251
|
Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, Olival KJ, O'Rourke T, Murray S, Olson SH, Togami E, Vidal G, Mazet JAK. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc Natl Acad Sci U S A 2021; 118:e2002324118. [PMID: 33822740 PMCID: PMC8053939 DOI: 10.1073/pnas.2002324118] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health.
Collapse
Affiliation(s)
- Zoë L Grange
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616;
| | - Tracey Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Christine K Johnson
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Simon Anthony
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
- EcoHealth Alliance, New York, NY 1001
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032
| | - Kirsten Gilardi
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | | | | | - Suzan Murray
- Global Health, Smithsonian Conservation Biology Institute, Washington, DC 20008
| | | | - Eri Togami
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Gema Vidal
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Jonna A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616;
| |
Collapse
|
252
|
Delahay RJ, de la Fuente J, Smith GC, Sharun K, Snary EL, Flores Girón L, Nziza J, Fooks AR, Brookes SM, Lean FZX, Breed AC, Gortazar C. Assessing the risks of SARS-CoV-2 in wildlife. ONE HEALTH OUTLOOK 2021; 3:7. [PMID: 33834160 PMCID: PMC8024038 DOI: 10.1186/s42522-021-00039-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
The novel coronavirus SARS-CoV-2 likely emerged from a wildlife source with transmission to humans followed by rapid geographic spread throughout the globe and severe impacts on both human health and the global economy. Since the onset of the pandemic, there have been many instances of human-to-animal transmission involving companion, farmed and zoo animals, and limited evidence for spread into free-living wildlife. The establishment of reservoirs of infection in wild animals would create significant challenges to infection control in humans and could pose a threat to the welfare and conservation status of wildlife. We discuss the potential for exposure, onward transmission and persistence of SARS-CoV-2 in an initial selection of wild mammals (bats, canids, felids, mustelids, great apes, rodents and cervids). Dynamic risk assessment and targeted surveillance are important tools for the early detection of infection in wildlife, and here we describe a framework for collating and synthesising emerging information to inform targeted surveillance for SARS-CoV-2 in wildlife. Surveillance efforts should be integrated with information from public and veterinary health initiatives to provide insights into the potential role of wild mammals in the epidemiology of SARS-CoV-2.
Collapse
Affiliation(s)
- R. J. Delahay
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ UK
| | - J. de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - G. C. Smith
- National Wildlife Management Centre, Animal and Plant Health Agency, Sand Hutton, York, YO41 1LZ UK
| | - K. Sharun
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh India
| | - E. L. Snary
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB UK
| | - L. Flores Girón
- Centre de Rehabilitation des Primates de Lwiro, Kinshasa, Democratic Republic of Congo
| | - J. Nziza
- Gorilla Doctors Inc., P.O. Box 115, Musanze, Rwanda
| | - A. R. Fooks
- Virology Department, Animal and Plant Health Agency, Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB UK
| | - S. M. Brookes
- Virology Department, Animal and Plant Health Agency, Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB UK
| | - F. Z. X. Lean
- Pathology Department, Animal and Plant Health Agency, Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB UK
| | - A. C. Breed
- School of Veterinary Science, University of Queensland, Brisbane, Queensland Australia
- Epidemiology and One Health Section, Department of Agriculture, Water and the Environment, Canberra, Australia
| | - C. Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
253
|
Michelitsch A, Wernike K, Ulrich L, Mettenleiter TC, Beer M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv Virus Res 2021; 110:59-102. [PMID: 34353482 PMCID: PMC8025072 DOI: 10.1016/bs.aivir.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.
Collapse
Affiliation(s)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lorenz Ulrich
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
254
|
Spada E, Vitale F, Bruno F, Castelli G, Reale S, Perego R, Baggiani L, Proverbio D. A pre- and during Pandemic Survey of Sars-Cov-2 Infection in Stray Colony and Shelter Cats from a High Endemic Area of Northern Italy. Viruses 2021; 13:618. [PMID: 33916759 PMCID: PMC8066308 DOI: 10.3390/v13040618] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023] Open
Abstract
Cats are susceptible to infection with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Whilst a number of studies have been performed worldwide on owned cats, limited data are available on stray, colony or shelter cats. We investigated SARS-CoV-2 infection in a stray cat population before and during human outbreaks of SARS-CoV-2 in cities in the Lombardy region in northern Italy, a high endemic region for SARS-CoV-2, using serological and molecular methods. A cohort of different samples were collected from 241 cats, including frozen archived serum samples from 136 cats collected before the 2019 coronavirus disease (COVID-19) pandemic and serum, pharyngeal and rectal swab samples from 105 cats collected during the SARS-CoV-2 outbreak. All pre-pandemic samples tested seronegative for antibodies against the nucleocapsid of SARS-CoV-2 using indirect enzyme linked immunosorbent assay (ELISA) test, while one serum sample collected during the pandemic was seropositive. No serological cross-reactivity was detected between SARS-CoV-2 antibodies and antibodies against feline enteric (FECV) and infectious peritonitis coronavirus (FIPC), Feline Immunodeficiency Virus (FIV), Feline Calicivirus (FCV), Feline Herpesvirus-1 (FHV-1), Feline Parvovirus (FPV), Leishmania infantum, Anaplasma phagocytophilum, Rickettsia spp., Toxoplasma gondii or Chlamydophila felis. No pharyngeal or rectal swab tested positive for SARS-CoV-2 RNA on real time reverse transcription-polymerase chain reaction (rRT-PCR). Our data show that SARS-CoV-2 did infect stray cats in Lombardy during the COVID-19 pandemic, but with lower prevalence than found in owned cats. This should alleviate public concerns about stray cats acting as SARS-CoV-2 carriers.
Collapse
Affiliation(s)
- Eva Spada
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REvLab), Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (D.P.)
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) della Sicilia A. Mirri, 90129 Palermo, Italy; (F.V.); (F.B.); (G.C.); (S.R.)
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) della Sicilia A. Mirri, 90129 Palermo, Italy; (F.V.); (F.B.); (G.C.); (S.R.)
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) della Sicilia A. Mirri, 90129 Palermo, Italy; (F.V.); (F.B.); (G.C.); (S.R.)
| | - Stefano Reale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) della Sicilia A. Mirri, 90129 Palermo, Italy; (F.V.); (F.B.); (G.C.); (S.R.)
| | - Roberta Perego
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REvLab), Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (D.P.)
| | - Luciana Baggiani
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REvLab), Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (D.P.)
| | - Daniela Proverbio
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REvLab), Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 26900 Lodi, Italy; (L.B.); (D.P.)
| |
Collapse
|
255
|
Gryseels S, De Bruyn L, Gyselings R, Calvignac‐Spencer S, Leendertz FH, Leirs H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm Rev 2021; 51:272-292. [PMID: 33230363 PMCID: PMC7675675 DOI: 10.1111/mam.12225] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
It has been a long time since the world has experienced a pandemic with such a rapid devastating impact as the current COVID-19 pandemic. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unusual in that it appears capable of infecting many different mammal species. As a significant proportion of people worldwide are infected with SARS-CoV-2 and may spread the infection unknowingly before symptoms occur or without any symptoms ever occurring, there is a non-negligible risk of humans spreading SARS-CoV-2 to wildlife, in particular to wild non-human mammals. Because of SARS-CoV-2's apparent evolutionary origins in bats and reports of humans transmitting the virus to pets and zoo animals, regulations for the prevention of human-to-animal transmission have so far focused mostly on these animal groups. We summarise recent studies and reports that show that a wide range of distantly related mammals are likely to be susceptible to SARS-CoV-2, and that susceptibility or resistance to the virus is, in general, not predictable, or only predictable to some extent, from phylogenetic proximity to known susceptible or resistant hosts. In the absence of solid evidence on the susceptibility and resistance to SARS-CoV-2 for each of the >6500 mammal species, we argue that sanitary precautions should be taken by humans interacting with any other mammal species in the wild. Preventing human-to-wildlife SARS-CoV-2 transmission is important to protect these animals (some of which are classed as threatened) from disease, but also to avoid establishment of novel SARS-CoV-2 reservoirs in wild mammals. The risk of repeated re-infection of humans from such a wildlife reservoir could severely hamper SARS-CoV-2 control efforts. Activities during which direct or indirect interaction with wild mammals may occur include wildlife research, conservation activities, forestry work, pest control, management of feral populations, ecological consultancy work, management of protected areas and natural environments, wildlife tourism and wildlife rehabilitation in animal shelters. During such activities, we recommend sanitary precautions, such as physical distancing, wearing face masks and gloves, and frequent decontamination, which are very similar to regulations currently imposed to prevent transmission among humans. We further recommend active surveillance of domestic and feral animals that could act as SARS-CoV-2 intermediate hosts between humans and wild mammals.
Collapse
Affiliation(s)
- Sophie Gryseels
- Department of Microbiology, Immunology and TransplantationRega Institute, KU LeuvenHerestraat 49Leuven3000Belgium
- Department of Ecology and Evolutionary BiologyUniversity of Arizona1041 E. Lowell St.TucsonAZ85721USA
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| | - Luc De Bruyn
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | - Ralf Gyselings
- Research Institute for Nature and Forest (INBO)Havenlaan 88Brussels1000Belgium
| | | | | | - Herwig Leirs
- Department of BiologyUniversity of AntwerpUniversiteitsplein 1Antwerp2610Belgium
| |
Collapse
|
256
|
Parolin C, Virtuoso S, Giovanetti M, Angeletti S, Ciccozzi M, Borsetti A. Animal Hosts and Experimental Models of SARS-CoV-2 Infection. Chemotherapy 2021; 66:8-16. [PMID: 33774628 PMCID: PMC8089426 DOI: 10.1159/000515341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Viruses arise through cross-species transmission and can cause potentially fatal diseases in humans. This is the case of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which recently appeared in Wuhan, China, and rapidly spread worldwide, causing the outbreak of coronavirus disease 2019 (COVID-19) and posing a global health emergency. Sequence analysis and epidemiological investigations suggest that the most likely original source of SARS-CoV-2 is a spillover from an animal reservoir, probably bats, that infected humans either directly or through intermediate animal hosts. The role of animals as reservoirs and natural hosts in SARS-CoV-2 has to be explored, and animal models for COVID-19 are needed as well to be evaluated for countermeasures against SARS-CoV-2 infection. Experimental cells, tissues, and animal models that are currently being used and developed in COVID-19 research will be presented.
Collapse
Affiliation(s)
- Cristina Parolin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Giovanetti
- Reference Laboratory of Flavivirus, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
257
|
Klaus J, Palizzotto C, Zini E, Meli ML, Leo C, Egberink H, Zhao S, Hofmann-Lehmann R. SARS-CoV-2 Infection and Antibody Response in a Symptomatic Cat from Italy with Intestinal B-Cell Lymphoma. Viruses 2021; 13:527. [PMID: 33806922 PMCID: PMC8004793 DOI: 10.3390/v13030527] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Since the coronavirus disease (COVID-19) pandemic was first identified in early 2020, rare cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in pet cats have been reported worldwide. Some reports of cats with SARS-CoV-2 showed self-limiting respiratory or gastrointestinal disease after suspected human-to-feline transmission via close contact with humans with SARS-CoV-2. In the present study, we investigated a cat with SARS-CoV-2 that was presented to a private animal clinic in Northern Italy in May 2020 in a weak clinical condition due to an underlying intestinal B-cell lymphoma. The cat developed signs of respiratory tract disease, including a sneeze, a cough and ocular discharge, three days after an oropharyngeal swab tested positive for SARS-CoV-2 viral RNA using two real-time reverse transcriptase polymerase chain reaction (RT-qPCR) assays for the envelope (E) and RNA-dependent RNA polymerase (RdRp) gene. Thus, SARS-CoV-2 viral RNA was detectable prior to the onset of clinical signs. Five and six months after positive molecular results, the serological testing substantiated the presence of a SARS-CoV-2 infection in the cat with the detection of anti-SARS-CoV-2 receptor binding domain (RBD) immunoglobulin (IgG) antibodies and neutralizing activity in a surrogate virus neutralization assay (sVNT). To the best of our knowledge, this extends the known duration of seropositivity of SARS-CoV-2 in a cat. Our study provides further evidence that cats are susceptible to SARS-CoV-2 under natural conditions and strengthens the assumption that comorbidities may play a role in the development of clinical disease.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| | - Chiara Leo
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.L.)
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (R.H.-L.)
| |
Collapse
|
258
|
Elaswad A, Fawzy M. Mutations in Animal SARS-CoV-2 Induce Mismatches with the Diagnostic PCR Assays. Pathogens 2021; 10:371. [PMID: 33808783 PMCID: PMC8003424 DOI: 10.3390/pathogens10030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was detected in several animal species. After transmission to animals, the virus accumulates mutations in its genome as adaptation to the new animal host progresses. Therefore, we investigated whether these mutations result in mismatches with the diagnostic PCR assays and suggested proper modifications to the oligo sequences accordingly. A comprehensive bioinformatic analysis was conducted using 28 diagnostic PCR assays and 793 publicly available SARS-CoV-2 genomes isolated from animals. Sixteen out of the investigated 28 PCR assays displayed at least one mismatch with their targets at the 0.5% threshold. Mismatches were detected in seven, two, two, and six assays targeting the ORF1ab, spike, envelope, and nucleocapsid genes, respectively. Several of these mismatches, such as the deletions and mismatches at the 3' end of the primer or probe, are expected to negatively affect the diagnostic PCR assays resulting in false-negative results. The modifications to the oligo sequences should result in stronger template binding by the oligos, better sensitivity of the assays, and higher confidence in the result. It is necessary to monitor the targets of diagnostic PCR assays for any future mutations that may occur as the virus continues to evolve in animals.
Collapse
Affiliation(s)
- Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Middle East for Vaccines (ME VAC®), Sharquia 44813, Egypt
| |
Collapse
|
259
|
Klaus J, Meli ML, Willi B, Nadeau S, Beisel C, Stadler T, ETH SARS-CoV-2 Sequencing Team, Egberink H, Zhao S, Lutz H, Riond B, Rösinger N, Stalder H, Renzullo S, Hofmann-Lehmann R. Detection and Genome Sequencing of SARS-CoV-2 in a Domestic Cat with Respiratory Signs in Switzerland. Viruses 2021; 13:496. [PMID: 33802899 PMCID: PMC8002591 DOI: 10.3390/v13030496] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of coronavirus disease (COVID-19) in late 2019, domestic cats have been demonstrated to be susceptible to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) under natural and experimental conditions. As pet cats often live in very close contact with their owners, it is essential to investigate SARS-CoV-2 infections in cats in a One-Health context. This study reports the first SARS-CoV-2 infection in a cat in a COVID-19-affected household in Switzerland. The cat (Cat 1) demonstrated signs of an upper respiratory tract infection, including sneezing, inappetence, and apathy, while the cohabiting cat (Cat 2) remained asymptomatic. Nasal, oral, fecal, fur, and environmental swab samples were collected twice from both cats and analyzed by RT-qPCR for the presence of SARS-CoV-2 viral RNA. Both nasal swabs from Cat 1 tested positive. In addition, the first oral swab from Cat 2 and fur and bedding swabs from both cats were RT-qPCR positive. The fecal swabs tested negative. The infection of Cat 1 was confirmed by positive SARS-CoV-2 S1 receptor binding domain (RBD) antibody testing and neutralizing activity in a surrogate assay. The viral genome sequence from Cat 1, obtained by next generation sequencing, showed the closest relation to a human sequence from the B.1.1.39 lineage, with one single nucleotide polymorphism (SNP) difference. This study demonstrates not only SARS-CoV-2 infection of a cat from a COVID-19-affected household but also contamination of the cats' fur and bed with viral RNA. Our results are important to create awareness that SARS-CoV-2 infected people should observe hygienic measures to avoid infection and contamination of animal cohabitants.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (B.W.); (N.R.)
| | - Sarah Nadeau
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (S.N.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Hans Lutz
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Barbara Riond
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| | - Nina Rösinger
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (B.W.); (N.R.)
| | - Hanspeter Stalder
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (H.S.); (S.R.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Sandra Renzullo
- Institute for Virology and Immunology IVI, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; (H.S.); (S.R.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (H.L.); (B.R.); (R.H.-L.)
| |
Collapse
|
260
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
261
|
Shriner SA, Ellis JW, Root JJ, Roug A, Stopak SR, Wiscomb GW, Zierenberg JR, Ip HS, Torchetti MK, DeLiberto TJ. SARS-CoV-2 Exposure in Escaped Mink, Utah, USA. Emerg Infect Dis 2021; 27:988-990. [PMID: 33622465 PMCID: PMC7920664 DOI: 10.3201/eid2703.204444] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In August 2020, outbreaks of coronavirus disease were confirmed on mink farms in Utah, USA. We surveyed mammals captured on and around farms for evidence of infection or exposure. Free-ranging mink, presumed domestic escapees, exhibited high antibody titers, suggesting a potential severe acute respiratory syndrome coronavirus 2 transmission pathway to native wildlife.
Collapse
|
262
|
Seyran M, Hassan SS, Uversky VN, Pal Choudhury P, Uhal BD, Lundstrom K, Attrish D, Rezaei N, Aljabali AAA, Ghosh S, Pizzol D, Adadi P, El-Aziz TMA, Kandimalla R, Tambuwala MM, Lal A, Azad GK, Sherchan SP, Baetas-da-Cruz W, Palù G, Brufsky AM. Urgent Need for Field Surveys of Coronaviruses in Southeast Asia to Understand the SARS-CoV-2 Phylogeny and Risk Assessment for Future Outbreaks. Biomolecules 2021; 11:398. [PMID: 33803118 PMCID: PMC7999587 DOI: 10.3390/biom11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Phylogenetic analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is focused on a single isolate of bat coronaviruses (bat CoVs) which does not adequately represent genetically related coronaviruses (CoVs) [...].
Collapse
Affiliation(s)
- Murat Seyran
- Doctoral Studies in Natural and Technical Sciences (SPL 44), University of Vienna, Währinger Straße, A-1090 Vienna, Austria;
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Pabitra Pal Choudhury
- Applied Statistics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India;
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Diksha Attrish
- Dr. B R Ambedkar Center for Biomedical Research (ACBR), University of Delhi (North Camps), Delhi-110007, India;
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, University of Medical Sciences, Tehran 1419733151, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University-Faculty of Pharmacy, Irbid 566, Jordan;
| | - Shinjini Ghosh
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700009, West Bengal, India;
| | - Damiano Pizzol
- Italian Agency for Development Cooperation—Khartoum, Sudan Street 33, Al Amarat 13374, Sudan;
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229-3900, USA;
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Amos Lal
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA;
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941901, Brazil;
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| |
Collapse
|
263
|
Bashor L, Gagne RB, Bosco-Lauth A, Bowen R, Stenglein M, VandeWoude S. SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.05.434135. [PMID: 33758844 PMCID: PMC7987003 DOI: 10.1101/2021.03.05.434135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 spillback from humans into domestic and wild animals has been well-documented. We compared variants of cell culture-expanded SARS-CoV-2 inoculum and virus recovered from four species following experimental exposure. Five nonsynonymous changes in nsp12, S, N and M genes were near fixation in the inoculum, but reverted to wild-type sequences in RNA recovered from dogs, cats and hamsters within 1-3 days post-exposure. Fourteen emergent variants were detected in viruses recovered from animals, including substitutions at spike positions H69, N501, and D614, which also vary in human lineages of concern. The rapidity of in vitro and in vivo SARS-CoV-2 selection reveals residues with functional significance during host-switching, illustrating the potential for spillback reservoir hosts to accelerate evolution, and demonstrating plasticity of viral adaptation in animal models. ONE-SENTENCE SUMMARY SARS-CoV-2 variants rapidly arise in non-human hosts, revealing viral evolution and potential risk for human reinfection.
Collapse
Affiliation(s)
- Laura Bashor
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| | - Roderick B. Gagne
- Department of Pathobiology, Wildlife Futures Program, University of Pennsylvania School of Veterinary Medicine; Kennett Square, PA, 19348, USA
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University; Fort Collins, CO, 80523, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University; Fort Collins, CO, 80523, USA
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University; Fort Collins, CO, 80523, USA
| |
Collapse
|
264
|
Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG. Experimental Inoculation of Young Calves with SARS-CoV-2. Viruses 2021; 13:441. [PMID: 33803455 PMCID: PMC8000368 DOI: 10.3390/v13030441] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The host range of SARS-CoV-2 and the susceptibility of animal species to the virus are topics of great interest to the international scientific community. The angiotensin I converting enzyme 2 (ACE2) protein is the major receptor for the virus, and sequence and structural analysis of the protein has been performed to determine its cross-species conservation. Based on these analyses, cattle have been implicated as a potential susceptible species to SARS-CoV-2 and have been reported to have increased ACE2 receptor distribution in the liver and kidney, and lower levels in the lungs. The goal of the current study was to determine the susceptibility of cattle to SARS-CoV-2 utilizing inoculation routes that facilitated exposure to tissues with increased ACE2 receptor distribution. For this, colostrum-deprived calves approximately 6 weeks of age were inoculated via the intratracheal or intravenous routes. Nasal and rectal swab samples, as well as blood and urine samples, were collected over the course of the study to evaluate viral shedding, viremia, and seroconversion. Pyrexia was used as the primary criteria for euthanasia and tissue samples were collected during necropsy. Importantly, SARS-CoV-2 RNA was detected in only two nasal swab samples collected on days 3 and 10 post-inoculation (pi) in two calves; one calf in the intratracheal group and the other calf in the intravenous group, respectively. Additionally, the calf in the intratracheal group that was positive on the nasal swab on day 3 pi also had a positive tracheobronchial lymph node on day 9 pi. Viral nucleic acid load on these samples, based on PCR cycle threshold values, were low and infectious virus was not recovered from the samples. These results suggest that there was no productive replication of SARS-CoV-2 in calves following intratracheal and intravenous inoculation.
Collapse
Affiliation(s)
- Shollie Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA;
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| |
Collapse
|
265
|
SARS-CoV-2 Seroprevalence in Household Domestic Ferrets ( Mustela putorius furo). Animals (Basel) 2021; 11:ani11030667. [PMID: 33801548 PMCID: PMC8001492 DOI: 10.3390/ani11030667] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally or by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first-time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date. Abstract Animal infections with SARS-CoV-2 have been reported in different countries and several animal species have been proven to be susceptible to infection with SARS-CoV-2 both naturally and by experimental infection. Moreover, infections under natural conditions in more than 20 mink farms have been reported where humans could have been the source of infection for minks. However, little information is available about the susceptibility of pet animals under natural conditions and currently there is no SARS-CoV-2 epidemiological assessment occurrence in household ferrets. In this study, the presence of SARS-CoV-2 antibodies was evaluated in serum samples obtained from 127 household ferrets (Mustela putorius furo) in the Province of Valencia (Spain). Two ferrets tested positive to SARS-CoV-2 (1.57%) by in-house enzyme-linked immunosorbent assay based on receptor binding domain (RBD) of Spike antigen. Furthermore, anti-RBD SARS-CoV-2 antibodies persisted at detectable levels in a seropositive SARS-CoV-2 domestic ferret beyond 129 days since the first time antibodies were detected. This study reports for the first time the evidence of household pet ferrets exposure to SARS-CoV-2 in Spain to date.
Collapse
|
266
|
Abstract
Recently, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has spread around the world and is receiving worldwide attention. Approximately 20% of infected patients are suffering from severe disease of multiple systems and in danger of death, while the ocular complications of SARS-CoV-2-infected patients have not been reported generally. Herein, we focus on two major receptors of SARS-CoV-2, ACE2 and CD147 (BSG), in human ocular cells, and interpret the potential roles of coronaviruses in human ocular tissues and diseases.
Collapse
Affiliation(s)
- Yan-Ping Li
- Laboratory for Stem Cell & Retinal Regeneration, The Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ya Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing 100730 China.
| |
Collapse
|
267
|
Subedi S, Koirala S, Chai L. COVID-19 in Farm Animals: Host Susceptibility and Prevention Strategies. Animals (Basel) 2021; 11:640. [PMID: 33670889 PMCID: PMC7997237 DOI: 10.3390/ani11030640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 is caused by the virus SARS-CoV-2 that belongings to the family of Coronaviridae, which has affected multiple species and demonstrated zoonotic potential. The COVID-19 infections have been reported on farm animals (e.g., minks) and pets, which were discussed and summarized in this study. Although the damage of COVID-19 has not been reported as serious as highly pathogenic avian influenza (HPAI) for poultry and African Swine Fever (ASF) for pigs on commercial farms so far, the transmission mechanism of COVID-19 among group animals/farms and its long-term impacts are still not clear. Prior to the marketing of efficient vaccines for livestock and animals, on-farm biosecurity measures (e.g., conventional disinfection strategies and innovated technologies) need to be considered or innovated in preventing the direct contact spread or the airborne transmission of COVID-19.
Collapse
Affiliation(s)
- Sachin Subedi
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture & Forestry University, Chitwan 44200, Nepal; (S.S.); (S.K.)
| | - Sulove Koirala
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture & Forestry University, Chitwan 44200, Nepal; (S.S.); (S.K.)
| | - Lilong Chai
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
268
|
Solis A, Nunn CL. One health disparities and COVID-19. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:70-77. [PMID: 33708387 PMCID: PMC7928980 DOI: 10.1093/emph/eoab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
The global impact of the COVID-19 pandemic has disproportionately affected some communities and populations more than others. We propose that an interdisciplinary framework of 'One Health Disparities' advances understanding of the social and systemic issues that drive COVID-19 in vulnerable populations. One Health Disparities integrates the social environment with One Health perspectives on the interconnectedness of human, animal, and environmental health. To apply this framework, we consider One Health Disparities that emerge in three key components of disease transmission: exposure, susceptibility, and disease expression. Exposure disparities arise through variation in contact with COVID-19's causative agent, SARS-CoV-2. Disparities in susceptibility and disease expression also exist; these are driven by biological and social factors, such as diabetes and obesity, and through variation in access to healthcare. We close by considering how One Health Disparities informs understanding of spillback into new animal reservoirs, and what this might mean for further human health disparities. Lay summary One Health focuses on interconnections between human, animal, and environmental health. We propose that social environments are also important to One Health and help illuminate disparities in the coronavirus pandemic, including its origins, transmission and susceptibility among humans, and spillback to other species. We call this framework One Health Disparities.
Collapse
Affiliation(s)
- Alma Solis
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Duke University, Durham, NC 27710, USA.,Triangle Center for Evolutionary Medicine (TriCEM), Duke University, Durham, NC 27708, USA
| |
Collapse
|
269
|
Hedman HD, Krawczyk E, Helmy YA, Zhang L, Varga C. Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens 2021; 10:180. [PMID: 33567598 PMCID: PMC7915269 DOI: 10.3390/pathogens10020180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Emerging infectious diseases present great risks to public health. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has become an urgent public health issue of global concern. It is speculated that the virus first emerged through a zoonotic spillover. Basic research studies have suggested that bats are likely the ancestral reservoir host. Nonetheless, the evolutionary history and host susceptibility of SARS-CoV-2 remains unclear as a multitude of animals has been proposed as potential intermediate or dead-end hosts. SARS-CoV-2 has been isolated from domestic animals, both companion and livestock, as well as in captive wildlife that were in close contact with human COVID-19 cases. Currently, domestic mink is the only known animal that is susceptible to a natural infection, develop severe illness, and can also transmit SARS-CoV-2 to other minks and humans. To improve foundational knowledge of SARS-CoV-2, we are conducting a synthesis review of its host diversity and transmission pathways. To mitigate this COVID-19 pandemic, we strongly advocate for a systems-oriented scientific approach that comprehensively evaluates the transmission of SARS-CoV-2 at the human and animal interface.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Summit County Local Public Health Agency, Summit County, Frisco, CO 80443, USA;
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Yosra A. Helmy
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA;
| | - Lixin Zhang
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA;
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
270
|
Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know? Life (Basel) 2021; 11:life11020123. [PMID: 33562645 PMCID: PMC7914637 DOI: 10.3390/life11020123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) are a well-known group of viruses in veterinary medicine. We currently know four genera of Coronavirus, alfa, beta, gamma, and delta. Wild, farmed, and pet animals are infected with CoVs belonging to all four genera. Seven human respiratory coronaviruses have still been identified, four of which cause upper-respiratory-tract diseases, specifically, the common cold, and the last three that have emerged cause severe acute respiratory syndromes, SARS-CoV-1, MERS-CoV, and SARS-CoV-2. In this review we briefly describe animal coronaviruses and what we actually know about SARS-CoV-2 infection in farm and domestic animals.
Collapse
|
271
|
SARS-CoV-2 : sensibilité des espèces animales et risques en santé publique ☆. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2021; 205:99-104. [PMID: 33518740 PMCID: PMC7833199 DOI: 10.1016/j.banm.2020.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
272
|
Pathogen-Reservoir Interactions: What We Do Not Know Likely Will Hurt Us. Viruses 2021; 13:v13020195. [PMID: 33525437 PMCID: PMC7912445 DOI: 10.3390/v13020195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The establishment of selective colonies of potential vertebrate hosts for viruses would provide experimental models for the understanding of pathogen-host interactions. This paper briefly surveys the reasons to conduct such studies and how the results might provide information that could be applied to disease prevention activities.
Collapse
|
273
|
Affiliation(s)
- Peng Zhou
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
274
|
Welkers MRA, Han AX, Reusken CBEM, Eggink D. Possible host-adaptation of SARS-CoV-2 due to improved ACE2 receptor binding in mink. Virus Evol 2021; 7:veaa094. [PMID: 33500787 PMCID: PMC7798643 DOI: 10.1093/ve/veaa094] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on mink farms are increasingly observed in several countries, leading to the massive culling of animals on affected farms. Recent studies showed multiple (anthropo)zoonotic transmission events between humans and mink on these farms. Mink-derived SARS-CoV-2 sequences from The Netherlands and Denmark contain multiple substitutions in the S protein receptor binding domain (RBD). Molecular modeling showed that these substitutions increase the mean binding energy, suggestive of potential adaptation of the SARS-CoV-2 S protein to the mink angiotensin-converting enzyme 2 (ACE2) receptor. These substitutions could possibly also impact human ACE2 binding affinity as well as humoral immune responses directed to the RBD region of the SARS-CoV-2 S protein in humans. We wish to highlight these observations to raise awareness and urge for the continued surveillance of mink (and other animal)-related infections.
Collapse
Affiliation(s)
- Matthijs R A Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Chantal B E M Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
275
|
Opriessnig T, Huang Y. Third update on possible animal sources for human COVID-19. Xenotransplantation 2021; 28:e12671. [PMID: 33476071 PMCID: PMC7995224 DOI: 10.1111/xen.12671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
- Department of Veterinary Diagnostic and Production Animal MedicineCollege of Veterinary MedicineIowa State UniversityAmesIAUSA
| | - Yao‐Wei Huang
- Institute of Preventive Veterinary MedicineCollege of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
276
|
He S, Han J, Lichtfouse E. Backward transmission of COVID-19 from humans to animals may propagate reinfections and induce vaccine failure. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:763-768. [PMID: 33424524 PMCID: PMC7779092 DOI: 10.1007/s10311-020-01140-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Shanshan He
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- Aix-Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
277
|
何 文, 陈 清. [Progress in source tracking of SARS-CoV-2]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1838-1842. [PMID: 33380405 PMCID: PMC7835685 DOI: 10.12122/j.issn.1673-4254.2020.12.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has caused a total of 55 928 327 confirmed cases and 1 344 003 deaths as of November 19, 2020. But so far the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes this pandemic has remained undetermined. The purpose of this study is to review the current research of SARS-CoV-2 and the existing problems therein, which may provide inspiration for further researches. Existing evidence suggested that SARS-CoV-2 may be derived from bat coronavirus 40-70 years ago. During the evolution, this virus underwent extensive variations in the process of mutations and natural selection. Different genomic regions of SARS-CoV-2 may have different selection pressures, but all of which increase the difficulty of tracing the origin of this virus. A wide variety of animals have been considered as potential hosts of SARS-CoV-2, including cats, lions, tigers, dogs and minks. SARS-CoV-2 has a chance to transmit from humans to animals and can be transmitted among animals. Current research evidence has shown that China is not the original source of SARS-CoV-2. It is still unclear how the virus spreads to human, and efforts are still need to be made to explore the origin of SARS-CoV-2, its hosts and intermediate hosts, and the mechanism of its transmission across different species of animals.
Collapse
Affiliation(s)
- 文巧 何
- />南方医科大学公共卫生学院流行病学系,广东 广州 510515Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| | - 清 陈
- />南方医科大学公共卫生学院流行病学系,广东 广州 510515Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
278
|
Hamer SA, Pauvolid-Corrêa A, Zecca IB, Davila E, Auckland LD, Roundy CM, Tang W, Torchetti M, Killian ML, Jenkins-Moore M, Mozingo K, Akpalu Y, Ghai RR, Spengler JR, Behravesh CB, Fischer RSB, Hamer GL. Natural SARS-CoV-2 infections, including virus isolation, among serially tested cats and dogs in households with confirmed human COVID-19 cases in Texas, USA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.08.416339. [PMID: 33330861 PMCID: PMC7743065 DOI: 10.1101/2020.12.08.416339] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The natural infections and epidemiological roles of household pets in SARS-CoV-2 transmission are not understood. We conducted a longitudinal study of dogs and cats living with at least one SARS-CoV-2 infected human in Texas and found 47.1% of 17 cats and 15.3% of 59 dogs from 25.6% of 39 households were positive for SARS-CoV-2 via RT-PCR and genome sequencing or neutralizing antibodies. Virus was isolated from one cat. The majority (82.4%) of infected pets were asymptomatic. Re-sampling of one infected cat showed persistence of viral RNA at least 32 d-post human diagnosis (25 d-post initial test). Across 15 antibody-positive animals, titers increased (33.3%), decreased (33.3%) or were stable (33.3%) over time. A One Health approach is informative for prevention and control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, USA
- Laboratory of Respiratory Viruses and Measles, SARS-CoV-2 National Reference Laboratory and Regional Reference Laboratory in Americas (PAHO/WHO), Fiocruz, Rio de Janeiro, Brazil
| | - Italo B. Zecca
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, USA
| | - Edward Davila
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, USA
| | - Lisa D. Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, Texas, USA
| | | | - Wendy Tang
- Department of Entomology, Texas A&M University and AgriLife Research, Texas, USA
| | - Mia Torchetti
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA, USA
| | - Mary Lea Killian
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA, USA
| | | | - Katie Mozingo
- National Veterinary Services Laboratories, USDA APHIS VS, Ames, IA, USA
| | - Yao Akpalu
- Brazos County Health Department, Bryan, Texas, USA
| | - Ria R. Ghai
- U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University and AgriLife Research, Texas, USA
| |
Collapse
|
279
|
de Morais HA, dos Santos AP, do Nascimento NC, Kmetiuk LB, Barbosa DS, Brandão PE, Guimarães AMS, Pettan-Brewer C, Biondo AW. Natural Infection by SARS-CoV-2 in Companion Animals: A Review of Case Reports and Current Evidence of Their Role in the Epidemiology of COVID-19. Front Vet Sci 2020; 7:591216. [PMID: 33195627 PMCID: PMC7652926 DOI: 10.3389/fvets.2020.591216] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), is the causative infectious agent of the current pandemic. As researchers and health professionals are still learning the capabilities of this virus, public health concerns arise regarding the zoonotic potential of SARS-CoV-2. With millions of people detected with SARS-CoV-2 worldwide, reports of companion animals possibly infected with the virus started to emerge. Therefore, our aim is to review reported cases of animals naturally infected with SARS-CoV-2, particularly companion pets, shedding light on the role of these animals in the epidemiology of COVID-19.
Collapse
Affiliation(s)
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Naila Cannes do Nascimento
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Louise Bach Kmetiuk
- Graduate College of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - David Soeiro Barbosa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christina Pettan-Brewer
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | | |
Collapse
|