251
|
Pan Y, Zhang H, Acharya AB, Patrick PH, Oliver D, Morley JE. Effect of testosterone on functional recovery in a castrate male rat stroke model. Brain Res 2005; 1043:195-204. [PMID: 15862533 DOI: 10.1016/j.brainres.2005.02.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Revised: 02/21/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Both increased and decreased testosterone levels have been reported to correlate with poor outcome after acute ischemic stroke. The present study focused on the role of testosterone during recovery from neurological deficits in a rat focal ischemia model. Castrate male rats were subjected to behavioral tests after 90 min of middle cerebral artery occlusion (MCAO). On day 7 post-MCAO, neurological deficit-matched rats were assigned to a treatment group implanted with subcutaneous testosterone pellets or a control group implanted with sham cholesterol pellets. After 4 weeks post-MCAO, the average infarct volume was not significantly different between the two groups. Rats in the testosterone group demonstrated significantly earlier improvement in neurological deficits and shortened latency of adhesive tape removal compared with the control group as analyzed by Wilcoxon signed ranks test. Walking on parallel bars improved in both groups with a trend towards early recovery observed in the testosterone group. Biased left body swings persisted during the test period in both groups post-MCAO. Serum testosterone was within physiological levels in the treatment group but was not detectable in the control group by radioimmunoassay. GAP-43 and synaptophysin expression did not differ between groups. Less GFAP expression and reactive astrocyte hypertrophy were found around the infarct area in testosterone-treated rats compared with control rats. In conclusion, testosterone replacement post-MCAO accelerated functional recovery in castrate rats, suggesting a potential therapeutic role for testosterone replacement in stroke recovery.
Collapse
Affiliation(s)
- Yi Pan
- Department of Neurology, Saint Louis University Hospital, Saint Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
252
|
Buffon F, Molko N, Hervé D, Porcher R, Denghien I, Pappata S, Le Bihan D, Bousser MG, Chabriat H. Longitudinal diffusion changes in cerebral hemispheres after MCA infarcts. J Cereb Blood Flow Metab 2005; 25:641-50. [PMID: 15689956 DOI: 10.1038/sj.jcbfm.9600054] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diffusion tensor imaging can be used in vivo to assess the longitudinal and regional microstructural changes occurring after middle cerebral artery (MCA) infarcts in humans. Nine patients were investigated 1 week (D7), 1 (M1), 3 (M3), and 6 months (M6) after the occurrence of an isolated MCA infarction. First, an overall analysis was performed using histograms of mean diffusivity (MD) and fractional anisotropy (FA) in each hemisphere. Thereafter, the regional pattern of diffusion changes was investigated voxel by voxel with statistical parametric mapping 99. In the hemisphere ipsilateral to the infarction, histogram analysis revealed a significant decrease in FA between D7 and M6 associated with a progressive increase in MD from D7 to M3. Remote from the MCA territory, the voxel by voxel analyses detected a significant increase in MD within the thalamus at M3 and M6 and a reduction in FA along the pyramidal tract at M6. In the contralateral hemisphere, between D7 and M6, a significant hemispheric atrophy was observed in association with a global reduction in anisotropy, in the absence of distinctive regional diffusion changes. These results suggest that micro- and macrostructural tissue modifications can be detected with diffusion tensor imaging in regions remote from the ischemic area in both hemispheres.
Collapse
Affiliation(s)
- Frédérique Buffon
- Department of Neurology, CHU Lariboisière, Université Paris VII, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Abstract
Stroke is the third leading cause of death and the leading cause of disability in developed countries, yet remains a poorly treated condition. Treatments for stroke can be aimed at acutely improving blood flow or protecting brain tissue against ischaemia, enhancing stroke recovery or reducing the risk of stroke recurrence. This paper reviews each of these approaches, particularly focusing on mechanisms for which there are agents in clinical trials. There are a number of appealing neuroprotective agents in Phase II and III clinical trials. However, the majority of acute treatments are likely to suffer from a narrow therapeutic time window and hence limited patient access. Combinations of acute approaches are likely to offer the greatest benefit, but present challenges in development. Promotion of recovery following stroke offers enormous potential for successful therapeutic intervention. Excitingly, new developments in preclinical research have identified possible ways in which this may be achieved.
Collapse
Affiliation(s)
- Isabel J Beresford
- Neurology & GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research & Development Ltd, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | |
Collapse
|
254
|
Moyer JA, Wood A, Zaleska MM, Ay I, Finklestein SP, Protter AA. Basic fibroblast growth factor: a potential therapeutic agent for the treatment of acute neurodegenerative disorders and vascular insufficiency. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.11.1425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
255
|
Luke LM, Allred RP, Jones TA. Unilateral ischemic sensorimotor cortical damage induces contralesional synaptogenesis and enhances skilled reaching with the ipsilateral forelimb in adult male rats. Synapse 2005; 54:187-99. [PMID: 15472929 DOI: 10.1002/syn.20080] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Unilateral damage to the forelimb representation area of the sensorimotor cortex (SMC) results in a compensatory reliance on the unimpaired (ipsilateral to the lesion) forelimb as well as reorganization of neuronal structure and connectivity in the contralateral motor cortex. Recently, male rats with unilateral electrolytic SMC lesions were found to have enhanced skilled reaching performance with the ipsilesional forelimb compared with sham-operated controls. The present study was performed to determine whether these behavioral findings are replicable using an ischemic lesion and whether there is a link between the enhanced learning and synaptogenesis in motor cortical layer V opposite the trained limb and lesion, as assessed using stereological methods for light and electron microscopy. Rats were given a sham operation or an endothelin-1 (ET-1) induced ischemic SMC lesion. They were then trained for 20 days on a skilled reaching task with the unimpaired limb or received control procedures. As with previous findings using electrolytic lesions, rats with unilateral ischemic SMC lesions performed significantly better using the unimpaired forelimb than did sham-operates. Lesions, but not training, significantly increased the total number of motor cortical layer V synapses per neuron as well as the number of perforated and multisynaptic bouton (MSB) synapses per neuron compared with shams. Thus, in addition to a net increase in synapses, the improved reaching ability was coupled with an increase in synapse subtypes that have previously been linked to enhanced synaptic efficacy. The failure to induce synaptogenesis in layer V with reach training alone is in contrast to previous findings and may be related to training intensity.
Collapse
Affiliation(s)
- Linslee M Luke
- Brain Research Institute, University of California, Los Angeles, California 90045, USA
| | | | | |
Collapse
|
256
|
Irving EA, Vinson M, Rosin C, Roberts JC, Chapman DM, Facci L, Virley DJ, Skaper SD, Burbidge SA, Walsh FS, Hunter AJ, Parsons AA. Identification of neuroprotective properties of anti-MAG antibody: a novel approach for the treatment of stroke? J Cereb Blood Flow Metab 2005; 25:98-107. [PMID: 15678116 DOI: 10.1038/sj.jcbfm.9600011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The inhibitory activity of myelin-associated glycoprotein (MAG) on neurons is thought to contribute to the lack of regenerative capacity of the CNS after injury. The interaction of MAG and its neuronal receptors mediates bidirectional signaling between neurons and oligodendrocytes. The novel finding that an anti-MAG monoclonal antibody not only possesses the ability to neutralise the inhibitory effect of MAG on neurons but also directly protects oligodendrocytes from glutamate-mediated oxidative stress-induced cell death is reported here. Furthermore, administration of anti-MAG antibody (centrally and systemically) starting 1 hour after middle cerebral artery occlusion in the rat significantly reduced lesion volume at 7 days. This neuroprotection was associated with a robust improvement in motor function compared with animals receiving control IgG1. Together, these data highlight the potential for the use of anti-MAG antibodies as therapeutic agents for the treatment of stroke.
Collapse
Affiliation(s)
- Elaine A Irving
- Neurology & GI CEDD, GlaxoSmithKline Research and Development Limited, New Frontiers Science Park, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Allred RP, Jones TA. Unilateral ischemic sensorimotor cortical damage in female rats: forelimb behavioral effects and dendritic structural plasticity in the contralateral homotopic cortex. Exp Neurol 2004; 190:433-45. [PMID: 15530882 DOI: 10.1016/j.expneurol.2004.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/09/2004] [Accepted: 08/11/2004] [Indexed: 11/19/2022]
Abstract
Previous studies in male rats with unilateral sensorimotor cortical (SMC) damage have demonstrated dendritic structural plasticity in the contralateral homotopic cortex and an enhancement of skilled reaching performance in the forelimb ipsilateral to the lesion compared to sham-operated rats. The purpose of this study was to determine if these findings could be replicated in an ischemic lesion model in female rats. Female rats were given sham operations or unilateral ischemic (endothelin-1 induced) damage in the forelimb representation area of the SMC opposite their preferred forelimb. Animals then received either 20 consecutive days of training on a skilled reaching task with the non-preferred/unimpaired forelimb or no-training control procedures. The surface density of dendrites immunoreactive (IR) for microtubule-associated protein 2 (MAP2) was then measured in the motor cortex opposite the trained limb and/or lesion. Female rats with sufficiently large, but not very small, lesions performed better with the unimpaired forelimb than sham-operated rats on the reaching task. The post-lesion reaching performance was not found to be significantly dependent upon estrous stage at the time of surgery, in agreement with previous studies that failed to find sex or sex-hormone effects after other types of SMC damage. Additionally, there were major laminar-dependent increases in the surface density of MAP2 IR dendrites in the cortex opposite lesions and trained limbs. These findings in female rats are consistent with the dendritic and behavioral changes previously found in male rats. They extend these previous findings by indicating that lesion size is an important variable in the enhancement of reaching performance.
Collapse
Affiliation(s)
- Rachel P Allred
- Psychology Department, The University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
258
|
Dash PK, Moore AN, Moody MR, Treadwell R, Felix JL, Clifton GL. Post-Trauma Administration of Caffeine Plus Ethanol Reduces Contusion Volume and Improves Working Memory in Rats. J Neurotrauma 2004; 21:1573-83. [PMID: 15684650 DOI: 10.1089/neu.2004.21.1573] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been demonstrated that ethanol exerts dose-dependent effects, both beneficial and detrimental, on the outcome of traumatic brain injury (TBI). Recently, it has been reported that co-administration of caffeine (10 mg/kg) and a low amount of alcohol (0.65 g/kg; caffeinol) reduces cortical infarct volume up to 80%, and improves motor coordination, following a rodent model of reversible common carotid/middle cerebral artery occlusion. However, the protective effects of caffeinol following other CNS insults, nor its influence on cognitive function, have been examined. Using a controlled cortical impact model of brain injury, the effect of caffeinol administration on TBI-associated motor and cognitive deficits was assessed. When given 15 min following injury, caffeinol reduced cortical tissue loss and improved working memory. However, no influence on motor skills, Morris water maze performance or associative learning and memory was observed. Delayed administration (6 h post-injury) of caffeinol containing a dose of ethanol (1 g/kg) previously demonstrated to improve motor performance eliminated the working memory benefit and cortical protection. These results indicate that early administration of caffeinol may be beneficial in lessening some of the deficits and cortical tissue loss associated with brain trauma.
Collapse
Affiliation(s)
- Pramod K Dash
- Vivian L. Smith Center for Neurologic Research, Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225, USA.
| | | | | | | | | | | |
Collapse
|
259
|
Ding Y, Li J, Luan X, Lai Q, McAllister JP, Phillis JW, Clark JC, Guthikonda M, Diaz FG. Local saline infusion into ischemic territory induces regional brain cooling and neuroprotection in rats with transient middle cerebral artery occlusion. Neurosurgery 2004; 54:956-64; discussion 964-5. [PMID: 15046664 DOI: 10.1227/01.neu.0000114513.96704.29] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 11/18/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The neuroprotective effect of hypothermia has long been recognized. Use of hypothermia for stroke therapy, which is currently being induced by whole-body surface cooling, has been limited primarily because of management problems and severe side effects (e.g., pneumonia). The goal of this study was to determine whether local infusion of saline into ischemic territory could induce regional brain cooling and neuroprotection. METHODS A novel procedure was used to block the middle cerebral artery of rats for 3 hours with a hollow filament and locally infuse the middle cerebral artery-supplied territory with 6 ml cold saline (20 degrees C) for 10 minutes before reperfusion. RESULTS The cold saline infusion rapidly and significantly reduced temperature in cerebral cortex from 37.2 +/- 0.1 to 33.4 +/- 0.4 degrees C and in striatum from 37.5 +/- 0.2 to 33.9 +/- 0.4 degrees C. The significant hypothermia remained for up to 60 minutes after reperfusion. Significant (P < 0.01) reductions in infarct volume (approximately 90%) were evident after 48 hours of reperfusion. In ischemic rats that received the same amount of cold saline systemically through a femoral artery, a mild hypothermia was induced only in the cerebral cortex (35.3 +/- 0.2 degrees C) and returned to normal within 5 minutes. No significant reductions in infarct volume were observed in this group or in the ischemic group with local warm saline infusion or without infusion. Furthermore, brain-cooling infusion significantly (P < 0.01) improved motor behavior in ischemic rats after 14 days of reperfusion. This improvement continued for up to 28 days after reperfusion. CONCLUSION Local prereperfusion infusion effectively induced hypothermia and ameliorated brain injury from stroke. Clinically, this procedure could be used in acute stroke treatment, possibly in combination with intra-arterial thrombolysis or mechanical disruption of clot by means of a microcatheter.
Collapse
Affiliation(s)
- Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Lande Medical Research Building, Room 48, 550 East Canfield, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Bütefisch CM. Plasticity in the human cerebral cortex: lessons from the normal brain and from stroke. Neuroscientist 2004; 10:163-73. [PMID: 15070490 DOI: 10.1177/1073858403262152] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The adult brain maintains the ability for reorganization or plasticity throughout life. Results from neurophysiological and neuroanatomical experiments in animals and noninvasive neuroimaging and electrophysiological studies in humans show considerable plasticity of motor representations with use or nonuse, skill learning, or injury to the nervous system. An important concept of reorganization in the motor cortex is that of a distributed neuronal network in which multiple overlapping motor representations are functionally connected through an extensive horizontal network. By changing the strength of horizontal connections between motor neurons, functionally different neuronal assemblies can form, thereby providing a substrate to construct dynamic motor output zones. Modulation of inhibition and synaptic efficacy are mechanisms involved. Recent evidence from animal experiments indicates that these functional changes are accompanied by anatomical changes. Because plasticity of the brain plays a major role in the recovery of function after stroke, the knowledge of the principles of plasticity may help to design strategies to enhance plasticity when it is beneficial, such as after brain infarction.
Collapse
Affiliation(s)
- Cathrin M Bütefisch
- Neurological Therapeutic Center, Department of Neurology, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
261
|
Zepeda A, Sengpiel F, Guagnelli MA, Vaca L, Arias C. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits. J Neurosci 2004; 24:1812-21. [PMID: 14985421 PMCID: PMC6730407 DOI: 10.1523/jneurosci.3213-03.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.
Collapse
Affiliation(s)
- Angelica Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510-México, Distrito Federal, México
| | | | | | | | | |
Collapse
|
262
|
Türeci E, Dashti R, Tanriverdi T, Sanus GZ, Oz B, Uzan M. Acute ethanol intoxication in a model of traumatic brain injury: the protective role of moderate doses demonstrated by immunoreactivity of synaptophysin in hippocampal neurons. Neurol Res 2004; 26:108-12. [PMID: 14977068 DOI: 10.1179/016164104773026633] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although ethanol intoxication is reported to be a complicating factor in traumatic brain injury, some recent studies are indicating its possible protective role especially at lower doses. Ethanol inhibition of NMDA-mediated excitotoxicity which predominates at lower doses is believed to be responsible for this protection. The aim of this study was to demonstrate this neuroprotective role of alcohol using immunoreactivity for synaptophysin as an indirect marker for severity of injury. Acute ethanol intoxication at moderate doses was performed 2 h prior to trauma. Severe traumatic brain injury was administrated using an impact acceleration model in Sprague-Dawley rats. At post-traumatic 48th hour, immunorectivity for synapthophysin in the rat hippocampi was evaluated under light microscopy. According to our results there were slight increases in immunoreactivity for synaptophysin in the stratum oriens and striatum radiatum of CA1 subfield of hippocampus when ethanol was administered prior to trauma comparing to moderate increase in the trauma-only group. On the other hand vacuolar degeneration and red neuron formation was more prominent in the pyramidal cell layer of CA1 and CA3 when ethanol was not administered. Ethanol may have a neuroprotective role when administered at moderate doses prior to traumatic brain injury. This effect of ethanol may primarily be due to inhibition of NMDA receptors.
Collapse
Affiliation(s)
- Ercan Türeci
- Department of Anesthesiology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
263
|
Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 2004; 24:1245-54. [PMID: 14762143 PMCID: PMC6793570 DOI: 10.1523/jneurosci.3834-03.2004] [Citation(s) in RCA: 454] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To maximize the effectiveness of rehabilitative therapies after stroke, it is critical to determine when the brain is most responsive (i.e., plastic) to sensorimotor experience after injury and to focus such efforts within this period. Here, we compared the efficacy of 5 weeks of enriched rehabilitation (ER) initiated at 5 d (ER5), ER14, or ER30 after focal ischemia, as judged by functional outcome and neuromorphological change. ER5 provided marked improvement in skilled forelimb reaching ability and ladder-rung- and narrow-beam-walking tasks and attenuated the stroke-induced reliance on the unaffected forepaw for postural support. ER14 provided improvement to a somewhat lesser extent, whereas recovery was diminished after ER30 such that motor function did not differ from ischemic animals exposed to social housing. To examine potential neural substrates of the improved function, we examined dendritic morphology in the undamaged motor cortex because our previous work (Biernaskie and Corbett, 2001) suggested that recovery was associated with enhanced dendritic growth in this region. ER5 increased the number of branches and complexity of layer V neurons compared with both social housing and control animals. Dendritic arbor after ER14 (although increased) and ER30 did not differ from those exposed to social housing. These data suggest that the poststroke brain displays heightened sensitivity to rehabilitative experience early after the stroke but declines with time. These findings have important implications for rehabilitation of stroke patients, many of whom experience considerable delays before therapy is initiated.
Collapse
Affiliation(s)
- Jeff Biernaskie
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's Campus, Newfoundland, Canada A1B 3V6
| | | | | |
Collapse
|
264
|
Schneider A, Fischer A, Krüger C, Aronowski J. Identification of regulated genes during transient cortical ischemia in mice by restriction-mediated differential display (RMDD). ACTA ACUST UNITED AC 2004; 124:20-8. [PMID: 15093682 DOI: 10.1016/j.molbrainres.2004.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2004] [Indexed: 01/07/2023]
Abstract
Cerebral ischemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes in the cortex after 150 min of focal cortical ischemia and 2 and 6 h reperfusion in the mouse by a fragment display technique (restriction-mediated differential display, RMDD). We identified 57 transcriptionally altered genes, of which 46 were known genes, and 11 unknown sequences. Of note, 14% of the regulated genes detected at 2 h reperfusion time were co-regulated in the contralateral cortex. Four genes were verified to be upregulated by quantitative PCR. These were Metallothionein-II (mt2), Receptor (calcitonin)-activity modifying protein 2 (ramp2), Mitochondrial phosphoprotein 65 (MIPP65), and the transcription elongation factor B2/elongin B (tceb). We could identify several genes that are known to be induced by cerebral ischemia, such as the metallothioneins and c-fos. Many of the genes identified provide hints to potential new mechanisms in ischemic pathophysiology. We discuss the identity of the regulated genes in view of their possible usefulness for pharmacological intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Armin Schneider
- Department of Molecular Neurology and Technology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
265
|
Marin R, Williams A, Hale S, Burge B, Mense M, Bauman R, Tortella F. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 2004; 80:167-75. [PMID: 14637213 DOI: 10.1016/j.physbeh.2003.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Physical activity can induce neuroplastic adaptations and improve outcomes after cerebral injury. To determine if these outcomes are dependent on the type and timing of physical rehabilitation and the particular outcome/endpoint being tested, we evaluated the effect of voluntary exercise exposure beginning 24 h after cerebral ischemic injury on behavioral, physiological, and histological outcomes. In an observer-blinded fashion, Sprague-Dawley (300 g) male rats were allocated to three groups [sham-exercise (SHAM), stroke-exercise (SE), stroke-no exercise (SNE)] before a 1-h right middle cerebral artery occlusion (MCAo). Running wheels were used for voluntary exercise. A significant difference was found at 1 week post-infarction between the SNE and SE, with SNE showing worst neurological scores and higher number of foot faults. In addition, nearly 20% more of the SE animals regained their pre-MCAo weight by 7 days. These differences were not as evident at 2 weeks. No differences were found between the three groups in the paw preference test, wheel activity, and body temperature, as well as between SNE and SE with regards to infarct or hemispheric volumes, body weight, synaptophysin staining, and electroencephalography (EEG) testing. Within-group comparisons showed no relationships between infarct volume and foot faults, neurological scores, or exercise level. We conclude that (1) unlike behavioral outcomes, physiological and histological outcomes may not be influenced by the introduction of voluntary exercise once lesion maturation has occurred at 24 h, and (2) repetitive outcomes testing can obscure findings in rat models of cerebral ischemic injury.
Collapse
Affiliation(s)
- Raul Marin
- Department of the Army, Walter Reed Army Medical Center, 6900 Georgia Avenue, Washington, DC 20307, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Kleim JA, Jones TA, Schallert T. Motor enrichment and the induction of plasticity before or after brain injury. Neurochem Res 2004; 28:1757-69. [PMID: 14584829 DOI: 10.1023/a:1026025408742] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Voluntary exercise, treadmill activity, skills training, and forced limb use have been utilized in animal studies to promote brain plasticity and functional change. Motor enrichment may prime the brain to respond more adaptively to injury, in part by upregulating trophic factors such as GDNF, FGF-2, or BDNF. Discontinuation of exercise in advance of brain injury may cause levels of trophic factor expression to plummet below baseline, which may leave the brain more vulnerable to degeneration. Underfeeding and motor enrichment induce remarkably similar molecular and cellular changes that could underlie their beneficial effects in the aged or injured brain. Exercise begun before focal ischemic injury increases BDNF and other defenses against cell death and can maintain or expand motor representations defined by cortical microstimulation. Interfering with BDNF synthesis causes the motor representations to recede or disappear. Injury to the brain, even in sedentary rats, causes a small, gradual increase in astrocytic expression of neurotrophic factors in both local and remote brain regions. The neurotrophic factors may inoculate those areas against further damage and enable brain repair and use-dependent synaptogenesis associated with recovery of function or compensatory motor learning. Plasticity mechanisms are particularly active during time-windows early after focal cortical damage or exposure to dopamine neurotoxins. Motor and cognitive impairments may contribute to self-imposed behavioral impoverishment, leading to a reduced plasticity. For slow degenerative models, early forced forelimb use or exercise has been shown to halt cell loss, whereas delayed rehabilitation training is ineffective and disuse is prodegenerative. However, it is possible that, in the chronic stages after brain injury, a regimen of exercise would reactivate mechanisms of plasticity and thus enhance rehabilitation targeting residual functional deficits.
Collapse
Affiliation(s)
- Jeffrey A Kleim
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | |
Collapse
|
267
|
Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK. Plasticity following Injury to the Adult Central Nervous System: Is Recapitulation of a Developmental State Worth Promoting? J Neurotrauma 2003; 20:1271-92. [PMID: 14748977 DOI: 10.1089/089771503322686085] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult central nervous system (CNS) appears to initiate a transient increase in plasticity following injury, including increases in growth-related proteins and generation of new cells. Recent evidence is reviewed that the injured adult CNS exhibits events and patterns of gene expression that are also observed during development and during regeneration following damage to the mature peripheral nervous system (PNS). The growth of neurons during development or regeneration is correlated, in part, with a coordinated expression of growth-related proteins, such as growth-associated-protein-43 (GAP-43), microtubule-associated-protein-1B (MAP1B), and polysialylated-neural-cell-adhesion-molecule (PSA-NCAM). For each of these proteins, evidence is discussed regarding its specific role in neuronal development, signals that modify its expression, and reappearance following injury. The rate of adult hippocampal neurogenesis is also affected by numerous endogenous and exogenous factors including injury. The continuing study of developmental neurobiology will likely provide further gene and protein targets for increasing plasticity and regeneration in the mature adult CNS.
Collapse
Affiliation(s)
- Dana L Emery
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, USA
| | | | | | | | | |
Collapse
|
268
|
Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003; 126:2476-96. [PMID: 12937084 PMCID: PMC3717457 DOI: 10.1093/brain/awg245] [Citation(s) in RCA: 694] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recovery of motor function after stroke may occur over weeks or months and is often attributed to cerebral reorganization. We have investigated the longitudinal relationship between recovery after stroke and task-related brain activation during a motor task as measured using functional MRI (fMRI). Eight first-ever stroke patients presenting with hemiparesis resulting from cerebral infarction sparing the primary motor cortex, and four control subjects were recruited. Subjects were scanned on a number of occasions whilst performing an isometric dynamic visually paced hand grip task. Recovery in the patient group was assessed using a battery of outcome measures at each time point. Task-related brain activations decreased over sessions as a function of recovery in a number of primary and non-primary motor regions in all patients, but no session effects were seen in the controls. Furthermore, consistent decreases across sessions correlating with recovery were seen across the whole patient group independent of rate of recovery or initial severity, in primary motor cortex, premotor and prefrontal cortex, supplementary motor areas, cingulate sulcus, temporal lobe, striate cortex, cerebellum, thalamus and basal ganglia. Although recovery-related increases were seen in different brain regions in four patients, there were no consistent effects across the group. These results further our understanding of the recovery process by demonstrating for the first time a clear temporal relationship between recovery and task-related activation of the motor system after stroke.
Collapse
Affiliation(s)
- N S Ward
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK.
| | | | | | | |
Collapse
|
269
|
Baskin YK, Dietrich WD, Green EJ. Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J Neurosci Methods 2003; 129:87-93. [PMID: 12951236 DOI: 10.1016/s0165-0270(03)00212-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variants of two sensorimotor tasks, the gridwalk and spontaneous forelimb use (SFL) tasks, were assessed for their ability to reveal behavioral dysfunction following traumatic brain injury (TBI) in mice. These tests have previously been used almost exclusively in evaluating models of spinal injury, ischemia and other forebrain lesions in rats. Male C57BL/6 mice were anesthetized and given unilateral parasagittal controlled cortical impact injury or sham (n = 9) procedures, targeting right anterior (n = 9), middle (n = 9), or posterior (n = 10) locations relative to bregma. Significant forelimb and hindlimb deficits contralateral to the injured hemisphere were observed for at least 1 month and 3 weeks, respectively, on the gridwalk task depending upon insult location. The SFL task revealed a significant asymmetry in forelimb use for at least 5 months following injury. These results demonstrate the effectiveness of the SFL and gridwalk tests in evaluating sensorimotor deficits in mouse injury models involving unilateral forebrain damage.
Collapse
Affiliation(s)
- Yelena K Baskin
- Department of Psychology, University of Miami, Miami, FL 33124, USA
| | | | | |
Collapse
|
270
|
Tillerson JL, Caudle WM, Reverón ME, Miller GW. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 2003; 119:899-911. [PMID: 12809709 DOI: 10.1016/s0306-4522(03)00096-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Exercise is thought to improve motor function and emotional well-being in patients with Parkinson's disease (PD). However, it is not clear if the improvements are due to neurochemical alterations within the affected nigrostriatal region or result from a more general effect of exercise on affect and motivation. In this study we show that motorized treadmill running improves the neurochemical and behavioral outcomes in two rodent models of PD: the unilateral 6-hydroxydopamine (6-OHDA) rat model and bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model in aged C57bl mice. Exposure to the dopamine (DA) toxins 6-OHDA or MPTP resulted in permanent behavioral and neurochemical loss. In contrast, when lesioned animals were exposed to treadmill activity two times a day for the first 10 days post-lesion they displayed no behavioral deficits across testing days and had significant sparing of striatal DA, its metabolites, tyrosine hydroxylase, vesicular monoamine transporter, and DA transporter levels compared to lesion sedentary animals. These results demonstrate that exercise following nigrostriatal damage ameliorates related motor symptoms and neurochemical deficits in rodent models of PD.
Collapse
Affiliation(s)
- J L Tillerson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | | | | | | |
Collapse
|
271
|
Katsman D, Zheng J, Spinelli K, Carmichael ST. Tissue microenvironments within functional cortical subdivisions adjacent to focal stroke. J Cereb Blood Flow Metab 2003; 23:997-1009. [PMID: 12973016 DOI: 10.1097/01.wcb.0000084252.20114.be] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stroke produces a region of complete cell death and areas of partial damage, injury, and gliosis. The spatial relationship of these regions of damage to the infarct core and within spared neuronal circuits has not been identified. A model of cortical stroke was developed within functional subsets of the somatosensory cortex. Infarct size, regions of apoptosis, oxidative DNA damage, heat shock protein induction, and subtypes of reactive gliosis were precisely mapped with the somatosensory body map, quantified, and interrelated. Three tissue microenvironments were recognized: zones of partial ischemic damage, heat shock protein induction, and distributed gliosis. These three zones involved progressively more distant cortical regions, each larger than the infarct core. The zone of partial ischemic damage represents an overlap region of apoptotic cell death, oxidative DNA damage, loss of synaptic connections, and local reactive gliosis. The zone of distributed gliosis occupies distinct functional areas of the somatosensory cortex. The tissue reorganization induced by stroke is much larger than the stroke site itself. Adjacent tissue microenvironments are sites of distinct reactive cellular signaling and may serve as a link between the processes of acute cell death and delayed neuronal plasticity after focal stroke.
Collapse
Affiliation(s)
- Diana Katsman
- Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
272
|
Kamada H, Sato K, Zhang WR, Omori N, Nagano I, Shoji M, Abe K. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain. J Neurosci Res 2003; 73:545-56. [PMID: 12898539 DOI: 10.1002/jnr.10658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apolipoprotein E (ApoE) is a constituent of lipoprotein and plays an important role in the maintenance of neural networks. However, spatiotemporal differences in ApoE expression and its long-term role in neural process after brain ischemia have not been studied. We investigated changes of ApoE immunoreactivity and ApoE mRNA expression both in the core and in the periischemic area at 1, 7, 21, or 56 days after 90 min of transient middle cerebral artery occlusion. Double stainings for ApoE plus NeuN or plus ED1 were performed in order to identify cell type of ApoE-positive stainings. The maximal increase of ApoE expression was observed at 7 days in the core and at 7 and 21 days in the periischemic area. In the core, ApoE plus NeuN double-positive cells increased at 1 and 7 days, without ApoE mRNA expression, whereas they increased in the periischemic area, with a peak at 21 days, with ApoE mRNA expression in glial cells but not in neurons. On the other hand, ApoE plus ED1 double-positive cells increased only in the core, with a peak in number at 7 and 21 days and marked ApoE mRNA expression in macrophages. The present study suggests that ApoE plays various important roles in different type of cells, reflecting spatiotemporal dissociation between degenerative and regenerative processes after brain ischemia, and that ApoE is profoundly involved in pathological conditions, such as brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Plasticity after central lesions may result in the reorganization of cortical representations of the sensory input. Visual cortex reorganization has been extensively studied after peripheral (retinal) lesions, but focal cortical lesions have received less attention. In this study, we investigated the organization of retinotopic and orientation preference maps at different time points after a focal ischemic lesion in the primary visual cortex (V1). We induced a focal photochemical lesion in V1 of kittens and assessed, through optical imaging of intrinsic signals, the functional cortical layout immediately afterwards and at 4, 13, 33, and 40 days after lesion. We analyzed histologic sections and evaluated temporal changes of functional maps. Histological analysis showed a clear lesion at all time points, which shrank over time. Imaging results showed that the retinotopic and orientation preference maps reorganize to some extent after the lesion. Near the lesion, the cortical retinotopic representation of one degree of visual space expands over time, while at the same time the area of some orientation domains also increases. These results show that different cortical representations can reorganize after a lesion process and suggest a mechanism through which filling-in of a cortical scotoma can occur in cortically damaged patients.
Collapse
Affiliation(s)
- Angelica Zepeda
- Max-Planck-Institut für Neurobiologie, München-Martinsried, Germany.
| | | | | | | |
Collapse
|
274
|
Three-dimensional structure and survival of newly formed blood vessels after focal cerebral ischemia. Neuroreport 2003. [DOI: 10.1097/00001756-200306110-00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
275
|
|
276
|
Boutin H, Jauzac P, MacKenzie ET, Dauphin F. Potential use of early alterations in mu and delta opioid receptors as a predictive index for delayed brain ischemic damage. Neurobiol Dis 2003; 13:63-73. [PMID: 12758068 DOI: 10.1016/s0969-9961(03)00033-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We previously reported differential alterations of the mu, delta, and kappa opioid receptors following permanent middle cerebral artery occlusion. The present work studied the evolution of opioid receptor types following transient focal cerebral ischemia (tMCAO), as well as the putative predictive potential of early neurochemical alterations on the delayed ischemic damage. delta receptors were significantly decreased as early as 6 h post tMCAO (-22% approximately -57% vs. sham group), followed by a decrease in the mu binding site density at 24 h post tMCAO (-18% approximately -65%), in infarcted and penumbral cortices. Finally, early decreases in cortical opioid mu and delta receptor densities were found to significantly correlate (P < 0.001, r(2) = 0.48 and 0.75, respectively) with the occurrence of delayed histological damage. The high correlation between decreases in mu and delta receptor densities at 6 h post tMCAO and the histological damage that occurred at 24 h post tMCAO suggests that these early neurochemical alterations could be used as predictive markers of delayed ischemic damage.
Collapse
MESH Headings
- Animals
- Autoradiography
- Binding, Competitive
- Brain/blood supply
- Brain/pathology
- Brain/physiopathology
- Brain Ischemia/etiology
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Cerebral Infarction/etiology
- Cerebral Infarction/pathology
- Cerebral Infarction/physiopathology
- Disease Progression
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/physiopathology
- Ischemic Attack, Transient/complications
- Ischemic Attack, Transient/physiopathology
- Ligands
- Mice
- Predictive Value of Tests
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Reperfusion Injury/etiology
- Reperfusion Injury/pathology
- Time Factors
Collapse
Affiliation(s)
- Hervé Boutin
- Université de Caen, CNRS UMR 6551, Boulevard H. Becquerel, BP 5229 14074, Caen Cedex, France
| | | | | | | |
Collapse
|
277
|
Jones TA, Bury SD, Adkins-Muir DL, Luke LM, Allred RP, Sakata JT. Importance of behavioral manipulations and measures in rat models of brain damage and brain repair. ILAR J 2003; 44:144-52. [PMID: 12652009 DOI: 10.1093/ilar.44.2.144] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relevance of careful behavioral measures and manipulations in animal research on neural plasticity and brain damage has become increasingly clear. Recent research in adult rats indicates that an understanding of neural restructuring after brain damage requires an understanding of how it is influenced by postinjury behavioral experiences. Other research indicates that optimizing pharmacological and other treatments for brain damage may require their combination with rehabilitative training. Assessing the efficacy of a treatment approach in animal models requires the use of sensitive behavioral measures of functional outcome. In research on restorative plasticity after brain damage, procedures for handling and housing rats should promote the quality of behavioral measures and manipulations.
Collapse
Affiliation(s)
- Theresa A Jones
- The Institute for Neuroscience Research and the Psychology Department, The University of Texas at Austin, USA
| | | | | | | | | | | |
Collapse
|
278
|
Schallert T, Woodlee MT, Fleming SM. Experimental focal ischemic injury: behavior-brain interactions and issues of animal handling and housing. ILAR J 2003; 44:130-43. [PMID: 12652008 DOI: 10.1093/ilar.44.2.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In experimental neurological models of brain injury, behavioral manipulations before and after the insult can have a major impact on molecular, anatomical, and functional outcome. Investigators using animals for preclinical research should keep in mind that people with brain injury have lived in, and will continue to live in, an environment that is far more complex than that of the typical laboratory rodent. To yield more reliable and relevant behavioral assessment, it may be appropriate in some cases to house animals in environments that allow for motor enrichment and to handle animals in ways that promote tameness. Experience can affect mechanisms of plasticity and degeneration beneficially or adversely. Behavioral interventions that have been found to modulate postinjury brain events are reviewed. The timing and interaction of biological and motor therapies and the potential contribution of experience-dependent and drug-induced trophic factor expression are discussed.
Collapse
Affiliation(s)
- Tim Schallert
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, USA
| | | | | |
Collapse
|
279
|
Abstract
Growth associated protein 43 (GAP 43) is involved in synapse formation and it is expressed in the retina in a very specific pattern. Although GAP 43 is downregulated at the time of synapse formation, it can be re-expressed following injury such as axotomy or ischemia. Because of this we sought to characterize the expression of GAP 43 after retinal detachment (RD). Immunoblot, immunocytochemical and quantitative polymerase chain reaction (QPCR) techniques were used to assess the level of GAP 43 expression after experimental RD. GAP 43 was localized to three sublaminae of the inner plexiform layer of the normal retina. GAP 43 became upregulated in a subset of retinal ganglion cells following at least 7 days of RD. By immunoblot GAP 43 could be detected by 3 days. QPCR shows the upregulation of GAP 43 message by 6hr of detachment. To further characterize changes in ganglion cells, we used an antibody to neurofilament 70 and 200kDa (NF) proteins. Anti-NF labels horizontal cells, ganglion cell dendrites in the inner plexiform layer, and ganglion cell axons (fasicles) in the normal retina. Following detachment it is upregulated in horizontal cells and ganglion cells. When detached retina was double labelled with anti-GAP 43 and anti-NF, some cells were labelled with both markers, while others labelled with only one. We have previously shown that second order neurons respond to detachment; here we show that third order neurons are responding as well. Cellular remodelling of this type in response to detachment may explain the slow recovery of vision that often occurs after reattachment, or those changes that are often assumed to be permanent.
Collapse
Affiliation(s)
- Francie E Coblentz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
280
|
Schallert T, Fleming SM, Woodlee MT. Should the injured and intact hemispheres be treated differently during the early phases of physical restorative therapy in experimental stroke or parkinsonism? Phys Med Rehabil Clin N Am 2003; 14:S27-46. [PMID: 12625636 DOI: 10.1016/s1047-9651(02)00055-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Over a century ago the intact cortex was proposed to contribute to recovery from unilateral brain injury, but its possible role in functional outcome has become more appreciated in recent years as a result of anatomic, metabolic and behavioral studies. Although use of the contralesional limb is naturally impaired after sensorimotor cortex injury, neural and astrocytic events in the intact hemisphere may give rise to, and may be influenced by, an enhanced ability to compensate for lost motor function. The debate is still open as to whether the neural changes are generally compensatory in nature, with activity in the homotopic cortex leading to greater capability in the nonimpaired limb, or whether they are actually a matter of reorganization in the homotopic cortex leading to connections to denervated targets in the opposite hemisphere, thus allowing the homotopic cortex to control motor programs there. Although both phenomena may occur to some degree, there is mounting evidence in support of the former view. Careful behavioral techniques have been developed that can expose compensatory tricks, and the time course of these behaviors correlates well with anatomic data. Moreover, if the intact cortex sustains a second lesion after recovery from the first, forelimb sensorimotor function specific to the first-impaired side of the body is not worsened. Partial denervation of callosal fibers coming from the injured hemisphere, plus preferential use of the good forelimb caused by a cortical injury, may increase trophic factors in the intact hemisphere. These and related events seem to provide a growth-favorable environment there that permits motor learning in the intact forelimb at a level of skill exceeding that which a normal animal can attain in the same period of time. There are anecdotal cases in human neurologic patients that are consistent with these findings. For example, a colleague of the authors who sustained a unilateral infarction that rendered his dominant right hand severely impaired noticed that soon after the stroke he was able to use his left hand for writing and computers as well as he had ever used his right hand. Cross-midline placing tests also indicate that the structural events observed in the intact cortex may potentiate projections to the damaged hemisphere. These changes may help restore the capacity of tactile information projecting to the intact hemisphere to control limb placing in the impaired forelimb. Neural events in the injured hemisphere can be affected by behavior differently than the neural events in the intact hemisphere. Different therapeutic strategies might well be used on opposing limbs at different times after unilateral sensorimotor cortex injury to optimize recovery (and, indeed, to avoid exaggerating the insult). Finally, the details of reorganization in both hemispheres differ greatly depending on the type of brain injury sustained (eg, in stroke versus Parkinson's disease), suggesting that an approach that considers the role of both hemispheres is likely to be beneficial in research on a broad variety of brain pathologies.
Collapse
Affiliation(s)
- Tim Schallert
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
281
|
Nudo RJ. Functional and structural plasticity in motor cortex: implications for stroke recovery. Phys Med Rehabil Clin N Am 2003; 14:S57-76. [PMID: 12625638 DOI: 10.1016/s1047-9651(02)00054-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several studies have now demonstrated that the motor cortical representations are dynamically maintained in both normal and brain-injured animals. Functional plasticity in the motor cortex of normal animals is accompanied by changes in synaptic morphology; these changes are skill-dependent rather than simply use-dependent. Finally, motor cortical areas undergo substantial functional alterations after focal ischemic infarcts; motor experience is a potent and adaptive modulator of injury-related plasticity. These recent neuroscientific advances set the stage for the development of new, more effective interventions in chronic stroke populations that are based on the basic mechanisms underlying neuroplasticity.
Collapse
Affiliation(s)
- Randolph J Nudo
- Department of Molecular and Integrative Physiology and Center on Aging, Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
282
|
Abstract
Ischemic stroke produces cell death and disability, and a process of repair and partial recovery. Plasticity within cortical connections after stroke leads to partial recovery of function after the initial injury. Physiologically, cortical connections after stroke become hyperexcitable and more susceptible to the induction of LTP Stroke produces changes in the distribution and laterality of sensory, motor, and language representations within the brain that correlate with functional recovery. Anatomically, ischemic lesions induce axonal sprouting within local, intracortical projections and long distance, interhemispheric projections. This postischemic axonal sprouting establishes substantially new patterns of cortical connections with de-afferented or partially damaged brain areas. Axonal sprouting after ischemic lesions is induced by a transient pattern of synchronous, low-frequency neuronal activity in a network of cortical areas connected to the infarct. This pattern of neuronal activity that induces axonal sprouting in the adult after ischemic lesions resembles that seen in the developing brain during axonal elongation and synaptogenesis. Thus, stroke induces a process of remapping and reconnection within the adult brain through changes in neuronal activity that may involve a reactivation of developmental programs in areas connected to the infarct.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
283
|
Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. J Neurosci 2003. [PMID: 12533611 DOI: 10.1523/jneurosci.23-02-00510.2003] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pattern and role of brain plasticity in stroke recovery has been incompletely characterized. Both ipsilesional and contralesional changes have been described, but it remains unclear how these relate to functional recovery. Our goal was to correlate brain activation patterns with tissue damage, hemodynamics, and neurologic status after temporary stroke, using functional magnetic resonance imaging (fMRI). Transverse relaxation time (T2)-weighted, diffusion-weighted, and perfusion MRI were performed at days 1 (n = 7), 3 (n = 7), and 14 (n = 7) after 2 hr unilateral middle cerebral artery occlusion in rats. Functional activation and cerebrovascular reactivity maps were generated from contrast-enhanced fMRI during forelimb stimulation and hypercapnia, respectively. Before MRI, rats were examined neurologically. We detected loss of activation responses in the ipsilesional sensorimotor cortex, which was related to T2 lesion size (r = -0.858 on day 3, r = -0.979 on day 14; p < 0.05). Significant activation responses in the contralesional hemisphere were detected at days 1 and 3. The degree of shift in balance of activation between the ipsilesional and contralesional hemispheres, characterized by the laterality index, was linked to the T2 and apparent diffusion coefficient in the ipsilesional contralesional forelimb region of the primary somatosensory cortex and primary motor cortex at day 1 (r = -0.807 and 0.782, respectively; p < 0.05) and day 14 (r = -0.898 and -0.970, respectively; p < 0.05). There was no correlation between activation parameters and perfusion status or cerebrovascular reactivity. Finally, we found that the laterality index and neurologic status changed in parallel over time after stroke, so that when all time points were grouped together, neurologic status was inversely correlated with the laterality index (r = -0.571; p = 0.016). This study suggests that the degree of shift of activation balance toward the contralesional hemisphere early after stroke increases with the extent of tissue injury and that functional recovery is associated mainly with preservation or restoration of activation in the ipsilesional hemisphere.
Collapse
|
284
|
Berti R, Williams AJ, Velarde LC, Moffett JR, Elliott PJ, Adams J, Yao C, Dave JR, Tortella FC. Effect of the proteasome inhibitor MLN519 on the expression of inflammatory molecules following middle cerebral artery occlusion and reperfusion in the rat. Neurotox Res 2003; 5:505-14. [PMID: 14715434 DOI: 10.1007/bf03033160] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-inflammatory treatment with the proteasome inhibitor MLN519 has been previously reported to be neuroprotective against ischemic brain injury in rats. These effects have been related to inhibition of the transcription factor NF-kappaB, which is activated through ubiquitin-proteasomal degradation. The aim of this study was to evaluate the effects of MLN519 to alter the expression of several inflammatory genes under the control of NF-kappaB. Male Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAo) followed by vehicle or MLN519 (1.0 g/kg, i.v.) treatment immediately after reperfusion of blood to the brain at 2h. Gene expression was evaluated 3-72 h post-MCAo. The most striking effects of intravenous treatment with MLN519 were associated with reductions in ICAM-1 expression at 3 h followed by reductions in E-selectin (12-72 h). Less dramatic reductions were observed in IL-1Beta (3-24 h) and TNF-Alpha (24 h) with no apparent effects on IL-6 and VCAM-1 mRNA levels. Immunohistochemical analysis revealed that the genes most dramatically affected by MLN519 had highest expression in endothelial cells and leukocytes (E-selectin, ICAM-1),indicating that these cell types may be the primary targets of intravenously delivered MLN519 treatment.
Collapse
Affiliation(s)
- R Berti
- Division of Neurosciences, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Kamada H, Sato K, Iwai M, Zhang WR, Nagano I, Manabe Y, Shoji M, Abe K. Temporal and spatial changes of free cholesterol and neutral lipids in rat brain after transient middle cerebral artery occlusion. Neurosci Res 2003; 45:91-100. [PMID: 12507728 DOI: 10.1016/s0168-0102(02)00203-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to examine lipid metabolism in relation to neural process following brain ischemia, we investigated temporal and spatial changes of free cholesterol (FC) and neutral lipids (NLs) after 90 min of transient middle cerebral artery occlusion (MCAO). Filipin and Nile Red stainings were performed to detect mainly FC and NLs, respectively. Double stainings for Nile Red plus ED1, MAP2, or GFAP were performed in order to identify cell type of positive stainings. Filipin stanining decreased during 1-7 day and lost at 21 day after transient MCAO in the ischemic core, but did not change in the penumbra. Nile Red positive droplets reached the maximum at 7 day after transient MCAO and gradually decreased in the core, while the peak time delayed in the penumbra. MAP2 immunoreactivity lost at 7 day in the core, and increased in the penumbra during 7-56 day. Most Nile Red positive droplets were double positive for ED1 in the core, and were localized within GFAP positive cells in the penumbra. These results suggest that changes of FC and NLs are different temporally and spatially between the core and penumbra in relation to degenerative and regenerative neural processes following brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, Rosen BR, Cramer SC. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 2002; 16:326-38. [PMID: 12462764 DOI: 10.1177/154596830201600403] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Constraint-induced movement therapy (CIMT) is a physical rehabilitation regime that has been previously shown to improve motor function in chronic hemiparetic stroke patients. However, the neural mechanisms supporting rehabilitation-induced motor recovery are poorly understood. The goal of this study was to assess motor cortical reorganization after CIMT using functional magnetic resonance imaging (fMRI). In a repeated-measures design, 4 incompletely recovered chronic stroke patients treated with CIMT underwent motor function testing and fMRI. Five age-matched normal subjects were also imaged. A laterality index (LI) was determined from the fMRI data, reflecting the distribution of activation in motor cortices contralateral compared with ipsilateral to the moving hand. Pre-intervention fMRI showed a lower LI during affected hand movement of stroke patients (LI = 0.23+/-0.07) compared to controls (LI unaffected patient hand = 0.65+/-0.10; LI dominant normal hand = 0.65+/-0.11; LI nondominant normal hand = 0.69+/-0.11; P < 0.05) due to trends toward increased ipsilateral motor cortical activation. Motor function testing showed that patients made significant gains in functional use of the stroke-affected upper extremity (detected by the Motor Activity Log) and significant reductions in motor impairment (detected by the Fugl-Meyer Stroke Scale and the Wolf Motor Function Test) immediately after CIMT, and these effects persisted at 6-month follow-up. The behavioral effects of CIMT were associated with a trend toward a reduced LI from pre-intervention to immediately post-intervention (LI = -0.01+/-0.06, P = 0.077) and 6 months post-intervention (LI = -0.03+/-0.15). Stroke-affected hand movement was not accompanied by mirror movements during fMRI, and electromyographic measures of mirror recruitment under simulated fMRI conditions were not correlated with LI values. These data provide preliminary evidence that gains in motor function produced by CIMT in chronic stroke patients may be associated with a shift in laterality of motor cortical activation toward the undamaged hemisphere.
Collapse
Affiliation(s)
- Judith D Schaechter
- Massachusetts General Hospital-NMR Center, Department of Radiology, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
287
|
Ando S, Tanaka Y, Toyoda nee Ono Y, Kon K, Kawashima SI. Turnover of synaptic membranes: age-related changes and modulation by dietary restriction. J Neurosci Res 2002; 70:290-7. [PMID: 12391588 DOI: 10.1002/jnr.10352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined age-related changes in the turnover rates of synaptic membrane components that might underlie the decrease in synaptic functions in senescence. Synaptic membrane constituents were labeled in vivo with deuterium and the disappearance of the deuterated molecules from synaptic membranes was measured by mass spectrometry. The turnover rates of phosphatidylcholine, phosphatidylethanolamine, cholesterol, and synaptophysin were all shown to slow down with aging. Dietary restriction, which is known to retard various aging processes, was found to decrease the turnover rates of membrane lipid species. Consequently, the fatty acid composition in phospholipids remained unchanged in the synaptic plasma membranes of food restricted mice. In contrast, the turnover rate of synaptophysin was accelerated under dietary restriction. This may mean that increased turnover enhances the removal of damaged proteins from membranes.
Collapse
Affiliation(s)
- Susumu Ando
- Neuronal Function Research Group, Division of Neuroscience, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | | | |
Collapse
|
288
|
Li Q, Stephenson D. Postischemic administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat. Exp Neurol 2002; 177:531-7. [PMID: 12429198 DOI: 10.1006/exnr.2002.7994] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a polypeptide with potent trophic and protective effects on the brain. bFGF has been reported to exert neuroprotection against a wide variety of insults, including ischemic neuronal injury. To date, animal models of focal ischemia have not been translated to efficacy in stroke clinically with respect to testing of neuroprotective agents. Because functional outcome is the measurement of efficacy for putative neuroprotective agents in the clinic, we sought to evaluate the functional consequences of bFGF administration in rats subjected to focal ischemia. In this study, we assessed the effects of bFGF on functional outcome as well as infarct size in rats subjected to severe cerebral ischemia by permanent occlusion of the middle cerebral artery (MCAO). Male Sprague-Dawley rats were subjected to permanent MCAO by the intraluminal filament technique. Two hours following occlusion, rats were infused intravenously with either bFGF, at a dose of 150 microg/kg, or vehicle alone. Functional sensorimotor impairment, which was assessed by the accelerating rotarod test, was recorded at baseline and compared to performance assessed at 24 h after MCAO. Permanent occlusion of the MCA caused marked impairment in rotarod performance in both groups. Treatment of rats with bFGF showed a significant 46% improvement in rotarod fall latency when compared with that from the animals treated with vehicle alone. The volume of cortical infarction was significantly reduced by 32% as a function of bFGF treatment. These results suggest that the delayed intravenous administration of bFGF improves sensorimotor function as well as reduces infarct size following permanent focal ischemia in rat.
Collapse
Affiliation(s)
- Qiu Li
- Department of Pharmacology, Pharmacia, Kalamazoo, Michigan 49001, USA
| | | |
Collapse
|
289
|
Keyvani K, Schallert T. Plasticity-associated molecular and structural events in the injured brain. J Neuropathol Exp Neurol 2002; 61:831-40. [PMID: 12387449 DOI: 10.1093/jnen/61.10.831] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Injury to the brain appears to create a fertile ground for functional and structural plasticity that is, at least partly, responsible for functional recovery. Increases in dendritic arborization, spine density, and synaptogenesis in both peri-injury and intact cortical areas are the potential morphological strategies that enable the brain to reorganize its neuronal circuits. These injury-initiated alterations are time-dependent and frequently proceed in interaction with behavior-related signals. A complex concert of a variety of genes/proteins is required to tightly control these changes. Two broad categories of molecules appear to be involved. First, regulatory molecules or effector molecules with regulatory function, such as immediate early genes/transcription factors, kinase network proteins, growth factors, and neurotransmitter receptors, and second, structural proteins, such as adhesion molecules and compounds of synapses, growth cones, and cytoskeleton. A better understanding of the processes contributing to postinjury plasticity may be an advantage for developing new and more effective therapeutic approaches. This knowledge might also shed light on other forms of brain plasticity, such as those involved in learning processes or ontogeny.
Collapse
Affiliation(s)
- Kathy Keyvani
- Institute of Neuropathology, University of Muenster, Germany
| | | |
Collapse
|
290
|
Abstract
Diagnosis of Parkinson's disease (PD) is based on the presentation of clinical symptoms such as bradykinesia, resting tremor, and rigidity. However, one feature of PD that often begins years before diagnosis is decreased physical activity. We hypothesized that this depressed activity is not only a symptom of the early dopaminergic loss but also a catalyst in the degenerative process. Two experiments were performed to test this hypothesis. First, rats were exposed to a mild dose of 6-hydroxydopamine unilaterally into the nigrostriatal dopamine (DA) projections, which would normally result in an approximately 20% DA loss and no detectable behavioral asymmetries. A subset of these lesioned animals then had a cast applied for 7 d to the contralateral forelimb. After the cast was removed, these animals displayed long-term behavioral asymmetry and exacerbation of neurochemical loss (approximately 60% depletion). Second, a group of animals received a high dose of 6-hydroxydopamine that normally would yield a severe loss of nigrostriatal terminals (approximately 90% loss) and chronic sensorimotor deficits. During the first 7 d after neurotoxin exposure, a subset of these animals were forced to rely on the contralateral forelimb, a procedure we have previously reported to protect DA terminals and behavioral function. Some of these rats then had the use of their "recovered" forelimb restricted during the second or third week after lesioning. This precipitated a severe and chronic loss of DA terminals and functional deficits. These results suggest decreased physical activity not only is a symptom of PD but also may act to potentiate the underlying degeneration.
Collapse
|
291
|
Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, Elliott PJ, Yao C, Dave JR, Tortella FC. Quantitative real-time RT-PCR analysis of inflammatory gene expression associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab 2002; 22:1068-79. [PMID: 12218412 DOI: 10.1097/00004647-200209000-00004] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ischemia-reperfusion brain injury initiates an inflammatory response involving the expression of adhesion molecules and cytokines, some of which are regulated by the nuclear transcription factor NF-kappaB. In this study the authors examined mRNA expression levels for several important genes associated with inflammation at five time points (3, 6, 12, 24, and 72 hours) after transient middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. A sensitive and quantitative technique (TaqMan real-time QRT-PCR) was used to simultaneously measure mRNA levels for key cell adhesion molecules and inflammatory cytokines. Gene expression increased significantly in the injured hemisphere for interleukin (IL)-1beta (12-fold increase at 24 hours), IL-6 (25-fold increase at 6 hours) and ICAM-1 (4-fold increase at 24 hours), and the interhemispheric differences for these genes were significant for every time point examined (P < 0.05 for all values). Tumor necrosis factor-alpha mRNA was upregulated in the injured versus uninjured hemisphere from 3 to 24 hours (5-fold increase at 6 hours), while E-selectin showed a significant increase in mRNA levels from 6 to 24 hours after MCAO (10-fold increase at 6 hours) (P < 0.05 for all values). VCAM-1 mRNA levels did not respond differentially to injury at any time point between the two brain hemispheres. At all time points examined, activated NF-kappaB immunoreactivity was observed in cells throughout the infarct-damaged tissue. These results are consistent with the proinflammatory properties of the induced molecules, which are involved in the initiation of the inflammatory cascade, and may thus contribute to secondary cellular responses that lead to further brain damage.
Collapse
Affiliation(s)
- Rossana Berti
- Neuropharmacology and Molecular Biology Department, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Voorhies AC, Jones TA. The behavioral and dendritic growth effects of focal sensorimotor cortical damage depend on the method of lesion induction. Behav Brain Res 2002; 133:237-46. [PMID: 12110457 DOI: 10.1016/s0166-4328(02)00029-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using different models of focal cortical injury in adult rats, the neural structural and behavioral outcomes of unilateral lesions of the forelimb representation of the sensorimotor cortex (SMC) were assessed. Lesions were produced using either electrolytic, aspiration, or combined ('electroaspiration') techniques. Measurements of dendritic arborization in layer V of the motor cortex opposite the lesion revealed a growth of pyramidal neuron dendritic processes following electrolytic lesions in comparison to shams. This effect was not found in either the aspiration or electroaspiration lesion groups. Behaviorally, animals in all lesion groups developed a hyper-reliance on the forelimb ipsilateral to the lesion and proportionate disuse of the contralateral (impaired) forelimb for postural support behaviors. In comparison to sham-operated animals, the initial asymmetries in behaviors expressed during movement were similar between lesion groups, but were less enduring following electrolytic lesions than following aspiration and electroaspiration lesions. Furthermore, both aspiration lesion groups had more prevalent adduction of the impaired forelimb than the electrolytic-only lesion rats. Thus, cortical aspiration resulted in more severe and enduring forelimb impairments than the electrolytic lesions, despite similar lesion sizes, as assessed using cortical volume measures. These findings suggest that the aspiration lesion procedures, at least as performed in the present study, exacerbate the behavioral effects of focal cortical injury and limit compensatory plasticity in the contralateral cortex.
Collapse
Affiliation(s)
- Ann C Voorhies
- Psychology Department, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
293
|
Risedal A, Mattsson B, Dahlqvist P, Nordborg C, Olsson T, Johansson BB. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull 2002; 58:315-21. [PMID: 12128159 DOI: 10.1016/s0361-9230(02)00796-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of postoperative housing conditions on functional outcome and brain-derived neurotrophic factor (BDNF) gene expression was evaluated 1 month after a distal ligation of the right middle cerebral artery (MCA) in spontaneously hypertensive rats. Two days postoperatively the rats were randomized into four groups; individually housed with no equipment (deprived group), individually housed with free access to a connected running wheel (running group), housed together in a large cage with no equipment (social group) or in the same size of cage furnished with bars, chains and various things to manipulate (enriched group). The enriched rats had significantly higher scores when crossing a rotating horizontal rod than deprived and running rats. The social group performed significantly better than the deprived group. The BDNF gene expression in the ipsi- and contralateral cortex, thalamus, hippocampus and cerebellum did not significantly differ between the groups. The weight of the adrenal glands was significantly increased in running rats suggesting that postischemic running may be stressful. We conclude that the beneficial effect of postischemic environmental enrichment is likely to be a combination of social and various physical activities, and that BDNF gene expression 1 month after a cortical infarct did not correlate with functional outcome.
Collapse
Affiliation(s)
- Anette Risedal
- Division for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
294
|
Esquenazi S, Monnerie H, Kaplan P, Le Roux P. BMP-7 and excess glutamate: opposing effects on dendrite growth from cerebral cortical neurons in vitro. Exp Neurol 2002; 176:41-54. [PMID: 12093081 DOI: 10.1006/exnr.2002.7906] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate is an important regulator of dendrite development. During cerebral ischemia, however, there is massive release of glutamate reaching millimolar concentrations in the extracellular space. An early consequence of this excess glutamate is reduced dendrite growth. Bone morphogenetic protein-7 (BMP-7) a member of the transforming growth factor-beta (TGF-beta) superfamily has been demonstrated to enhance dendrite output from cerebral cortical and hippocampal neurons in vitro. However, it is not known whether BMP-7can prevent the reduced dendrite growth associated with excess glutamate or enhance dendrite growth after glutamate exposure. Therefore we quantified axon and primary, secondary, and total dendrite growth from embryonic mouse cortical neurons (E18) grown at low density in vitro in a chemically defined medium and exposed to glutamate (1 or 2 mM) for 48 h. Morphology and double immunolabeling (MAP2, NF-H) were used to identify cortical dendrites and axons after 3 DIV. In these short-term cultures, glutamate did not influence neuron survival. The addition of glutamate to cortical neurons, however, significantly attenuated dendrite output. This effect was mimicked by the addition of NMDA but not AMPA agonists and inhibited by the specific NMDA receptor antagonist MK-801. The reduction in dendrite growth mediated by excess glutamate was ameliorated by the administration of 30 or 100 ng/ml of BMP-7. In addition, when administered in a delayed fashion between 1 and 24 h after the initial glutamate exposure, BMP-7 was able to enhance dendrite growth, including primary dendrite number, primary dendrite length, and secondary dendritic branching. These findings demonstrate that BMP-7 can ameliorate reduced dendrite growth from cerebral cortical neurons associated with excess glutamate in vitro and are important because they may help explain why BMP-7 administration is associated with enhanced functional recovery in models of cerebral ischemia.
Collapse
Affiliation(s)
- Susana Esquenazi
- Department of Neurosurgery, New York University, New York, New York, USA
| | | | | | | |
Collapse
|
295
|
Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, Lu M, Chopp M. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 2002; 117:207-14. [PMID: 12100987 DOI: 10.1016/s0165-0270(02)00114-0] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mouse is an excellent model for investigations of stroke and neural injury. However, there is a paucity of long term functional outcome measurements for the mouse. We, therefore, developed a sensorimotor functional test (corner test) and applied this test to a model of focal cerebral ischemia in the mouse. Male C57/6J mice (n=20) were subjected to embolic middle cerebral artery (MCA) occlusion. Reduction of cerebral blood flow (CBF) was measured by perfusion weighted MRI at 1 h after ischemia. The corner test, which is sensitive to chronic sensorimotor and postural symmetries, a general neurological test battery, and a foot fault test were performed between 2 and 90 days after ischemia. Infarct volume was measured at 90 days after ischemia. Multivariable analysis revealed that the corner test was highly predictive for infarct volume measured at 90 days after stroke, with R(2) values ranging from 0.73 to 0.93. The foot-fault test and neurological score did not detect chronic behavioral impairments. A significant (P<0.001) correlation between the infarct volume and the corner test was detected at 90 days after mild focal cerebral ischemia, whereas, there was no correlation between the infarct volume and neurological score or foot-fault. The data demonstrate that the corner test is a sensitive and objective test, which can be applied to evaluate long term functional outcome after stroke in the mouse.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
296
|
Chen P, Goldberg DE, Kolb B, Lanser M, Benowitz LI. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci U S A 2002; 99:9031-6. [PMID: 12084941 PMCID: PMC124418 DOI: 10.1073/pnas.132076299] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cerebral infarct (stroke) often causes devastating and irreversible losses of function, in part because of the brain's limited capacity for anatomical reorganization. The purine nucleoside inosine has previously been shown to induce neurons to express a set of growth-associated proteins and to extend axons in culture and in vivo. We show here that in adult rats with unilateral cortical infarcts, inosine stimulated neurons on the undamaged side of the brain to extend new projections to denervated areas of the midbrain and spinal cord. This growth was paralleled by improved performance on several behavioral measures.
Collapse
Affiliation(s)
- Peng Chen
- Department of Neurosurgery, Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
297
|
Abstract
We describe our preclinical studies on the use of bone-marrow stromal cells (MSC; an uncharacterised mixed population of plastic-adherent cells) in the treatment of neural injury. These cells obtained from donor rats or human beings have been directly transplanted into brain or administered intra-arterially or intravenously. MSC selectively target injured tissue and promote functional recovery. Signals that target inflammatory cells to injured tissue probably direct MSC to injury sites. Although some MSC express proteins typical of neural cells, the possibility that benefit is derived by replacement of infarcted tissue with differentiated MSC is highly unlikely. MSC activate endogenous restorative responses in injured brain, which include angiogenesis, neurogenesis, and synaptogenesis. Given the robust therapeutic benefit of these cells in the treatment of experimental neural injury, and the fact that MSC have been used in the treatment of other human disease, there is justification for further preclinical studies leading to clinical trials for the treatment of neural injury such as stroke.
Collapse
Affiliation(s)
- Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, MI 48202, USA.
| | | |
Collapse
|
298
|
Miyake K, Yamamoto W, Tadokoro M, Takagi N, Sasakawa K, Nitta A, Furukawa S, Takeo S. Alterations in hippocampal GAP-43, BDNF, and L1 following sustained cerebral ischemia. Brain Res 2002; 935:24-31. [PMID: 12062469 DOI: 10.1016/s0006-8993(02)02420-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alterations in factors involved in the regeneration of the neuronal network in the hippocampus of rats with microsphere embolism (ME) were examined. Nine hundred microspheres (48 microm in diameter) were injected into the right hemisphere, and immunochemical and immunohistochemical studies on the hippocampus were performed on the seventh day thereafter. Hematoxylin-eosin staining showed progressive and severe degeneration of the hippocampus after ME. The protein levels of brain-derived neurotrophic factor (BDNF), 43-kDa growth-associated protein (GAP-43), and adhesion protein L1 (L1) in the ipsilateral hippocampus of the ME animal, determined by Western blot analysis or enzyme immunoassay, were increased, unaltered, and decreased, respectively. In contrast, the immunohistochemical study showed increases in a marker of axonal sprouting GAP-43, and a neurotrophic factor BDNF, and a decrease in an adhesion molecule L1 in some areas of the hippocampal ischemic penumbra of such animals. These results suggest that some factors for regeneration of the neuronal network in the ischemic penumbra responded to sustained cerebral ischemia for a certain period, although functional network of the nerve cells in the microsphere-injected hemisphere would be unlikely established after ME.
Collapse
Affiliation(s)
- Keiko Miyake
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, 192-0392 Hachioji, Japan
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Metz GA, Whishaw IQ. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 2002; 115:169-79. [PMID: 11992668 DOI: 10.1016/s0165-0270(02)00012-2] [Citation(s) in RCA: 514] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ladder rung walking test is a new task to assess skilled walking and measure both forelimb and hindlimb placing, stepping, and inter-limb co-ordination. Rats spontaneously walk from a starting location to a goal along a horizontal ladder. The spacing between the rungs of the ladder is variable and can be changed to prevent the animal from learning either the absolute or relative location of the rungs. The testing procedure requires minimal training and allows detailed quantitative and qualitative analysis using video recording. The utility of the test is described with postoperative data obtained from animals with unilateral neocortical strokes produced by pial stripping over the motor cortex, neonatal and adult unilateral corticospinal tract lesions produced by tract section at the pyramids, and unilateral dopamine depletions produced by injection of 6-hydroxydopamine into the nigrostriatal bundle. In addition, a group of aged rats was examined. Deficits in limb placing, stepping and co-ordination displayed by the animals demonstrate that this test can discriminate between lesions of the motor system or age-associated impairments. The test is useful for assessing loss and recovery of function due to brain or spinal cord injury, the effectiveness of treatment therapies, as well as compensatory processes through which animals adapt to nervous system injury.
Collapse
Affiliation(s)
- Gerlinde A Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.
| | | |
Collapse
|
300
|
Beck H, Acker T, Püschel AW, Fujisawa H, Carmeliet P, Plate KH. Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol 2002; 61:339-50. [PMID: 11939589 DOI: 10.1093/jnen/61.4.339] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuropilin-1 and -2 (NP-1/NP-2) are transmembrane receptors that play a role in axonal guidance by binding of class III semaphorins, and in angiogenesis by binding of the vascular endothelial growth factor isoform VEGF165 and placenta growth factor (PLGF). We investigated the expression pattern of NP-1/NP-2, their co-receptors, vascular endothelial growth factor receptor-1 and -2 (VEGFR-1, VEGFR-2), and their ligands, class III semaphorins, VEGF and PLGF, following experimental cerebral ischemia in mice. By means of in situ hybridization and immunohistochemistry we observed loss of expression of class III semaphorins in neurons in the infarct/peri-infarct area. In contrast, we observed high expression of NP-1 in vessels, neurons, and astrocytes surrounding the infarct. VEGF and PLGF were upregulated in different cell types following stroke. Our results suggest a shift in the balance between semaphorins and VEGF/PLGF, which compete for NP-binding. Possibly, the loss of semaphorins facilitates binding of the competing ligands (VEGF/PLGF), thus inducing angiogenesis. In addition, the observed expression patterns further suggest a neurotrophic/neuroprotective role of VEGF/PLGF.
Collapse
Affiliation(s)
- Heike Beck
- Institute of Neurology (Edinger-institute), JWG University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|