251
|
Fu H, Yao J, Zhang M, Xue L, Zhou Q, Li S, Lei M, Meng L, Zhang ZG, Li Y. Low-cost synthesis of small molecule acceptors makes polymer solar cells commercially viable. Nat Commun 2022; 13:3687. [PMID: 35760969 PMCID: PMC9237043 DOI: 10.1038/s41467-022-31389-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
The acceptor-donor-acceptor (A–D–A) or A–DA’D–A structured small molecule acceptors (SMAs) have triggered substantial progress for polymer solar cells (PSCs). However, the high−cost of the SMAs impedes the commercial viability of such renewable energy, as their synthesis via the classical pyridine-catalyzed Knoevenagel condensation usually suffers from low reaction efficiency and tedious purifying work-up. Herein, we developed a simple and cheap boron trifluoride etherate-catalyzed Knoevenagel condensation for addressing this challenge, and found that the coupling of the aldehyde-terminated D unit and the A-end groups could be quantitatively finished in the presence of acetic anhydride within 15 minutes at room temperature. Compared with the conventional method, the high reaction efficiency of our method is related to the germinal diacetate pathway that is thermodynamically favorable to give the final products. For those high performing SMAs (such as ITIC-4F and Y6), the cost could be reduced by 50% compared with conventional preparation. In addition to the application in PSCs, our synthetic approach provides a facile and low-cost access to a wide range of D–A organic semiconductors for emerging technologies. The high−cost of the acceptor-donor-acceptor structured small molecule acceptors impedes its commercial viability for polymer solar cells. To address this problem, here, the authors developed a simple and cheap boron trifluoride etherate-catalyzed Knoevenagel condensation with high reaction efficiency.
Collapse
Affiliation(s)
- Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jia Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Lingwei Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qiuju Zhou
- Analysis & Testing Center, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Shangyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
252
|
Advances in Green-Solvent-Processable All-Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
253
|
Effect of Polymer Chain Regularity on the Photovoltaic Performance of Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
254
|
Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
255
|
Ohta K, Tominaga K, Ikoma T, Kobori Y, Yamada H. Microscopic Structures, Dynamics, and Spin Configuration of the Charge Carriers in Organic Photovoltaic Solar Cells Studied by Advanced Time-Resolved Spectroscopic Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7365-7382. [PMID: 35675205 DOI: 10.1021/acs.langmuir.2c00290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic photovoltaics (OPVs) are promising solutions for renewable energy and sustainable technologies and have attracted much attention in recent years. Two types of organic semiconductors are used as donor materials to fabricate OPV cells. One type is a photoconductive polymer, and the other type is a small-molecule-based compound. The discovery of a bulk-heterojunction (BHJ) structure using a mixture of p- and n-type organic semiconductors has dramatically increased the power conversion efficiency (PCE) of OPV cells. In this feature article, we review our recent studies on organic BHJ thin films and OPVs by using advanced time-resolved spectroscopic techniques. Two topics regarding the microscopic behaviors of the charge carriers are discussed. The first topic is focused on how to quantify the local mobility of the charge carriers. Here, we discuss charge carrier dynamics in diketopyrrolopyrrole-linked tetrabenzoporphyrin (DPP-BP) BHJ thin films studied by time-resolved terahertz spectroscopy on a subpicosecond to several tens of picoseconds time scale and by transient photocurrent measurements on a microsecond time scale. The second topic concerns the spin configuration and interaction of the electron and hole of the polaron pairs in polymer-based BHJ thin films and OPV cells studied by the time-resolved electron paramagnetic resonance method, time-resolved simultaneous optical and electrical detection, and measurement of the magnetoconductance effect.
Collapse
Affiliation(s)
- Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe, 657-8501, Japan
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe, 657-8501, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Nishi-ku, Niigata950-2181, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, Rokkodai-cho 1-1, Nada, Kobe, 657-8501, Japan
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara630-0192, Japan
| |
Collapse
|
256
|
Haroon M, Fatima W, Janjua MRSA. Physicochemical insights into the rational designing of new acceptor molecules by donor bridge modifications for efficient solar cells: In silico chemistry. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Haroon
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | - Wajiha Fatima
- Department of Chemistry Government College University Faisalabad Pakistan
| | | |
Collapse
|
257
|
Yang SY, Qu YK, Liao LS, Jiang ZQ, Lee ST. Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104125. [PMID: 34595783 DOI: 10.1002/adma.202104125] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Organic semiconductors can be designed and constructed in π-stacked structures instead of the conventional π-conjugated structures. Through-space interaction (TSI) occurs in π-stacked optoelectronic materials. Thus, unlike electronic coupling along the conjugated chain, the functional groups can stack closely to facilitate spatial electron communication. Using π-stacked motifs, chemists and materials scientists can find new ways for constructing materials with aggregation-induced emission (AIE), thermally activated delayed fluorescence (TADF), circularly polarized luminescence (CPL), and room-temperature phosphorescence (RTP), as well as enhanced molecular conductance. Organic optoelectronic devices based on π-stacked molecules have exhibited very promising performance, with some of them exceeding π-conjugated analogues. Recently, reports on various organic π-stacked structures have grown rapidly, prompting this review. Representative molecular scaffolds and newly developed π-stacked systems could stimulate more attention on through-space charge transfer the well-known through-bond charge transfer. Finally, the opportunities and challenges for utilizing and improving particular materials are discussed. The previous achievements and upcoming prospects may provide new insights into the theory, materials, and devices in the field of organic semiconductors.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yang-Kun Qu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
258
|
|
259
|
Wen Q, Cai Q, Fu P, Chang D, Xu X, Wen TJ, Wu GP, Zhu W, Wan LS, Zhang C, Zhang XH, Jin Q, Wu ZL, Gao C, Zhang H, Huang N, Li CZ, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
260
|
Sun C, Zhu C, Meng L, Li Y. Quinoxaline-Based D-A Copolymers for the Applications as Polymer Donor and Hole Transport Material in Polymer/Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104161. [PMID: 34632627 DOI: 10.1002/adma.202104161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Polymer solar cells (PSCs) have achieved great progress recently, benefiting from the rapid development of narrow bandgap small molecule acceptors and wide bandgap conjugated polymer donors. Among the polymer donors, the D-A copolymers with quinoxaline (Qx) as A-unit have received increasing attention since the report of the low-cost and high-performance D-A copolymer donor based on thiophene D-unit and difluoro-quinoxalline A-unit in 2018. In addition, the weak electron-deficient characteristic and the multiple substitution positions of the Qx unit make it an ideal A-unit in constructing the wide bandgap polymer donors with different functional substitutions. In this review article, recent developments of the Qx-based D-A copolymer donors, including synthetic method of the Qx unit, backbone modulation, side chain optimization, and functional substitution of the Qx-based D-A copolymers, are summarized and discussed. Furthermore, the application of the Qx-based D-A copolymers as hole transport material in perovskite solar cells (pero-SCs) is also introduced. The focus mainly on the molecular design strategies and structure-properties relationship of the Qx-based D-A copolymers, aiming to provide a guideline for developing high-performance Qx-based D-A copolymers for the applications as donor in PSCs and as hole transport material in pero-SCs.
Collapse
Affiliation(s)
- Chenkai Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
261
|
Guo Y, Liu M, Yuan C, Ren Z, Liu Y. Combining Polymer Zwitterions and Zinc Oxide for High Performance Inverted Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200291. [PMID: 35642107 DOI: 10.1002/marc.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Indexed: 11/11/2022]
Abstract
Zinc oxide (ZnO) is a widely used cathode interlayer material in inverted organic solar cells (OSCs). However, there are lots of surface or bulk film defects in ZnO layers, which degrades solar cell performance. Here, the typical phosphorylcholine- and sulfobetaine-based polymer zwitterions (PMPC and PDMAPS) were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization to modify ZnO interlayers for inverted OSCs. The polymer zwitterions can efficiently passivate the defects in ZnO films and thus increase the conductivity of the ZnO interlayers. Both PMPC and PDMAPS modified ZnO interlayers show some general advantages on improving the performance of fullerene-based and non-fullerene-based OSCs. A highest efficiency of 16.69% was achieved by using PMPC modified ZnO interlayers in PM6:Y6 based solar cell devices, which is among the best performance in inverted OSCs. Such an improvement on device performance is attribute to the work function reduction of the polymer zwitterions modified ZnO films, which provides an efficient cathode platform to extract and transport electrons from the active layers, to the benefit of suppressing interfacial charge recombination. As a result, the organic-inorganic hybrid composites (ZnO: polymer zwitterions) show efficient interfacial modification to align energy-levels at the device interface, which have promising application prospects in organic electronics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanan Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenyuhe Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter, Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
262
|
Rousseva S, Raul BAL, van Kooij FS, Kuevda AV, Birudula S, Hummelen JC, Pshenichnikov MS, Chiechi RC. Investigating the dielectric properties and exciton diffusion in C 70 derivatives. Phys Chem Chem Phys 2022; 24:13763-13772. [PMID: 35612289 DOI: 10.1039/d2cp00791f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, the dielectric constant (εr) of organic semiconductors (OSCs) has been of interest in the organic photovoltaic (OPV) community due to its potential influence on the exciton binding energy. Despite progress in the design of high εr OSCs and the accurate measurement of the εr, the effects of the synthetic strategies on specific (opto)electronic properties of the OSCs remain uncertain. In this contribution, the effects of εr on the optical properties of five new C70 derivatives and [70]PCBM are investigated. Together with [70]PCBM, the derivatives have a range of εr values that depend on the polarity and length of the side chains. The properties of the singlet excitons are investigated in detail with steady-state and time-resolved spectroscopy and the exciton diffusion length is measured. All six derivatives show similar photophysical properties in the neat films. However, large differences in the crystallinity of the fullerene films influence the exciton dynamics in blend films. This work shows that design principles for OSCs with a higher εr can have a very different influence on the performance of traditional BHJ devices and in neat films and it is important to consider the neat film properties when investigating the optoelectronic properties of new materials for OPV.
Collapse
Affiliation(s)
- Sylvia Rousseva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Benedito A L Raul
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Felien S van Kooij
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Alexey V Kuevda
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Srikanth Birudula
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Jan C Hummelen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Maxim S Pshenichnikov
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Ryan C Chiechi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| |
Collapse
|
263
|
Gao X, Ma X, Liu Z, Gao J, Qi Q, Yu Y, Gao Y, Ma Z, Ye L, Min J, Wen J, Gao J, Zhang F, Liu Z. Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23701-23708. [PMID: 35546579 DOI: 10.1021/acsami.2c03196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing novel third component is critical for the ternary organic solar cells (TOSCs). Herein, we design and synthesize two novel third components, MAZ-1 and MAZ-2, with 1,3-diethyl-2-thiobarbituric acid and 1,3-dimethylbarbituric acid as the weak electron withdrawing end groups, respectively. Both MAZ-1 and MAZ-2 could improve the photovoltaic performance of the binary OSCs based on D18:Y6 which exhibit the power conversion efficiency (PCE) of 17%, because the third components can optimize the phase separation, suppress the bimolecular recombination, and decrease the nonradiative energy loss in ternary blends. The PCE of the optimized TOSCs approaches 18% along with the simultaneous increase in open circuit voltage, short circuit current density, and fill factor by incorporating 10 wt % MAZ-1 and MAZ-2 in acceptors. This work enriches the building blocks for novel third components for achieving highly efficient TOSCs.
Collapse
Affiliation(s)
- Xiang Gao
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaoling Ma
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zifeng Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiaxin Gao
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qingchun Qi
- School of Materials Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Yue Yu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yang Gao
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zaifei Ma
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jing Wen
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jianhong Gao
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhitian Liu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
264
|
Gnida P, Amin MF, Pająk AK, Jarząbek B. Polymers in High-Efficiency Solar Cells: The Latest Reports. Polymers (Basel) 2022; 14:1946. [PMID: 35631829 PMCID: PMC9143377 DOI: 10.3390/polym14101946] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices' thermal or operating temperature range. Today's widely used polymeric materials are also used at various stages of the preparation of the complete device-it is worth mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells, they are used primarily as donor materials; however, there are reports in the literature of their use as acceptors. In perovskite devices, they are used as additives to improve the morphology of the perovskite, mainly as hole transport materials and also as additives to electron transport layers. Polymers, thanks to their numerous advantages, such as the possibility of practically any modification of their chemical structure and thus their physical and chemical properties, are increasingly used in devices that convert solar radiation into electrical energy, which is presented in this paper.
Collapse
Affiliation(s)
- Paweł Gnida
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | - Muhammad Faisal Amin
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| | | | - Bożena Jarząbek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland
| |
Collapse
|
265
|
Yuan Y, Kumar P, Ngai JHL, Gao X, Li X, Liu H, Wang J, Li Y. Wide Bandgap Polymer Donor with Acrylate Side Chains for Non-Fullerene Acceptor-based Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200325. [PMID: 35524946 DOI: 10.1002/marc.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Organic semiconductors inherently have a low dielectric constant and hence high exciton binding energy, which is largely responsible for the rather low power conversion efficiency of organic solar cells as well as the requirements to achieve delicate bulk-heterojunction nanophase separation in the active layer. In this study, we use methyl acrylate as a weakly electron-withdrawing side chain for the electron rich thiophene to prepare a new building block, methyl thiophene-3-acrylate (TA), with increased polarity. A wide bandgap polymer PBDT-TA synthesized using TA and a benzodithiophene (BDT) monomer shows increased dielectric constant and reduced exciton binding energy compared to the analogous polymer PBDT-TC, which is made of BDT and methyl thiophene-3-carboxylate (TC). An organic solar cell device based on PBDT-TA:ITIC also achieves a higher power conversion efficiency of 10.47% than that of the PBDT-TC:ITIC based solar cell (9.68%). This work demonstrates the effectiveness of using acrylate side chains to increase the dielectric constant, reduce the exciton binding energy, and enhance the solar cell efficiency of polymer semiconductors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Pankaj Kumar
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Jenner H L Ngai
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Xiguang Gao
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| | - Xu Li
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Haitao Liu
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Jinliang Wang
- Institute of Chemistry, Henan Academy of Sciences, 56 Hongzhuan Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| |
Collapse
|
266
|
Jiang P, Hu L, Sun L, Li Z, Han H, Zhou Y. On the interface reactions and stability of nonfullerene organic solar cells. Chem Sci 2022; 13:4714-4739. [PMID: 35655884 PMCID: PMC9067595 DOI: 10.1039/d1sc07269b] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Long-term stability is critical for organic solar cells (OSCs) for practical applications. Several factors affect the stability of OSCs, including materials stability, morphology stability of bulk-heterojunctions and interface stability. In this perspective, we focus on interface stability due to interfacial reactions between the emerging acceptor-donor-acceptor (A-D-A) type nonfullerene active layers and interfacial layers. The description covers the initial phenomena of interfacial instability, mechanism of interfacial reactions, and strategies adopted to suppress interfacial reactions between the nonfullerene active layers and interfacial layers. Methods to test and analyze the chemical instability of nonfullerene acceptors are also included. The C[double bond, length as m-dash]C vinyl linker between the donor moiety and acceptor moiety is chemically or photochemically reactive and is a weak point for interface stability. The interface stability of OSCs could be enhanced by reducing the reactivity of the C[double bond, length as m-dash]C vinyl linker or removing it directly, modifying the surface of interfacial layers, and developing other novel interfacial materials.
Collapse
Affiliation(s)
- Pei Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 China
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei P. R. China
| | - Lu Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 China
| | - Lulu Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan P. R. China
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology Wuhan 430074 Hubei P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
267
|
Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12091535. [PMID: 35564245 PMCID: PMC9101664 DOI: 10.3390/nano12091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
We prepared a series of one-dimensional conjugated-material-based nanofibers with different morphologies and donor/acceptor (D/A) compositions by electrospinning for efficient photocatalytic hydrogen evolution. It was found that homogeneous D/A heterojunction nanofibers can be obtained by electrospinning, and the donor/acceptor ratio can be easily controlled. Compared with the single-component-based nanofibers, the D/A-based nanofibers showed a 34-fold increase in photocatalytic efficiency, attributed to the enhanced exciton dissociation in the nanofibrillar body. In addition, the photocatalytic activity of these nanofibers can be easily optimized by modulating the diameter. The results show that the diameter of the nanofibers can be conveniently controlled by the electrospinning feed rate, and the photocatalytic effect increases with decreasing fiber diameter. Consequently, the nanofibers with the smallest diameter exhibit the most efficient photocatalytic hydrogen evolution, with the highest release rate of 24.38 mmol/(gh). This work provides preliminary evidence of the advantages of the electrospinning strategy in the construction of D/A nanofibers with controlled morphology and donor/acceptor composition, enabling efficient hydrogen evolution.
Collapse
|
268
|
Paul F, Paul S. To Be or Not to Be - Review of Electrical Bistability Mechanisms in Polymer Memory Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106442. [PMID: 35132772 DOI: 10.1002/smll.202106442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Organic memory devices are a rapidly evolving field with much improvement in device performance, fabrication, and application. But the reports have been disparate in terms of the material behavior and the switching mechanisms in the devices. And, despite the advantages, the lack of agreement in regards to the switching behavior of the memory devices is the biggest challenge that the field must overcome to mature as a commercial competitor. This lack of consensus has been the motivation of this work wherein various works are compiled together to understand influencing factors in the memory devices. Different works are compared together to discover some clues about the nature of the switching occurring in the devices, along with some missing links that would require further investigation. The charge storage mechanism is critically analyzed alongside the various resistive switching mechanisms such as filamentary conduction, redox-based switching, metal oxide switching, and other proposed mechanisms. The factors that affect the switching process are also analyzed including the effect of nanoparticles, the effect of the choice of polymer, or even the effect of electrodes on the switching behavior and the performance parameters of the memory device.
Collapse
Affiliation(s)
- Febin Paul
- Emerging Technologies Research Centre, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Shashi Paul
- Emerging Technologies Research Centre, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| |
Collapse
|
269
|
Cai G, Chen Z, Li M, Li Y, Xue P, Cao Q, Chi W, Liu H, Xia X, An Q, Tang Z, Zhu H, Zhan X, Lu X. Revealing the Sole Impact of Acceptor's Molecular Conformation to Energy Loss and Device Performance of Organic Solar Cells through Positional Isomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103428. [PMID: 35322593 PMCID: PMC9130893 DOI: 10.1002/advs.202103428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Two new fused-ring electron acceptor (FREA) isomers with nonlinear and linear molecular conformation, m-BAIDIC and p-BAIDIC, are designed and synthesized. Despite the similar light absorption range and energy levels, the two isomers exhibit distinct electron reorganization energies and molecular packing motifs, which are directly related to the molecular conformation. Compared with the nonlinear acceptor, the linear p-BAIDIC shows more ordered molecular packing and higher crystallinity. Furthermore, p-BAIDIC-based devices exhibit reduced nonradiative energy loss and improved charge transport mobilities. It is beneficial to enhance the open-circuit voltage (VOC ) and short-current current density (JSC ) of the devices. Therefore, the linear FREA, p-BAIDIC yields a relatively higher efficiency of 7.71% in the binary device with PM6, in comparison with the nonlinear m-BAIDIC. When p-BAIDIC is incorporated into the binary PM6/BO-4Cl system to form a ternary system, synergistic enhancements in VOC , JSC , fill factor (FF), and ultimately a high efficiency of 17.6% are achieved.
Collapse
Affiliation(s)
- Guilong Cai
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Zeng Chen
- State Key Laboratory of Modern Optical InstrumentationCenter for Chemistry of High‐Performance & Novel MaterialsDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310030China
| | - Mengyang Li
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modi cation of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Yuhao Li
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Peiyao Xue
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Qingbin Cao
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Weijie Chi
- Fluorescence Research GroupSingapore University of Technology and DesignSingapore487372Singapore
| | - Heng Liu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Xinxin Xia
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| | - Qiaoshi An
- School of Chemistry and Chemical EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Zheng Tang
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modi cation of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical InstrumentationCenter for Chemistry of High‐Performance & Novel MaterialsDepartment of ChemistryZhejiang UniversityHangzhouZhejiang310030China
| | - Xiaowei Zhan
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| | - Xinhui Lu
- Department of PhysicsThe Chinese University of Hong KongNew TerritoriesHong Kong999077China
| |
Collapse
|
270
|
Zuo K, Dai T, Guo Q, Wang Z, Zhong Y, Mengzhen D, Wang H, Tang A, Zhou E. PTB7-Th-Based Organic Photovoltaic Cells with a High VOC of over 1.0 V via Fluorination and Side Chain Engineering of Benzotriazole-Containing Nonfullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18764-18772. [PMID: 35416024 DOI: 10.1021/acsami.2c03171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PTB7-Th is considered one of the most classic donor polymers for organic photovoltaic (OPV) cells. However, the power conversion efficiency (PCE) of PTB7-Th-based OPV is lagging behind that of other promising polymers mainly because of the relatively low open-circuit voltage (VOC). To increase the VOC and PCE of PTB7-Th-based OPV, the development of nonfullerene acceptors (NFAs) and studies of structure-property-performance relationship are vital. Here, three A2-A1-D-A1-A2-type acceptors, namely BTA45, F-BTA45, and F-BTA5, were developed by fluorination on the benzotriazole (BTA) unit and regulating alkoxy or alkyl phenyl side chains. Compared with BTA45, light absorption and π-π packing can be simultaneously improved for the two fluorinated BTA acceptors, resulting in an increased JSC and FF. Moreover, the F-BTA5-based blend film exhibits better phase separation morphology and electron transport than those of BTA45 and F-BTA45, which contribute to a device efficiency of 10.36% with a VOC of 1.03 V. In addition, the ΔE2 values of the three blends are less than 0.15 eV, together with their moderate ΔE3, efficiently decreasing their energy loss. These results highlight the importance of fluorination and side chain engineering for NFAs to boost the VOC and PCE for low-band gap photovoltaic polymers.
Collapse
Affiliation(s)
- Kunyuan Zuo
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tingting Dai
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qiang Guo
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zongtao Wang
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yufei Zhong
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China
| | - Du Mengzhen
- Green Catalysis Center, College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Helin Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ailing Tang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
271
|
Yadagiri B, Narayanaswamy K, Sharma GD, Singh SP. Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18751-18763. [PMID: 35412303 DOI: 10.1021/acsami.2c02272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the design of novel medium bandgap nonfullerene small molecule acceptor NFSMA SPS-TDPP-2CNRh with A2-π-A1-π-A2 architecture, with the molecular engineering of this material comprising a strong electron-accepting backbone unit DPP (A1) as the acceptor, which is attached to the dicyanomethylene-3-hexylrhodanine (A2) acceptor via a furan (π-spacer) linker. We systematically studied its structural and optoelectronic properties. The incorporation of dicyanomethylene-3-hexylrhodanine and furan enhance the light absorption and electrochemical properties by extending π-conjugation and is anticipated to improve VOC by decreasing the LUMO level. The long alkyl chain units were responsible for the better solubility and aggregation of the resultant molecule. Binary BHJ-OSCs constructed with polymer P as the donor and SPS-TDPP-2CNRh as the acceptor resulted in a PCE of 11.49% with improved VOC = 0.98 V, JSC = 18.32 mA/cm2, and FF = 0.64 for P:SPS-TDPP-2CNRh organic solar cells. A ternary solar cell device was also made using Y18-DMO and SPS-TDPP-2CNRh as acceptors having complementary absorption profiles and polymer P as the donor, resulting in a PCE of 15.50% with improved JSC = 23.08 mA/cm2, FF = 0.73, and VOC = 0.92 V for the P:SPS-TDPP-2CNRh:Y18-DMO solar cell. The ternary OSCs with SPS-TDPP-2CNRh as the host acceptor in the P:Y18-DMO binary film were shown to have improved PCE values, which is mainly attributed to the effective photoinduced charge transfer through multiple networks and the use of excitons from SPS-TDPP-2CNRh and Y18-DMO. Moreover, in the ternary BHJ active layers, the superior stable charge transport that was observed compared to the binary counterparts may also lead to an increase in the fill factor. These results demonstrate that combining medium bandgap and narrow bandgap NFSMAs with a wide bandgap polymer donor is a successful route to increasing the overall PCE of the OSCs via the ternary BHJ concept.
Collapse
Affiliation(s)
- Bommaramoni Yadagiri
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Kamatham Narayanaswamy
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur, Rajasthan 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur, Rajasthan 302031, India
| | - Surya Prakash Singh
- Polymers and Functional Materials Division, CSIR Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
272
|
Zheng J, Huang L, Cui CH, Chen ZC, Liu XF, Duan X, Cao XY, Yang TZ, Zhu H, Shi K, Du P, Ying SW, Zhu CF, Yao YG, Guo GC, Yuan Y, Xie SY, Zheng LS. Ambient-pressure synthesis of ethylene glycol catalyzed by C 60-buffered Cu/SiO 2. Science 2022; 376:288-292. [PMID: 35420967 DOI: 10.1126/science.abm9257] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bulk chemicals such as ethylene glycol (EG) can be industrially synthesized from either ethylene or syngas, but the latter undergoes a bottleneck reaction and requires high hydrogen pressures. We show that fullerene (exemplified by C60) can act as an electron buffer for a copper-silica catalyst (Cu/SiO2). Hydrogenation of dimethyl oxalate over a C60-Cu/SiO2 catalyst at ambient pressure and temperatures of 180° to 190°C had an EG yield of up to 98 ± 1%. In a kilogram-scale reaction, no deactivation of the catalyst was seen after 1000 hours. This mild route for the final step toward EG can be combined with the already-industrialized ambient reaction from syngas to the intermediate of dimethyl oxalate.
Collapse
Affiliation(s)
- Jianwei Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lele Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Cun-Hao Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zuo-Chang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xu-Feng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xinping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xin-Yi Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Tong-Zong Yang
- Xiamen Funano New Materials Technology Co., Ltd., Xiamen, China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Kang Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Peng Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Si-Wei Ying
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Chang-Feng Zhu
- Xiamen Funano New Materials Technology Co., Ltd., Xiamen, China
| | - Yuan-Gen Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Su-Yuan Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
273
|
Perovskite-organic tandem solar cells with indium oxide interconnect. Nature 2022; 604:280-286. [PMID: 35418631 DOI: 10.1038/s41586-022-04455-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2-5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions12 and are on a par with perovskite-CIGS and all-perovskite multijunctions13.
Collapse
|
274
|
Arshad M, Shafiq I, Khalid M, Asiri AM. Exploration of the Intriguing Photovoltaic Behavior for Fused Indacenodithiophene-Based A-D-A Conjugated Systems: A DFT Model Study. ACS OMEGA 2022; 7:11606-11617. [PMID: 35449987 PMCID: PMC9017102 DOI: 10.1021/acsomega.1c06219] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
Many researchers are engaged nowadays in developing efficient photovoltaic materials to accomplish the demand of modern technology. Nonfullerene small molecular acceptors (NF-SMAs) show potential photovoltaic performance, accelerating the development of organic solar cells (OSCs). Herein, the first theoretical designing of a series of indacenodithiophene-based (IDIC1-IDIC6) acceptor chromophores was done by structural tailoring with various well-known acceptors from the recently synthesized IDICR molecule. For the selection of the best level of density functional theory (DFT), various functionals such as B3LYP, M06-2X, CAM-B3LYP, and ωB97XD with the 6-311G(d,p) basis set were used for the UV-visible analysis of IDICR. Consequently, UV-visible results revealed that an interesting agreement was found between experimental and DFT-based values at the B3LYP level. Therefore, quantum chemical investigations were executed at the B3LYP/6-311G(d,p) level to evaluate the photovoltaic and optoelectronic properties. Structural tailoring with various acceptors resulted in a narrowing of the energy gap (2.245-2.070 eV) with broader absorption spectra (750.919-660.544 nm). An effective transfer of charge toward lowest unoccupied molecular orbitals (LUMOs) from highest occupied molecular orbitals (HOMOs) was studied, which played a crucial role in conducting materials. Further, open circuit voltage (V oc) analysis was performed with respect to HOMO PBDB-T -LUMOACCEPTOR, and all of the derivatives exhibited a comparable value of voltage with that of the parent chromophore. Lower reorganization energies in titled chromophores for holes and electrons were examined, which indicated the higher rate of mobility of charges. Interestingly, all of the designed chromophores exhibited a preferable optoelectronic response compared to the reference molecule. Therefore, this computed framework demonstrates that conceptualized chromophores are preferable and might be used to build high-performance organic solar cells in the future.
Collapse
Affiliation(s)
- Muhammad
Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
| | - Iqra Shafiq
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- , ,
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
| |
Collapse
|
275
|
Yue Y, Zheng B, Yang W, Huo L, Wang J, Jiang L. Meniscus-Assisted Coating with Optimized Active-Layer Morphology toward Highly Efficient All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108508. [PMID: 34932849 DOI: 10.1002/adma.202108508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Morphology control is the key to engineering highly efficient solution-processed solar cells. Focusing on the most promising application-oriented photovoltaic all-polymer solar cells (all-PSCs), herein a facile and effective meniscus-assisted-coating (MAC) strategy is reported for preparing high-quality blend films with enhanced crystallinity and an interpenetrating nanofiber network morphology. The all-PSCs based on MAC exhibit excellent optoelectronic properties with efficiencies exceeding 15%, which is the best performance of solution-printing-based all-PSCs, as well as better stability. The crystallization kinetics of the polymer blend film is investigated by in situ UV-vis absorption spectroscopy, and the result explains the linear relationship between the meniscus advance speed and the crystallinity (crystallization rate) of the polymer. To verify the compatibility and universality of this strategy, the MAC strategy is applied to the other three binary systems. By precisely controlling the meniscus advancing speed, 1 cm2 all-PSC devices whose efficiencies exceed 12% are fabricated. Such progress demonstrates that the application of the MAC strategy is a promising approach for the fabrication of high-efficiency all-PSCs.
Collapse
Affiliation(s)
- Yuchen Yue
- CAS Key Laboratory of Bioinspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Bing Zheng
- School of Chemistry, Beihang University, Beijing, 100190, P. R. China
| | - Wenjie Yang
- CAS Key Laboratory of Bioinspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Lijun Huo
- School of Chemistry, Beihang University, Beijing, 100190, P. R. China
| | - Jingxia Wang
- CAS Key Laboratory of Bioinspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 101407, China
| | - Lei Jiang
- CAS Key Laboratory of Bioinspired Smart Interfacial Science Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
- School of Chemistry, Beihang University, Beijing, 100190, P. R. China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| |
Collapse
|
276
|
Tang Y, Zheng H, Zhou X, Tang Z, Ma W, Yan H. Molecular Doping Increases the Semitransparent Photovoltaic Performance of Dilute Bulk Heterojunction Film with Discontinuous Polymer Donor Networks. SMALL METHODS 2022; 6:e2101570. [PMID: 35138038 DOI: 10.1002/smtd.202101570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The semitransparent and colorful properties of organic solar cells (OSCs) attract intensive academic interests due to their potential application in building integrated photovoltaics, wearable electronics, and so forth. The most straightforward and effective method to tune these optical properties is varying the componential ratio in the blend film. However, the increase in device transmittance inevitably sacrifices the photovoltaic performance because of severe carrier recombination that originates from discontinuous charge-transport networks in the blend film. Herein, a strategy is proposed via the molecular-doping strategy to overcome these shortcomings. It is discovered that p-doping is able to release the trapped holes in segregated polymer domains leading to short-circuit current enhancement, while n-doping is more effective to fill the bandgap states producing a higher fill factor. More importantly, either type of doping improves the photovoltaic performance in the semitransparent photovoltaic devices. These discoveries provide a new pathway to breaking the compromise between the photovoltaic performance and optical transmittance in semitransparent OSCs, and hold promise for their future commercialization.
Collapse
Affiliation(s)
- Yabing Tang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hong Zheng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Han Yan
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
277
|
Synthesis, characterizations and photovoltaic applications of a thickness-insensitive benzodifuran based copolymer. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
278
|
Chou LH, Mikie T, Saito M, Liu CL, Osaka I. Naphthobisthiadiazole-Based π-Conjugated Polymers for Nonfullerene Solar Cells: Suppressing Intermolecular Interaction Improves Photovoltaic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14400-14409. [PMID: 35315275 DOI: 10.1021/acsami.2c01606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Naphthobisthiadiazole has been known as a promising building unit of π-conjugated polymers for organic photovoltaics (OPVs). Here, we synthesized new NTz-based polymers that were combined with a benzodithiophene (BDT) unit having alkylthienyl substituents in the polymer backbone, named PNTzBDT, and PNTzBDT-F and PNTzBDT-Cl with fluorine and chlorine groups in the substituents, respectively. The polymers had significantly improved solubility than the previously reported NTz-based polymer (PNTz4T), most likely due to the torsion of the alkylthienyl substituents with respect to the BDT moiety, which suppresses the intermolecular interaction between the backbones. Despite the lower intermolecular interaction and thereby lower crystallinity, these polymers, in particular PNTzBDT and PNTzBDT-F, exhibited higher photovoltaic performances, with power conversion efficiencies as high as 13.3%, than PNTz4T in the cells that used Y6 as the acceptor material. The improved performance was ascribed to the enhanced miscibility of the polymers with the nonfullerene acceptor due to the increased solubility, which in addition led to the better charge generation and reduced charge recombination. These results indicate that NTz-based π-conjugated polymers have high potential for nonfullerene-based OPVs.
Collapse
Affiliation(s)
- Li-Hui Chou
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tsubasa Mikie
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masahiko Saito
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Cheng-Liang Liu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Itaru Osaka
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
279
|
Trifluoromethyl Substituted Derivatives of Pyrazoles as Materials for Photovoltaic and Electroluminescent Applications. CRYSTALS 2022. [DOI: 10.3390/cryst12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
New 6-CF3-1H-pyrazolo[3,4-b]quinolines with a methyl and/or phenyl group attached to the pyrazole core (Molx (x = 1, 2, 3, 4)) were synthesized and characterized in terms of their optoelectronic applications: photovoltaic and electroluminescence. The fluorescence emissions of the investigated phenyl-decorated pyrazoloquinolines is caused by the photoinduced charge transfer p process occurring between the phenyl substituent and the pyrazoloquinoline core, while 1,3-dimethyl-6-CF3-1H-pyrazolo[3,4-b]quinoline exhibits an π,π*-type emission. The number of phenyls and their substitution positions modulate both emission properties and HOMO energy levels. Next, the bulk heterojunction BHJ solar cells based on 1H-pyrazolo[3,4-b] quinoline derivatives with architecture ITO/PEDOT:PSS/PDT + Molx/Al were fabricated. The organic active layer was a blend of Molx and poly(3-decylthiophene-2,5-diyl). The complex refractive index and the layer thickness of the organic solar cells were determined using a spectroscopic ellipsometer Woollam M2000 (J.A. Woollam Co., Inc., Lincoln, NE, USA) and CompleteEASE software. For solar devices with the best value of power efficiency of approximately 0.38%, the thickness of the active layer (Mol3 + PDT) was 111 nm, with a short-circuit current density of JSC = 32.81 μA/cm2 and an open–circuit voltage of VOC = 0.78 V. Finally, we demonstrated double-layer light-emitting diodes with an organic active layer (Molx + PVK) and an electron transporting material layer, ETM (2-[3,5-bis(4-phenyl-2-quinolyl)phenyl]-4-phenylquinoline (Tris-Q). Bright bluish-green light originating from the active layer was observed in the double-layer device, ITO/PEDOT:PSS/active layer/ETM/Ca/A. The active layer was a mixture of PV-doped 1H-pyrazolo[3, 4-b]quinoline dyes. An OLED device was constructed by employing Molx as an emitter, which gave a deep bluish-green emission with the spectra range of 481–506 nm. The best value of the maximum brightness at approximately 1436.0 cd/m2 was achieved for a diode based on Mol3 (1-phenyl-3-phenyl-6-CF3-1H-pyrazolo[3,4-b]quinoline) and [R1 = Ph, R3 = Ph and R6 = CF3]. The current efficiency was up to 1.26 cd/A at 506 nm with a CIE of 0.007, 0.692.
Collapse
|
280
|
Wang J, Zhan X. From Perylene Diimide Polymers to
Fused‐Ring
Electron Acceptors: A
15‐Year
Exploration Journey of Nonfullerene Acceptors. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiayu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| | - Xiaowei Zhan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University Beijing 100871 China
| |
Collapse
|
281
|
Han G, Yi Y. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Acc Chem Res 2022; 55:869-877. [PMID: 35230078 DOI: 10.1021/acs.accounts.1c00742] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor organic solar cells (OSCs), charge generation at the donor/acceptor interfaces is regarded as a two-step process: driven by the interfacial energy offsets, the excitons produced by light absorption are first dissociated into the charge-transfer (CT) states, and then the CT states are further separated into free charge carriers of holes and electrons by overcoming their Coulomb attraction. Meanwhile, the CT states can recombine through radiative and nonradiative decay. Owing to the emergence of narrow-band-gap A-D-A small-molecule acceptors, nonfullerene (NF) OSCs have developed rapidly in recent years and the power conversion efficiencies (PCEs) surpass 18% now. The great achievement can be attributed to the high-yield charge generation under low exciton dissociation (ED) driving forces, which ensures both high photocurrent and small voltage loss. However, it is traditionally believed that a considerable driving force (e.g., at least 0.3 eV in fullerene-based OSCs) is essential to provide excess energy for the CT states to achieve efficient charge separation (CS). Therefore, a fundamental question open to the community is how the excitons split into free charge carriers so efficiently under low driving forces in the state-of-the-art NF OSCs.In this Account, we summarize our recent theoretical advances on the charge generation mechanisms in the low-driving-force NF OSCs. First, the A-D-A acceptors are found to dock with the D-A copolymer or A-D-A small-molecule donors mainly via local π-π interaction between their electron-withdrawing units, and such interfacial geometries can provide sufficient electronic couplings, thus ensuring fast ED. Second, the polarization energies of holes and electrons are enhanced during CS, which is beneficial to reduce the CS energy barrier and even leads to barrierless CS in the OSCs based on fluorinated A-D-A acceptors. Moreover, the exciton binding energies (Eb) are substantially decreased by the strong polarization of charge carriers for the A-D-A acceptors; especially for the Y6 system with three-dimensional molecular packing structures, the remarkable small Eb can enable direct photogeneration of free charge carriers. Accordingly, the excess energy becomes unnecessary for CS in the state-of-the-art NF OSCs. Third, to simultaneously decrease the driving force and suppress charge recombination via the triplet channel, it is imperative to reduce the singlet-triplet energy difference (ΔEST) of the narrow-band-gap A-D-A acceptors. Importantly, the intermolecular end-group π-π stacking is demonstrated to effectively decrease the ΔEST while keeping strong light absorption. Finally, hybridization of the CT states with local excitation can be induced by small interfacial energy offset. Such hybridization will result in direct population of thermalized CT states upon light absorption and a significant increase of luminescence quantum efficiency, which is beneficial to concurrently promote CS and reduce nonradiative voltage loss. We hope this Account contributes to the molecular understanding of the mechanisms of efficient charge generation with low driving forces and would be helpful for further improving the performance of organic photovoltaics in the future.
Collapse
Affiliation(s)
- Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
282
|
Liu C, Yang W, Jiang H, Zhang B, Liu G, Chen E, Boué F, Wang D. Chain Conformation and Liquid-Crystalline Structures of a Poly(thieno)thiophene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chang Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhong Yang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Advanced Materials Research Center, Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Hanqiu Jiang
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Baoqing Zhang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Erqiang Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Mater Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - François Boué
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS-UPSay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
283
|
Li Y, Huang W, Zhao D, Wang L, Jiao Z, Huang Q, Wang P, Sun M, Yuan G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022; 27:1800. [PMID: 35335164 PMCID: PMC8955087 DOI: 10.3390/molecules27061800] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangcai Yuan
- BOE Technology Group Co., Ltd., Beijing 100176, China; (Y.L.); (W.H.); (D.Z.); (L.W.); (Z.J.); (Q.H.); (P.W.); (M.S.)
| |
Collapse
|
284
|
Cuesta V, Singh MK, Gutierrez-Fernandez E, Martín J, Domínguez R, de la Cruz P, Sharma GD, Langa F. Gold(III) Porphyrin Was Used as an Electron Acceptor for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11708-11717. [PMID: 35195997 PMCID: PMC8915169 DOI: 10.1021/acsami.1c22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of nonfullerene-based electron-accepting materials has triggered a rapid increase in the performance of organic photovoltaic devices. However, the number of efficient acceptor compounds available is rather limited, which hinders the discovery of new, high-performing donor:acceptor combinations. Here, we present a new, efficient electron-accepting compound based on a hitherto unexplored family of well-known molecules: gold porphyrins. The electronic properties of our electron-accepting gold porphyrin, named VC10, were studied by UV-Vis spectroscopy and by cyclic voltammetry (CV) , revealing two intense optical absorption bands at 500-600 and 700-920 nm and an optical bandgap of 1.39 eV. Blending VC10 with PTB7-Th, a donor polymer, which gives rise to an absorption band at 550-780 nm complementary to that of VC10, enables the fabrication of organic solar cells (OSCs) featuring a power conversion efficiency of 9.24% and an energy loss of 0.52 eV. Hence, this work establishes a new approach in the search for efficient acceptor molecules for solar cells and new guidelines for future photovoltaic material design.
Collapse
Affiliation(s)
- Virginia Cuesta
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Manish Kumar Singh
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | | | - Jaime Martín
- POLYMAT, University of the Basque Country, UPV/EHU Av. de Tolosa 72, San Sebastián 20018, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48013, Spain
- Universidade
da Coruña, Grupo de Polímeros, Centro de Investigacións
Tecnolóxicas (CIT), Esteiro, Ferrol 15471, Spain
| | - Rocío Domínguez
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Pilar de la Cruz
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| | - Ganesh D. Sharma
- Department
of Physics, The LNM Institute of Information
Technology (Deemed University), Jamdoli, Jaipur (Raj.) 302031, India
| | - Fernando Langa
- Institute
of Nanoscience, Nanotechnology and Molecular Materials (INAMOL), Universidad de Castilla-La Mancha, Campus de la Fábrica
de Armas, Toledo 45071, Spain
| |
Collapse
|
285
|
Zaidi B, Smida N, Althobaiti MG, Aldajani AG, Almdhaibri SD. Polymer/Carbon Nanotube Based Nanocomposites for Photovoltaic Application: Functionalization, Structural, and Optical Properties. Polymers (Basel) 2022; 14:1093. [PMID: 35335425 PMCID: PMC8951899 DOI: 10.3390/polym14061093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
We present a systematic review of nanostructured organic materials, including synthesis methods, functionalization, and applications. First, we report the chemical and physical procedures used for preparing the polymer/carbon nanotube composites described in the literature over the last decade. We compare the properties of different polymer-based prototypes of organic nanocomposites functionalized with carbon nanotubes. Theoretical and experimental vibrational investigations provide evidence of the molecular structure describing the interaction between both components, showing that the allowed amount of carbon nanotubes and their dispersion states differ across polymers. Moreover, the nature of the solvent used in the preparation has a significant impact on the dispersion process. The integration of these materials in photovoltaic applications is discussed, where the impact of nanoparticles is evidenced through the correlation between experimental analyses and theoretical approaches based on density functional theory. Alterations in optical properties, evaluated from the absorption and luminescence process, are coherent with the solar spectrum, and a good distribution of donor/acceptor interpenetration was observed. In all cases, it was demonstrated that the performance improvement is physically related to the charge transfer from the organic matrix to the nanoparticles.
Collapse
Affiliation(s)
- Boubaker Zaidi
- Department of Physics, College of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia; (A.G.A.); (S.D.A.)
- Laboratoire de Synthèse Asymétrique et Ingénierie Moléculaire de Matériaux Organiques Pour L’électronique Organique LR 18ES19, Department of Physics, Faculty of Science, University of Monastir, Monastir 5019, Tunisia
| | - Nejmeddine Smida
- Department of Chemistry, College of Science and Humanities, Shaqra University, AlQuwaiiyah 19257, Saudi Arabia;
- Laboratory of Interfaces and Advanced Materials, Faculty of Science, University of Monastir, Monastir 5019, Tunisia
| | | | - Atheer G. Aldajani
- Department of Physics, College of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia; (A.G.A.); (S.D.A.)
| | - Saif D. Almdhaibri
- Department of Physics, College of Science and Humanities, Shaqra University, Dawadmi 11911, Saudi Arabia; (A.G.A.); (S.D.A.)
| |
Collapse
|
286
|
Le DT, Truong NTT, Luu TH, T. Nguyen LT, Hoang MH, Huynh HPK, Cu ST, Nguyen QT, Nguyen HT. Donor – acceptor and donor – donor alternating conjugated polymers based on dithieno[3,2-b:2',3'-d]pyrrole: synthesis, optical properties and organic solar cells applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
287
|
Roy R, Ghosal A, Roy AK. Charge-Transfer Excitation within a Hybrid-(G)KS Framework through Cartesian Grid DFT. J Phys Chem A 2022; 126:1448-1457. [PMID: 35179901 DOI: 10.1021/acs.jpca.1c10593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic molecules that exhibit charge-transfer (CT) excited states are known to play an important role in processes linked to electron transfer properties and molecular conductance. In this article, we present a simple technique based on "Becke's excitation theorem" that offers an accurate picture of these electronic states. It expresses the correlated energy splitting between triplet and its corresponding singlet states by a two-electron integral, which is numerically evaluated by our recently developed strategy on Cartesian grid. We first examine the consistency of our adopted numerical strategy to evaluate the integral with the original prescribed technique. Then we assess the method on weakly bound CT complexes with three different functionals (BLYP, B3LYP, and LC-BLYP). The accuracy on asymptotic limit of CT excitation is also explored. Finally in order to illustrate the strength and feasibility, it is further extended to a few "challenging" molecules. The method, when employed with hybrid B3LYP functional, turns out to be quite accurate to describe CT excitation energy.
Collapse
Affiliation(s)
- Raj Roy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| | - Abhisek Ghosal
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Amlan K Roy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Nadia, Mohanpur 741246, West Bengal, India
| |
Collapse
|
288
|
Lin D, Liu J, Zhang H, Qian Y, Yang H, Liu L, Ren A, Zhao Y, Yu X, Wei Y, Hu S, Li L, Li S, Sheng C, Zhang W, Chen S, Shen J, Liu H, Feng Q, Wang S, Xie L, Huang W. Gridization-Driven Mesoscale Self-Assembly of Conjugated Nanopolymers into Luminescence-Anisotropic Photonic Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109399. [PMID: 35023217 DOI: 10.1002/adma.202109399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Organic semiconducting emitters integrated with butterfly-mimetic photonic crystals (PhCs) are fascinating for dramatic advantages over light outcoupling efficiency and multifunctional strain sensors, as well as the key step toward electrically pumped lasers. Herein, an unprecedentedly direct mesoscale self-assembly into 1D PhCs is reported through a covalently gridization-driven approach of wide-bandgap conjugated polymers. A simple solvent-casting procedure allows for in situ self-assembly of the state-of-the-art conjugated nanopolymer, poly{[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid}-co-{[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]grid} (PODPFG), into well-defined multilayer architectures with an excellent toughness (30-40 J m-3 ). This ordered meso-architecture shows a typical Bragg-Snell diffraction behavior to testify the PhC nature, along with a high effective refractive index (1.80-1.88) and optical transmittance (85-87%). The PhC films also exhibit an angle-dependent blue/green photoluminescence switching, an electroluminescence efficiency enhancement by 150-250%, and an amplified spontaneous emission enhancement with ultralow waveguide loss coefficient (2.60 cm-1 ). Gridization of organic semiconductors offers promising opportunities for cross-scale morphology-directed molecular design in multifunctional organic mechatronics and intelligences.
Collapse
Affiliation(s)
- Dongqing Lin
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jin'an Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - He Zhang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yue Qian
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hao Yang
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lihui Liu
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ang Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongsheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiang Yu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ying Wei
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shu Hu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjie Li
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shifeng Li
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210023, China
| | - Chuanxiang Sheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shufen Chen
- State Key Laboratory of Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jianping Shen
- College of Electronic and Optical Engineering, Nanjing University of Post and Telecommunications, Nanjing, 210023, China
| | - Huifang Liu
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quanyou Feng
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shasha Wang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Linghai Xie
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
289
|
Depicting the role of end-capped acceptors to amplify the photovoltaic properties of benzothiadiazole core-based molecules for high-performance organic solar cell applications. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
290
|
Xia H, Zhang Y, Deng W, Liu K, Xia X, Su CJ, Jeng US, Zhang M, Huang J, Huang J, Yan C, Wong WY, Lu X, Zhu W, Li G. Novel Oligomer Enables Green Solvent Processed 17.5% Ternary Organic Solar Cells: Synergistic Energy Loss Reduction and Morphology Fine-Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107659. [PMID: 34997631 DOI: 10.1002/adma.202107659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The large non-radiative recombination is the main factor that limits state-of-the-art organic solar cells (OSCs). In this work, two novel structurally similar oligomers (named 5BDTBDD and 5BDDBDT) with D-A-D-A-D and A-D-A-D-A configuration are synthesized for high-performance ternary OSCs with low energy loss. As third components, these PM6 analogue oligomers effectively suppress the non-radiative recombination in OSCs. Although the highest occupied molecular orbital (HOMO) levels of 5BDTBDD and 5BDDBDT are higher than that of PM6, the oligomers enabled ultra-high electroluminescence quantum efficiency (EQEEL ) of 0.05% and improved VOC , indicating suppressing non-radiative recombination overweighs the common belief of deeper HOMO requirement in third component selection. Moreover, the different compatibility of 5BDTBDD and 5BDDBDT with PM6 and BTP-BO4Cl fine-tunes the active layer morphology with synergistic effects. The ternary devices based on PM6:5BDTBDD:BTPBO4Cl and PM6:5BDDBDT:BTP-BO4Cl achieve a significantly improved PCEs of 17.54% and 17.32%, representing the state-of-the art OSCs processed by green solvent of o-xylene. The strategy using novel oligomer as third component also has very wide composition tolerance in ternary OSCs. This is the first work that demonstrates novel structurally compatible D-A type oligomers are effective third components, and provides new understanding of synergetic energy loss mechanisms towards high performance OSCs.
Collapse
Affiliation(s)
- Hao Xia
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ying Zhang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wanyuan Deng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kuan Liu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Miao Zhang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Jiaming Huang
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jingwei Huang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Cenqi Yan
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, 999077, China
| |
Collapse
|
291
|
Song H, Hu D, Lv J, Lu S, Haiyan C, Kan Z. Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105575. [PMID: 35040581 PMCID: PMC8922103 DOI: 10.1002/advs.202105575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
With the emergence of fused ring electron acceptors, the power conversion efficiency of organic solar cells reached 19%. In comparison with the electron donor and acceptor materials progress, the development of cathode interlayers lags. As a result, charge extraction barriers, interfacial trap states, and significant transport resistance may be induced due to the unfavorable cathode interlayer, limiting the device performances. Herein, a hybrid cathode interlayer composed of PNDIT-F3N and PDIN is adopted to investigate the interaction between the photoexcited acceptor and cathode interlayer. The state of art acceptor Y6 is chosen and blended with PM6 as the active layer. The device with hybrid interlayer, PNDIT-F3N:PDIN (0.6:0.4, in wt%), attains a power conversion efficiency of 17.4%, outperforming devices with other cathode interlayer such as NDI-M, PDINO, and Phen-DPO. It is resulted from enhanced exciton dissociation, reduced trap-assisted recombination, and smaller transfer resistance. Therefore, the hybrid interlayer strategy is demonstrated as an efficient approach to improve device performance, shedding light on the selection and engineering of cathode interlayers for pairing the increasing number of fused ring electron acceptors.
Collapse
Affiliation(s)
- Hang Song
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- College of Materials Science and EngineeringChongqing University of TechnologyChongqing400054China
| | - Dingqin Hu
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- Chongqing University174 Shazhengjie, ShapingbaChongqing400044China
- Chongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chongqing400714China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chongqing400714China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chongqing400714China
| | - Chen Haiyan
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- Chongqing University174 Shazhengjie, ShapingbaChongqing400044China
- Chongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chongqing400714China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing400714China
- Chongqing SchoolUniversity of Chinese Academy of Sciences (UCAS Chongqing)Chongqing400714China
| |
Collapse
|
292
|
Muhammed MM, Mokkath JH, Chamkha AJ. Impact of packing arrangement on the optical properties of C60 cluster aggregates. Phys Chem Chem Phys 2022; 24:5946-5955. [PMID: 35195632 DOI: 10.1039/d1cp04128b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The packing arrangement of organic π-conjugated molecules in a nanoscale material can have a strong impact on their optical properties. Here, using real-time-propagation time dependent density functional theory (rt-TDDFT) calculations with the support of transition contribution maps, we study how modifications in the packing arrangement (cubic-like and chain-like aggregates composed of eight C60 molecules) and packing density (assembled at close distances with center-to-center inter-fullerene distances (d) varying from 9 Å to 11 Å) of C60 molecules affect the optical properties of cluster aggregates. The important conclusions drawn from this work are summarized as follows. For d = 9 Å, the charge transfer excitons produced by cubic and chain-like C60 cluster aggregates have highly different optical characteristics, as evidenced by the transition contribution maps. On the other hand, for d = 10 Å and 11 Å, both kinds of aggregates produce qualitatively similar optical features with the emergence of Wannier-like delocalized excitons having distinct degrees of localization and spatial distribution. The theoretical findings in this study elucidate the optical excitations in C60 cluster aggregates and could help in the design of more efficient organic devices.
Collapse
Affiliation(s)
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait
| | - Ali J Chamkha
- Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait
| |
Collapse
|
293
|
Yan L, Liang Z, Si J, Gong P, Wang Y, Liu X, Tong J, Li J, Hou X. Ultrafast Kinetics of Chlorinated Polymer Donors: A Faster Excitonic Dissociation Path. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6945-6957. [PMID: 35081710 DOI: 10.1021/acsami.1c24348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halogen-substituted donor/acceptor materials are widely regarded as a promising strategy toward improved power-conversion efficiencies (PCEs) in polymer solar cells (PSCs). A chlorinated polymer donor, PClBTA-PS, and its non-chlorinated analogue, PBTA-PS, are synthesized. The PClBTA-PS-based devices show significant enhancements in terms of open-circuit voltage (VOC = 0.82 V) and fill factor (FF = 76.20%). In addition, a PCE of 13.20% is obtained, which is significantly higher than that for the PBTA-PS-based devices (PCE = 7.63%). Grazing incident wide-angle X-ray scattering shows that the chlorinated polymer enables better π-π stacking in both pure and blend films. DFT and TD-DFT calculations as well as ultrafast photophysics measurements indicate that chlorinated PClBTA-PS has a smaller bonding energy and a longer spontaneous-emission lifetime. The results also reveal that the charge-transfer-state excitons in PClBTA-PS:IT4Cl blend films split into the charge-separated (CS) state via a faster dissociation path, which produces a higher yield of the CS state. Overall, this study provides a deeper understanding of how a halogen-substituted polymer can improve PSCs in the future.
Collapse
Affiliation(s)
- Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Gong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yufei Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Xingpeng Liu
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Junfeng Tong
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jianfeng Li
- School of Materials Science and Engineering, Gansu Provincial Engineering Research Center for Organic Semiconductor Materials and Application Technology, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Photonic Technique for Information, School of Electronics Science & Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
294
|
Xie M, Liu X, Li Y, Li X. Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap. NANOSCALE 2022; 14:1954-1961. [PMID: 35050297 DOI: 10.1039/d1nr07213g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The past several years have witnessed remarkable research efforts to develop high-performance photovoltaics (PVs), to curtail the energy crisis by avoiding dependence on traditional fossil fuels. In this regard, there is an urgent need to accelerate research progress on new low-dimensional semiconductors with superior electronic and optical properties. Herein, combining abundant related PV experimental data in the literature and our systematic theoretical calculations, we propose two-dimensional (2D) InSb/GaAs and InSb/InP-based tandem PVs with high solar-to-electric efficiency up to near 30.0%. Firstly, according to first-principles calculations, the stability, electronic and optical properties of single-layer group-III-V materials (XY, X = Ga and In, Y = N, P, As, Sb, and Bi) are systematically introduced. Next, due to the high bandgap (Eg) of GaAs and InP being a perfect match with the low Eg of InSb, InSb/GaAs- and InSb/InP-based tandem PVs are constructed. In addition, the complementary absorption spectra of these two subcells can facilitate the achievement of high tandem power conversion efficiency. Furthermore, we have analyzed in detail the influencing factors for PCE and the physical mechanism of the optimized match between the top and bottom subcells in the tandem configurations. Our designed 2D-semiconductor-based PVs can be expected to bring a new perspective for future commercialized high-efficiency energy devices.
Collapse
Affiliation(s)
- Meiqiu Xie
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xuhai Liu
- College of Microtechnology & Nanotechnology, Qingdao University, Qingdao 266071, China
| | - Yang Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| | - Xing'ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province & School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China.
| |
Collapse
|
295
|
Zhao H, Lin B, Xue J, Naveed HB, Zhao C, Zhou X, Zhou K, Wu H, Cai Y, Yun D, Tang Z, Ma W. Kinetics Manipulation Enables High-Performance Thick Ternary Organic Solar Cells via R2R-Compatible Slot-Die Coating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105114. [PMID: 34847252 DOI: 10.1002/adma.202105114] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Power conversion efficiency (PCE) of organic solar cells (OSCs) has crossed the 18% mark for OSCs, which are largely fabricated by spin-coating, and the optimal photoactive thickness is limited to 100 nm. To increase reproducibility of results with industrial roll-to-roll (R2R) processing, slot-die coating coupled with a ternary strategy for optimal performance of large-area, thick OSCs is used. Based on miscibility differences, a highly crystalline molecule, BTR-Cl, is incorporated, and the phase-separation kinetics of the D18:Y6 film is regulated. BTR-Cl provides an early liquid-liquid phase separation and early aggregation of Y6, which slightly improves the molecular crystallinity and vertical phase separation of the ternary blends, resulting in high PCEs of 17.2% and 15.5% for photoactive films with thicknesses of 110 and 300 nm, respectively. The ternary design strategy for large-area and thick films is further used to fabricate high-efficiency flexible devices, which promises reproducibility of the lab results from slot-die coating to industrial R2R manufacturing.
Collapse
Affiliation(s)
- Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Lin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hafiz Bilal Naveed
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chao Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaobo Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongbo Wu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhang Cai
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Daqin Yun
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
296
|
Ma W, Su Y, Zhang Q, Deng C, Pasquali L, Zhu W, Tian Y, Ran P, Chen Z, Yang G, Liang G, Liu T, Zhu H, Huang P, Zhong H, Wang K, Peng S, Xia J, Liu H, Liu X, Yang YM. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. NATURE MATERIALS 2022; 21:210-216. [PMID: 34764429 DOI: 10.1038/s41563-021-01132-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels. Here we found that X-ray-induced triplet excitons can be exploited for emission through very rapid, thermally activated up-conversion. We report scintillators based on three thermally activated delayed fluorescence molecules with different emission bands, which showed significantly higher efficiency than conventional anthracene-based scintillators. X-ray imaging with 16.6 line pairs mm-1 resolution was also demonstrated. These results highlight the importance of efficient and prompt harvesting of triplet excitons for efficient X-ray scintillation and radiation detection.
Collapse
Affiliation(s)
- Wenbo Ma
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing, China
| | - Yirong Su
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chao Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Luca Pasquali
- Dipartimento di Ingegneria E. Ferrari, Università di Modena e Reggio Emilia, Modena, Italy
- CNR-IOM, Basovizza, Trieste, Italy
- Department of Physics, University of Johannesburg, Auckland Park, South Africa
| | - Wenjuan Zhu
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yue Tian
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Peng Ran
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, China
| | - Tianyu Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Peng Huang
- MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Materials & Engineering, Beijing Institute of Technology, Beijing, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low Dimensional Quantum Structure and Devices, School of Materials & Engineering, Beijing Institute of Technology, Beijing, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, China
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing, China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, Institute for Advanced Photonics, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, Jiaxing, China.
| |
Collapse
|
297
|
Platinum(II)-containing donor-acceptor dimesitylborane-based complexes: Synthesis, characterization, photophysical and photovoltaic properties. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
298
|
Hu J, Fu W, Yang X, Chen H. Self‐assembled
monolayers for interface engineering in polymer solar cells. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Hu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Weifei Fu
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan China
| | - Xi Yang
- Chasing Light Technology Co., Ltd. Guangzhou China
| | - Hongzheng Chen
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan China
| |
Collapse
|
299
|
Mutual Diffusion of Model Acceptor/Donor Bilayers under Solvent Vapor Annealing as a Novel Route for Organic Solar Cell Fabrication. ENERGIES 2022. [DOI: 10.3390/en15031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The fabrication of bulk heterojunction organic solar cells (OSCs) is primarily based on a phase demixing during solution deposition. This spontaneous process is triggered when, as a result of a decrease in the solvent concentration, interactions between donor and acceptor molecules begin to dominate. Herein, we present that interdiffusion of the same molecules is possible when a bilayers of donors and acceptors are exposed to solvent vapor. Poly(3-hexyl thiophene) (P3HT), and poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) were used as donors and two types of fullerene derivatives were used as acceptors: phenyl-C61-butyric acid methyl ester (PC60BM) and phenyl-C71-butyric acid methyl ester (PC70BM), Secondary ion mass spectrometry depth profiling revealed that the interpenetration of donors and acceptors induced by solvent vapor annealing was dependent on solvent vapor and component compatibility. Exposure to chloroform vapor resulted in a complete intermixing of both components. The mutual mixing increased efficiency of inverted solar cells prepared by solvent vapor annealing of model donor/acceptor bilayers. These results provide a new means for mixing incompatible components for the fabrication of organic solar cells.
Collapse
|
300
|
Anrango-Camacho C, Pavón-Ipiales K, Frontana-Uribe BA, Palma-Cando A. Recent Advances in Hole-Transporting Layers for Organic Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:443. [PMID: 35159788 PMCID: PMC8840354 DOI: 10.3390/nano12030443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.
Collapse
Affiliation(s)
- Cinthya Anrango-Camacho
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Karla Pavón-Ipiales
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM, Carretera Toluca Atlacomulco, Km 14.5, Toluca 50200, Mexico;
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; (C.A.-C.); (K.P.-I.)
| |
Collapse
|