251
|
Abstract
Our senses of touch, hearing, and balance are mediated by mechanosensitive ion channels. In vertebrates, little is known about the molecular composition of these mechanoreceptors, an example of which is the transduction channel of the inner ear's receptor cells, hair cells. Members of the TRP family of ion channels are considered candidates for the vertebrate hair cell's mechanosensitive transduction channel and here we review the evidence for this candidacy. We start by examining the results of genetic screens in invertebrates that identified members of the TRP gene family as core components of mechanoreceptors. In particular, we discuss the Caenorhabditis elegans OSM-9 channel, an invertebrate TRPV channel, and the Drosophila melanogaster TRP channel NOMPC. We then evaluate basic features of TRPV4, a vertebrate member of the TRPV subfamily, which is gated by a variety of physical and chemical stimuli including temperature, osmotic pressure, and ligands. Finally, we compare the characteristics of all discussed mechanoreceptive TRP channels with the biophysical characteristics of hair cell mechanotransduction, speculating about the possible make-up of the elusive inner ear mechanoreceptor.
Collapse
Affiliation(s)
- Hideki Mutai
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School, Division of Health Sciences and Technology, Harvard University-Massachusetts Institute of Technology, Boston, MA 02114, USA
| | | |
Collapse
|
252
|
Soldatov NM. Ca2+ channel moving tail: link between Ca2+-induced inactivation and Ca2+ signal transduction. Trends Pharmacol Sci 2003; 24:167-71. [PMID: 12707002 DOI: 10.1016/s0165-6147(03)00065-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+)-induced inactivation is an important property of L-type voltage-gated Ca(2+) channels. However, the underlying mechanisms are not yet understood well. There is general agreement that calmodulin (CaM) binds, in a Ca(2+)-dependent manner, to C-terminal motifs LA and IQ of the pore-forming alpha 1C-subunit and acts as a sensor that conveys Ca(2+)-induced inactivation. New data indicate that both Ca(2+)-induced inactivation and Ca(2+) signal transduction depend on the voltage-gated mobility of the C-terminal tail of the alpha 1C-subunit. It is proposed that LA is a Ca(2+)-sensitive lock for the mechanism of slow voltage-dependent inactivation of the channel. A Ca(2+)-dependent switch of CaM from LA to IQ removes CaM from the inner mouth of the pore and thus eliminates slow inactivation by facilitating the constriction of the pore. The mobile tail then shuttles the Ca(2+)-CaM-IQ complex to a downstream target of the Ca(2+) signaling cascade, where Ca(2+) is released as an activating stimulus. Apo-CaM rebinds to LA and returns to the pore for a new cycle of Ca(2+) signal transduction.
Collapse
Affiliation(s)
- Nikolai M Soldatov
- National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
253
|
McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 2003; 278:11002-6. [PMID: 12529379 DOI: 10.1074/jbc.m210810200] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM2 is a member of the melastatin-related TRP (transient receptor potential) subfamily. It is expressed in brain and lymphocytes and forms a cation channel that is activated by intracellular ADP-ribose and associated with cell death. In this study we investigated the calcium dependence of human TRPM2 expressed under a tetracycline-dependent promoter in HEK-293 cells. TRPM2 expression was associated with enhanced hydrogen peroxide-evoked intracellular calcium signals. In whole-cell patch clamp recordings, switching from barium- to calcium-containing extracellular solution markedly activated TRPM2 as long as ADP-ribose was in the patch pipette and exogenous intracellular calcium buffering was minimal. We suggest this effect reveals a critical dependence of TRPM2 channel activity on intracellular calcium. In the absence of extracellular calcium we observed concentration-dependent activation of TRPM2 channels by calcium delivered from the patch pipette (EC(50) 340 nM, slope 4.9); the maximum effect was at least as large as that evoked by extracellular calcium. Intracellular dialysis of cells with high concentrations of EGTA or 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) strongly reduced the amplitude of the extracellular calcium response, and the residual response was abolished by a mixture of high and low affinity calcium buffers. TRPM2 channel currents in inside-out patches showed a strong requirement for Ca(2+) at the intracellular face of the membrane. We suggest that calcium entering via TRPM2 proteins acts at an intracellular calcium sensor closely associated with the channel, providing essential positive feedback for channel activation.
Collapse
Affiliation(s)
- Damian McHugh
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
254
|
Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2003; 2:242-62. [PMID: 14964684 DOI: 10.1080/14734220310022289] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Calcium plays a fundamental role in the cell as second messenger and is principally regulated by calcium-binding proteins. Although these proteins share in common their ability to bind calcium, they belong to different subfamilies. They present, in general, specific developmental and distribution patterns. Most Purkinje cells express the fast and slow calcium buffer proteins calbindin-D28k and parvalbumin, whereas basket, stellate and Golgi cells the slow buffer parvalbumin only. They are, almost all, calretinin negative. Granule, Lugaro and unipolar brush cells present an opposite immunoreactivity profile, most of them being calretinin positive while lacking calbindin-D28k and parvalbumin. The developmental pattern of appearance of these proteins seems to follow the maturation of neurons. Calbindin-D28k appears early, shortly after cessation of mitosis when neurons become ready to start migration and differentiation while parvalbumin is expressed later in parallel with an increase in neuronal activity. The other proteins are generally detected later. During development, some of these proteins, like calretinin, are transiently expressed in specific cellular subpopulations. The function of these proteins is not fully understood, although strong evidence supports a prominent role in physiological settings with altered calcium concentrations. These proteins regulate and are regulated by intracellular calcium level. For example, they may directly or indirectly enable sensitization or desensitization of calcium channels, and may further block calcium entry into the cells, like the calcium-sensor proteins, that have been shown to be potent and specific modulators of ion channels, which may allow for feedback control of current function and hence signaling. The absence of calcium buffer proteins results in marked abnormalities in cell firing; with alterations in simple and complex spikes or transformation of depressing synapses into facilitating synapses. Calcium-binding protein implication in resistance to degeneration is still a controversial issue. Neurons rich in calcium-binding proteins, especially calbindin-D28k and parvalbumin, seem to be relatively resistant to degeneration in a variety of acute and chronic disorders. However other data support that an absence of calcium-binding proteins may also have a neuroprotective effect. It is not unlikely that neurons may face a dual action mechanism where a decrease in calcium-binding proteins has a first short-term beneficial effect while it becomes detrimental for the cell over the long term.
Collapse
|
255
|
Ohya S, Horowitz B. Differential transcriptional expression of Ca2+ BP superfamilies in murine gastrointestinal smooth muscles. Am J Physiol Gastrointest Liver Physiol 2002; 283:G1290-7. [PMID: 12388203 DOI: 10.1152/ajpgi.00101.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calmodulin (Cal) plays important roles for contractile activity in smooth muscles. Recently, two distinct Ca(2+)-binding protein superfamilies with sequence similarities to Cal have been identified in neuronal cells: neuronal Ca(2+)-binding proteins (NCBPs) and Cal-like Ca(2+)-binding proteins (CaBPs). Some NCBPs and CaBPs play significant roles for Ca(2+)-dependent cellular signaling in the nervous system. In gastrointestinal smooth muscles (GISMs), Cal functions as the regulator of contractile behavior and electrical rhythmicity. However, the molecular identification of NCBPs and CaBPs has not been elucidated in GISMs. Here, we have identified NCBPs and CaBPs expressed in GISMs and determined the expression levels of their transcripts by quantitative RT-PCR. Of 12 NCBPs, the transcripts for neuronal Ca(2+) sensor 1, neural visinin-like proteins 1, 2, and 3, and K(+) channel-interacting proteins 1 and 3 were detected in proximal colon, gastric fundus, gastric antrum, and jejunum. On the other hand, of seven CaBPs including alternatively spliced variants, only CaBP1L transcripts were detected in GISMs.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | |
Collapse
|
256
|
Furness DN, Karkanevatos A, West B, Hackney CM. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 2002; 173:10-20. [PMID: 12372631 DOI: 10.1016/s0378-5955(02)00584-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calmodulin is found in the mechanosensitive stereociliary bundle of hair cells where it plays a role in various calcium-sensitive events associated with mechanoelectrical transduction. In this study, we have investigated the ultrastructural distribution of calmodulin in the apex of guinea-pig cochlear hair cells, using post-embedding immunogold labelling, in order to determine in more detail where calmodulin-dependent processes may be occurring. Labelling was found in the cuticular plate as well as the hair bundle, the rootlets of the stereocilia being more densely labelled than the surrounding filamentous matrix. In the bundle, labelling was found almost exclusively at the periphery rather than over the centre of the actin core of the stereocilia, and was clearly associated with the attachments of the lateral links that connect them to their nearest neighbours. It was also found to be denser towards the tips of stereocilia compared to other stereociliary regions and occurred consistently at either end of the tip link that connects stereocilia of adjacent rows. The contact region between stereocilia that is found just below the tip link was also clearly labelled. These concentrations of labelling in the bundle are likely to indicate sites where calmodulin is associated with calcium/calmodulin-sensitive proteins such as the various myosin isoforms and the plasma membrane ATPase (PMCA2a) that are known to occur there, and possibly with the transduction channels themselves. At least one of the myosin isoforms, myosin 1c, is thought to be associated with slow adaptation, and PMCA2a with control of calcium levels in the bundle. The concentration of calmodulin in the contact region further supports the suggestion that this is a functionally distinct region rather than a simple geometrical association between adjacent stereocilia.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|
257
|
Budde T, Meuth S, Pape HC. Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci 2002; 3:873-83. [PMID: 12415295 DOI: 10.1038/nrn959] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Budde
- Otto-von-Guericke-Universität, Institute of Physiology, Leipziger Strabetae 44, D-39120 Magdeburg, Germany.
| | | | | |
Collapse
|
258
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are tetrameric intracellular Ca(2+) channels, the opening of which is regulated by both IP(3) and Ca(2+). We suggest that all IP(3) receptors are biphasically regulated by cytosolic Ca(2+), which binds to two distinct sites. IP(3) promotes channel opening by controlling whether Ca(2+) binds to the stimulatory or inhibitory sites. The stimulatory site is probably an integral part of the receptor lying just upstream of the pore region. Inhibition of IP(3) receptors by Ca(2+) probably requires an accessory protein, which has not yet been unequivocally identified, but calmodulin is a prime candidate. We speculate that one lobe of calmodulin tethers it to the IP(3) receptor, while the other lobe can bind Ca(2+) and then interact with a second site on the receptor to cause inhibition.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| | | |
Collapse
|
259
|
Abstract
Calmodulin (CaM) was identified as a KCNQ2 and KCNQ3 potassium channel-binding protein, using a yeast two-hybrid screen. CaM is tethered constitutively to the channel, in the absence or presence of Ca2+, in transfected cells and also coimmunoprecipitates with KCNQ2/3 from mouse brain. The structural elements critical for CaM binding to KCNQ2 lie in two conserved motifs in the proximal half of the channel C-terminal domain. Truncations and point mutations in these two motifs disrupt the interaction. The first CaM-binding motif has a sequence that conforms partially to the consensus IQ motif, but both wild-type CaM and a Ca2+-insensitive CaM mutant bind to KCNQ2. The voltage-dependent activation of the KCNQ2/3 channel also shows no Ca2+ sensitivity, nor is it affected by overexpression of the Ca2+-insensitive CaM mutant. On the other hand, KCNQ2 mutants deficient in CaM binding are unable to generate detectable currents when coexpressed with KCNQ3 in CHO cells, although they are expressed and targeted to the cell membrane and retain the ability to assemble with KCNQ3. A fusion protein containing both of the KCNQ2 CaM-binding motifs competes with the full-length KCNQ2 channel for CaM binding and decreases KCNQ2/3 current density in CHO cells. The correlation of CaM binding with channel function suggests that CaM is an auxiliary subunit of the KCNQ2/3 channel.
Collapse
|
260
|
Boulay G. Ca(2+)-calmodulin regulates receptor-operated Ca(2+) entry activity of TRPC6 in HEK-293 cells. Cell Calcium 2002; 32:201-7. [PMID: 12379180 DOI: 10.1016/s0143416002001550] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian homologues of the Drosophila transient receptor potential channel (TRPC) are involved in Ca(2+) entry following agonist stimulation of nonexcitable cells. Seven mammalian TRPCs have been cloned but their mechanisms of activation and/or regulation are still the subject of intense research efforts. It has already been shown that calmodulin (CaM) can regulate the activity of Drosophila TRP and TRPL and, more recently, CaM has been shown to interact with mammalian TRPCs. In this study, TRPC6 stably transfected into HEK-293 cells was used to investigate the possible influence of CaM on TRPC6-dependent Ca(2+) entry. Overexpression of TRPC6 in mammalian cells is known to enhance agonist-induced Ca(2+) entry, but not thapsigargin-induced Ca(2+) entry. Here, we show that CaM inhibitors (calmidazolium and trifluoperazine) abolish receptor-operated Ca(2+) entry (ROCE) without affecting thapsigargin-operated Ca(2+) entry and that the activity of CaM is dependent on complexation with Ca(2+). We also show that Ca(2+)-CaM binds to TRPC6 and that the binding can be abolished by CaM inhibitors. These results indicate that CaM is involved in the modulation of ROCE.
Collapse
Affiliation(s)
- G Boulay
- Department of Pharmacology, Université de Sherbrooke, Que, J1H 5N4, Sherbrooke, Canada.
| |
Collapse
|
261
|
O'Connell KMS, Yamaguchi N, Meissner G, Dirksen RT. Calmodulin binding to the 3614-3643 region of RyR1 is not essential for excitation-contraction coupling in skeletal myotubes. J Gen Physiol 2002; 120:337-47. [PMID: 12198090 PMCID: PMC2229515 DOI: 10.1085/jgp.20028617] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calmodulin is a ubiquitous Ca(2+) binding protein that modulates the in vitro activity of the skeletal muscle ryanodine receptor (RyR1). Residues 3614-3643 of RyR1 comprise the CaM binding domain and mutations within this region result in a loss of both high-affinity Ca(2+)-bound calmodulin (CaCaM) and Ca(2+)-free CaM (apoCaM) binding (L3624D) or only CaCaM binding (W3620A). To investigate the functional role of CaM binding to this region of RyR1 in intact skeletal muscle, we compared the ability of RyR1, L3624D, and W3620A to restore excitation-contraction (EC) coupling after expression in RyR1-deficient (dyspedic) myotubes. W3620A-expressing cells responded normally to 10 mM caffeine and 500 microM 4-chloro-m-cresol (4-cmc). Interestingly, L3624D-expressing cells displayed a bimodal response to caffeine, with a large proportion of cells ( approximately 44%) showing a greatly attenuated response to caffeine. However, high and low caffeine-responsive L3624D-expressing myotubes exhibited Ca(2+) transients of similar magnitude after activation by 4-cmc (500 microM) and electrical stimulation. Expression of either L3624D or W3620A in dyspedic myotubes restored both L-type Ca(2+) currents (retrograde coupling) and voltage-gated SR Ca(2+) release (orthograde coupling) to a similar degree as that observed for wild-type RyR1, although L-current density was somewhat larger and activated at more hyperpolarized potentials in W3620A-expressing myotubes. The results indicate that CaM binding to the 3614-3643 region of RyR1 is not essential for voltage sensor activation of RyR1.
Collapse
Affiliation(s)
- Kristen M S O'Connell
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
262
|
Yus-Najera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem 2002; 277:28545-53. [PMID: 12032157 DOI: 10.1074/jbc.m204130200] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show here that in a yeast two-hybrid assay calmodulin (CaM) interacts with the intracellular C-terminal region of several members of the KCNQ family of potassium channels. CaM co-immunoprecipitates with KCNQ2, KCNQ3, or KCNQ5 subunits better in the absence than in the presence of Ca2+. Moreover, in two-hybrid assays where it is possible to detect interactions with apo-CaM but not with Ca2+-bound calmodulin, we localized the CaM-binding site to a region that is predicted to contain two alpha-helices (A and B). These two helices encompass approximately 85 amino acids, and in KCNQ2 they are separated by a dispensable stretch of approximately 130 amino acids. Within this CaM-binding domain, we found an IQ-like CaM-binding motif in helix A and two overlapping consensus 1-5-10 CaM-binding motifs in helix B. Point mutations in helix A or B were capable of abolishing CaM binding in the two-hybrid assay. Moreover, glutathione S-transferase fusion proteins containing helices A and B were capable of binding to CaM, indicating that the interaction with KCNQ channels is direct. Full-length CaM (both N and C lobes) and a functional EF-1 hand were required for these interactions to occur. These observations suggest that apo-CaM is bound to neuronal KCNQ channels at low resting Ca2+ levels and that this interaction is disturbed when the [Ca2+] is raised. Thus, we propose that CaM acts as a mediator in the Ca2+-dependent modulation of KCNQ channels.
Collapse
Affiliation(s)
- Eva Yus-Najera
- Instituto Cajal, Consejo Superior de Investigaciones, Avenida, Dr. Arce 37, 28002 Madrid, Spain
| | | | | |
Collapse
|
263
|
Abstract
Calcium (Ca) is the key regulator of cardiac contraction during excitation-contraction (E-C) coupling. However, differences exist between the amount of Ca being transported into the myocytes upon electrical stimulation as compared to Ca released from the sarcoplasmic reticulum (SR). Moreover, alterations in E-C coupling occur in cardiac hypertrophy and heart failure. In addition to the direct effects of Ca on the myofilaments, Ca plays a pivotal role in activation of a number of Ca-dependent proteins or second messengers, which can modulate E-C coupling. Of these proteins, calmodulin (CaM) and Ca-CaM-dependent kinase II (CaMKII) are of special interest in the heart because of their role of modulating Ca influx, SR Ca release, and SR Ca uptake during E-C coupling. Indeed, CaM and CaMKII may be associated with some ion channels and Ca transporters and both can modulate acute cellular Ca handling. In addition to the changes in Ca, CaM and CaMKII signals from beat-to-beat, changes may occur on a longer time scale. These may occur over seconds to minutes involving phosphorylation/dephosphorylation reactions, and even a longer time frame in altering gene transcription (excitation-transcription (E-T) coupling) in hypertrophic signaling and heart failure. Here we review the classical role of Ca in E-C coupling and extend this view to the role of the Ca-dependent proteins CaM and CaMKII in modulating E-C coupling and their contribution to E-T coupling.
Collapse
Affiliation(s)
- Lars S Maier
- Department of Physiology, Stritch School of Medicine, Loyola University-Chicago, 2160 South First Avenue, Chicago, IL 60153, USA
| | | |
Collapse
|