251
|
Abstract
Although initially adaptive, the changes that accompany hypertension, namely, cell growth, endothelial dysfunction, and extracellular matrix deposition, eventually can become maladaptive and lead to end-organ disease such as heart failure, coronary artery disease, and renal failure. A functional imbalance between angiotensin II (Ang II) and nitric oxide (NO) plays an important pathogenetic role in hypertensive end-organ injury. NO, an endogenous vasodilator, inhibitor of vascular smooth muscle and mesangial cell growth, and natriuretic agent, is synthesized in the endothelium by a constitutive NO synthase. NO antagonizes the effects of Ang II on vascular tone, cell growth, and renal sodium excretion, and also down-regulates the synthesis of angiotensin-converting enzyme (ACE) and Ang II type 1 receptors. On the other hand, Ang II decreases NO bioavailability by promoting oxidative stress. A better understanding of the pathophysiologic mechanisms involved in hypertensive end-organ damage may aid in identifying markers of cardiovascular susceptibility to injury and in developing therapeutic interventions. We propose that those antihypertensive agents that lower blood pressure and concomitantly restore the homeostatic balance of vasoactive agents such as Ang II and NO within the vessel wall would be more effective in preventing or arresting end-organ disease.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Nephrology-Hypertension Division, Vascular Biology Institute, University of Miami School of Medicine, Veterans Affairs Medical Center, FL 33125, USA
| | | | | |
Collapse
|
252
|
Rodríguez-Iturbe B, Quiroz Y, Ferrebuz A, Parra G, Vaziri ND. Evolution of renal interstitial inflammation and NF-kappaB activation in spontaneously hypertensive rats. Am J Nephrol 2004; 24:587-94. [PMID: 15564764 DOI: 10.1159/000082313] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Accepted: 10/21/2004] [Indexed: 12/24/2022]
Abstract
Lymphocytes and macrophages infiltrate the kidney of spontaneously hypertensive rats (SHR) and interventions leading to their reduction are associated with improvement of the hypertension. The present studies examined the evolution of the interstitial inflammation in the natural course of the SHR to gain insight on the potential role of interstitial immune cell accumulation in the development of hypertension. We studied SHR and control WKY rats at 3 weeks (SHR-3 wk group, n = 11 and WKY-3 wk group, n = 10), 11 weeks (SHR-11 wk group, n = 5 and WKY-11 wk group, n = 5) and 24 weeks (SHR-24 wk group, n = 10 and WKY-24 wk group, n = 10). The SHR-3 wk group was normotensive and older SHR developed hypertension that was severe in the SHR-24 wk group. Tubulointerstitial accumulation of lymphocytes, macrophages, angiotensin II-positive cells, cells expressing the p65 DNA-binding subunit of NF-kappaB and activation of NF-kappaB in the kidney were all significantly increased (p < 0.01) in the prehypertensive SHR-3 wk group and augmented progressively, with the highest values in the SHR-24 wk group. The SHR-24 wk group showed increased (p < 0.001) helper (CD4) T cell infiltration and a high CD4/CD8 ratio. These findings are consistent with the possibility that activation of NF-kappaB and renal interstitial infiltration of immune cells may be part of the pathophysiologic process that drives hypertension in the SHR.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Iturbe
- Renal Service, Hospital Universitario de Maracaibo, Instituto de Investigaciones Biomédicas, Fundacite-Zulia, Universidad del Zulia, Maracaibo, Venezuela.
| | | | | | | | | |
Collapse
|
253
|
Abstract
PURPOSE OF REVIEW Recent studies have reported that intrarenal angiotensin II content and angiotensin II concentrations in the proximal tubular fluid and renal interstitial fluid are much greater than the circulating angiotensin II levels. These high intrarenal angiotensin II levels are responsible for regulating renal hemodynamics and tubular transport. RECENT FINDINGS Intrarenal angiotensin II levels have been assessed from total tissue contents as well as renal interstitial fluid and proximal tubular fluid concentrations. Total tissue contents expressed per gram of tissue weight are greater than plasma angiotensin II concentrations; tubular fluid concentrations and renal interstitial fluid concentrations are even greater in the range of 3-10 pmoles/ml. In hypertensive states, there is also an increased intracellular accumulation of angiotensin II mediated by angiotensin type 1 receptor-dependent endocytosis. The high intrarenal angiotensin II levels are also caused by the presence of angiotensinogen messenger RNA and protein in the proximal tubule cells. Furthermore, there is positive amplification by which increases in circulating angiotensin II stimulate increased production and secretion of angiotensinogen, which is also manifested as an increased urinary excretion rate. SUMMARY The ability of the kidney to generate high intratubular and interstitial concentrations allows the kidney to regulate intrarenal levels in accord with the homeostatic needs for the regulation of renal hemodynamics and tubular reabsorption and the regulation of sodium balance. When inappropriately stimulated, high intrarenal angiotensin II levels contribute to excessive salt and water retention, the development of hypertension, and long-term proliferative effects leading to renal injury.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology and Hypertension, Renal Center of Excellence, Tulane University Health Scences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
254
|
Abstract
Our recent efforts have been focused on the mechanisms responsible for the progression of aldosterone-induced renal injury. We have demonstrated in rats that chronic treatment with aldosterone (0.75 micro g/H, SC) and 1% NaCl (in drinking solution) results in severe proteinuria and glomerular injury, characterized by cell proliferation and mesangial matrix expansion. Increased renal cortical NAD(P)H oxidase expression, reactive oxygen species (ROS) generation, and mitogen-activated protein kinase (MAPK) activation were also observed. Treatment with a selective mineralocorticoid receptor antagonist, eplerenone(0.125% in chow), or an antioxidant, tempol (3 mM in drinking solution), prevented elevations of ROS levels and MAPK activity, as well as ameliorating glomerular injury, indicating that aldosterone-induced glomerular injury is associated with redox-sensitive MAPK activation. In vitro studies showed that mineralocorticoid receptors are highly expressed in rats mesangial cells, particularly in the cytoplasm. Aldosterone (100 nM) application activates MAPK and causes cellular proliferation and deformation. These data suggest that aldosterone contributes to the progression of glomerular injury through its direct actions.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | |
Collapse
|
255
|
Rohrwasser A, Ishigami T, Gociman B, Lantelme P, Morgan T, Cheng T, Hillas E, Zhang S, Ward K, Bloch-Faure M, Meneton P, Lalouel JM. Renin and kallikrein in connecting tubule of mouse. Kidney Int 2004; 64:2155-62. [PMID: 14633138 DOI: 10.1046/j.1523-1755.2003.00302.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The observation of renin expression in connecting tubule, a segment that also expresses tissue kallikrein (KLK-1), raises two questions. Are the genes expressed in the same or in different cells of connecting tubule? Does this topography support the hypothesis that KLK-1 activates prorenin or is it more likely that it affords coordinated gene regulation? METHODS Renin and KLK-1 were examined by immunostaining and in situ hybridization. Renin activation by KLK-1 was investigated in vitro. In vivo, excretion of prorenin and active renin was compared in mice homozygous for targeted inactivation of KLK-1 (TK(-/-)) and normal littermates (TK(+/+)). RESULTS Using in situ immunostaining for renin and in situ hybridization for KLK-1 mRNA, we found that connecting tubule cells expressing renin also expressed KLK-1. We confirmed in vitro activation of prorenin by KLK-1, but found no difference in the ratio of active renin to prorenin in urine of TK(-/-) and TK(+/+) animals. Compared to TK(+/+) controls, TK(-/-) mice exhibited significantly lower 24-hour excretion of prorenin (5.05 +/- 1.16 mg Ang I/hour vs. 9.39 +/- 1.96 mg Ang I/hour, P < 0.05) and active renin (1.98 +/- 0.25 mg Ang I/hour vs. 3.58 +/- 0.39 mg Ang I/hour, P < 0.05), with no difference in either urine volumes or plasma renin concentrations. CONCLUSION Direct interaction between renin and KLK-1, not ruled out in vitro, is not supported in vivo. By contrast, lower excretion of active renin and prorenin in TK(-/-) compared to TK(+/+) suggest coordinated regulation of the two proteins in their participation to collecting duct function.
Collapse
Affiliation(s)
- Andreas Rohrwasser
- Department of Human Genetics, University of Utah, Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
256
|
Nishiyama A, Seth DM, Navar LG. Angiotensin II type 1 receptor-mediated augmentation of renal interstitial fluid angiotensin II in angiotensin II-induced hypertension. J Hypertens 2004; 21:1897-903. [PMID: 14508196 DOI: 10.1097/00004872-200310000-00017] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Angiotensin II (Ang II)-dependent hypertension is associated with augmented intrarenal concentrations of Ang II; however, the distribution of the increased intrarenal Ang II has not been fully established. OBJECTIVE To determine the changes in renal interstitial fluid Ang II concentrations in Ang II-induced hypertension and the consequences of treatment with an angiotensin II type 1 (AT1) receptor blocker. DESIGN AND METHODS Rats were selected to receive vehicle (5% acetic acid subcutaneously; n = 6), Ang II (80 ng/min subcutaneously, via osmotic minipump; n = 7) or Ang II plus an AT1 receptor antagonist, candesartan cilexetil (10 mg/kg per day, in drinking water; n = 6) for 13-14 days, at which time, experiments were performed on anesthetized rats. Microdialysis probes were implanted in the renal cortex and were perfused at 2 microl/min. The effluent dialysate concentrations of Ang I and Ang II were measured by radioimmunoassay and reported values were corrected for the equilibrium rates at this perfusion rate. RESULTS Ang II-infused rats developed greater mean arterial pressures (155 +/- 7 mmHg) than vehicle-infused rats (108 +/- 3 mmHg). Ang II-infused rats showed greater plasma (181 +/- 30 fmol/ml) and kidney (330 +/- 38 fmol/g) Ang II concentrations than vehicle-infused rats (98 +/- 14 fmol/ml and 157 +/- 22 fmol/g, respectively). Renal interstitial fluid Ang II concentrations were much greater than plasma concentrations, averaging 5.74 +/- 0.26 pmol/ml in Ang II-infused rats - significantly greater than those in vehicle-infused rats (2.86 +/- 0.23 pmol/ml). Candesartan treatment prevented the hypertension (87 +/- 3 mmHg) and led to increased plasma Ang II concentrations (441 +/- 27 fmol/ml), but prevented increases in kidney (120 +/- 15 fmol/g) and renal interstitial fluid (2.15 +/- 0.12 pmol/ml) Ang II concentrations. CONCLUSIONS These data indicate that Ang II-infused rats develop increased renal interstitial fluid concentrations of Ang II, which may contribute to the increased vascular resistance and reduced sodium excretion. Furthermore, the augmentation of renal interstitial fluid Ang II is the result of an AT1 receptor-mediated process and can be dissociated from the plasma concentrations.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
257
|
Loghman-Adham M, Soto CE, Inagami T, Cassis L. The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Renal Physiol 2004; 287:F775-88. [PMID: 15187005 DOI: 10.1152/ajprenal.00370.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypertension is a common complication of autosomal dominant polycystic kidney disease (ADPKD), often present before the onset of renal failure. A role for the renin-angiotensin system (RAS) has been proposed, but studies of systemic RAS have failed to show a correlation between plasma renin activity and blood pressure in ADPKD. Ectopic renin expression by cyst epithelium was first reported in 1992 (Torres VE, Donovan KA, Sicli G, Holley KE, Thibodeau ST, Carretero OA, Inagami T, McAteer JA, and Johnson CM. Kidney Int 42: 364-373, 1992). It is not known, however, whether other RAS components are also expressed by cysts in ADPKD. We show that, in addition to renin, angiotensinogen (AGT) is produced by some cysts and dilated tubules. Angiotensin-converting enzyme, ANG II type 1 receptor, and ANG II peptide are also present within cysts and in many tubules; and some cyst fluids contain high ANG II concentrations. Additionally, cyst-derived cells in culture continue to express the components of the RAS at both the protein and mRNA levels. We further show that renin is expressed primarily in cysts of distal tubule origin and in cyst-derived cells with distal tubule characteristics, whereas AGT is expressed primarily in cysts of proximal tubule origin and in cyst-derived cells with proximal tubule characteristics. Renin production by cyst-derived cells appears to be regulated by extracellular Na+ concentration. Based on these observations, we propose a model of an autocrine/paracrine RAS in polycystic kidney disease, whereby overactivity of the intrarenal system results in sustained increases in intratubular ANG II concentrations.
Collapse
MESH Headings
- Angiotensin II/genetics
- Angiotensin II/immunology
- Angiotensin II/metabolism
- Angiotensinogen/genetics
- Angiotensinogen/immunology
- Angiotensinogen/metabolism
- Animals
- Antibodies
- Blotting, Western
- Cells, Cultured
- Humans
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Kidney/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/immunology
- Peptidyl-Dipeptidase A/metabolism
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/physiopathology
- RNA, Messenger/analysis
- Rabbits
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/immunology
- Receptor, Angiotensin, Type 1/metabolism
- Renin/genetics
- Renin/immunology
- Renin/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Mahmoud Loghman-Adham
- Department of Pediatrics and Pediatric Research Institute, Saint Louis University, St. Louis, Missouri 07920, USA.
| | | | | | | |
Collapse
|
258
|
Rodríguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol Renal Physiol 2004; 286:F606-16. [PMID: 15001451 DOI: 10.1152/ajprenal.00269.2003] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent evidence indicates that interstitial infiltration of T cells and macrophages plays a role in the pathogenesis of salt-sensitive hypertension. The present review examines this evidence and summarizes the investigations linking the renal accumulation of immune cells and oxidative stress in the development of hypertension. The mechanisms involved in the hypertensive effects of oxidant stress and tubulointerstitial inflammation, in particular intrarenal ANG II activity, are discussed, focusing on their potential for sodium retention. The possibility of autoimmune reactivity in hypertension is raised in the light of the proinflammatory and immunogenic pathways stimulated by the interrelationship between oxidant stress and inflammatory response. Finally, we present some clinical considerations derived from the recognition of this interrelationship.
Collapse
Affiliation(s)
- Bernardo Rodríguez-Iturbe
- Servicio de Nefrología, Hospital Universitario, Universidad del Zulia, Instituto de Inmunobiología (Fundacite-Zulia Maracaibo 400-A, Venezuela.
| | | | | | | |
Collapse
|
259
|
Lerolle N, Bourgeois S, Leviel F, Lebrun G, Paillard M, Houillier P. Angiotensin II inhibits NaCl absorption in the rat medullary thick ascending limb. Am J Physiol Renal Physiol 2004; 287:F404-10. [PMID: 15100097 DOI: 10.1152/ajprenal.00265.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NaCl reabsorption in the medullary thick ascending limb of Henle (MTALH) contributes to NaCl balance and is also responsible for the creation of medullary interstitial hypertonicity. Despite the presence of angiotensin II subtype 1 (AT(1)) receptors in both the luminal and the basolateral plasma membranes of MTALH cells, no information is available on the effect of angiotensin II on NaCl reabsorption in MTALH and, furthermore, on angiotensin II-dependent medullary interstitial osmolality. MTALHs from male Sprague-Dawley rats were isolated and microperfused in vitro; transepithelial net chloride absorption (J(Cl)) as well as transepithelial voltage (V(te)) were measured. Luminal or peritubular 10(-11) and 10(-10) M angiotensin II had no effect on J(Cl) or V(te). However, 10(-8) M luminal or peritubular angiotensin II reversibly decreased both J(Cl) and V(te). The effect of both luminal and peritubular angiotensin II was prevented by the presence of losartan (10(-6) M). By contrast, PD-23319, an AT(2)-receptor antagonist, did not alter the inhibitory effect of 10(-8) M angiotensin II. Finally, no additive effect of luminal and peritubular angiotensin II was observed. We conclude that both luminal and peritubular angiotensin II inhibit NaCl absorption in the MTALH via AT(1) receptors. Because of intrarenal angiotensin II synthesis, angiotensin II concentration in medullary tubular and interstitial fluids may be similar in vivo to the concentration that displays an inhibitory effect on NaCl reabsorption under the present experimental conditions.
Collapse
Affiliation(s)
- Nicolas Lerolle
- Institut National de la Santé et de la Recherche Médicale U356, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
260
|
Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am J Physiol Renal Physiol 2004; 287:F262-7. [PMID: 15100095 DOI: 10.1152/ajprenal.00055.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult hypertension may be programmed by the prenatal environment in humans and in experimental animals. The potential role of the intrarenal renin-angiotensin system (RAS) in prenatally programmed hypertension was investigated. Hypertension in rat offspring was induced by maternal protein restriction during pregnancy. The offspring were studied on day 1 of life and immediately preceding the development of hypertension on day 28. ANG I and II contents were determined by radioimmunoassy. Angiotensin receptor protein and mRNA levels were quantified by immunoblotting and real-time RT-PCR, respectively. Plasma and kidney ANG I and II were unchanged in the offspring from low-protein pregnancies (LP). ANG II type 1 receptor (AT(1)R) protein abundance was low in the newborn LP kidney (P < 0.05) but rose above control values by 28 days of age (P < 0.05); the rise was associated with an increase in AT(1)R subtype A (P < 0.01), but not subtype B, mRNA level. ANG II type 2 receptor protein expression was decreased on day 1 (P < 0.05) and increased on day 28 (P < 0.05) in LP kidneys. The results show that prenatal programming of hypertension is associated with an abnormal pattern of intrarenal RAS ontogeny that may play a pathogenetic role, for instance, by constitutively altering renal hemodynamics or Na reabsorption.
Collapse
MESH Headings
- Aging/metabolism
- Angiotensins/metabolism
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Diet, Protein-Restricted
- Female
- Hypertension/etiology
- Hypertension/metabolism
- Kidney/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Angiotensin/metabolism
Collapse
Affiliation(s)
- V Matti Vehaskari
- The Research Institute for Children, 200 Henry Clay Ave., New Orleans, LA 70118, USA.
| | | | | | | | | | | |
Collapse
|
261
|
Kopkan L, Kramer HJ, Husková Z, Vanourková Z, Bäcker A, Bader M, Ganten D, Cervenka L. Plasma and kidney angiotensin II levels and renal functional responses to AT1 receptor blockade in hypertensive Ren-2 transgenic rats. J Hypertens 2004; 22:819-25. [PMID: 15126925 DOI: 10.1097/00004872-200404000-00026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The first aim of the present study was to assess plasma and kidney angiotensin II (ANG II) levels and renal cortical ANG II receptor subtype 1A (AT1A) mRNA expression in hypertensive Ren-2 transgenic rats (TGR) and in normotensive Hannover Sprague-Dawley (HanSD) rats. The second aim was to investigate potential differences between TGR and HanSD in blood pressure (BP) and renal functional responses to either intravenous (i.v.), i.e. systemic, or intrarenal (i.r.) AT1 receptor blockade with candesartan. METHODS Rats were anesthetized and prepared for clearance experiments. In series 1, ANG II concentrations were assayed by radioimmunoassay and renal cortical AT1A mRNA expression by semiquantitative reverse transcriptase-polyacrylamide gel electrophoresis. In series 2, BP and renal functional responses were evaluated after either i.v. or i.r. bolus administration of candesartan. RESULTS Plasma and kidney ANG II levels were significantly lower in TGR than in HanSD (39 +/- 5 versus 107 +/- 19 fmol/ml and 251 +/- 41 versus 571 +/- 95 fmol/g, respectively, P < 0.05). Renal AT1A mRNA expression was not different between TGR and HanSD. Intravenous candesartan caused comparable decreases in BP in TGR and HanSD and did not change renal plasma flow (RPF) or absolute and fractional sodium excretion in HanSD. In contrast, i.v. candesartan significantly increased RPF (+27 +/- 6%, P < 0.05) and absolute and fractional sodium excretion (+49 +/- 10 and + 42 +/- 9%, respectively P < 0.05) in TGR without changing glomerular filtration rate (GFR). Acute i.r. candesartan increased RPF by +36 +/- 6% (P < 0.05) in TGR but not in HanSD with a greater rise in absolute and fractional sodium excretion in TGR (+124 +/-8 and 97 +/- 9%, respectively) than in HanSD (+81 +/- 9 and +69 +/- 8%, respectively) (P < 0.05). CONCLUSIONS The enhanced responses of RPF and sodium excretion to AT1 receptor blockade in TGR suggest that renal hemodynamics and sodium excretion in TGR are under strong ANG II influence. The compromised ability of the kidney to respond to BP elevations by appropriate increases in sodium excretion may contribute to the maintenance of high BP in TGR. Thus, the present findings provide new insights into the pathophysiology of hypertension in this model.
Collapse
Affiliation(s)
- Libor Kopkan
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídenská, CZ-140 21 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Kobori H, Prieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension 2004; 43:1126-32. [PMID: 15037565 PMCID: PMC2637079 DOI: 10.1161/01.hyp.0000122875.91100.28] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiotensin (Ang) II-infused hypertensive rats exhibit increases in renal angiotensinogen mRNA and protein, as well as urinary angiotensinogen excretion in association with increased intrarenal Ang II content. The present study was performed to determine if the augmentation of intrarenal angiotensinogen requires activation of Ang II type 1 (AT1) receptors. Male Sprague-Dawley rats (200 to 220 g) were divided into 3 groups: sham surgery (n=10), subcutaneous infusion of Ang II (80 ng/min, n=11), and Ang II infusion plus AT1 blocker (ARB), olmesartan (5 mg/d, n=12). Ang II infusion progressively increased systolic blood pressure (SBP) compared with sham (178+/-8 mm Hg versus 119+/-4 at day 11). ARB treatment prevented hypertension (113+/-6 at day 11). Twenty-four-hour urine collections were taken at day 12, and plasma and tissue samples were harvested at day 13. The Ang II+ARB group had a significant increase in plasma Ang II compared with Ang II and sham groups (365+/-46 fmol/mL versus 76+/-9 and 45+/-14, respectively). Nevertheless, ARB treatment markedly limited the enhancement of kidney Ang II by Ang II infusion (65+/-17 fmol/g in sham, 606+/-147 in Ang II group, and 288+/-28 in Ang II+ARB group). Ang II infusion significantly increased kidney angiotensinogen compared with sham (1.69+/-0.21 densitometric units versus 1.00+/-0.17). This change was reflected by increased angiotensinogen immunostaining in proximal tubules. ARB treatment prevented this increase (1.14+/-0.12). Urinary angiotensinogen excretion rates were enhanced 4.7x in Ang II group (4.67+/-0.41 densitometric units versus 1.00+/-0.21) but ARB treatment prevented the augmentation of urinary angiotensinogen (0.96+/-0.23). These data demonstrate that augmentation of intrarenal angiotensinogen in Ang II-infused rats is AT1-dependent and provide further evidence that urinary angiotensinogen is closely linked to intrarenal Ang II in Ang II-dependent hypertension.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, #SL39, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
263
|
Okada H, Watanabe Y, Inoue T, Kobayashi T, Kikuta T, Kanno Y, Ban S, Suzuki H. Angiotensin II type 1 receptor blockade attenuates renal fibrogenesis in an immune-mediated nephritic kidney through counter-activation of angiotensin II type 2 receptor. Biochem Biophys Res Commun 2004; 314:403-8. [PMID: 14733919 DOI: 10.1016/j.bbrc.2003.12.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The relative roles of angiotensin II (Ang II) type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R) in immune-mediated nephritis are unknown, and the effect of the blockade of AT(1)R and its indirect counter-activation of AT(2)R relative to the anti-fibrotic action in this disease is unclear. To address this question, we studied the role of AT(1)R and AT(2)R in anti-glomerular basement membrane nephritis in SJL mice. Groups of mice were treated with either an AT(1)R antagonist (CGP-48933; CGP group), an AT(2)R antagonist (PD-123319; PD group), both (CGP/PD group), or a vehicle (PCt group) from Day 29 to 56. At Day 56 post-treatment, fibrosis-related parameters such as interstitial matrix deposition, and the expression of genes of TGF-beta1, plasminogen activator inhibitor-1, and type I collagen were significantly reduced in the kidney in the CGP group. There were no significant effects on these parameters in the PD group. However, this anti-fibrotic action by CGP-48933 was totally abolished by co-treatment with PD-123319 in the CGP/PD group. The gene expression of renin was significantly increased in the kidneys in the CGP and CGP/PD groups, suggesting that CGP-48933 had increased Ang II generation in those groups. In conclusion, counter-activation of AT(2)R by increased Ang II under AT(1)R blockade likely conferred an anti-fibrotic protection in this model.
Collapse
Affiliation(s)
- Hirokazu Okada
- Department of Nephrology, Saitama Medical College, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
264
|
Shan ZZ, Dai SM, Fang F, Su DF. Changes of Central Norepinephrine, β-Endorphin, LEU-Enkephalin, Peripheral Arginine-Vasopressin, and Angiotensin II Levels in Acute and Chronic Phases of Sino-Aortic Denervation in Rats. J Cardiovasc Pharmacol 2004; 43:234-41. [PMID: 14716211 DOI: 10.1097/00005344-200402000-00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We and others have demonstrated that impaired arterial baroreceptor reflex (ABR) function is one of the major causes of hypertension-associated end organ damage. The goal of this study was to clarify the potential neuro-humoral mechanisms responsible for impaired ABR-induced end organ damage. The sino-aortic denervated (SAD) rat was used as an animal model of ABR dysfunction. One-week SAD rats were characterized by hypertension, tachycardia, increased norepinephrine content, and decreased beta-endorphin and leu-enkephalin content in hypothalamus and medulla oblongata, and increased plasma levels of arginine-vasopressin. In 18-week SAD rats, the 24-hour average arterial pressure, heart rate, beta-endorphin, and leu-enkephalin content in hypothalamus and medulla oblongata and plasma levels of arginine-vasopressin and angiotensin II were not different from those measured in ABR-intact rats. However, blood pressure variability and angiotensin II content in kidney and left ventricle increased. When exposed to chronic stress, exaggerated changes in arterial pressure, blood pressure variability, the levels of central norepinephrine, beta-endorphin and leu-enkephalin, plasma arginine-vasopressin and angiotensin II, and tissue angiotensin II were found in 18-week SAD rats. These data indicate that a long-term impairment of ABR leads to chronic activation of central noradrenergic neurons and tissue renin-angiotensin system, and that stress induces exaggerated responses of neuro-humoral factors and hemodynamics in SAD rats. Thus, if the present results hold true for humans, one can expect abnormal neurotransmitter/neuromodulator responses to environmental insults in patients with impaired ABR function.
Collapse
Affiliation(s)
- Zheng-Zheng Shan
- Changhai Hospital, Second Military Medical University, Shanghai, China.
| | | | | | | |
Collapse
|
265
|
Abstract
Cardiovascular disease (CVD) causes 12.4 million deaths annually, most (9.6 million) occurring in developing countries. Hypertension, the most common CVD, arises within the context of obesity, but the underlying mechanisms remain obscure. Obesity and salt intake are two important risk factors for hypertension and are the focus of this paper. Traditional African populations show a low prevalence of hypertension, but hypertension is more common in migrant African populations in the West than in other ethnic groups. One explanation is genetic, but no causative gene has been confidently identified. Nongenetic susceptibilities such as fetal programming are an alternative explanation. Hypothetically, fetal programming induced by transient stimuli permanently alters fetal structure and function at the cellular, organ and whole-body levels. Birth weight is inversely related to blood pressure and hypertension risk, suggesting that susceptibility to hypertension risk factors such as obesity and salt sensitivity are themselves programmed. In support of this hypothesis, obesity (especially central obesity) is also inversely related to size at birth. Likewise, salt sensitivity might derive from undernutrition in utero, reducing the nephron number and resetting the pressure-natriuresis curve rightward. However, no robust human data or evidence of enhanced salt sensitivity among African-origin populations exist. In the United States, blacks have a greater prevalence of low birth weight than whites, suggesting that the higher prevalence of hypertension among blacks is related to fetal programming. Nevertheless, we need to be scrupulous in ascribing risk to the myriad other confounders of this relationship, including environmental and behavioral correlates of ethnicity, before concluding that excess risk of hypertension in Africans is programmed in utero.
Collapse
Affiliation(s)
- Terrence Forrester
- Tropical Metabolism Research Unit, Tropical Medicine Research Institute, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| |
Collapse
|
266
|
Ichihara A, Kobori H, Nishiyama A, Navar LG. Renal renin-angiotensin system. CONTRIBUTIONS TO NEPHROLOGY 2004; 143:117-30. [PMID: 15248360 PMCID: PMC2575669 DOI: 10.1159/000078716] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cardinal role of the intrarenal renin-angiotensin system (RAS) in the control of sodium excretion and the pathophysiology of hypertension continues to receive increased attention. In addition to its very powerful vasoconstrictor action, angiotensin (Ang) II exerts important actions on tubular transport function and several recent studies have emphasized the potential importance of actions of angiotensin peptides on receptors localized to the luminal membranes of both proximal and distal nephron segments. Furthermore, a strong case is being developed supporting the importance of local mechanisms regulating the activity of the RAS. This is due to the fact that all components of the RAS are strongly expressed in the kidneys.
Collapse
|
267
|
Nishiyama A, Kobori H, Fukui T, Zhang GX, Yao L, Rahman M, Hitomi H, Kiyomoto H, Shokoji T, Kimura S, Kohno M, Abe Y. Role of angiotensin II and reactive oxygen species in cyclosporine A-dependent hypertension. Hypertension 2003; 42:754-60. [PMID: 12874088 PMCID: PMC2572573 DOI: 10.1161/01.hyp.0000085195.38870.44] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Treatment with cyclosporine A (CysA), a potent immunosuppressive agent, is associated with systemic and renal vasoconstriction, leading to hypertension. The present study was conducted to elucidate the contribution of angiotensin II (Ang II) to CysA-induced hypertension and reactive oxygen species (ROS) generation. CysA (30 mg/kg per day SC), given for 3 weeks in rats, increased systolic blood pressure (SBP) from 119+/-2 to 145+/-3 mm Hg (n=7). Plasma and kidney Ang II levels were significantly higher in CysA-treated rats (136+/-10 fmol/mL and 516+/-70 fmol/g) than in vehicle-treated (1 mL olive oil) rats (76+/-10 fmol/mL and 222+/-21 fmol/g, n=7). CysA treatment increased AT1 receptor protein expression in the aorta (by 251+/-35%), whereas it was reduced in the kidney (by -32+/-4%). Superoxide anion production in aortic segments and kidney thiobarbituric acid-reactive substance (TBARS) contents were higher in CysA-treated rats (26+/-2 counts/min per milligram and 37+/-3 nmol/g) than in vehicle-treated rats (17+/-1 counts/min per milligram and 24+/-3 nmol/g). Concurrent administration of an AT1 receptor antagonist, valsartan (30 mg/kg per day, in drinking water), to CysA-treated rats (n=7) significantly decreased SBP (113+/-4 mm Hg) and prevented increases in vascular superoxide (16+/-2 counts/min per milligram) and kidney TBARS contents (21+/-3 nmol/g). Similarly, treatment with a superoxide dismutase mimetic, 4-hydroxy-2,2,6,6,-tetramethylpiperidine-N-oxyl (Tempol; 3 mmol/L in drinking water, n=7), prevented CysA-induced increases in SBP (115+/-3 mm Hg), vascular superoxide (16+/-1 counts/min per milligram), and kidney TBARS contents (19+/-2 nmol/g). These data suggest that ROS generation induced by augmented Ang II levels contributes to the development of CysA-induced hypertension.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
268
|
Natif N, Sclarovsky-Benjaminov F, Van Dijk DJ, Sulkes J, Gafter U, Boner G, Erman A. Insulin and losartan reduce proteinuria and renal hypertrophy in the pregnant diabetic rat. ACTA ACUST UNITED AC 2003; 142:166-71. [PMID: 14532904 DOI: 10.1016/s0022-2143(03)00113-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was designed to investigate the effect of hyperglycemia and angiotensin II (AngII) on renal hypertrophy and proteinuria in the pregnant diabetic rat. Secondary objectives were to evaluate changes in components of the renin-angiotensin axis and the effects of administration of losartan on pregnancy outcome. Fifty-three pregnant rats were allocated to 6 groups (1) nondiabetic controls (n = 12), (2) nondiabetic controls administered losartan (70-80 mg/kg/day; n = 10), (3) rats in which intravenous streptozotocin (STZ) was used to induce diabetes (55 mg/kg on day 10 of pregnancy; n = 10), (4) diabetic rats treated with losartan (n = 7), (5) diabetic rats treated with insulin (4 U/day; n = 7), and (6) diabetic rats treated with insulin and losartan (n = 7). Urinary protein excretion measured 4 days after STZ was 4 times greater in the rats with STZ-induced diabetes and significantly less in diabetic rats given losartan, insulin, or both. Postpartum kidney weight was greater in the rats with STZ-induced diabetes (2.04 +/- 0.21 g) than in the controls (1.37 +/- 0.14 g; P <.05) and reduced in the diabetic rats given losartan, insulin, or both (1.57 +/- 0.22, 1.73 +/- 0.13, and 1.51 +/- 0.14 g, respectively; P <.05). Plasma levels of angiotensin II in rats given losartan were more than 3.5 times greater than those in controls (749 +/- 436, 596 +/- 323, 567 +/- 349, and 159 +/- 28 pg/mL; P <.001). Postpartum activity of angiotensin-converting enzyme was increased in the untreated diabetic rats compared with that in control rats (162 +/- 12 vs 117 +/- 16 nmol/mL/min; P <.05). This increase was abolished by treatment with losartan or insulin. The number of newborns and mean weight of each newborn was similar in all groups. In summary, administration of losartan or insulin prevented, in part, kidney hypertrophy and protein excretion in the diabetic pregnant rat. Losartan did not affect the number or weight of newborns. Because angiotensin II receptor-blockers are contraindicated in pregnancy, good control of diabetes through the use of insulin should be advantageous.
Collapse
Affiliation(s)
- Noam Natif
- Institute of Hypertension and Kidney Diseases, Rabin Medical Center, Petah Tivka, Israel
| | | | | | | | | | | | | |
Collapse
|
269
|
Inscho EW. Modulation of renal microvascular function by adenosine. Am J Physiol Regul Integr Comp Physiol 2003; 285:R23-5. [PMID: 12793988 DOI: 10.1152/ajpregu.00181.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
270
|
Cowley AW, Mori T, Mattson D, Zou AP. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1355-69. [PMID: 12736168 DOI: 10.1152/ajpregu.00701.2002] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The unique role of nitric oxide (NO) in the regulation of renal medullary function is supported by the evidence summarized in this review. The impact of reduced production of NO within the renal medulla on the delivery of blood to the medulla and on the long-term regulation of sodium excretion and blood pressure is described. It is evident that medullary NO production serves as an important counterregulatory factor to buffer vasoconstrictor hormone-induced reduction of medullary blood flow and tissue oxygen levels. When NO synthase (NOS) activity is reduced within the renal medulla, either pharmacologically or genetically [Dahl salt-sensitive (S) rats], a super sensitivity to vasoconstrictors develops with ensuing hypertension. Reduced NO production may also result from reduced cellular uptake of l-arginine in the medullary tissue, resulting in hypertension. It is concluded that NO production in the renal medulla plays a very important role in sodium and water homeostasis and the long-term control of arterial pressure.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
271
|
Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24:261-71. [PMID: 12788798 DOI: 10.1210/er.2003-0001] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal, and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. The classical RAS consists of a circulating endocrine system in which the principal effector hormone is angiotensin (ANG) II. ANG is produced by the action of renin on angiotensinogen to form ANG I and its subsequent conversion to the biologically active octapeptide by ANG-converting enzyme. ANG II actions are mediated via the ANG type 1 receptor. Here, we discuss recent advances in our understanding of the components and actions of the RAS, including local tissue RASs, a renin receptor, ANG-converting enzyme-2, ANG (1-7), the function of the ANG type 2 receptor, and ANG receptor heterodimerization. The role of the RAS in the regulation of cardiovascular and renal function is reviewed and discussed in light of these newly recognized components.
Collapse
Affiliation(s)
- Robert M Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
272
|
Bianchi G, Staessen JA, Patrizia F. Pharmacogenomics of primary hypertension--the lessons from the past to look toward the future. Pharmacogenomics 2003; 4:279-96. [PMID: 12718719 DOI: 10.1517/phgs.4.3.279.22694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A number of recent reviews have addressed the issue of the pharmacogenomics of primary hypertension and related complications by considering the data on the genotype-drug response relationship. Here we mainly discuss the methodological aspects of this issue, trying to integrate 'traditional' clinical and experimental pathophysiology and therapy-pharmacology with the 'new' genetics. Such integration is indispensable to: a). define the appropriate 'context' (genetic background, environment, age, gender, phase of hypertension, previous therapy etc.) in which a given genotype-drug response relationship should be tested (it is indeed likely that many discrepancies among published data originate from context's interference); b). assign the correct clinical meaning to the results obtained by statistics and functional genetics methodologies; c). define a novel clinical entity caused by a disease favoring allele, alone or in combination with other alleles, with a consistent clinical picture, prognosis and responsiveness to the appropriate drug; d). estimate the size of the population target amenable to benefit from a therapeutic intervention developed according to the pharmacogenomics' principles; e). develop a novel drug that selectively interferes with the sequence of events triggered by the genetic mechanism(s) underlying the clinical entity. Peculiar to this strategy is to look for consistency among findings gathered from different 'contexts' after having properly accounted for the context's dependency of the results.
Collapse
Affiliation(s)
- Giuseppe Bianchi
- Division of Nephrology and Hypertension, University 'Vita Salute', San Raffaele Hospital, Via Olgettina, 60, 20132 Milano, Italy.
| | | | | |
Collapse
|
273
|
Abstract
Elevations in intrarenal angiotensin II (Ang II) cause reductions in renal function and sodium excretion that contribute to progressive hypertension and lead to renal and vascular injury. Augmentation of intrarenal Ang II occurs by several processes, leading to levels much greater than can be explained from the circulating levels. In Ang II-dependent hypertension, Ang II is internalized via an AT1 receptor mechanism, but there is also sustained intrarenal production of Ang II. Ang II exerts a positive feedback action on intrarenal angiotensinogen (AGT) mRNA and protein. The increased intrarenal AGT production is associated with increased intrarenal and intracellular Ang II contents and urinary AGT excretion rates. The increased urinary AGT indicates spillover of AGT into distal nephron segments supporting enhanced distal Ang II formation and sodium reabsorption. The augmentation of intrarenal Ang II provides the basis for sustained actions on renal function, sodium excretion, and maintenance of hypertension.
Collapse
Affiliation(s)
- L Gabriel Navar
- Department of Physiology SL39, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
274
|
Rhinehart K, Handelsman CA, Silldorff EP, Pallone TL. ANG II AT2 receptor modulates AT1 receptor-mediated descending vasa recta endothelial Ca2+ signaling. Am J Physiol Heart Circ Physiol 2003; 284:H779-89. [PMID: 12424093 DOI: 10.1152/ajpheart.00317.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether the respective angiotensin type 1 (AT(1)) and 2 (AT(2)) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca(2+)](i)) suppression induced by ANG II. ANG II partially reversed the increase in [Ca(2+)](i) generated by cyclopiazonic acid (CPA; 10(-5) M), acetylcholine (ACh; 10(-5) M), or bradykinin (BK; 10(-7) M). Losartan (10(-5) M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT(2) receptor blockade with PD-123319 (10(-8) M) augmented the suppression of endothelial [Ca(2+)](i) responses. Similarly, preactivation with the AT(2) receptor agonist CGP-42112A (10(-8) M) prevented AT(1) receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca(2+)](i). In contrast to endothelial [Ca(2+)](i) suppression by ANG II, pericyte [Ca(2+)](i) exhibited typical peak and plateau [Ca(2+)](i) responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT(2) receptors were blocked with PD-123319. Similarly, AT(2) receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10(-5) M) showed no AT(1)-like action to constrict microperfused DVR or increase pericyte [Ca(2+)](i). We conclude that ANG II suppression of endothelial [Ca(2+)](i) and stimulation of pericyte [Ca(2+)](i) is mediated by AT(1) or AT(1)-like receptors. Furthermore, AT(2) receptor activation opposes ANG II-induced endothelial [Ca(2+)](i) suppression and abrogates ANG II-induced DVR vasoconstriction.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin Receptor Antagonists
- Animals
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cytoplasm
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Imidazoles/pharmacology
- In Vitro Techniques
- Kidney Medulla/blood supply
- Losartan/pharmacology
- Manganese/pharmacokinetics
- Microcirculation/physiology
- Muscle, Smooth, Vascular/blood supply
- Pericytes/drug effects
- Pericytes/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/metabolism
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Kristie Rhinehart
- Division of Nephrology, University of Maryland School of Medicine, Baltimore 21201-1595, USA
| | | | | | | |
Collapse
|
275
|
Abstract
PURPOSE OF REVIEW Defective transduction of the dopamine receptor signal in the kidney has been shown to be important in the pathogenesis of hypertension This review will discuss the genetic mechanism for the defective renal dopaminergic function and the interaction with other gene variant products in the pathogenesis of salt sensitivity and essential hypertension. RECENT FINDINGS Single nucleotide polymorphisms of G protein-coupled receptor kinase type 4 (GRK4) phosphorylate, desensitize, and diminish the inhibitory action of D receptors on sodium transport in the kidney. Inhibition of GRK4 expression normalizes renal proximal tubule D receptor function in humans and rodents and ameliorates the hypertension in genetically hypertensive rats. Expression of the GRK4 variant, GRK4gammaA142V, produces hypertension and impairs the natriuretic effect of D receptor stimulation in mice. In humans, GRK4 single nucleotide polymorphisms are associated with essential hypertension, particularly salt sensitive hypertension. The prediction of the hypertensive phenotype is most accurate when elements of the renin-angiotensin system and GRK4 are included in the analysis. SUMMARY GRK4 single nucleotide polymorphisms, by preventing the natriuretic function of the dopaminergic system and by allowing the antinatriuretic function of angiotensin II type 1 receptors to predominate, may be responsible for salt sensitivity. Hypertension develops with additional perturbations caused by the variants of other genes (e.g., alpha-adducin, angiotensin converting enzyme, angiotensinogen, angiotensin II type 1 receptor, aldosterone synthase, 11beta-hydroxysteroid dehydrogenase type 2), the quantitative interaction of which may vary depending upon the genetic background.
Collapse
Affiliation(s)
- Pedro A Jose
- Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|
276
|
Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 2003; 284:F253-66. [PMID: 12529271 DOI: 10.1152/ajprenal.00304.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl(-) conductance that secondarily gates voltage-activated Ca(2+) entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K(+) constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca(2+) is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca(2+) signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | |
Collapse
|
277
|
Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal Angiotensin status in hypertension. Hypertension 2003; 41:42-9. [PMID: 12511528 PMCID: PMC2575651 DOI: 10.1161/01.hyp.0000050102.90932.cf] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (AngII) infusions augment renal angiotensinogen mRNA and protein and urinary angiotensinogen excretion (U(AGT)). Further experiments were performed in 4 groups of rats: normal salt diet with sham operation, NS+Sham, n=6; NS with AngII infusion at 40 ng/min via osmotic minipump, NS+AngII(40), n=9; NS with AngII infusion at 80 ng/min, NS+AngII(80), n=9; high-salt diet with deoxycorticosterone acetate salt pellet (100 mg), HS+DOCA, n=4. These experiments sought to determine whether enhanced U(AGT) is specifically associated with increased kidney AngII levels or is a nonspecific consequence of the hypertension. Systolic BP (SBP) was significantly increased to 131+/-2 and 162+/-2 mm Hg at day 11 in NS+AngII(40) and NS+AngII(80), respectively, compared with NS+Sham (110+/-1). Regression analysis demonstrated a positive relationship (R=0.49) between SBP and U(AGT) for NS+Sham (1.1+/-0.3 nmol AngI/d), NS+AngII(40) (2.5+/-0.9), and NS+AngII(80) (5.5+/-1.5). U(AGT) was also highly correlated (R=0.70) with kidney AngII content for NS+Sham (49+/-6 fmol/g), NS+AngII(40) (215+/-49), and NS+AngII(80) (347+/-47); but not with plasma AngII (R=0.12). HS+DOCA rats also exhibited increased SBP to 134+/-1 mm Hg, but U(AGT) (1.4+/-0.4 nmol AngI/d) and intrarenal AngII content (13+/-2 fmol/g) were not increased despite the hypertension. Infused human angiotensinogen could not be detected in urine of sham-operated or AngII-infused rats (n=4 each). These data demonstrate that U(AGT) increases in AngII-dependent hypertension in a dose- and time-dependent manner, but not in hypertension elicited by HS+DOCA. The results support the hypothesis that AngII-dependent hypertension results in elevated intrarenal AngII and angiotensinogen levels, reflected by increased U(AGT), which does not occur in an AngII-independent hypertensive model.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, La 70112-2699, USA.
| | | | | | | |
Collapse
|