultures. Cultures exposed for 5 min to 100 - 500 microM NMDA in the absence of added glycine developed substantial neuronal degeneration over the next 24 h. The addition of 10 microM glycine did not increase submaximal NMDA-induced neuronal injury, suggesting that endogenous glycine levels were sufficient to saturate its receptor sites on NMDA receptor complexes. Addition of 3 - 300 microM 7-chlorokynurenate produced concentration-dependent reduction in this neuronal damage with an IC50 of approximately 30 microM. Some injury reduction was seen even if the drug was added after completion of the NMDA exposure. The protective effect of 100 microM 7-chlorokynurenate could be overcome by adding 10 - 1000 microM glycine (glycine median effective concentration (EC50) approximately 100 microM) or 1 mM D-serine. As predicted by its ability to block NMDA receptor-mediated injury, 10 - 300 microM 7-chlorokynurenate also produced concentration-dependent reduction in the neuronal loss induced by 50 - 60 min exposure to combined glucose and oxygen deprivation. These data support the suggestion that pharmacologic interference with the binding of glycine to the NMDA receptor complex represents a potentially effective approach to blocking NMDA receptor-induced neurotoxicity in ischemia.
Collapse
Affiliation(s)
- D. M. Hartley
- Department of Neurology and Neurological Sciences H-3160, Stanford University Medical Center, Stanford, CA 94305-5235, USA
| | | | | | | |
Collapse
|
293
|
Lipton SA. 7-Chlorokynurenate Ameliorates Neuronal Injury Mediated by HIV Envelope Protein gp120 in Rodent Retinal Cultures. Eur J Neurosci 2002; 4:1411-1415. [PMID: 12106405 DOI: 10.1111/j.1460-9568.1992.tb00167.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prior studies with in vitro model systems have suggested that at least part of the neurological manifestations of AIDS may stem from neuronal injury involving the HIV-1 coat protein gp120. This form of neuronal damage is most probably mediated indirectly by a complex set of cellular interactions among macrophages, astrocytes, and neurons, resulting in a final common pathway of overstimulation of N-methyl-d-aspartate (NMDA) receptors. We studied the neuroprotective effect from gp120-induced neuronal injury of an antagonist of the glycine site of the NMDA receptor, 7-chlorokynurenate. In identified rat retinal ganglion cells in culture, we found that 50 microM 7-chlorokynurenate significantly abrogated the injury engendered by 20 pM gp120. Addition of 300 microM exogenous glycine prevented this protective effect of 50 microM 7-chlorokynurenate. These data suggest that glycine site antagonists of the NMDA receptor may have therapeutic potential for ameliorating neuronal damage associated with gp120.
Collapse
Affiliation(s)
- Stuart A. Lipton
- Laboratory of Cellular & Molecular Neuroscience, Children's Hospital, and the Departments of Neurology, Children's Hospital, Beth Israel Hospital, Brigham & Women's Hospital, and Massachusetts General Hospital; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
294
|
Luis Albasanz J, Fernandez M, Martín M. Internalization of metabotropic glutamate receptor in C6 cells through clathrin-coated vesicles. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:54-66. [PMID: 11869809 DOI: 10.1016/s0169-328x(02)00103-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C6 glioma cells were treated for hours with 100 microM L-glutamate, quisqualate or trans-ACPD. In all cases, phospholipase C-coupled metabotropic glutamate receptors (mGluRs) present in these cells are down-regulated after this agonist treatment. Cell surface metabotropic glutamate receptor density was minimum at 6 h of agonist treatment and reached near control values after 30 h of treatment. This recovery was associated with a progressive increase in mGluR1 and mGluR1a mRNA level between 6 and 24 h and was not due to agonist removal. Specific L-[3H]glutamate or [3H](+/-)trans-ACPD binding decrease detected in C6 cells after 6 h of 100 microM L-glutamate treatment was associated with a remarkable increase of specific L-[3H]glutamate binding detected in clathrin-coated vesicles isolated from these treated cells. Moreover, this decrease was blocked in the presence of 0.5 M sucrose or 1 microM phenylarsine oxide, suggesting that desensitization and down-regulation of mGluR can be due to an endocytosis process through clathrin-coated pits and vesicles.
Collapse
Affiliation(s)
- José Luis Albasanz
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Universidad de Castilla-La Mancha, Avda Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | | | | |
Collapse
|
295
|
Rejdak R, Zarnowski T, Turski WA, Okuno E, Kocki T, Zagórski Z, Kohler K, Guenther E, Zrenner E. Presence of kynurenic acid and kynurenine aminotransferases in the inner retina. Neuroreport 2001; 12:3675-8. [PMID: 11726772 DOI: 10.1097/00001756-200112040-00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Kynurenine aminotransferases (KATs I and II) are pivotal to the synthesis of kynurenic acid (KYNA), the only known endogenous glutamate receptor antagonist and neuroprotectant. This study is the first to identify KYNA in the rat retina and to examine immunohistochemically the distribution of KAT isoforms. As determined by HPLC, KYNA concentration in the retina was 99.9 +/- 24.6 pmol/g wet wt. Immunohisto- chemical experiments showed that both KATs were present in the retina. KAT I was preferentially localised on Müller cell endfeet while KAT II was expressed in cells within the ganglion cell layer. In conclusion, KYNA is present and synthesised in the inner retina. This may suggest a modulatory role in glutamate-mediated retinal neurotransmission.
Collapse
Affiliation(s)
- R Rejdak
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, University Eye Hospital, Division of Experimental Ophthalmology, Röntgenweg 11, D-72076, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
296
|
Cannazza G, Chiarugi A, Parenti C, Zanoli P, Baraldi M. Changes in kynurenic, anthranilic, and quinolinic acid concentrations in rat brain tissue during development. Neurochem Res 2001; 26:511-4. [PMID: 11513477 DOI: 10.1023/a:1010960812204] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kynurenic, anthranilic, and quinolinic acid, brain tissue concentrations and indoleamine 2,3-dioxygenase [EC 1 13.11.17] activity were determined in rat brain, during pre- and postnatal development. Quinolinic acid brain tissue concentration was significantly increased at birth as compared with the prenatal level, then it declined rapidly in the postnatal period. By the contrary, kynurenic and anthranilic acids brain tissue concentrations in rat brain were significantly lower at birth as compared with those found prenatally; then kynurenic acid concentration decreased in the first postnatal week and increased thereafter, while anthranilic acid concentration increased in the first postnatal week and decreased thereafter. Indoleamine 2,3-dioxygenase [EC 1 13.11.17] activity were found unchanged in pre and post natal rat brain. The described opposite changes in quinolinic and kynurenic acids concentrations, occurring in pre- and postnatal period, despite the lack of knowledge on the precise role played by these compounds on the different neurotransmitter systems in the brain, could be involved in brain ontogenetic development.
Collapse
Affiliation(s)
- G Cannazza
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|
297
|
Mugnaini M, Meoni P, Bunnemann B, Corsi M, Bowery NG. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain. Br J Pharmacol 2001; 132:1883-97. [PMID: 11309261 PMCID: PMC1572734 DOI: 10.1038/sj.bjp.0704017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 02/01/2001] [Accepted: 02/01/2001] [Indexed: 11/08/2022] Open
Abstract
Binding of D,L-(E)-2-amino-4-[(3)H]-propyl-5-phosphono-3-pentenoic acid ([(3)H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques. In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [(3)H]-CGP39653 binding, but competitively reversed the high affinity component of [(3)H]-CGP39653 binding inhibition by glycine, with a pK(B) value of 8.38, in line with its affinity for the glycine site (pK(i)=8.49 vs. [(3)H]-glycine). Glycine (10 microM) significantly decreased [(3)H]-CGP39653 affinity for the NMDA receptor (with no change in the B(max)), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test). In rat brain sections the addition of GV150526A (30 microM) to the incubation medium increased [(3)H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [(3)H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation. Whole brain autoradiography revealed an uneven distribution of [(3)H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [(3)H]-CGP39653 binding was increased to 216% of control (mean between areas) by 30 microM GV150526A. The enhancement, however, did not present significant regional differences. These results introduce GV150526A as a useful tool to identify NMDA receptor subtypes by means of receptor autoradiography; moreover, they demonstrate that the allosteric inhibition of [(3)H]-CGP39653 binding by glycine parallels an increase in receptor affinity to the endogenous ligand L-glutamate. Finally, this study provides the first detailed anatomical description of the regional distribution of [(3)H]-CGP39653 binding sites in human brain.
Collapse
Affiliation(s)
- M Mugnaini
- GlaxoSmithKline Group, GlaxoWellcome S. p. A., Medicines Research Centre, Via Fleming 4, 37100 Verona, Italy.
| | | | | | | | | |
Collapse
|
298
|
Urenjak J, Obrenovitch TP. Kynurenine 3-hydroxylase inhibition in rats: effects on extracellular kynurenic acid concentration and N-methyl-D-aspartate-induced depolarisation in the striatum. J Neurochem 2000; 75:2427-33. [PMID: 11080194 DOI: 10.1046/j.1471-4159.2000.0752427.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of kynurenine 3-hydroxylase suppresses quinolinic acid synthesis and, therefore, shunts all kynurenine metabolism toward kynurenic acid (KYNA) formation. This may be a pertinent antiexcitotoxic strategy because quinolinic acid is an agonist of NMDA receptors, whereas kynurenic acid antagonises all ionotropic glutamate receptors with preferential affinity for the NMDA receptor glycine site. We have examined whether the kynurenine 3-hydroxylase inhibitor Ro 61-8048 increases extracellular (KYNA) sufficiently to control excessive NMDA receptor function. Microdialysis probes incorporating an electrode were implanted into the striatum of anaesthetised rats, repeated NMDA stimuli were applied through the probe, and the resulting depolarisation was recorded. Changes in extracellular KYNA were assessed by HPLC analysis of consecutive dialysate samples. Ro 61-8048 (42 or 100 mg/kg) markedly increased the dialysate levels of KYNA. The maximum increase (from 3.0 +/- 1.0 to 31.0 +/- 6.0 nM; means +/- SEM, n = 6) was observed 4 h after administration of 100 mg/kg Ro 61-8048, but the magnitude of the NMDA-induced depolarisations was not reduced. A separate study suggested that extracellular KYNA would need to be increased further by two orders of magnitude to become effective in this preparation. These results challenge the notion that kynurenine 3-hydroxylase inhibition may be neuroprotective, primarily through accumulation of KYNA and subsequent attenuation of NMDA receptor function.
Collapse
Affiliation(s)
- J Urenjak
- Pharmacology, School of Pharmacy, University of Bradford, Bradford, England
| | | |
Collapse
|
299
|
Panigrahy A, Rosenberg PA, Assmann S, Foley EC, Kinney HC. Differential expression of glutamate receptor subtypes in human brainstem sites involved in perinatal hypoxia-ischemia. J Comp Neurol 2000; 427:196-208. [PMID: 11054688 DOI: 10.1002/1096-9861(20001113)427:2<196::aid-cne3>3.0.co;2-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study delineates the development of N-methyl-D-aspartate (NMDA) and non-NMDA receptor binding in the human brainstem, particularly as it relates to issues of the trophic effects of glutamate, the glutamate-mediated ventilatory response to hypoxia, and regional excitotoxic vulnerability to perinatal hypoxia-ischemia. We used tissue autoradiography to map the development of binding to NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionate (AMPA), and kainate receptors in brainstem sites involved in the glutamate ventilatory response to hypoxia, as well as recognized sites vulnerable to perinatal hypoxia-ischemia. NMDA receptor/channel binding was virtually undetectable in all regions of the human fetal brainstem at midgestation, an unexpected finding given the trophic role for NMDA receptors in early central nervous system maturation in experimental animals. In contrast, non-NMDA (AMPA and kainate) receptor binding was markedly elevated in multiple nuclei at midgestation. Although NMDA binding increased between midgestation and early infancy to moderately high adult levels, AMPA binding dramatically fell over the same time period to low adult levels. High levels of kainate binding did not change significantly between midgestation and infancy, except for an elevation in the infant compared with fetal inferior olive; after infancy, kainate binding decreased to negligible adult levels. Our data further suggest a differential development of components of the NMDA receptor/channel complex. This baseline information is critical in considering glutaminergic mechanisms in human brainstem development, physiology, and pathology.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/analogs & derivatives
- 2-Amino-5-phosphonovalerate/pharmacology
- Adult
- Aged
- Brain Stem/growth & development
- Brain Stem/metabolism
- Brain Stem/physiopathology
- Child, Preschool
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Glycine/pharmacology
- Humans
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/physiopathology
- Infant
- Infant, Newborn
- Middle Aged
- Neuroprotective Agents/pharmacology
- Phencyclidine/analogs & derivatives
- Phencyclidine/pharmacology
- Pregnancy
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Glutamate/classification
- Receptors, Glutamate/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Phencyclidine/drug effects
- Receptors, Phencyclidine/metabolism
- Sudden Infant Death/etiology
- Sudden Infant Death/pathology
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- A Panigrahy
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
300
|
Battaglia G, Rassoulpour A, Wu HQ, Hodgkins PS, Kiss C, Nicoletti F, Schwarcz R. Some metabotropic glutamate receptor ligands reduce kynurenate synthesis in rats by intracellular inhibition of kynurenine aminotransferase II. J Neurochem 2000; 75:2051-60. [PMID: 11032894 DOI: 10.1046/j.1471-4159.2000.0752051.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some metabotropic glutamate receptor (mGluR) ligands, such as quisqualate, L-(+)-2-amino-4-phosphonobutyric acid (L-AP4), 4-carboxy-3-hydroxyphenylglycine (4C3HPG), and L-serine-O:-phosphate (L-SOP), reduced the formation of the endogenous excitatory amino acid receptor antagonist kynurenate in brain and liver slices. The use of novel, subtype-selective mGluR agonists and antagonists excluded a role for any known mGluR subtype in this effect. The reduction of kynurenate formation was no longer observed when slices were incubated with the active mGluR ligands in the absence of extracellular Na(+). trans-Pyrrolidine-2,4-dicarboxylate (trans-PDC), a broad-spectrum ligand of Na(+)-dependent glutamate transporters, was also able to reduce kynurenate formation. Quisqualate, 4C3HPG, L-AP4, and L-SOP did not further reduce kynurenate formation in the presence of trans-PDC, suggesting that the two classes of drugs may share the same mechanism of action. Hence, we hypothesized that the active mGluR ligands are transported inside the cell and act intracellularly to reduce kynurenate synthesis. We examined this possibility by assessing the direct effect of mGluR ligands on the activity of kynurenine aminotransferases (KATs) I and II, the enzymes that transaminate kynurenine to kynurenate. In brain tissue homogenates, KAT II (but not KAT I) activity was inhibited by quisqualate, 4C3HPG, L-AP4, L-SOP, and trans-PDC. Drugs that were unable to reduce kynurenate formation in tissue slices were inactive. We conclude that some mGluR ligands act intracellularly, inhibiting KAT II activity and therefore reducing kynurenate formation. This effect should be taken into consideration when novel mGluR ligands are developed for the treatment of neurological and psychiatric diseases.
Collapse
|