251
|
Diet and aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:741468. [PMID: 22928085 PMCID: PMC3425961 DOI: 10.1155/2012/741468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms. CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms (e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g., TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake, and the use of plant-derived polyphenol resveratrol as a food supplement.
Collapse
|
252
|
Kushwaha S, Xu X. Target of rapamycin (TOR)-based therapy for cardiomyopathy: evidence from zebrafish and human studies. Trends Cardiovasc Med 2012; 22:39-43. [PMID: 22841839 DOI: 10.1016/j.tcm.2012.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Rapamycin is a U.S. Food and Drug Administration-approved drug for the prevention of immunorejection following organ transplantation. Pharmacological studies suggest a potential new application of rapamycin in attenuating cardiomyopathy, but the potential for this application is not yet supported by genetic studies of genes in target of rapamycin (TOR) signaling in rodents. Recently, supporting genetic evidence was presented in zebrafish using two adult cardiomyopathy models. By characterizing a heterozygous zebrafish target of rapamycin (ztor) mutant, the therapeutic effect of long-term TOR signaling inhibition was demonstrated. Dose- and stage-dependent functions of TOR signaling provide an explanation for the seemingly contradictory results obtained in genetic studies of TOR components in rodents. The results from the zebrafish studies, together with the supporting preliminary clinical studies, suggested that TOR signaling inhibition should be further pursued as a novel therapeutic strategy for cardiomyopathy. Future directions for developing TOR-based therapy include assessing the long-term benefits of rapamycin as a candidate drug for heart failure patients, defining the dynamic activity of TOR, exploring the impacts of TOR signaling manipulation in different models of cardiomyopathies, and elucidating the downstream signaling branches that confer the therapeutic effects of TOR signaling inhibition.
Collapse
Affiliation(s)
- Sudhir Kushwaha
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
253
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
254
|
Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012; 11:2092-9. [PMID: 22580468 DOI: 10.4161/cc.20317] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The biological aging process is commonly associated with increased risk of cardiovascular diseases. Several theories have been put forward for aging-associated deterioration in ventricular function, including attenuation of growth hormone (insulin-like growth factors and insulin) signaling, loss of DNA replication and repair, histone acetylation and accumulation of reactive oxygen species. Recent evidence has depicted a rather unique role of autophagy as another important pathway in the regulation of longevity and senescence. Autophagy is a predominant cytoprotective (rather than self-destructive) process. It carries a prominent role in determination of lifespan. Reduced autophagy has been associated with aging, leading to accumulation of dysfunctional or damaged proteins and organelles. To the contrary, measures such as caloric restriction and exercise may promote autophagy to delay aging and associated comorbidities. Stimulation of autophagy using rapamycin may represent a novel strategy to prolong lifespan and combat aging-associated diseases. Rapamycin regulates autophagy through inhibition of the nutrient-sensing molecule mammalian target of rapamycin (mTOR). Inhibition of mTOR through rapamycin and caloric restriction promotes longevity. The purpose of this review is to recapitulate some of the recent advances in an effort to better understand the interplay between rapamycin-induced autophagy and decelerating cardiovascular aging.
Collapse
Affiliation(s)
- Sreejayan Nair
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY USA.
| | | |
Collapse
|
255
|
Frost RA, Lang CH. Multifaceted role of insulin-like growth factors and mammalian target of rapamycin in skeletal muscle. Endocrinol Metab Clin North Am 2012; 41:297-322, vi. [PMID: 22682632 PMCID: PMC3376019 DOI: 10.1016/j.ecl.2012.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review describes the current literature on the interaction between insulin-like growth factors, endocrine hormones, and branched-chain amino acids on muscle physiology in healthy young individuals and during select pathologic conditions. Emphasis is placed on the mechanism by which physical and hormonal signals are transduced at the cellular level to either grow or atrophy skeletal muscle. The key role of the mammalian target of rapamycin and its ability to respond to hypertrophic and atrophic signals informs our understanding how a combination of physical, nutritional, and pharmacologic therapies may be used in tandem to prevent or ameliorate reductions in muscle mass.
Collapse
Affiliation(s)
- Robert A. Frost
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
- Professor and Vice Chairman, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| | - Charles H. Lang
- Associate Professor, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey PA, 17033
| |
Collapse
|
256
|
Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, Rosenzweig A, Hara K, Matsui T. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2012; 303:H75-85. [PMID: 22561297 DOI: 10.1152/ajpheart.00241.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.
Collapse
Affiliation(s)
- Toshinori Aoyagi
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, 96813, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Kowalczyk MS, Hughes JR, Babbs C, Sanchez-Pulido L, Szumska D, Sharpe JA, Sloane-Stanley JA, Morriss-Kay GM, Smoot LB, Roberts AE, Watkins H, Bhattacharya S, Gibbons RJ, Ponting CP, Wood WG, Higgs DR. Nprl3 is required for normal development of the cardiovascular system. Mamm Genome 2012; 23:404-15. [PMID: 22538705 DOI: 10.1007/s00335-012-9398-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/18/2022]
Abstract
C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.
Collapse
Affiliation(s)
- Monika S Kowalczyk
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Effect of everolimus on left ventricular hypertrophy of de novo kidney transplant recipients: a 1 year, randomized, controlled trial. Transplantation 2012; 93:503-8. [PMID: 22318246 DOI: 10.1097/tp.0b013e318242be28] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although conversion from calcineurin inhibitors to mammalian target of rapamycin inhibitors proved to be effective in regressing left ventricular hypertrophy (LVH) in renal transplant recipients (RTRs) with chronic allograft dysfunction, there are currently no reports of randomized trials on this issue involving de novo RTRs administered everolimus (EVL). METHODS This randomized, open-label, controlled trial evaluated the effect of EVL on the left ventricular mass index (LVMi) of 30 nondiabetic RTRs (21 men; age 28-65 years). Ten were allocated to EVL plus reduced-exposure cyclosporine A (CsA), and 20 to standard dose CsA. LVMi was assessed by echocardiography both at baseline and 1 year later. Blood pressure (BP), hemoglobin, serum creatinine, lipids, trough levels of immunosuppressive drugs, and daily proteinuria were also evaluated twice monthly. Antihypertensive therapy that did not include renin-angiotensin system blockers was administered to achieve BP less than or equal to 130/80 mm Hg. RESULTS Changes in BP were similar in the two groups (between group difference 1.2 ± 5.7 mm Hg, P=0.84 for systolic, and -1.5 ± 3.7, P=0.69, for diastolic BP), whereas LVMi significantly decreased in the EVL group alone (between group difference 9.2 ± 3.1 g/m(2.7), P=0.005), due to a reduction in both the interventricular septum and the left ventricular posterior wall thickness. EVL therapy together with baseline LVMi were the only significant predictors of LVH regression according to a multivariate model that explained 49% of the total LVMi variance (P=0.0015). CONCLUSIONS An immunosuppressive regimen consisting of EVL plus reduced exposure CsA proved to be effective in regressing LVH in RTRs regardless of BP, mainly by reducing left ventricular wall thickness.
Collapse
|
259
|
Abstract
In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.
Collapse
|
260
|
Ding Y, Sun X, Redfield M, Kushwaha S, Xu X. Target of rapamcyin (TOR)-based therapeutics for cardiomyopathy: insights from zebrafish genetics. Cell Cycle 2012; 11:428-9. [PMID: 22262179 DOI: 10.4161/cc.11.3.19164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
261
|
Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, Condorelli G, Sadoshima J. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012; 125:1134-46. [PMID: 22294621 DOI: 10.1161/circulationaha.111.078212] [Citation(s) in RCA: 251] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rheb is a GTP-binding protein that promotes cell survival and mediates the cellular response to energy deprivation (ED). The role of Rheb in the regulation of cell survival during ED has not been investigated in the heart. METHODS AND RESULTS Rheb is inactivated during cardiomyocyte (CM) glucose deprivation (GD) in vitro, and during acute myocardial ischemia in vivo. Rheb inhibition causes mTORC1 inhibition, because forced activation of Rheb, through Rheb overexpression in vitro and through inducible cardiac-specific Rheb overexpression in vivo, restored mTORC1 activity. Restoration of mTORC1 activity reduced CM survival during GD and increased infarct size after ischemia, both of which were accompanied by inhibition of autophagy, whereas Rheb knockdown increased autophagy and CM survival. Rheb inhibits autophagy mostly through Atg7 depletion. Restoration of autophagy, through Atg7 reexpression and inhibition of mTORC1, increased cellular ATP content and reduced endoplasmic reticulum stress, thereby reducing CM death induced by Rheb activation. Mice with high-fat diet-induced obesity and metabolic syndrome (HFD mice) exhibited deregulated cardiac activation of Rheb and mTORC1, particularly during ischemia. HFD mice presented inhibition of cardiac autophagy and displayed increased ischemic injury. Pharmacological and genetic inhibition of mTORC1 restored autophagy and abrogated the increase in infarct size observed in HFD mice, but they failed to protect HFD mice in the presence of genetic disruption of autophagy. CONCLUSIONS Inactivation of Rheb protects CMs during ED through activation of autophagy. Rheb and mTORC1 may represent therapeutic targets to reduce myocardial damage during ischemia, particularly in obese patients.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Medical Science Building, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
262
|
Grosso S, Pesce E, Brina D, Beugnet A, Loreni F, Biffo S. Sensitivity of global translation to mTOR inhibition in REN cells depends on the equilibrium between eIF4E and 4E-BP1. PLoS One 2011; 6:e29136. [PMID: 22216185 PMCID: PMC3245250 DOI: 10.1371/journal.pone.0029136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next.
Collapse
Affiliation(s)
- Stefano Grosso
- Molecular Histology and Cell Growth, DIBIT-HSR, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
263
|
Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, Criollo A, Nemchenko A, Hill JA, Lavandero S. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis 2011; 2:e244. [PMID: 22190003 PMCID: PMC3252742 DOI: 10.1038/cddis.2011.130] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Although treatments have improved, development of novel therapies for patients with CVD remains a major research goal. Apoptosis, necrosis, and autophagy occur in cardiac myocytes, and both gradual and acute cell death are hallmarks of cardiac pathology, including heart failure, myocardial infarction, and ischemia/reperfusion. Pharmacological and genetic inhibition of autophagy, apoptosis, or necrosis diminishes infarct size and improves cardiac function in these disorders. Here, we review recent progress in the fields of autophagy, apoptosis, and necrosis. In addition, we highlight the involvement of these mechanisms in cardiac pathology and discuss potential translational implications.
Collapse
Affiliation(s)
- M Chiong
- Centro Estudios Moleculares de la Celula, Departamento de Bioquimica y Biología Molecular, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
264
|
Lee SH, Kim J, Ryu JY, Lee S, Yang DK, Jeong D, Kim J, Lee SH, Kim JM, Hajjar RJ, Park WJ. Transcription coactivator Eya2 is a critical regulator of physiological hypertrophy. J Mol Cell Cardiol 2011; 52:718-26. [PMID: 22197309 DOI: 10.1016/j.yjmcc.2011.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/01/2011] [Accepted: 12/04/2011] [Indexed: 11/30/2022]
Abstract
Despite its significant clinical implications, physiological hypertrophy remains poorly understood. In this study, the transcription coactivator Eya2 was shown to be up-regulated during physiological hypertrophy. Transgene- or adenovirus-mediated overexpression of Eya2 led to up-regulation of mTOR, a critical mediator of physiological hypertrophy. Luciferase reporter and chromatin immunoprecipitation assays revealed that Eya2 directly binds to and activates mTOR expression. The phosphorylation of mTOR downstream molecules was significantly enhanced in Eya2 transgenic (TG) hearts, implying that the Eya2-mediated induction of mTOR expression leads to an elevated mTOR activity. The transcription factor Six1 was also up-regulated during physiological hypertrophy and formed a complex with Eya2. Luciferase reporter and electrophoretic mobility shift assays revealed that the Eya2-Six1 complex binds to and enhances the expression of mTOR in a synergistic manner. Under pressure overload, Eya2 transgenic hearts developed hypertrophy which exhibited important molecular signatures of physiological hypertrophy, as assessed by gene expression profiling and measurements of expression levels of physiological hypertrophy-related genes by quantitative (q) RT-PCR. Examination of heart sections under electron microscopy revealed that the mitochondrial integrity remained largely intact in Eya2 transgenic mice, but not in wild-type littermates, under pressure overload. This finding was confirmed by measurements of mitochondrial DNA contents and the expression levels of mitochondrial function-related genes by qRT-PCR. These data suggest that Eya2 in a physical complex with Six1 plays a critical role in physiological hypertrophy. The cardioprotective effect of Eya2 appears to be due, at least in part, to its preservation of mitochondrial integrity upon pressure overload.
Collapse
Affiliation(s)
- Seung Hee Lee
- College of Life Sciences, Global Research Lab, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Abstract
The fruit fly, Drosophila melanogaster, has been used to study genetics, development, and signaling for nearly a century, but only over the past few decades has this tremendous resource been the focus of cardiovascular research. Fly genetics offers sophisticated transgenic systems, molecularly defined genomic deficiencies, genome-wide transgenic RNAi lines, and numerous curated mutants to perform genetic screens. As a genetically tractable model, the fly facilitates gene discovery and can complement mammalian models of disease. The circulatory system in the fly comprises well-defined sets of cardiomyocytes, and methodological advances have permitted accurate characterization of cardiac morphology and function. Thus, fly genetics and genomics offer new approaches for gene discovery of adult cardiac phenotypes to identify evolutionarily conserved molecular signals that drive cardiovascular disease.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
266
|
Schramm C, Fine DM, Edwards MA, Reeb AN, Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol 2011; 302:H231-43. [PMID: 22058153 DOI: 10.1152/ajpheart.00665.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The identification of mutations in PTPN11 (encoding the protein tyrosine phosphatase Shp2) in families with congenital heart disease has facilitated mechanistic studies of various cardiovascular defects. However, the roles of normal and mutant Shp2 in the developing heart are still poorly understood. Furthermore, it remains unclear how Shp2 loss-of-function (LOF) mutations cause LEOPARD Syndrome (also termed Noonan Syndrome with multiple lentigines), which is characterized by congenital heart defects such as pulmonary valve stenosis and hypertrophic cardiomyopathy (HCM). In normal hearts, Shp2 controls cardiomyocyte size by regulating signaling through protein kinase B (Akt) and mammalian target of rapamycin (mTOR). We hypothesized that Shp2 LOF mutations dysregulate this pathway, resulting in HCM. For our studies, we chose the Shp2 mutation Q510E, a dominant-negative LOF mutation associated with severe early onset HCM. Newborn mice with cardiomyocyte-specific overexpression of Q510E-Shp2 starting before birth displayed increased cardiomyocyte sizes, heart-to-body weight ratios, interventricular septum thickness, and cardiomyocyte disarray. In 3-mo-old hearts, interstitial fibrosis was detected. Echocardiographically, ventricular walls were thickened and contractile function was depressed. In ventricular tissue samples, signaling through Akt/mTOR was hyperactivated, indicating that the presence of Q510E-Shp2 led to upregulation of this pathway. Importantly, rapamycin treatment started shortly after birth rescued the Q510E-Shp2-induced phenotype in vivo. If rapamycin was started at 6 wk of age, HCM was also ameliorated. We also generated a second mouse model in which cardiomyocyte-specific Q510E-Shp2 overexpression started after birth. In contrast to the first model, these mice did not develop HCM. In summary, our studies establish a role for mTOR signaling in HCM caused by Q510E-Shp2. Q510E-Shp2 overexpression in the cardiomyocyte population alone was sufficient to induce the phenotype. Furthermore, the pathomechanism was triggered pre- but not postnatally. However, postnatal rapamycin treatment could still reverse already established HCM, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Christine Schramm
- Department of Medical Pharmacology & Physiology, University of Missouri-Columbia, 65211, USA
| | | | | | | | | |
Collapse
|
267
|
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8:270-85. [PMID: 22023617 PMCID: PMC3254854 DOI: 10.2174/156720211798120990] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/20/2011] [Accepted: 10/04/2011] [Indexed: 01/01/2023]
Abstract
Inflammatory microglia modulate a host of cellular processes in the central nervous system that include neuronal survival, metabolic fluxes, foreign body exclusion, and cellular regeneration. Elucidation of the pathways that oversee microglial survival and integrity may offer new avenues for the treatment of neurodegenerative disorders. Here we demonstrate that erythropoietin (EPO), an emerging strategy for immune system modulation, prevents microglial early and late apoptotic injury during oxidant stress through Wnt1, a cysteine-rich glycosylated protein that modulates cellular development and survival. Loss of Wnt1 through blockade of Wnt1 signaling or through the gene silencing of Wnt1 eliminates the protective capacity of EPO. Furthermore, endogenous Wnt1 in microglia is vital to preserve microglial survival since loss of Wnt1 alone increases microglial injury during oxidative stress. Cellular protection by EPO and Wnt1 intersects at the level of protein kinase B (Akt1), the mammalian target of rapamycin (mTOR), and p70S6K, which are necessary to foster cytoprotection for microglia. Downstream from these pathways, EPO and Wnt1 control "anti-apoptotic" pathways of microglia through the modulation of mitochondrial membrane permeability, the release of cytochrome c, and the expression of apoptotic protease activating factor-1 (Apaf-1) and X-linked inhibitor of apoptosis protein (XIAP). These studies offer new insights for the development of innovative therapeutic strategies for neurodegenerative disorders that focus upon inflammatory microglia and novel signal transduction pathways.
Collapse
Affiliation(s)
- Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Department of Neurology and Neurosciences, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
- Cancer Center - New Jersey Medical School, University of Medicine and Dentistry, New Jersey Medical School, Newark, 07101 New Jersey
| |
Collapse
|
268
|
Gray S, Kim JK. New insights into insulin resistance in the diabetic heart. Trends Endocrinol Metab 2011; 22:394-403. [PMID: 21680199 PMCID: PMC3183400 DOI: 10.1016/j.tem.2011.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/11/2011] [Accepted: 05/05/2011] [Indexed: 01/06/2023]
Abstract
Insulin resistance is a major characteristic of obesity and type 2 diabetes, and develops in multiple organs, including the heart. Compared with its role in other organs, the physiological role of insulin resistance in the heart is not well understood. The heart uses lipid as a primary fuel, but glucose becomes an important source of energy in ischemia. The impaired ability to utilize glucose might contribute to cell death and abnormal function in the diabetic heart. Recent discoveries regarding the role of inflammation, mitochondrial dysfunction and endoplasmic reticulum (ER) stress in obesity have advanced our understanding of how insulin resistance develops in peripheral organs. In this review, we examine these findings in relation to the diabetic heart to provide new insights into the mechanism of cardiac insulin resistance.
Collapse
Affiliation(s)
- Susan Gray
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
269
|
Dazert E, Hall MN. mTOR signaling in disease. Curr Opin Cell Biol 2011; 23:744-55. [PMID: 21963299 DOI: 10.1016/j.ceb.2011.09.003] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 01/11/2023]
Abstract
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase and a central controller of cell growth, metabolism and aging. Mammalian TOR (mTOR) is activated in response to nutrients, growth factors and cellular energy. Dysregulated mTOR signaling has been implicated in major disease. Here we review recent findings on the role of mTOR in cancer, metabolic disorders, neurological diseases, and inflammation.
Collapse
Affiliation(s)
- Eva Dazert
- Biozentrum, University of Basel, CH4056 Basel, Switzerland
| | | |
Collapse
|
270
|
Ding Y, Sun X, Huang W, Hoage T, Redfield M, Kushwaha S, Sivasubbu S, Lin X, Ekker S, Xu X. Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish. Circ Res 2011; 109:658-69. [PMID: 21757652 PMCID: PMC3166359 DOI: 10.1161/circresaha.111.248260] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/06/2011] [Indexed: 12/30/2022]
Abstract
RATIONALE Although a cardioprotective function of target of rapamycin (TOR) signaling inhibition has been suggested by pharmacological studies using rapamycin, genetic evidences are still lacking. We explored adult zebrafish as a novel vertebrate model for dissecting signaling pathways in cardiomyopathy. OBJECTIVE We generated the second adult zebrafish cardiomyopathy model induced by doxorubicin. By genetically analyzing both the doxorubicin and our previous established anemia-induced cardiomyopathy models, we decipher the functions of TOR signaling in cardiomyopathies of different etiology. METHODS AND RESULTS Along the progression of both cardiomyopathy models, we detected dynamic TOR activity at different stages of pathogenesis as well as distinct effects of TOR signaling inhibition. Nevertheless, cardiac enlargement in both models can be effectively attenuated by inhibition of TOR signaling through short-term rapamycin treatment. To assess the long-term effects of TOR reduction, we used a zebrafish target of rapamycin (ztor) mutant identified from an insertional mutagenesis screen. We show that TOR haploinsufficiency in the ztor heterozygous fish improved cardiac function, prevented pathological remodeling events, and ultimately reduced mortality in both adult fish models of cardiomyopathy. Mechanistically, these cardioprotective effects are conveyed by the antihypertrophy, antiapoptosis, and proautophagy function of TOR signaling inhibition. CONCLUSIONS Our results prove adult zebrafish as a conserved novel vertebrate model for human cardiomyopathies. Moreover, we provide the first genetic evidence to demonstrate a long-term cardioprotective effect of TOR signaling inhibition on at least 2 cardiomyopathies of distinct etiology, despite dynamic TOR activities during their pathogenesis.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 2011; 90:220-3. [PMID: 21502372 DOI: 10.1093/cvr/cvr070] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metabolic remodelling is an integral part of the pathogenesis of heart failure. Although much progress has been made in our current understanding of the metabolic impairment involving carbohydrates and fatty acids in failing hearts, relatively little is known about the changes and potential impact of amino acid metabolism in the onset of heart diseases. Although most amino acid catabolic activities are found in the liver, branched-chain amino acid (BCAA) catabolism requires activity in several non-hepatic tissues, including cardiac muscle, diaphragm, brain and kidney. In this review, the new insights into the regulation of cardiac BCAA catabolism and functional impact on cardiac development and physiology will be discussed along with the potential contribution of impairment in BCAA catabolism to heart diseases. A particular focus will be the new information obtained from recently developed genetic models with BCAA catabolic defects and metabolomic studies in human and animal models. These studies have revealed the potential role of BCAA catabolism in cardiac pathophysiology and have helped to distinguish BCAA metabolic defects as an under-appreciated culprit in cardiac diseases rather than an epiphenomenon associated with metabolic remodelling in the failing heart.
Collapse
Affiliation(s)
- Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
272
|
Pulakat L, DeMarco VG, Ardhanari S, Chockalingam A, Gul R, Whaley-Connell A, Sowers JR. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am J Physiol Regul Integr Comp Physiol 2011; 301:R885-95. [PMID: 21813874 DOI: 10.1152/ajpregu.00316.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In conditions of overnutrition, cardiac cells must cope with a multitude of extracellular signals generated by changes in nutrient load (glucose, amino acids, and lipids) and the hormonal milieu [increased insulin (INS), ANG II, and adverse cytokine/adipokine profile]. Herein, we review the diverse compensatory/adaptive mechanisms that counter the deleterious effects of excess nutrients and growth factors. We largely focus the discussion on evidence obtained from Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rats, which are useful models to evaluate adaptive and maladaptive metabolic, structural, and functional cardiac remodeling. One adaptive mechanism present in the INS-resistant ZO, but absent in the diabetic ZDF heart, involves an interaction between the nutrient sensor kinase mammalian target of rapamycin complex 1 (mTORC1) and ANG II-type 2 receptor (AT2R). Recent evidence supports a cardioprotective role for the AT2R; for example, suppression of AT2R activation interferes with antihypertrophic/antifibrotic effects of AT1R blockade, and AT2R agonism improves cardiac structure and function. We propose a scenario, whereby mTORC1-signaling-mediated increase in AT2R expression in the INS-resistant ZO heart is a cardioprotective adaptation to overnutrition. In contrast to the ZO rat, heart tissues of ZDF rats do not show activation of mTORC1. We posit that such a lack of activation of the mTOR↔AT2R integrative pathway in cardiac tissue under conditions of obesity-induced diabetes may be a metabolic switch associated with INS deficiency and clinical diabetes.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- University of Missouri School of Medicine, Department of Internal Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | |
Collapse
|
273
|
Cardiac insulin resistance and microRNA modulators. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:654904. [PMID: 21977024 PMCID: PMC3184440 DOI: 10.1155/2012/654904] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/22/2011] [Indexed: 12/18/2022]
Abstract
Cardiac insulin resistance is a metabolic and functional disorder that is often associated with obesity and/or the cardiorenal metabolic syndrome (CRS), and this disorder may be accentuated by chronic alcohol consumption. In conditions of over-nutrition, increased insulin (INS) and angiotensin II (Ang II) activate mammalian target for rapamycin (mTOR)/p70 S6 kinase (S6K1) signaling, whereas chronic alcohol consumption inhibits mTOR/S6K1 activation in cardiac tissue. Although excessive activation of mTOR/S6K1 induces cardiac INS resistance via serine phosphorylation of INS receptor substrates (IRS-1/2), it also renders cardioprotection via increased Ang II receptor 2 (AT2R) upregulation and adaptive hypertrophy. In the INS-resistant and hyperinsulinemic Zucker obese (ZO) rat, a rodent model for CRS, activation of mTOR/S6K1signaling in cardiac tissue is regulated by protective feed-back mechanisms involving mTOR↔AT2R signaling loop and profile changes of microRNA that target S6K1. Such regulation may play a role in attenuating progressive heart failure. Conversely, alcohol-mediated inhibition of mTOR/S6K1, down-regulation of INS receptor and growth-inhibitory mir-200 family, and upregulation of mir-212 that promotes fetal gene program may exacerbate CRS-related cardiomyopathy.
Collapse
|
274
|
Kurdi M, Booz GW. Three 4-letter words of hypertension-related cardiac hypertrophy: TRPC, mTOR, and HDAC. J Mol Cell Cardiol 2011; 50:964-71. [PMID: 21320507 PMCID: PMC3091951 DOI: 10.1016/j.yjmcc.2011.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/26/2011] [Accepted: 02/02/2011] [Indexed: 12/12/2022]
Abstract
Left ventricular hypertrophy due to hypertension represents a major risk factor for adverse cardiovascular events and death. In recent years, the prevalence of cardiac hypertrophy has increased due to obesity and an aging population. Notably, a significant number of individuals have persistent cardiac hypertrophy in the face of blood pressure that is normalized by drug treatment. Thus, a better understanding of the processes underlying the cardiac remodeling events that are set into play by hypertension is needed. At the level of the cardiac myocytes, hypertrophic growth is often described as physiological, as occurs with exercise, or pathological, as seen with hypertension. Here we discuss recent developments in three areas that are fundamental to pathological hypertrophic growth of cardiac myocytes. These areas are the transient receptor potential canonical (TRPC) channels, mammalian target of rapamycin (mTOR) complexes, and histone deacetylase (HDAC) enzymes. In the last several years, studies in each of these areas have yielded new and exciting discoveries into the genesis of pathological growth of cardiac myocytes. The phosphoinositide 3-kinase-Akt signaling network may be the common denominator that links these areas together. Defining the interrelationship among TRPC channels, mTOR signaling, and HDAC enzymes is a promising, but challenging area of research. Such knowledge will undoubtedly lead to new drugs that better prevent or reverse left ventricular hypertension.
Collapse
Affiliation(s)
- Mazen Kurdi
- Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University, Rafic Hariri Educational Campus, Hadath, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
275
|
IkappaB kinase epsilon and TANK-binding kinase 1 activate AKT by direct phosphorylation. Proc Natl Acad Sci U S A 2011; 108:6474-9. [PMID: 21464307 DOI: 10.1073/pnas.1016132108] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AKT activation requires phosphorylation of the activation loop (T308) by 3-phosphoinositide-dependent protein kinase 1 (PDK1) and the hydrophobic motif (S473) by the mammalian target of rapamycin complex 2 (mTORC2). We recently observed that phosphorylation of the AKT hydrophobic motif was dramatically elevated, rather than decreased, in mTOR knockout heart tissues, indicating the existence of other kinase(s) contributing to AKT phosphorylation. Here we show that the atypical IκB kinase ε and TANK-binding kinase 1 (IKKε/TBK1) phosphorylate AKT on both the hydrophobic motif and the activation loop in a manner dependent on PI3K signaling. This dual phosphorylation results in a robust AKT activation in vitro. Consistently, we found that growth factors can induce AKT (S473) phosphorylation in Rictor(-/-) cells, and this effect is insensitive to mTOR inhibitor Torin1. In IKKε/TBK1 double-knockout cells, AKT activation by growth factors is compromised. We also observed that TBK1 expression is elevated in the mTOR knockout heart tissues, and that TBK1 is required for Ras-induced mouse embryonic fibroblast transformation. Our observations suggest a physiological function of IKKε/TBK1 in AKT regulation and a possible mechanism of IKKε/TBK1 in oncogenesis by activating AKT.
Collapse
|
276
|
Zheng X. De-Toring high fat for a healthy heart. Expert Rev Cardiovasc Ther 2011; 9:299-302. [DOI: 10.1586/erc.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
277
|
Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F, Krishnan J, Lerch R, Hall MN, Rüegg MA, Pedrazzini T, Brink M. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 2011; 123:1073-82. [PMID: 21357822 DOI: 10.1161/circulationaha.110.977066] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. METHODS AND RESULTS We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. CONCLUSIONS Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Collapse
Affiliation(s)
- Pankaj Shende
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Shorning BY, Clarke AR. LKB1 loss of function studied in vivo. FEBS Lett 2011; 585:958-66. [DOI: 10.1016/j.febslet.2011.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/12/2022]
|
279
|
Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, Kwiatkowski DJ, Finlay GA. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet 2011; 20:1290-305. [PMID: 21212099 DOI: 10.1093/hmg/ddq570] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), a key kinase complex that regulates cell size and growth, is observed with inactivating mutations of either of the tuberous sclerosis complex (TSC) genes, Tsc1 and Tsc2. Tsc1 and Tsc2 are highly expressed in cardiovascular tissue but their functional role there is unknown. We generated a tissue-specific knock-out of Tsc1, using a conditional allele of Tsc1 and a cre recombinase allele regulated by the smooth muscle protein-22 (SM22) promoter (Tsc1c/cSM22cre+/-) to constitutively activate mTOR in cardiovascular tissue. Significant gene recombination (∼80%) occurred in the heart by embryonic day (E) 15, and reduction in Tsc1 expression with increased levels of phosphorylated S6 kinase (S6K) and S6 was observed, consistent with constitutive activation of mTORC1. Cardiac hypertrophy was evident by E15 with post-natal progression to heart weights of 142 ± 24 mg in Tsc1c/cSM22cre+/- mice versus 65 ± 14 mg in controls (P < 0.01). Median survival of Tsc1c/cSM22cre+/- mice was 24 days, with none surviving beyond 6 weeks. Pathologic and echocardiographic analysis revealed severe biventricular hypertrophy without evidence of fibrosis or myocyte disarray, and significant reduction in the left ventricular end-diastolic diameter (P < 0.001) and fractional index (P < 0.001). Inhibition of mTORC1 by rapamycin resulted in prolonged survival of Tsc1c/cSM22cre+/- mice, with regression of ventricular hypertrophy. These data support a critical role for the Tsc1/Tsc2-mTORC1-S6K axis in the normal development of cardiovascular tissue and also suggest possible therapeutic potential of rapamycin in cardiac disorders where pathologic mTORC1 activation occurs.
Collapse
Affiliation(s)
- Amy J Malhowski
- Pulmonary and Critical Care Division, Department of Medicine, Tupper Research Institute, Tufts Medical Center, No 257, 800 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 2011; 17:1818-24. [PMID: 21631421 PMCID: PMC3337715 DOI: 10.2174/138161211796390976] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
Heart failure, a major symptom in the progression of cardiac hypertrophy, is a critical risk factor for cardiac death. A large body of research has investigated cardioprotective mechanisms that prevent or minimize hypertrophy, identifying a variety of specific peptide hormones, growth factors, and cytokines with cardioprotective properties. Recent investigation of the downstream effector pathways for these growth factors has identified molecules involved in the progression of cardiac hypertrophy and heart failure, including phosphoinositide 3-kinase (PI3K), Akt and mammalian target of rapamycin (mTOR). Using genetically modified transgenic or knockout mice and adenoviral targeting to manipulate expression or function in experimental models of heart failure, several investigators have demonstrated that the PI3K-Akt pathway regulates cardiomyocyte size, survival, angiogenesis, and inflammation in both physiological and pathological cardiac hypertrophy. In this review, we discuss the reciprocal regulation of PI3K, Akt and mTOR in cardiomyocytes and their association with cardiac disease.
Collapse
Affiliation(s)
- Toshinori Aoyagi
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813
| | - Takashi Matsui
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813
| |
Collapse
|
281
|
Song X, Kusakari Y, Xiao CY, Kinsella SD, Rosenberg MA, Scherrer-Crosbie M, Hara K, Rosenzweig A, Matsui T. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol 2010; 299:C1256-66. [PMID: 20861467 DOI: 10.1152/ajpcell.00338.2010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous studies have suggested that inhibition of the mammalian target of rapamycin (mTOR) by rapamycin suppresses myocardial hypertrophy. However, the role of mTOR in the progression of cardiac dysfunction in pathological hypertrophy has not been fully defined. Interestingly, recent reports indicate that the inflammatory response, which plays an important role in the development of heart failure, is enhanced by rapamycin under certain conditions. Our aim in this study was to determine the influence of mTOR on pathological hypertrophy and to assess whether cardiac mTOR regulates the inflammatory response. We generated transgenic mice with cardiac-specific overexpression of wild-type mTOR (mTOR-Tg). mTOR-Tg mice were protected against cardiac dysfunction following left ventricular pressure overload induced by transverse aortic constriction (TAC) (P < 0.01) and had significantly less interstitial fibrosis compared with littermate controls (WT) at 4 wk post-TAC (P < 0.01). In contrast, TAC caused cardiac dysfunction in WT. At 1 wk post-TAC, the proinflammatory cytokines interleukin (IL)-1β and IL-6 were significantly increased in WT mice but not in mTOR-Tg mice. To further characterize the effects of mTOR activation, we exposed HL-1 cardiomyocytes transfected with mTOR to lipopolysaccharide (LPS). mTOR overexpression suppressed LPS-induced secretion of IL-6 (P < 0.001), and the mTOR inhibitors rapamycin and PP242 abolished this inhibitory effect of mTOR. In addition, mTOR overexpression reduced NF-κB-regulated transcription in HL-1 cells. These data suggest that mTOR mitigates adverse outcomes of pressure overload and that this cardioprotective effect of mTOR is mediated by regulation of the inflammatory reaction.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|