251
|
Pereiro I, Hoskins BE, Marshall JD, Collin GB, Naggert JK, Piñeiro-Gallego T, Oitmaa E, Katsanis N, Valverde D, Beales PL. Arrayed primer extension technology simplifies mutation detection in Bardet-Biedl and Alström syndrome. Eur J Hum Genet 2010; 19:485-8. [PMID: 21157496 DOI: 10.1038/ejhg.2010.207] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bardet-Biedl syndrome (BBS; OMIM no. 209 900) and Alström syndrome (ALMS; OMIM no. 203 800) are rare, multisystem genetic disorders showing both a highly variable phenotype and considerable phenotypic overlap; they are included in the emerging group of diseases called ciliopathies. The genetic heterogeneity of BBS with 14 causal genes described to date, serves to further complicate mutational analysis. The development of the BBS-ALMS array which detects known mutations in these genes has allowed us to detect at least one mutation in 40.5% of BBS families and in 26.7% of ALMS families validating this as an efficient and cost-effective first pass screening modality. Furthermore, using this method, we found two BBS families segregating three BBS alleles further supporting oligogenicity or modifier roles for additional mutations. We did not observe more than two mutations in any ALMS family.
Collapse
Affiliation(s)
- Ines Pereiro
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Potential involvement of more than one locus in trait manifestation for individuals with Leber congenital amaurosis. Hum Genet 2010; 129:319-27. [PMID: 21153841 DOI: 10.1007/s00439-010-0928-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Leber congenital amaurosis (LCA) is a clinically and genetically heterogeneous retinal dystrophy. The causes of LCA have been unraveled partially at the molecular level. At least 14 genes have been reported that, when mutated, result in LCA. To understand the roles of the known genes in LCA, a group of outbred subjects from 60 apparently either recessive families, with one or more affected individuals, or isolated patients were evaluated. One affected individual from each family underwent comprehensive mutational analysis by direct DNA sequencing of all coding regions and splice junctions of 13 LCA genes. Mutations were identified in 70% of individuals. CEP290 made the largest contribution to the identified mutations, providing 43% of those mutant alleles. We identified seven families in which affected individuals with two mutant alleles, sufficient to cause disease, had an additional mutation at a second LCA locus. Our findings suggest that mutational load can be important to penetrance of the LCA phenotype.
Collapse
|
253
|
Janssen S, Ramaswami G, Davis EE, Hurd T, Airik R, Kasanuki JM, Van Der Kraak L, Allen SJ, Beales PL, Katsanis N, Otto EA, Hildebrandt F. Mutation analysis in Bardet-Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals. Hum Genet 2010; 129:79-90. [PMID: 21052717 DOI: 10.1007/s00439-010-0902-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/14/2010] [Indexed: 12/30/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare, primarily autosomal-recessive ciliopathy. The phenotype of this pleiotropic disease includes retinitis pigmentosa, postaxial polydactyly, truncal obesity, learning disabilities, hypogonadism and renal anomalies, among others. To date, mutations in 15 genes (BBS1-BBS14, SDCCAG8) have been described to cause BBS. The broad genetic locus heterogeneity renders mutation screening time-consuming and expensive. We applied a strategy of DNA pooling and subsequent massively parallel resequencing (MPR) to screen individuals affected with BBS from 105 families for mutations in 12 known BBS genes. DNA was pooled in 5 pools of 21 individuals each. All 132 coding exons of BBS1-BBS12 were amplified by conventional PCR. Subsequent MPR was performed on an Illumina Genome Analyzer II™ platform. Following mutation identification, the mutation carrier was assigned by CEL I endonuclease heteroduplex screening and confirmed by Sanger sequencing. In 29 out of 105 individuals (28%), both mutated alleles were identified in 10 different BBS genes. A total of 35 different disease-causing mutations were confirmed, of which 18 mutations were novel. In 12 additional families, a total of 12 different single heterozygous changes of uncertain pathogenicity were found. Thus, DNA pooling combined with MPR offers a valuable strategy for mutation analysis of large patient cohorts, especially in genetically heterogeneous diseases such as BBS.
Collapse
Affiliation(s)
- Sabine Janssen
- Departments of Pediatrics and of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5446, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Sapp JC, Nishimura D, Johnston JJ, Stone EM, Héon E, Sheffield VC, Biesecker LG. Recurrence risks for Bardet-Biedl syndrome: Implications of locus heterogeneity. Genet Med 2010; 12:623-7. [PMID: 20949666 PMCID: PMC3115203 DOI: 10.1097/gim.0b013e3181f07572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Bardet-Biedl syndrome is a pleiotropic multiple anomaly syndrome inherited in an autosomal recessive pattern. It is now known that this disorder has locus heterogeneity, with causative mutations identified in as many as 14 genes. The aim of this study was to derive locus-specific recurrence risk estimates for family members of a proband affected with Bardet-Biedl syndrome. METHODS Mutation data from 187 probands affected with Bardet-Biedl syndrome were used. The authors counted the relative proportion of families with mutations at each of 10 loci and estimated locus-specific carrier rates for mutations using Hardy-Weinberg principles and an aggregate population frequency of 1/100,000 for the phenotype. Locus-specific recurrence risks were calculated for relatives of an affected proband. RESULTS Locus-specific carrier frequencies range from 1/250 to 1/2200, and the risks for an offspring of the sibling of an affected individual range from 1/1,500 to 1/13,000. The estimate of this risk derived under a locus homogeneity model is 1/960. CONCLUSION Variation of recurrence risks of this magnitude may have implications for genetic counseling of families with affected individuals, in particular about prenatal testing and other reproductive options. Similar analyses to determine locus-specific carrier frequencies for other phenotypes with significant locus heterogeneity may yield similarly relevant results.
Collapse
Affiliation(s)
- Julie C Sapp
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
255
|
Singleton AB, Hardy J, Traynor BJ, Houlden H. Towards a complete resolution of the genetic architecture of disease. Trends Genet 2010; 26:438-42. [PMID: 20813421 DOI: 10.1016/j.tig.2010.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 01/19/2023]
Abstract
After years of linear gains in the genetic dissection of human disease we are now in a period of exponential discovery. This is particularly apparent for complex disease. Genome-wide association studies (GWAS) have provided myriad associations between common variability and disease, and have shown that common genetic variability is unlikely to explain the entire genetic predisposition to disease. Here we detail how one can expand on this success and systematically identify genetic risks that lead or predispose to disease using next-generation sequencing. Geneticists have had for many years a protocol to identify Mendelian disease. A similar set of tools is now available for the identification of rare moderate-risk loci and common low-risk variants. Whereas major challenges undoubtedly remain, particularly regarding data handling and the functional classification of variants, we suggest that these will be largely practical and not conceptual.
Collapse
Affiliation(s)
- Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
256
|
Vujic M, Heyer CM, Ars E, Hopp K, Markoff A, Orndal C, Rudenhed B, Nasr SH, Torres VE, Torra R, Bogdanova N, Harris PC. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol 2010; 21:1097-102. [PMID: 20558538 DOI: 10.1681/asn.2009101070] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutation in PKD1 or PKD2, is usually an adult-onset disorder but can rarely manifest as a neonatal disease within a family characterized by otherwise typical ADPKD. Coinheritance of a hypomorphic PKD1 allele in trans with an inactivating PKD1 allele is one mechanism that can cause early onset ADPKD. Here, we describe two pedigrees without a history of cystic kidney disease that each contain two patients with onset of massive PKD in utero. The presentations were typical of autosomal recessive PKD (ARPKD) but they were not linked to the known ARPKD gene, PKHD1. Mutation analysis of the ADPKD genes provided strong evidence that both families inherited, in trans, two incompletely penetrant PKD1 alleles. These patients illustrate that PKD1 mutations can manifest as a phenocopy of ARPKD with respect to renal involvement and highlight the perils of linkage-based diagnostics in ARPKD without positive PKHD1 mutation data. Furthermore, the phenotypic overlap between ARPKD and these patients resulting from incomplete penetrant PKD1 alleles support a common pathogenesis for these diseases.
Collapse
Affiliation(s)
- Mihailo Vujic
- Departments of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Functional analyses of variants reveal a significant role for dominant negative and common alleles in oligogenic Bardet-Biedl syndrome. Proc Natl Acad Sci U S A 2010; 107:10602-7. [PMID: 20498079 DOI: 10.1073/pnas.1000219107] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Technological advances hold the promise of rapidly catalyzing the discovery of pathogenic variants for genetic disease. However, this possibility is tempered by limitations in interpreting the functional consequences of genetic variation at candidate loci. Here, we present a systematic approach, grounded on physiologically relevant assays, to evaluate the mutational content (125 alleles) of the 14 genes associated with Bardet-Biedl syndrome (BBS). A combination of in vivo assays with subsequent in vitro validation suggests that a significant fraction of BBS-associated mutations have a dominant-negative mode of action. Moreover, we find that a subset of common alleles, previously considered to be benign, are, in fact, detrimental to protein function and can interact with strong rare alleles to modulate disease presentation. These data represent a comprehensive evaluation of genetic load in a multilocus disease. Importantly, superimposition of these results to human genetics data suggests a previously underappreciated complexity in disease architecture that might be shared among diverse clinical phenotypes.
Collapse
|
258
|
Ebermann I, Phillips JB, Liebau MC, Koenekoop RK, Schermer B, Lopez I, Schäfer E, Roux AF, Dafinger C, Bernd A, Zrenner E, Claustres M, Blanco B, Nürnberg G, Nürnberg P, Ruland R, Westerfield M, Benzing T, Bolz HJ. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J Clin Invest 2010; 120:1812-23. [PMID: 20440071 DOI: 10.1172/jci39715] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 02/24/2010] [Indexed: 01/24/2023] Open
Abstract
Usher syndrome is a genetically heterogeneous recessive disease characterized by hearing loss and retinitis pigmentosa (RP). It frequently presents with unexplained, often intrafamilial, variability of the visual phenotype. Although 9 genes have been linked with Usher syndrome, many patients do not have mutations in any of these genes, suggesting that there are still unidentified genes involved in the syndrome. Here, we have determined that mutations in PDZ domain-containing 7 (PDZD7), which encodes a homolog of proteins mutated in Usher syndrome subtype 1C (USH1C) and USH2D, contribute to Usher syndrome. Mutations in PDZD7 were identified only in patients with mutations in other known Usher genes. In a set of sisters, each with a homozygous mutation in USH2A, a frame-shift mutation in PDZD7 was present in the sister with more severe RP and earlier disease onset. Further, heterozygous PDZD7 mutations were present in patients with truncating mutations in USH2A, G protein-coupled receptor 98 (GPR98; also known as USH2C), and an unidentified locus. We validated the human genotypes using zebrafish, and our findings were consistent with digenic inheritance of PDZD7 and GPR98, and with PDZD7 as a retinal disease modifier in patients with USH2A. Pdzd7 knockdown produced an Usher-like phenotype in zebrafish, exacerbated retinal cell death in combination with ush2a or gpr98, and reduced Gpr98 localization in the region of the photoreceptor connecting cilium. Our data challenge the view of Usher syndrome as a traditional Mendelian disorder and support the reclassification of Usher syndrome as an oligogenic disease.
Collapse
Affiliation(s)
- Inga Ebermann
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
259
|
Yang JJ, Su MC, Chien KH, Hsin CH, Li SY. Identification of novel variants in the TMIE gene of patients with nonsyndromic hearing loss. Int J Pediatr Otorhinolaryngol 2010; 74:489-93. [PMID: 20206386 DOI: 10.1016/j.ijporl.2010.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/30/2010] [Accepted: 02/02/2010] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To determine whether variants of the TMIE gene are causes of nonsyndromic deafness in Taiwan. METHODS A genetic survey was made from 370 individuals, with 250 nonsyndromic hearing loss and 120 normal hearing individuals. Genomic DNA was extracted from peripheral blood leukocytes and then subjected to PCR to amplify selected exons and flanking introns of the TMIE gene; the amplified products were screened for base variants by autosequence. Data from the two groups were then compared using Fisher's two-tailed exact test and Armitage's trend test. RESULTS The analysis revealed 7 novel variants in the TMIE gene. Of the 7 variants, 5 variants were found in both nonsyndromic hearing loss and normal hearing group. Both allelic and genotype frequencies of these sequence changes did not differ significantly between patients and controls (P>0.05). However, a missense variant (c.257G>A) and one promoter variant (g.1-219A>T) were found in two patients with nonsyndromic hearing loss. Family study and microsatellite analysis found that c.257G>A variant is not inherited from his parents. The c.257G>A variant encodes a protein with glutamine at position 86 instead of arginine (p.R86Q), a residue that is conserved in mammals but different in fish, and predicted to be extracellular. CONCLUSIONS Despite the fact that the frequency of TMIE variants in our study subjects was low, we suggested that c.257G>A (p.R86Q) variant is a de novo and may be as a risk factor for the development of hearing loss in Taiwanese.
Collapse
Affiliation(s)
- Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
260
|
Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, McGuire AL, Zhang F, Stankiewicz P, Halperin JJ, Yang C, Gehman C, Guo D, Irikat RK, Tom W, Fantin NJ, Muzny DM, Gibbs RA. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010; 362:1181-91. [PMID: 20220177 PMCID: PMC4036802 DOI: 10.1056/nejmoa0908094] [Citation(s) in RCA: 621] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Whole-genome sequencing may revolutionize medical diagnostics through rapid identification of alleles that cause disease. However, even in cases with simple patterns of inheritance and unambiguous diagnoses, the relationship between disease phenotypes and their corresponding genetic changes can be complicated. Comprehensive diagnostic assays must therefore identify all possible DNA changes in each haplotype and determine which are responsible for the underlying disorder. The high number of rare, heterogeneous mutations present in all humans and the paucity of known functional variants in more than 90% of annotated genes make this challenge particularly difficult. Thus, the identification of the molecular basis of a genetic disease by means of whole-genome sequencing has remained elusive. We therefore aimed to assess the usefulness of human whole-genome sequencing for genetic diagnosis in a patient with Charcot-Marie-Tooth disease. METHODS We identified a family with a recessive form of Charcot-Marie-Tooth disease for which the genetic basis had not been identified. We sequenced the whole genome of the proband, identified all potential functional variants in genes likely to be related to the disease, and genotyped these variants in the affected family members. RESULTS We identified and validated compound, heterozygous, causative alleles in SH3TC2 (the SH3 domain and tetratricopeptide repeats 2 gene), involving two mutations, in the proband and in family members affected by Charcot-Marie-Tooth disease. Separate subclinical phenotypes segregated independently with each of the two mutations; heterozygous mutations confer susceptibility to neuropathy, including the carpal tunnel syndrome. CONCLUSIONS As shown in this study of a family with Charcot-Marie-Tooth disease, whole-genome sequencing can identify clinically relevant variants and provide diagnostic information to inform the care of patients.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29:335-75. [PMID: 20362068 DOI: 10.1016/j.preteyeres.2010.03.004] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives.
Collapse
Affiliation(s)
- Wolfgang Berger
- Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
262
|
Abstract
Pediatricians deal with cases with the congenital malformations and malformation syndromes interest many of them. A lot of information about genes involved in development is available now. Genetics of hand development and genes involved in polydactyly syndromes is discussed in this article as a prototype to know about genetics of malformations: how it is studied and what is known. Genetic and chromosomal defects are often associated with congenital malformations. Polydactyly is one of the commonly seen malformations and genetic defects of many malformation syndromes associated with polydactyly are known. The role of genetic defect in polydactyly syndromes and the correlation between genotypes and phenotypes is discussed in this review article.
Collapse
Affiliation(s)
- Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | | |
Collapse
|
263
|
Muller J, Stoetzel C, Vincent MC, Leitch CC, Laurier V, Danse JM, Hellé S, Marion V, Bennouna-Greene V, Vicaire S, Megarbane A, Kaplan J, Drouin-Garraud V, Hamdani M, Sigaudy S, Francannet C, Roume J, Bitoun P, Goldenberg A, Philip N, Odent S, Green J, Cossée M, Davis EE, Katsanis N, Bonneau D, Verloes A, Poch O, Mandel JL, Dollfus H. Identification of 28 novel mutations in the Bardet-Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. Hum Genet 2010; 127:583-93. [PMID: 20177705 DOI: 10.1007/s00439-010-0804-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/10/2010] [Indexed: 12/01/2022]
Abstract
Bardet-Biedl syndrome (BBS), an emblematic disease in the rapidly evolving field of ciliopathies, is characterized by pleiotropic clinical features and extensive genetic heterogeneity. To date, 14 BBS genes have been identified, 3 of which have been found mutated only in a single BBS family each (BBS11/TRIM32, BBS13/MKS1 and BBS14/MKS4/NPHP6). Previous reports of systematic mutation detection in large cohorts of BBS families (n > 90) have dealt only with a single gene, or at most small subsets of the known BBS genes. Here we report extensive analysis of a cohort of 174 BBS families for 12/14 genes, leading to the identification of 28 novel mutations. Two pathogenic mutations in a single gene have been found in 117 families, and a single heterozygous mutation in 17 families (of which 8 involve the BBS1 recurrent mutation, M390R). We confirm that BBS1 and BBS10 are the most frequently mutated genes, followed by BBS12. No mutations have been found in BBS11/TRIM32, the identification of which as a BBS gene only relies on a single missense mutation in a single consanguineous family. While a third variant allele has been observed in a few families, they are in most cases missenses of uncertain pathogenicity, contrasting with the type of mutations observed as two alleles in a single gene. We discuss the various strategies for diagnostic mutation detection, including homozygosity mapping and targeted arrays for the detection of previously reported mutations.
Collapse
Affiliation(s)
- Jean Muller
- Laboratoire de Diagnostic Génétique, CHU Strasbourg Nouvel Hôpital Civil, 1 place de l'Hôpital, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Hjortshøj TD, Grønskov K, Philp AR, Nishimura DY, Riise R, Sheffield VC, Rosenberg T, Brøndum-Nielsen K. Bardet-Biedl syndrome in Denmark-report of 13 novel sequence variations in six genes. Hum Mutat 2010; 31:429-36. [DOI: 10.1002/humu.21204] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
265
|
Pawlik B, Mir A, Iqbal H, Li Y, Nürnberg G, Becker C, Qamar R, Nürnberg P, Wollnik B. A Novel Familial BBS12 Mutation Associated with a Mild Phenotype: Implications for Clinical and Molecular Diagnostic Strategies. Mol Syndromol 2010; 1:27-34. [PMID: 20648243 DOI: 10.1159/000276763] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 11/20/2009] [Indexed: 01/24/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessively inherited ciliopathy mainly characterized by rod-cone dystrophy, postaxial polydactyly, obesity, renal tract anomalies, and hypogonadism. To date, 14 BBS genes, BBS1 to BBS14, have been identified, accounting for over 75% of mutations in BBS families. In this study, we present a consanguineous family from Pakistan with postaxial polydactyly and late-onset retinal dysfunction. Adult affected individuals did not show any renal or genital anomalies, obesity, mental retardation or learning difficulties and did thus not fulfill the proposed clinical diagnostic criteria for BBS. We mapped the disease in this family to the BBS12 locus on chromosome 4q27 and identified the novel homozygous p.S701X nonsense mutation in BBS12 in all three affected individuals of this family. We conclude that BBS12 mutations might cause a very mild phenotype, which is clinically not diagnosed by the current diagnostic criteria for BBS. Consequently, we suggest the use of less strict diagnostic criteria in familial BBS families with mild phenotypic expression.
Collapse
Affiliation(s)
- B Pawlik
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
266
|
Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 151C:281-95. [PMID: 19876933 DOI: 10.1002/ajmg.c.30231] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ubiquitous in nature, cilia and flagella comprise nearly identical structures with similar functions. The most obvious example of the latter is motility: driving movement of the organism or particle flow across the epithelial surface in fixed structures. In vertebrates, such motile cilia are evident in the respiratory epithelia, ependyma, and oviducts. For over a century, non-motile cilia have been observed on the surface of most vertebrate cells but until recently their function has eluded us. Gathering evidence now points to critical roles for the mono-cilium in sensing the extracellular environment, and perturbation of this function gives rise to a predictable panoply of clinical problems. We review the common clinical phenotypes associated with ciliopathies and interrogate Online Mendelian Inheritance in Man (OMIM) to compile a comprehensive list of putative disorders in which ciliary dysfunction may play a role.
Collapse
Affiliation(s)
- Kate Baker
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
267
|
Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 2010; 47:8-21. [PMID: 19574260 PMCID: PMC3501959 DOI: 10.1136/jmg.2009.067249] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To identify genetic causes of COACH syndrome BACKGROUND COACH syndrome is a rare autosomal recessive disorder characterised by Cerebellar vermis hypoplasia, Oligophrenia (developmental delay/mental retardation), Ataxia, Coloboma, and Hepatic fibrosis. The vermis hypoplasia falls in a spectrum of mid-hindbrain malformation called the molar tooth sign (MTS), making COACH a Joubert syndrome related disorder (JSRD). METHODS In a cohort of 251 families with JSRD, 26 subjects in 23 families met criteria for COACH syndrome, defined as JSRD plus clinically apparent liver disease. Diagnostic criteria for JSRD were clinical findings (intellectual impairment, hypotonia, ataxia) plus supportive brain imaging findings (MTS or cerebellar vermis hypoplasia). MKS3/TMEM67 was sequenced in all subjects for whom DNA was available. In COACH subjects without MKS3 mutations, CC2D2A, RPGRIP1L and CEP290 were also sequenced. RESULTS 19/23 families (83%) with COACH syndrome carried MKS3 mutations, compared to 2/209 (1%) with JSRD but no liver disease. Two other families with COACH carried CC2D2A mutations, one family carried RPGRIP1L mutations, and one lacked mutations in MKS3, CC2D2A, RPGRIP1L and CEP290. Liver biopsies from three subjects, each with mutations in one of the three genes, revealed changes within the congenital hepatic fibrosis/ductal plate malformation spectrum. In JSRD with and without liver disease, MKS3 mutations account for 21/232 families (9%). CONCLUSIONS Mutations in MKS3 are responsible for the majority of COACH syndrome, with minor contributions from CC2D2A and RPGRIP1L; therefore, MKS3 should be the first gene tested in patients with JSRD plus liver disease and/or coloboma, followed by CC2D2A and RPGRIP1L.
Collapse
Affiliation(s)
- D Doherty
- University of Washington, Seattle, WA 98195-0320, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Cardenas-Rodriguez M, Badano JL. Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2009; 151C:263-80. [PMID: 19876935 DOI: 10.1002/ajmg.c.30227] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
269
|
Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center. Curr Biol 2009; 19:R526-35. [PMID: 19602418 DOI: 10.1016/j.cub.2009.05.025] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respect for the primary cilium has undergone a remarkable renaissance over the past decade, and it is now thought to be an essential regulator of numerous signaling pathways. The primary cilium's functions range from the movement of cells and fluid, to sensory inputs involved with olfaction and photoreception. Disruption of cilia function is involved in multiple human syndromes collectively called 'ciliopathies'. The cilium's activities are mediated by targeting of receptors, channels, and their downstream effector proteins to the ciliary or basal body compartment. These combined properties of the cilium make it a critical organelle facilitating the interactions between the cell and its environment. Here, we review many of the recent advances contributing to the ascendancy of the primary cilium and how the extraordinary complexity of this organelle inevitably assures many more exciting future discoveries.
Collapse
Affiliation(s)
- Nicolas F Berbari
- Department of Cell Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
270
|
Abstract
Over the last 5 years, disorders of nonmotile cilia have come of age and their study has contributed immeasurably to our understanding of cell biology and human genetics. This review summarizes the main features of the ciliopathies, their underlying genetics, and the functions of the proteins involved. We describe some of the key findings in the field, including new animal models, the role of ciliopathy proteins in signaling pathways and development, and the unusual genetics of these diseases. We also discuss the therapeutic potential for these diseases and finally, discuss important future work that will extend our understanding of this fascinating organelle and its associated pathologies.
Collapse
|
271
|
Doherty D. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 2009; 16:143-54. [PMID: 19778711 PMCID: PMC2804071 DOI: 10.1016/j.spen.2009.06.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Joubert syndrome (JS) is a primarily autosomal recessive condition characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation (the "molar tooth sign"). Variable features include retinal dystrophy, cystic kidney disease, liver fibrosis and polydactyly. Recently, substantial progress has been made in our understanding of the genetic basis of JS, including identification of seven causal genes (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67/MKS3, ARL13B and CC2D2A). Despite this progress, the known genes account for <50% of cases and few strong genotype-phenotype correlations exist in JS; however, genetic testing can be prioritized based on clinical features. While all seven JS genes have been implicated in the function of the primary cilium/basal body organelle (PC/BB), little is known about how the PC/BB is required for brain, kidney, retina and liver development/function, nor how disruption of PC/BB function leads to diseases of these organs. Recent work on the function of the PC/BB indicates that the organelle is required for multiple signaling pathways including sonic hedgehog, WNT and platelet derived growth factor. Due to shared clinical features and underlying molecular pathophysiology, JS is included in the rapidly expanding group of disorders called ciliopathies. The ciliopathies are emerging as models for more complex diseases, where sequence variants in multiple genes contribute to the phenotype expressed in any given patient.
Collapse
Affiliation(s)
- Dan Doherty
- University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
272
|
Booty MG, Chae JJ, Masters SL, Remmers EF, Barham B, Le JM, Barron KS, Holland SM, Kastner DL, Aksentijevich I. Familial Mediterranean fever with a single MEFV mutation: where is the second hit? ACTA ACUST UNITED AC 2009; 60:1851-61. [PMID: 19479870 DOI: 10.1002/art.24569] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Familial Mediterranean fever (FMF) has traditionally been considered an autosomal-recessive disease; however, it has been observed that a substantial number of patients with clinical FMF possess only 1 demonstrable MEFV mutation. The purpose of this study was to perform an extensive search for a second MEFV mutation in 46 patients diagnosed clinically as having FMF and carrying only 1 high-penetrance FMF mutation. METHODS MEFV and other candidate genes were sequenced by standard capillary electrophoresis. In 10 patients, the entire 15-kb MEFV genomic region was resequenced using hybridization-based chip technology. MEFV gene expression levels were determined by quantitative reverse transcription-polymerase chain reaction. Pyrin protein levels were examined by Western blotting. RESULTS A second MEFV mutation was not identified in any of the patients who were screened. Haplotype analysis did not identify a common haplotype that might be associated with the transmission of a second FMF allele. Western blots did not demonstrate a significant difference in pyrin levels between patients with a single mutation and those with a double mutation; however, FMF patients of both types showed higher protein expression as compared with controls and with non-FMF patients with active inflammation. Screening of genes encoding pyrin-interacting proteins identified rare mutations in a small number of patients, suggesting the possibility of digenic inheritance. CONCLUSION Our data underscore the existence of a significant subset of FMF patients who are carriers of only 1 MEFV mutation and demonstrate that complete MEFV sequencing is not likely to yield a second mutation. Screening for the set of the most common mutations and detection of a single mutation appears to be sufficient in the presence of clinical symptoms for the diagnosis of FMF and the initiation of a trial of colchicine.
Collapse
Affiliation(s)
- Matthew G Booty
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland 20892-1820, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Toma HS, Tan PL, McKusick VA, Katsanis N, Adams NA. Bardet-Biedl Syndrome in an African-American Patient: Should the Diagnostic Criteria Be Expanded to Include Hydrometrocolpos? Ophthalmic Genet 2009; 28:95-9. [PMID: 17558852 DOI: 10.1080/13816810701209545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Bardet-Biedl Syndrome (BBS) is a multisystemic disorder diagnosed on the basis of a combination of primary and secondary clinical features that include retinal dystrophy, obesity, polydactyly, cognitive dysfunction, and renal malformations. We report a unique case of BBS in a 13-year old girl of African-American descent who presented with retinitis pigmentosa, obesity, polydactyly, learning disabilities, precocious puberty, hypertension, renal cysts, and Hirschprung disease. Further evaluation revealed a history of precocious puberty, which is antithetical to the common manifestations of BBS, while neuroimaging was suggestive of periventricular leukomalacia and neuro-electrophysiologic studies revealed diffuse cerebral disturbance, which may contribute to her neurological abnormalities. The patient was also diagnosed with hydrometrocolpos, a finding typical of McKusick-Kaufman Syndrome (MKKS) but infrequent in other disorders. This observation, together with recent findings in some mouse models of BBS, raises the question of whether hydrometrocolpos should be considered as an additional diagnostic criterion for BBS to be used in females in parallel to the criterion of hypogonadism in males, thereby improving diagnostic sensitivity.
Collapse
Affiliation(s)
- Hassanain S Toma
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
274
|
May-Simera HL, Ross A, Rix S, Forge A, Beales PL, Jagger DJ. Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol 2009; 514:174-88. [PMID: 19396898 DOI: 10.1002/cne.22001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bardet-Biedl syndrome is a heterogeneous disorder causing a spectrum of symptoms, including visual impairment, kidney disease, and hearing impairment. Evidence suggests that BBS gene mutations cause defective ciliogenesis and/or cilium dysfunction. Cochlear development is affected by BBS gene deletion, and adult Bbs6(-/-) and Bbs4(-/-) mice are hearing impaired. This study addresses BBS protein expression in the rodent cochlea, to gain a better understanding of its function in vivo. As predicted by in vitro studies, Bbs6 immunofluorescence was localized to the basal bodies of supporting cells and sensory hair cells prior to the onset of hearing. In adult tissue, Bbs6 expression persisted in afferent neurons, including within the dendrites that innervate hair cells, implicating Bbs6 in a sensory neuronal function. Bbs2, which interacts with Bbs6, was also localized to hair cell basal bodies and stereociliary bundles. Additionally, Bbs2 was expressed in supporting cells at their intercellular boundaries, in a spatiotemporal pattern mirroring the development of the microtubule network. Bbs4 localized to cilia and developing cytoplasmic microtubule arrays. Pcm-1, a microtubular protein that interacts with Bbs4 in vitro, showed a comparable expression. Depolymerization of microtubules in slice preparations of the living cochlea resulted in Bbs4 and Pcm-1 mislocalization. Pcm-1 was also mislocalized in Bbs4(-/-) mice. This suggests that Bbs4/Pcm-1 interactions may be important in microtubule-dependent cytoplasmic trafficking in vivo. In summary, our findings indicate that BBS proteins adopt a range of cellular distributions in vivo, not restricted to the centrosome or cilium, and so broaden the possible underlying pathomechanisms of the disease.
Collapse
Affiliation(s)
- Helen L May-Simera
- Institute of Child Health, University College London, London WC1N1EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
275
|
D'Angelo A, Franco B. The dynamic cilium in human diseases. PATHOGENETICS 2009; 2:3. [PMID: 19439065 PMCID: PMC2694804 DOI: 10.1186/1755-8417-2-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/13/2009] [Indexed: 01/09/2023]
Abstract
Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.
Collapse
Affiliation(s)
- Anna D'Angelo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
276
|
Zhang B, Chang J, Fu M, Huang J, Kashyap R, Salavaggione E, Jain S, Shashikant K, Deardorff MA, Uzielli MLG, Dorsett D, Beebe DC, Jay PY, Heuckeroth RO, Krantz I, Milbrandt J. Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies. PLoS One 2009; 4:e5232. [PMID: 19412548 PMCID: PMC2672303 DOI: 10.1371/journal.pone.0005232] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/06/2009] [Indexed: 01/09/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS), a disorder caused by mutations in cohesion proteins, is characterized by multisystem developmental abnormalities. PDS5, a cohesion protein, is important for proper chromosome segregation in lower organisms and has two homologues in vertebrates (PDS5A and PDS5B). Pds5B mutant mice have developmental abnormalities resembling CdLS; however the role of Pds5A in mammals and the association of PDS5 proteins with CdLS are unknown. To delineate genetic interactions between Pds5A and Pds5B and explore mechanisms underlying phenotypic variability, we generated Pds5A-deficient mice. Curiously, these mice exhibit multiple abnormalities that were previously observed in Pds5B-deficient mice, including cleft palate, skeletal patterning defects, growth retardation, congenital heart defects and delayed migration of enteric neuron precursors. They also frequently display renal agenesis, an abnormality not observed in Pds5B(-/-) mice. While Pds5A(-/-) and Pds5B(-/-) mice die at birth, embryos harboring 3 mutant Pds5 alleles die between E11.5 and E12.5 most likely of heart failure, indicating that total Pds5 gene dosage is critical for normal development. In addition, characterization of these compound homozygous-heterozygous mice revealed a severe abnormality in lens formation that does not occur in either Pds5A(-/-) or Pds5B(-/-) mice. We further identified a functional missense mutation (R1292Q) in the PDS5B DNA-binding domain in a familial case of CdLS, in which affected individuals also develop megacolon. This study shows that PDS5A and PDS5B functions other than those involving chromosomal dynamics are important for normal development, highlights the sensitivity of key developmental processes on PDS5 signaling, and provides mechanistic insights into how PDS5 mutations may lead to CdLS.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jufang Chang
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ming Fu
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Rakesh Kashyap
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ezequiel Salavaggione
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Sanjay Jain
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Medicine (Renal Division), Washington University School of Medicine, St Louis, Missouri, United States of America
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Kulkarni Shashikant
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Matthew A. Deardorff
- Division of Human and Molecular Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | | | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David C. Beebe
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Robert O. Heuckeroth
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, United States of America
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ian Krantz
- Division of Human and Molecular Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Milbrandt
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, United States of America
- HOPE Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, United States of America
| |
Collapse
|
277
|
Abstract
We compare and contrast the genetic architecture of quantitative phenotypes in two genetically well-characterized model organisms, the laboratory mouse, Mus musculus, and the fruit fly, Drosophila melanogaster, with that found in our own species from recent successes in genome-wide association studies. We show that the current model of large numbers of loci, each of small effect, is true for all species examined, and that discrepancies can be largely explained by differences in the experimental designs used. We argue that the distribution of effect size of common variants is the same for all phenotypes regardless of species, and we discuss the importance of epistasis, pleiotropy, and gene by environment interactions. Despite substantial advances in mapping quantitative trait loci, the identification of the quantitative trait genes and ultimately the sequence variants has proved more difficult, so that our information on the molecular basis of quantitative variation remains limited. Nevertheless, available data indicate that many variants lie outside genes, presumably in regulatory regions of the genome, where they act by altering gene expression. As yet there are very few instances where homologous quantitative trait loci, or quantitative trait genes, have been identified in multiple species, but the availability of high-resolution mapping data will soon make it possible to test the degree of overlap between species.
Collapse
|
278
|
Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 2009; 119:428-37. [PMID: 19252258 PMCID: PMC2648685 DOI: 10.1172/jci37041] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic disorder typified by developmental and progressive degenerative defects. A combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology, which has in turn contributed to the improved understanding of the functions of the primary cilium in humans and other vertebrates. Here we discuss the evidence linking the clinical BBS phenotype to ciliary defects, highlight how the genetic and cellular characteristics of BBS overlap with and inform other ciliary disorders, and explore the possible mechanistic underpinnings of ciliary dysfunction.
Collapse
Affiliation(s)
- Norann A. Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
279
|
Abstract
Paediatric neurological disorders encompass a large group of clinically heterogeneous diseases, of which some are known to have a genetic cause. Over the past few years, advances in nosological classifications and in strategies for molecular testing have substantially improved the diagnosis, genetic counselling, and clinical management of many patients, and have facilitated the possibility of prenatal diagnoses for future pregnancies. However, the increasing availability of genetic tests for paediatric neurological disorders is raising important questions with regard to the appropriateness, choice of protocols, interpretation of results, and ethical and social concerns of these services. In this Review, we discuss these topics and how these concerns affect genetic counselling.
Collapse
|
280
|
Asai-Coakwell M, French CR, Ye M, Garcha K, Bigot K, Perera AG, Staehling-Hampton K, Mema SC, Chanda B, Mushegian A, Bamforth S, Doschak MR, Li G, Dobbs MB, Giampietro PF, Brooks BP, Vijayalakshmi P, Sauvé Y, Abitbol M, Sundaresan P, van Heyningen V, Pourquié O, Underhill TM, Waskiewicz AJ, Lehmann OJ. Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes. Hum Mol Genet 2009; 18:1110-21. [PMID: 19129173 DOI: 10.1093/hmg/ddp008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins of the bone morphogenetic protein (BMP) family are known to have a role in ocular and skeletal development; however, because of their widespread expression and functional redundancy, less progress has been made identifying the roles of individual BMPs in human disease. We identified seven heterozygous mutations in growth differentiation factor 6 (GDF6), a member of the BMP family, in patients with both ocular and vertebral anomalies, characterized their effects with a SOX9-reporter assay and western analysis, and demonstrated comparable phenotypes in model organisms with reduced Gdf6 function. We observed a spectrum of ocular and skeletal anomalies in morphant zebrafish, the latter encompassing defective tail formation and altered expression of somite markers noggin1 and noggin2. Gdf6(+/-) mice exhibited variable ocular phenotypes compatible with phenotypes observed in patients and zebrafish. Key differences evident between patients and animal models included pleiotropic effects, variable expressivity and incomplete penetrance. These data establish the important role of this determinant in ocular and vertebral development, demonstrate the complex genetic inheritance of these phenotypes, and further understanding of BMP function and its contributions to human disease.
Collapse
|
281
|
Liu Q, Saveliev A, Pierce EA. The severity of retinal degeneration in Rp1h gene-targeted mice is dependent on genetic background. Invest Ophthalmol Vis Sci 2008; 50:1566-74. [PMID: 19060274 DOI: 10.1167/iovs.08-2776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The severity of disease in patients with retinitis pigmentosa (RP) can vary significantly, even among patients with the same primary mutations. It is hypothesized that modifier genes play important roles in determining the severity of RP, including the retinitis pigmentosa 1 (RP1) form of disease. To investigate the basis of variation in disease expression for RP1 disease, the authors generated congenic mice with a gene-targeted retinitis pigmentosa 1 homolog (Rp1h) allele (Rp1h(tm1Eap)) on several different genetic backgrounds and analyzed their retinal phenotypes. METHODS The Rp1h(tm1Eap) allele was placed onto the C57BL/6J, DBA1/J, and A/J backgrounds. Retinal function of the resultant congenic mice was evaluated using electroretinographic analyses. Retinal structure and ultrastructure were evaluated using light and electron microscopy. Rp1h protein location was determined with immunofluorescence microscopy. RESULTS Analysis of the retinal phenotype of incipient congenic (N6) B6.129S-Rp1h(+/tm1Eap), DBA.129S(B6)-Rp1h(+/tm1Eap), and A.129S(B6)-Rp1h(+/tm1Eap) mice at 1 year of age showed retinal degeneration only in the A.129S(B6)-Rp1h(+/tm1Eap) mice. Further analyses revealed that the photoreceptors of the fully congenic A.129S(B6)-Rp1h(+/tm1Eap) mice show evidence of degeneration at 6 months of age and are almost completely lost by 18 months of age. In contrast, the photoreceptor cells in the fully congenic B6.129S-Rp1h(+/tm1Eap) mice remain healthy up to 18 months. CONCLUSIONS The severity of the retinal degeneration caused by the Rp1h(tm1Eap) allele is notably dependent on genetic background. The development and characterization of the B6.129S-Rp1h(+/tm1Eap) and A.129S(B6)-Rp1h(+/tm1Eap) congenic mouse lines will facilitate identification of sequence alterations in genes that modify the severity of RP1 disease.
Collapse
Affiliation(s)
- Qin Liu
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
282
|
Rooryck C, Lacombe D. [Bardet-Biedl syndrome]. ANNALES D'ENDOCRINOLOGIE 2008; 69:463-71. [PMID: 19019343 DOI: 10.1016/j.ando.2008.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a ciliopathy causing multivisceral abnormalities. Its prevalence in Europe is from 1/125,000 to 1/175,000. This disorder is defined by a combination of clinical signs: obesity, pigmentary retinopathy, post-axial polydactyly, polycystic kidneys, hypogenitalism, and learning disabilities, many of which appearing after several years of evolution. Individual clinical phenotype is highly variable. Most signs are present in a majority of patients but only pigmentary retinopathy is constant after infancy. There are many other associated minor clinical signs including diabetes, blood hypertension, congenital cardiopathy or Hirschsprung disease. This broad clinical spectrum is associated to a great genetic heterogeneity, with mainly an autosomal recessive transmission and, sometimes cases of oligogenism. To date, mutations in 12 different genes (BBS1 to BBS12) are responsible for this phenotype. These genes code for proteins involved in the development and function of primary cilia. Absent or non functional BBS proteins affect cilia in certain organs such as kidney or eye. However, some symptoms are still not clearly related to cilia dysfunction. BB syndrome has to be recognized because a molecular diagnosis is possible and will lead to familial genetic counseling and possibly prenatal diagnosis. Patients with BBS will need a multidisciplinary medical care. The renal abnormalities are the main life-threatening features because they can lead to end-stage renal failure and renal transplantation. Retinal dystrophy leading to progressive vision loss, moderate mental retardation, and obesity will affect social life of these patients.
Collapse
Affiliation(s)
- C Rooryck
- Laboratoire de Génétique Humaine, Université Victor-Segalen, Bordeaux cedex, France.
| | | |
Collapse
|
283
|
Mendioroz J, Bermejo E, Marshall JD, Naggert JK, Collin GB, Martínez-Frías ML. Presentación de un caso con síndrome de Alström: aspectos clínicos, moleculares y guías diagnósticas y anticipatorias. Med Clin (Barc) 2008; 131:741-6. [DOI: 10.1016/s0025-7753(08)75490-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
284
|
Gorden NT, Arts HH, Parisi MA, Coene KLM, Letteboer SJF, van Beersum SEC, Mans DA, Hikida A, Eckert M, Knutzen D, Alswaid AF, Ozyurek H, Dibooglu S, Otto EA, Liu Y, Davis EE, Hutter CM, Bammler TK, Farin FM, Dorschner M, Topçu M, Zackai EH, Rosenthal P, Owens KN, Katsanis N, Vincent JB, Hildebrandt F, Rubel EW, Raible DW, Knoers NVAM, Chance PF, Roepman R, Moens CB, Glass IA, Doherty D. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet 2008; 83:559-71. [PMID: 18950740 DOI: 10.1016/j.ajhg.2008.10.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 12/18/2022] Open
Abstract
Joubert syndrome and related disorders (JSRD) are primarily autosomal-recessive conditions characterized by hypotonia, ataxia, abnormal eye movements, and intellectual disability with a distinctive mid-hindbrain malformation. Variable features include retinal dystrophy, cystic kidney disease, and liver fibrosis. JSRD are included in the rapidly expanding group of disorders called ciliopathies, because all six gene products implicated in JSRD (NPHP1, AHI1, CEP290, RPGRIP1L, TMEM67, and ARL13B) function in the primary cilium/basal body organelle. By using homozygosity mapping in consanguineous families, we identify loss-of-function mutations in CC2D2A in JSRD patients with and without retinal, kidney, and liver disease. CC2D2A is expressed in all fetal and adult tissues tested. In ciliated cells, we observe localization of recombinant CC2D2A at the basal body and colocalization with CEP290, whose cognate gene is mutated in multiple hereditary ciliopathies. In addition, the proteins can physically interact in vitro, as shown by yeast two-hybrid and GST pull-down experiments. A nonsense mutation in the zebrafish CC2D2A ortholog (sentinel) results in pronephric cysts, a hallmark of ciliary dysfunction analogous to human cystic kidney disease. Knockdown of cep290 function in sentinel fish results in a synergistic pronephric cyst phenotype, revealing a genetic interaction between CC2D2A and CEP290 and implicating CC2D2A in cilium/basal body function. These observations extend the genetic spectrum of JSRD and provide a model system for studying extragenic modifiers in JSRD and other ciliopathies.
Collapse
Affiliation(s)
- Nicholas T Gorden
- Division of Genetics and Developmental Medicine, Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Li Y, Wang H, Peng J, Gibbs RA, Lewis RA, Lupski JR, Mardon G, Chen R. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest Ophthalmol Vis Sci 2008; 50:1336-43. [PMID: 18936139 DOI: 10.1167/iovs.08-2589] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to perform a comprehensive survey of all known Leber congenital amaurosis (LCA) genes and loci in a collection of 37 consanguineous LCA families from Saudi Arabia. METHODS Direct PCR and sequencing were used to screen 13 known LCA genes (GUCY2D, CRX, RPE65, TULP1, AIPL1, CRB1, RPGRIP1, LRAT, RDH12, IMPDH1, CEP290, RD3, LCA5). In addition, families without mutations identified were further screened with STR markers around these 13 known LCA genes and two loci. RESULTS Disease-causing mutations were identified in nine of the 37 families: five in TULP1, two in CRB1, one in RPE65, and one in GUCY2D. Mutations in known genes only accounted for 24% of the Saudi families--much less than what has been observed in the European population (65%). Phenotype-genotype analysis was carried out to investigate the LCA disease penetrance for all families whose mutations identified. All identified mutations were found to segregate perfectly with the disease phenotype. On the other hand, severity of the disease varies for different patients carrying the same mutation and even within the same family. Furthermore, based on homozygosity mapping with both STR and SNP markers, one family is likely to map to the LCA3 locus. CONCLUSIONS These results underscore the importance of studying LCA disease families from different ethnic backgrounds to identify additional novel LCA disease genes. Furthermore, perfect segregation between mutation and disease indicates that LCA is fully penetrant. However, phenotypic variations among patients carrying the same mutation suggest that at least some of the variations in the clinical phenotype is due to modification from the genetic background, environment, or other factors.
Collapse
Affiliation(s)
- Yumei Li
- Departments of Molecular and Human Genetics
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Génin E, Feingold J, Clerget-Darpoux F. Identifying modifier genes of monogenic disease: strategies and difficulties. Hum Genet 2008; 124:357-68. [PMID: 18784943 DOI: 10.1007/s00439-008-0560-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 09/02/2008] [Indexed: 01/03/2023]
Abstract
Substantial clinical variability is observed in many Mendelian diseases, so that patients with the same mutation may develop a very severe form of disease, a mild form or show no symptoms at all. Among the factors that may explain these differences in disease expression are modifier genes. In this paper, we review the different strategies that can be used to identify modifier genes and explain their advantages and limitations. We focus mainly on the statistical aspects but illustrate our points with a variety of examples from the literature.
Collapse
|
287
|
Jiang ST, Chiou YY, Wang E, Lin HK, Lee SP, Lu HY, Wang CKL, Tang MJ, Li H. Targeted disruption of Nphp1 causes male infertility due to defects in the later steps of sperm morphogenesis in mice. Hum Mol Genet 2008; 17:3368-79. [PMID: 18684731 DOI: 10.1093/hmg/ddn231] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Juvenile nephronophthisis type I is the most common genetic disorder causing end-stage renal failure in children and young adults. The defective gene responsible has been identified as NPHP1. Its gene product, nephrocystin-1, is a novel protein of uncertain function that is widely expressed in many tissues and not just confined to the kidney. To gain insight into the physiological function of nephrocystin, Nphp1-targeted mutant mice were generated by homologous recombination. Interestingly, homozygous Nphp1 mutant mice were viable without renal manifestations of nephronophthisis. They appeared normal, but males were infertile with oligoteratozoospermia. Histological analysis of the seminiferous tubules showed that spermatogenesis was blocked at the early stages of spermatid elongation, with degenerating spermatids sloughing off into the lumen. Electron microscopic analysis revealed detachment of early elongating spermatids from Sertoli cells, and a failure of sperm head and tail morphogenesis. However, a few mature spermatozoa were still deposited in the epididymis, though they were frequently dead, immotile, or malformed. These novel findings indicate that nephrocystin is critically required for the differentiation of early elongating spermatids into spermatozoa in mice. The possible roles of nephrocystin in the formation and maintenance of Sertoli-spermatid junctions are still under investigation.
Collapse
Affiliation(s)
- Si-Tse Jiang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
288
|
Bivariate genome linkage analysis suggests pleiotropic effects on chromosomes 20p and 3p for body fat mass and lean mass. Genet Res (Camb) 2008; 90:259-68. [PMID: 18593513 DOI: 10.1017/s0016672308009257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Total body fat mass (TBFM) and total body lean mass (TBLM) are the major components of the human body. Although these highly correlated phenotypic traits are frequently used to characterize obesity, the specific shared genetic factors that influence both traits remain largely unknown. Our study was aimed at identifying common quantitative trait loci (QTLs) contributing to both TBFM and TBLM. We performed a whole genome-linkage scan study in a large sample of 3255 subjects from 420 Caucasian pedigrees. Bivariate linkage analysis was carried out in both the entire sample and gender-specific subsamples. Several potentially important genomic regions that may harbour QTLs important for TBFM and TBLM were identified. For example, 20p12-11 achieved a LOD score of 2.04 in the entire sample and, in the male subsample, two genomic regions, 20p12 (LOD=2.08) and 3p26-25 (LOD=1.92), showed suggestive linkage. In addition, two-point linkage analyses for chromosome X showed suggestive linkages on Xp22 in the entire sample (LOD=2.14) and significant linkage on Xp22 in the female subsample (LOD=3.05). Complete pleiotropy was suggested for 20p12 and 3p26-25 in males. Our results suggest that QTLs on chromosomes 20p12, 3p26-25 and Xp22 may jointly influence TBFM and TBLM. Further fine mapping and gene identification studies for these pleiotropic effects are needed.
Collapse
|
289
|
Endocrinology and metabolism. Curr Opin Pediatr 2008; 20:446-7. [PMID: 18622202 DOI: 10.1097/mop.0b013e328305e44b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
290
|
den Hollander AI, Roepman R, Koenekoop RK, Cremers FPM. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008; 27:391-419. [PMID: 18632300 DOI: 10.1016/j.preteyeres.2008.05.003] [Citation(s) in RCA: 566] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of the cases. Several of these genes have also been implicated in other non-syndromic or syndromic retinal diseases, such as retinitis pigmentosa and Joubert syndrome, respectively. CEP290 (15%), GUCY2D (12%), and CRB1 (10%) are the most frequently mutated LCA genes; one intronic CEP290 mutation (p.Cys998X) is found in approximately 20% of all LCA patients from north-western Europe, although this frequency is lower in other populations. Despite the large degree of genetic and allelic heterogeneity, it is possible to identify the causative mutations in approximately 55% of LCA patients by employing a microarray-based, allele-specific primer extension analysis of all known DNA variants. The LCA genes encode proteins with a wide variety of retinal functions, such as photoreceptor morphogenesis (CRB1, CRX), phototransduction (AIPL1, GUCY2D), vitamin A cycling (LRAT, RDH12, RPE65), guanine synthesis (IMPDH1), and outer segment phagocytosis (MERTK). Recently, several defects were identified that are likely to affect intra-photoreceptor ciliary transport processes (CEP290, LCA5, RPGRIP1, TULP1). As the eye represents an accessible and immune-privileged organ, it appears to be uniquely suitable for human gene replacement therapy. Rodent (Crb1, Lrat, Mertk, Rpe65, Rpgrip1), avian (Gucy2D) and canine (Rpe65) models for LCA and profound visual impairment have been successfully corrected employing adeno-associated virus or lentivirus-based gene therapy. Moreover, phase 1 clinical trials have been carried out in humans with RPE65 deficiencies. Apart from ethical considerations inherently linked to treating children, major obstacles for the treatment of LCA could be the putative developmental deficiencies in the visual cortex in persons blind from birth (amblyopia), the absence of sufficient numbers of viable photoreceptor or RPE cells in LCA patients, and the unknown and possibly toxic effects of overexpression of transduced genes. Future LCA research will focus on the identification of the remaining causal genes, the elucidation of the molecular mechanisms of disease in the retina, and the development of gene therapy approaches for different genetic subtypes of LCA.
Collapse
Affiliation(s)
- Anneke I den Hollander
- Department of Human Genetics & Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
291
|
Montana CL, Corbo JC. Inherited diseases of photoreceptors and prospects for gene therapy. Pharmacogenomics 2008; 9:335-47. [PMID: 18303969 DOI: 10.2217/14622416.9.3.335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The photoreceptor cells of the retina are subject to a wide range of genetic diseases. This review summarizes current knowledge regarding an important group of retinal diseases caused by mutations in photoreceptor-enriched genes. In addition, progress toward treatment of a variety of these diseases in animal models via adeno-associated virus gene therapy is described. Although no human trials have yet been initiated to treat diseases caused by mutations in photoreceptor-enriched genes, there is a great deal of optimism regarding the prospects of treating these diseases using adeno-associated virus gene therapy.
Collapse
Affiliation(s)
- Cynthia L Montana
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118; 660 South Euclid Ave. St. Louis, MO 63110, USA
| | | |
Collapse
|
292
|
Failly M, Saitta A, Muñoz A, Falconnet E, Rossier C, Santamaria F, de Santi MM, Lazor R, DeLozier-Blanchet CD, Bartoloni L, Blouin JL. DNAI1 mutations explain only 2% of primary ciliary dykinesia. Respiration 2008; 76:198-204. [PMID: 18434704 DOI: 10.1159/000128567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/21/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare recessive hereditary disorder characterized by dysmotility to immotility of ciliated and flagellated structures. Its main symptoms are respiratory, caused by defective ciliary beating in the epithelium of the upper airways (nose, bronchi and paranasal sinuses). Impairing the drainage of inhaled microorganisms and particles leads to recurrent infections and pulmonary complications. To date, 5 genes encoding 3 dynein protein arm subunits (DNAI1, DNAH5 and DNAH11), the kinase TXNDC3 and the X-linked RPGR have been found to be mutated in PCD. OBJECTIVES We proposed to determine the impact of the DNAI1 gene on a cohort of unrelated PCD patients (n = 104) recruited without any phenotypic preselection. METHODS We used denaturing high-performance liquid chromatography and sequencing to screen for mutations in the coding and splicing site sequences of the gene DNAI1. RESULTS Three mutations were identified: a novel missense variant (p.Glu174Lys) was found in 1 patient and 2 previously reported variants were identified (p.Trp568Ser in 1 patient and IVS1+2_3insT in 3 patients). Overall, mutations on both alleles of gene DNAI1 were identified in only 2% of our clinically heterogeneous cohort of patients. CONCLUSION We conclude that DNAI1 gene mutation is not a common cause of PCD, and that major or several additional disease gene(s) still remain to be identified before a sensitive molecular diagnostic test can be developed for PCD.
Collapse
Affiliation(s)
- Mike Failly
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
293
|
Abstract
The focus of this work is to highlight the most recent advances in the understanding of cleft lip and palate occurrence. Information regarding research on long-term outcomes, genes and their interactions with other genes, and gene-environment interactions is compiled to provide the reader with a critical and up-to-date overview on the current knowledge of the etiology of cleft lip and palate. Recent epidemiological evidence strongly suggests that individuals born with clefts have a shorter lifespan and may have a higher incidence of cancer and psychological disorders. IRF6 has been shown to be an important contributor to cleft lip and palate, but the functional variant leading to the defect has not yet been defined. Inactivation of MSX1 and genes in the FGF family has also been shown to lead to cleft lip and palate. In addition, missense mutations in several candidate genes may cause cleft lip and palate, but definitive evidence regarding the biological consequences of these mutations is yet to be unraveled. Maternal cigarette smoking increases the risk of a baby born with clefts, in particular when the mother carries the GSTT1-null variants. The latest approaches in cleft research include the analysis of several additional phenotypical features of the population, with the goal of increasing the statistical power of genetics studies.
Collapse
Affiliation(s)
- A R Vieira
- Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, PA 15261, USA.
| |
Collapse
|
294
|
Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, Sheffield VC, Slusarski DC. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 2008; 17:1956-67. [PMID: 18381349 DOI: 10.1093/hmg/ddn093] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic, genetically heterogeneous disorder characterized by obesity, retinopathy, polydactyly, cognitive impairment, renal and cardiac anomalies, as well as hypertension and diabetes. Multiple genes are known to independently cause BBS. These genes do not appear to code for the same functional category of proteins; yet, mutation of each results in a similar phenotype. Gene knockdown of different BBS genes in zebrafish shows strikingly overlapping phenotypes including defective melanosome transport and disruption of the ciliated Kupffer's vesicle. Here, we demonstrate that individual knockdown of bbs1 and bbs3 results in the same prototypical phenotypes as reported previously for other BBS genes. We utilize the zebrafish system to comprehensively determine whether simultaneous pair-wise knockdown of BBS genes reveals genetic interactions between BBS genes. Using this approach, we demonstrate eight genetic interactions between a subset of BBS genes. The synergistic relationships between distinct combinations are not due to functional redundancy but indicate specific interactions within a multi-subunit BBS complex. In addition, we utilize the zebrafish model system to investigate limb development. Human polydactyly is a cardinal feature of BBS not reproduced in BBS-mouse models. We evaluated zebrafish fin bud patterning and observed altered Sonic hedgehog (shh) expression and subsequent changes to fin skeletal elements. The SHH fin bud phenotype was also used to confirm specific genetic interactions between BBS genes. This study reveals an in vivo requirement for BBS function in limb bud patterning. Our results provide important new insights into the mechanism and biological significance of BBS.
Collapse
Affiliation(s)
- Marwan K Tayeh
- Department of Pediatrics, Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
295
|
Genetik in der Pädiatrie als Interaktion zwischen Klinik und Labor. Monatsschr Kinderheilkd 2008. [DOI: 10.1007/s00112-008-1681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
296
|
Hjortshøj TD, Grønskov K, Philp AR, Nishimura DY, Adeyemo A, Rotimi CN, Sheffield VC, Rosenberg T, Brøndum-Nielsen K. Novel mutations in BBS5 highlight the importance of this gene in non-Caucasian Bardet-Biedl syndrome patients. Am J Med Genet A 2008; 146A:517-20. [PMID: 18203199 PMCID: PMC2578871 DOI: 10.1002/ajmg.a.32136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
297
|
Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, Alfadhel M, Al-Fadhel M, Lewis RA, Eyaid W, Banin E, Dollfus H, Beales PL, Badano JL, Katsanis N. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 2008; 40:443-8. [PMID: 18327255 DOI: 10.1038/ng.97] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/23/2008] [Indexed: 11/09/2022]
Abstract
Meckel-Gruber syndrome (MKS) is a genetically heterogeneous, neonatally lethal malformation and the most common form of syndromic neural tube defect (NTD). To date, several MKS-associated genes have been identified whose protein products affect ciliary function. Here we show that mutations in MKS1, MKS3 and CEP290 (also known as NPHP6) either can cause Bardet-Biedl syndrome (BBS) or may have a potential epistatic effect on mutations in known BBS-associated loci. Five of six families with both MKS1 and BBS mutations manifested seizures, a feature that is not a typical component of either syndrome. Functional studies in zebrafish showed that mks1 is necessary for gastrulation movements and that it interacts genetically with known bbs genes. Similarly, we found two families with missense or splice mutations in MKS3, in one of which the affected individual also bears a homozygous nonsense mutation in CEP290 that is likely to truncate the C terminus of the protein. These data extend the genetic stratification of ciliopathies and suggest that BBS and MKS, although distinct clinically, are allelic forms of the same molecular spectrum.
Collapse
Affiliation(s)
- Carmen C Leitch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733. N Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
298
|
Abstract
Although the expression of cilia on chondrocytes was described over 40 years ago, the importance of this organelle in skeletal development and maintenance has only recently been recognized. Primary cilia are found on most mammalian cells and have been shown to play a role in chemosensation and mechanosensation. A growing number of human pleiotropic syndromes have been shown to be associated with ciliary or basal body dysfunction. Skeletal phenotypes, including alterations in limb patterning, endochondral bone formation, craniofacial development, and dentition, have been described in several of these syndromes. Additional insights into the potential roles and mechanisms of cilia action in the mammalian skeleton have been provided by research in model organisms including mouse and zebrafish. In this article we describe what is currently known about the localization of cilia in the skeleton as well as the roles and underlying molecular mechanisms of cilia in skeletal development.
Collapse
Affiliation(s)
- Courtney J Haycraft
- Department of Medicine/Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
299
|
|
300
|
Nebert DW, Zhang G, Vesell ES. From human genetics and genomics to pharmacogenetics and pharmacogenomics: past lessons, future directions. Drug Metab Rev 2008; 40:187-224. [PMID: 18464043 PMCID: PMC2752627 DOI: 10.1080/03602530801952864] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A brief history of human genetics and genomics is provided, comparing recent progress in those fields with that in pharmacogenetics and pharmacogenomics, which are subsets of genetics and genomics, respectively. Sequencing of the entire human genome, the mapping of common haplotypes of single-nucleotide polymorphisms (SNPs), and cost-effective genotyping technologies leading to genome-wide association (GWA) studies - have combined convincingly in the past several years to demonstrate the requirements needed to separate true associations from the plethora of false positives. While research in human genetics has moved from monogenic to oligogenic to complex diseases, its pharmacogenetics branch has followed, usually a few years behind. The continuous discoveries, even today, of new surprises about our genome cause us to question reviews declaring that "personalized medicine is almost here" or that "individualized drug therapy will soon be a reality." As summarized herein, numerous reasons exist to show that an "unequivocal genotype" or even an "unequivocal phenotype" is virtually impossible to achieve in current limited-size studies of human populations. This problem (of insufficiently stringent criteria) leads to a decrease in statistical power and, consequently, equivocal interpretation of most genotype-phenotype association studies. It remains unclear whether personalized medicine or individualized drug therapy will ever be achievable by means of DNA testing alone.
Collapse
Affiliation(s)
- Daniel W Nebert
- Division of Human Genetics, Department of Pediatrics & Molecular Developmental Biology, Cincinnati, Ohio 45267-0056, USA.
| | | | | |
Collapse
|