251
|
Rejeski K, Jain MD, Smith EL. Mechanisms of Resistance and Treatment of Relapse after CAR T-cell Therapy for Large B-cell Lymphoma and Multiple Myeloma. Transplant Cell Ther 2023; 29:418-428. [PMID: 37076102 PMCID: PMC10330792 DOI: 10.1016/j.jtct.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy (CAR-T) has altered the treatment landscape for relapsed/refractory B cell malignancies and multiple myeloma, only a minority of patients attain long-term disease remission. The underlying reasons for CAR-T resistance are multifaceted and can be broadly divided into host-related, tumor-intrinsic, microenvironmental and macroenvironmental, and CAR-T-related factors. Emerging host-related determinants of response to CAR-T relate to gut microbiome composition, intact hematopoietic function, body composition, and physical reserve. Emerging tumor-intrinsic resistance mechanisms include complex genomic alterations and mutations to immunomodulatory genes. Furthermore, the extent of systemic inflammation prior to CAR-T is a potent biomarker of response and reflects a proinflammatory tumor micromilieu characterized by infiltration of myeloid-derived suppressor cells and regulatory T cell populations. The tumor and its surrounding micromilieu also can shape the response of the host to CAR-T infusion and the subsequent expansion and persistence of CAR T cells, a prerequisite for efficient eradication of tumor cells. Here, focusing on both large B cell lymphoma and multiple myeloma, we review resistance mechanisms, explore therapeutic avenues to overcome resistance to CAR-T, and discuss the management of patients who relapse after CAR-T.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Michael D. Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
252
|
Liu Y, An L, Yang C, Wang X, Huang R, Zhang X. Ginsenoside Rg1 improves anti-tumor efficacy of adoptive cell therapy by enhancing T cell effector functions. BLOOD SCIENCE 2023; 5:170-179. [PMID: 37546705 PMCID: PMC10400057 DOI: 10.1097/bs9.0000000000000165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has emerged with remarkable efficacies for tumor immunotherapy. Chimeric antigen receptor (CAR) T cell therapy, as one of most promising ACTs, has achieved prominent effects in treating malignant hematological tumors. However, the insufficient killing activity and limited persistence of T cells in the immunosuppressive tumor microenvironment limit the further application of ACTs for cancer patients. Many studies have focused on improving cytotoxicity and persistence of T cells to achieve improved therapeutic effects. In this study, we explored the potential function in ACT of ginsenoside Rg1, the main pharmacologically active component of ginseng. We introduced Rg1 during the in vitro activation and expansion phase of T cells, and found that Rg1 treatment upregulated two T cell activation markers, CD69 and CD25, while promoting T cell differentiation towards a mature state. Transcriptome sequencing revealed that Rg1 influenced T cell metabolic reprogramming by strengthening mitochondrial biosynthesis. When co-cultured with tumor cells, Rg1-treated T cells showed stronger cytotoxicity than untreated cells. Moreover, adding Rg1 to the culture endowed CAR-T cells with enhanced anti-tumor efficacy. This study suggests that ginsenoside Rg1 provides a potential approach for improving the anti-tumor efficacy of ACT by enhancing T cell effector functions.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Chengfei Yang
- Department of Urology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing 400037, China
- Jinfeng Laboratory, Chongqing 401329 China
| |
Collapse
|
253
|
Hines MR, Knight TE, McNerney KO, Leick MB, Jain T, Ahmed S, Frigault MJ, Hill JA, Jain MD, Johnson WT, Lin Y, Mahadeo KM, Maron GM, Marsh RA, Neelapu SS, Nikiforow S, Ombrello AK, Shah NN, Talleur AC, Turicek D, Vatsayan A, Wong SW, Maus MV, Komanduri KV, Berliner N, Henter JI, Perales MA, Frey NV, Teachey DT, Frank MJ, Shah NN. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant Cell Ther 2023; 29:438.e1-438.e16. [PMID: 36906275 PMCID: PMC10330221 DOI: 10.1016/j.jtct.2023.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.
Collapse
Affiliation(s)
- Melissa R Hines
- Department of Pediatric Medicine, Division of Critical Care, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tristan E Knight
- Pediatric Hematology and Oncology, Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, Washington
| | - Kevin O McNerney
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Mark B Leick
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sairah Ahmed
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Frigault
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua A Hill
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - William T Johnson
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Lin
- Division Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, Minnesota
| | - Kris M Mahadeo
- Pediatric Transplantation and Cellular Therapy, Duke University, Durham, North Carolina
| | - Gabriela M Maron
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Rebecca A Marsh
- University of Cincinnati, and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sattva S Neelapu
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Nikiforow
- Division of Hematologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirav N Shah
- Bone Marrow Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - David Turicek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anant Vatsayan
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, District of Columbia
| | - Sandy W Wong
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Marcela V Maus
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Krishna V Komanduri
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | - Jan-Inge Henter
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institute, and Department of Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Noelle V Frey
- Division of Hematology-Oncology, Abramson Cancer Center and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David T Teachey
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
254
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
255
|
Aureli A, Marziani B, Venditti A, Sconocchia T, Sconocchia G. Acute Lymphoblastic Leukemia Immunotherapy Treatment: Now, Next, and Beyond. Cancers (Basel) 2023; 15:3346. [PMID: 37444456 DOI: 10.3390/cancers15133346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a blood cancer that primarily affects children but also adults. It is due to the malignant proliferation of lymphoid precursor cells that invade the bone marrow and can spread to extramedullary sites. ALL is divided into B cell (85%) and T cell lineages (10 to 15%); rare cases are associated with the natural killer (NK) cell lineage (<1%). To date, the survival rate in children with ALL is excellent while in adults continues to be poor. Despite the therapeutic progress, there are subsets of patients that still have high relapse rates after chemotherapy or hematopoietic stem cell transplantation (HSCT) and an unsatisfactory cure rate. Hence, the identification of more effective and safer therapy choices represents a primary issue. In this review, we will discuss novel therapeutic options including bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor (CAR)-based therapies, and other promising treatments for both pediatric and adult patients.
Collapse
Affiliation(s)
- Anna Aureli
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| | - Beatrice Marziani
- Emergency Medicine Department, Sant'Anna University Hospital, Via A. Moro, 8, Cona, 44124 Ferrara, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, The University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Tommaso Sconocchia
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Giuseppe Sconocchia
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L'Aquila, Italy
| |
Collapse
|
256
|
Nethi SK, Li X, Bhatnagar S, Prabha S. Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells. Pharmaceutics 2023; 15:1742. [PMID: 37376189 DOI: 10.3390/pharmaceutics15061742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied for their potential in facilitating tumor-targeted delivery of chemotherapeutics due to their tumor-homing characteristics. We hypothesized that targeting effectiveness of MSCs can be further enhanced by incorporating tumor-targeting ligands on MSC surfaces that will allow for enhanced arrest and binding within the tumor tissue. We utilized a unique strategy of modifying MSCs with synthetic antigen receptors (SARs), targeting specific antigens overexpressed on cancer cells. MSCs were surface-functionalized by first incorporating recombinant protein G (PG) on the surface, followed by binding of the targeting antibody to the PG handle. We functionalized MSCs with antibodies targeting a tyrosine kinase transmembrane receptor protein, epidermal growth factor receptor (EGFR), overexpressed in non-small-cell lung cancer (NSCLC). The efficacy of MSCs functionalized with anti-EGFR antibodies (cetuximab and D8) was determined in murine models of NSCLC. Cetuximab-functionalized MSCs demonstrated improved binding to EGFR protein and to EGFR overexpressing A549 lung adenocarcinoma cells. Further, cetuximab-functionalized MSCs loaded with paclitaxel nanoparticles were efficient in slowing orthotopic A549 tumor growth and improving the overall survival relative to that of other controls. Biodistribution studies revealed a six-fold higher retention of EGFR-targeted MSCs than non-targeted MSCs. Based on these results, we conclude that targeting ligand functionalization could be used to enhance the concentration of therapeutic MSC constructs at the tumor tissue and to achieve improved antitumor response.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiaolei Li
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | | | - Swayam Prabha
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
257
|
Lainšček D, Golob-Urbanc A, Mikolič V, Pantović-Žalig J, Malenšek Š, Jerala R. Regulation of CD19 CAR-T cell activation based on an engineered downstream transcription factor. Mol Ther Oncolytics 2023; 29:77-90. [PMID: 37223115 PMCID: PMC10200817 DOI: 10.1016/j.omto.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
CAR-T cells present a highly effective therapeutic option for several malignant diseases, based on their ability to recognize the selected tumor surface marker in an MHC-independent manner. This triggers cell activation and cytokine production, resulting in the killing of the cancerous cell presenting markers recognized by the chimeric antigen receptor. CAR-T cells are highly potent serial killers that may cause serious side effects, so their activity needs to be carefully controlled. Here we designed a system to control the proliferation and activation state of CARs based on downstream NFAT transcription factors, whose activity can be regulated via chemically induced heterodimerization systems. Chemical regulators were used to either transiently trigger engineered T cell proliferation or suppress CAR-mediated activation when desired or to enhance activation of CAR-T cells upon engagement of cancer cells, shown also in vivo. Additionally, an efficient sensor to monitor activated CD19 CAR-T cells in vivo was introduced. This implementation in CAR-T cell regulation offers an efficient way for on-demand external control of CAR-T cell activity to improve their safety.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000, Slovenia
| | - Anja Golob-Urbanc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
| | - Veronika Mikolič
- Department of Hematology, Division of Internal Medicine, University Medical Center Ljubljana, Zaloška 7, Ljubljana 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Jelica Pantović-Žalig
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000, Slovenia
| |
Collapse
|
258
|
Shiqi L, Jiasi Z, Lvzhe C, Huailong X, Liping H, Lin L, Qianzhen Z, Zhongtao Y, Junjie S, Zucong C, Yingzi Z, Meiling W, Yunyan L, Linling W, Lihua F, Yingnian C, Wei Z, Yu L, Le L, Youcheng W, Dingsong Z, Yancheng D, Ping Y, Lihua Z, Xiaoping L, Xiaozhuang H, Zhongzheng Z, Zhi Y, Cheng Q, Sanbin W. Durable remission related to CAR-T persistence in R/R B-ALL and long-term persistence potential of prime CAR-T. Mol Ther Oncolytics 2023; 29:107-117. [PMID: 37215385 PMCID: PMC10196916 DOI: 10.1016/j.omto.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
CD19-targeted chimeric antigen receptor T lymphocytes (CAR-T) has demonstrated a high proportion of complete remission in the treatment of relapsed refractory acute B cell lymphoblastic leukemia (r/r B-ALL). It is of great clinical significance to explore which factors will impact long-term disease-free survival of patients with r/r B-ALL after CAR-T therapy without bridging bone marrow transplantation. Our study found that, in patients with r/r B-ALL without bridging transplantation, the patients' age; infusion dosage; whether they had undergone allo-stem cell transplantation before CAR-T therapy, using CD-19-targeted or CD19/CD22-dual-targeted CAR-T; whether there is fusion gene; tumor burden before therapy; and comorbidity had no significant relationship with their long-term disease-free survival. We found only that CAR-T persistence was highly correlated with patients' long-term disease-free survival. So, we further profiled CAR-T cells using single-cell sequencing and found that there is a specific T cell subset that may be associated with the long-term persistence of CAR-T. Finally, according to the single-cell sequencing results, we established cell production process named PrimeCAR, which shared common signaling pathways with the T cell subset identified. In the preliminary clinical study, prime CAR-Ts yield good persistence in peripheral blood of patients with B-ALL and lymphoma, without observing grade 2 or higher cytokine release syndrome.
Collapse
Affiliation(s)
- Li Shiqi
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Zhang Jiasi
- Center for Hematology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chen Lvzhe
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Xu Huailong
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - He Liping
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Liu Lin
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Zhang Qianzhen
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Yuan Zhongtao
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Shen Junjie
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Chen Zucong
- The People’s Hospital of Dehong Prefecture, Dehong, Yunnan Province 678400, China
| | - Zhang Yingzi
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Wang Meiling
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Li Yunyan
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Wang Linling
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Fang Lihua
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Chen Yingnian
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Zhu Wei
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Li Yu
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Luo Le
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Wang Youcheng
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Zhang Dingsong
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Dong Yancheng
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Yin Ping
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Zhang Lihua
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Li Xiaoping
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| | - Hu Xiaozhuang
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai 201318, China
| | - Zheng Zhongzheng
- Shanghai Tissuebank Biotechnology Co., Ltd., Shanghai 201318, China
| | - Yang Zhi
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Qian Cheng
- Chongqing Precision Biotech Co., Ltd., Chongqing 400039, China
| | - Wang Sanbin
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, Yunnan Province 650100, China
| |
Collapse
|
259
|
Hodroj MH, Abou Dalle I, Moukalled N, El Cheikh J, Mohty M, Bazarbachi A. Novel strategies to prevent and overcome relapse after allogeneic hematopoietic cell transplantation in acute lymphoblastic leukemia. Front Immunol 2023; 14:1191912. [PMID: 37359547 PMCID: PMC10285443 DOI: 10.3389/fimmu.2023.1191912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The outcome of B-cell acute lymphoblastic leukemia (B-ALL) has improved over time with the incorporation of multi-agent chemotherapy in the treatment landscape as well as the recent approval of immunotherapeutic agents allowing a larger proportion of patients to undergo allogeneic hematopoietic cell transplantation (allo-HCT) which is still considered a potential curative approach. However, relapse post-transplant is still occurring and constitutes a common cause of treatment failure in B-ALL. The present review aims to discuss the novel strategies and therapies used to prevent and overcome relapse post allo-HCT in patients with ALL, focusing on the role of tyrosine kinase inhibitors in Philadelphia chromosome positive B-ALL, the role of innovative agents such as blinatumomab and inotuzumab ozogamicin, and finally the role of cellular therapy.
Collapse
Affiliation(s)
- Mohammad Hassan Hodroj
- Division of Hematology & Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Iman Abou Dalle
- Division of Hematology & Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nour Moukalled
- Division of Hematology & Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean El Cheikh
- Division of Hematology & Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Mohty
- Sorbonne University, Saint-Antoine Hospital, AP-HP, INSERM UMRs 938, Paris, France
| | - Ali Bazarbachi
- Division of Hematology & Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Bone Marrow Transplantation Program, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
260
|
Fraessle SP, Tschulik C, Effenberger M, Cletiu V, Gerget M, Schober K, Busch DH, Germeroth L, Stemberger C, Poltorak MP. Activation-inducible CAR expression enables precise control over engineered CAR T cell function. Commun Biol 2023; 6:604. [PMID: 37277433 DOI: 10.1038/s42003-023-04978-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
CAR T cell therapy is a rapidly growing area of oncological treatments having a potential of becoming standard care for multiple indications. Coincidently, CRISPR/Cas gene-editing technology is entering next-generation CAR T cell product manufacturing with the promise of more precise and more controllable cell modification methodology. The intersection of these medical and molecular advancements creates an opportunity for completely new ways of designing engineered cells to help overcome current limitations of cell therapy. In this manuscript we present proof-of-concept data for an engineered feedback loop. We manufactured activation-inducible CAR T cells with the help of CRISPR-mediated targeted integration. This new type of engineered T cells expresses the CAR gene dependent on their activation status. This artifice opens new possibilities to regulate CAR T cell function both in vitro and in vivo. We believe that such a physiological control system can be a powerful addition to the currently available toolbox of next-generation CAR constructs.
Collapse
Affiliation(s)
- Simon P Fraessle
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Claudia Tschulik
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Manuel Effenberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany.
| | - Vlad Cletiu
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Maria Gerget
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Lothar Germeroth
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Christian Stemberger
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| | - Mateusz P Poltorak
- Juno Therapeutics GmbH, a Bristol-Myers Squibb Company, Grillparzerstr. 10, 81675, Munich, Germany
| |
Collapse
|
261
|
Schluck M, Weiden J, Verdoes M, Figdor CG. Insights in the host response towards biomaterial-based scaffolds for cancer therapy. Front Bioeng Biotechnol 2023; 11:1149943. [PMID: 37342507 PMCID: PMC10277494 DOI: 10.3389/fbioe.2023.1149943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Immunotherapeutic strategies have shown promising results in the treatment of cancer. However, not all patients respond, and treatments can have severe side-effects. Adoptive cell therapy (ACT) has shown remarkable therapeutic efficacy across different leukaemia and lymphoma types. But the treatment of solid tumours remains a challenge due to limited persistence and tumour infiltration. We believe that biomaterial-based scaffolds are promising new tools and may address several of the challenges associated with cancer vaccination and ACT. In particular, biomaterial-based scaffold implants allow for controlled delivery of activating signals and/or functional T cells at specific sites. One of the main challenges for their application forms the host response against these scaffolds, which includes unwanted myeloid cell infiltration and the formation of a fibrotic capsule around the scaffold, thereby limiting cell traffic. In this review we provide an overview of several of the biomaterial-based scaffolds designed for cancer therapy to date. We will discuss the host responses observed and we will highlight design parameters that influence this response and their potential impact on therapeutic outcome.
Collapse
Affiliation(s)
- Marjolein Schluck
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Oncode Institute, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| |
Collapse
|
262
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
263
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
264
|
Wang H, Tang L, Kong Y, Liu W, Zhu X, You Y. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. Int J Mol Sci 2023; 24:ijms24119115. [PMID: 37298069 DOI: 10.3390/ijms24119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies has made great progress, but there are still some problems. First, T cells from tumor patients show an exhaustion phenotype; thus, the persistence and function of the CAR-Ts are poor, and achieving a satisfactory curative effect is difficult. Second, some patients initially respond well but quickly develop antigen-negative tumor recurrence. Thirdly, CAR-T treatment is not effective in some patients and is accompanied by severe side effects, such as cytokine release syndrome (CRS) and neurotoxicity. The solution to these problems is to reduce the toxicity and enhance the efficacy of CAR-T therapy. In this paper, we describe various strategies for reducing the toxicity and enhancing the efficacy of CAR-T therapy in hematological malignancies. In the first section, strategies for modifying CAR-Ts using gene-editing technologies or combining them with other anti-tumor drugs to enhance the efficacy of CAR-T therapy are introduced. The second section describes some methods in which the design and construction of CAR-Ts differ from the conventional process. The aim of these methods is to enhance the anti-tumor activity of CAR-Ts and prevent tumor recurrence. The third section describes modifying the CAR structure or installing safety switches to radically reduce CAR-T toxicity or regulating inflammatory cytokines to control the symptoms of CAR-T-associated toxicity. Together, the knowledge summarized herein will aid in designing better-suited and safer CAR-T treatment strategies.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Liu
- Department of Pain Treatment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
265
|
Huang S, Wang X, Wang Y, Wang Y, Fang C, Wang Y, Chen S, Chen R, Lei T, Zhang Y, Xu X, Li Y. Deciphering and advancing CAR T-cell therapy with single-cell sequencing technologies. Mol Cancer 2023; 22:80. [PMID: 37149643 PMCID: PMC10163813 DOI: 10.1186/s12943-023-01783-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has made remarkable progress in cancer immunotherapy, but several challenges with unclear mechanisms hinder its wide clinical application. Single-cell sequencing technologies, with the powerful unbiased analysis of cellular heterogeneity and molecular patterns at unprecedented resolution, have greatly advanced our understanding of immunology and oncology. In this review, we summarize the recent applications of single-cell sequencing technologies in CAR T-cell therapy, including the biological characteristics, the latest mechanisms of clinical response and adverse events, promising strategies that contribute to the development of CAR T-cell therapy and CAR target selection. Generally, we propose a multi-omics research mode to guide potential future research on CAR T-cell therapy.
Collapse
Affiliation(s)
- Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajing Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chenglong Fang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runkai Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
266
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
267
|
Mavi AK, Gaur S, Gaur G, Babita, Kumar N, Kumar U. CAR T-cell therapy: Reprogramming patient's immune cell to treat cancer. Cell Signal 2023; 105:110638. [PMID: 36822565 DOI: 10.1016/j.cellsig.2023.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a game changer in cancer treatment. Although CAR-T cell therapy has achieved significant clinical responses in specific subgroups of B cell leukaemia or lymphoma, various difficulties restrict CAR-T cell therapy's therapeutic effectiveness in solid tumours and haematological malignancies. Severe life-threatening toxicities, poor anti-tumour effectiveness, antigen escape, restricted trafficking, and limited tumour penetration are all barriers to successful CAR-T cell treatment. Furthermore, CAR-T cell interactions with the host and tumour microenvironment have a significant impact on their activity. Furthermore, developing and implementing these therapies necessitates a complicated staff. Innovative methodologies and tactics to engineering more potent CAR-T cells with greater anti-tumour activity and less toxicity are required to address these important difficulties.
Collapse
Affiliation(s)
- Anil Kumar Mavi
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Sonal Gaur
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Jaipur, Rajasthan 304022, India
| | - Gauri Gaur
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133203, India
| | - Babita
- Department of Pharmacology, Sharda School of Allied Health Sciences, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Neelesh Kumar
- Department of Aquaculture, College of Fisheries, GB Pant University of Agriculture & Technology, Pantnagar, Udham Singh Nagar, Uttarakhand 263145, India
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
268
|
Turicek DP, Giordani VM, Moraly J, Taylor N, Shah NN. CAR T-cell detection scoping review: an essential biomarker in critical need of standardization. J Immunother Cancer 2023; 11:jitc-2022-006596. [PMID: 37217245 DOI: 10.1136/jitc-2022-006596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
The expansion and persistence of chimeric antigen receptor (CAR) T-cells in patients are associated with response, toxicity, and long-term efficacy. As such, the tools used to detect CAR T-cells following infusion are fundamental for optimizing this therapeutic approach. Nevertheless, despite the critical value of this essential biomarker, there is significant variability in CAR T-cell detection methods as well as the frequency and intervals of testing. Furthermore, heterogeneity in the reporting of quantitative data adds layers of complexity that limit intertrial and interconstruct comparisons. We sought to assess the heterogeneity of CAR T-cell expansion and persistence data in a scoping review using the PRISMA-ScR checklist. Focusing on 21 clinical trials from the USA, featuring a Food and Drug Administration-approved CAR T-cell construct or one of its predecessors, 105 manuscripts were screened and 60 were selected for analysis, based on the inclusion of CAR T-cell expansion and persistence data. Across the array of CAR T-cell constructs, flow cytometry and quantitative PCR were identified as the two primary techniques for detecting CAR T-cells. However, despite apparent uniformity in detection techniques, the specific methods used were highly variable. Detection time points and the number of evaluated time points also ranged markedly and quantitative data were often not reported. To evaluate whether subsequent manuscripts from a trial resolved these issues, we analyzed all subsequent manuscripts reporting on the 21 clinical trials, recording all expansion and persistence data. While additional detection techniques-including droplet digital PCR, NanoString, and single-cell RNA sequencing-were reported in follow-up publications, inconsistencies with respect to detection time points and frequency remained, with a significant amount of quantitative data still not readily available. Our findings highlight the critical need to establish universal standards for reporting on CAR T-cell detection, especially in early phase studies. The current reporting of non-interconvertible metrics and limited provision of quantitative data make cross-trial and cross-CAR T-cell construct comparisons extremely challenging. Establishing a standardized approach for collecting and reporting data is urgently needed and would represent a substantial advancement in the ability to improve outcomes for patients receiving CAR T-cell therapies.
Collapse
Affiliation(s)
- David P Turicek
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria M Giordani
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Pediatric Hematology Oncology, Johns Hopkins, Baltimore, Maryland, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
- Université Sorbonne Paris Cité, Paris, France
| | - Naomi Taylor
- National Cancer Institute, Bethesda, Maryland, USA
- University Montpellier, Montpellier, France
| | | |
Collapse
|
269
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
270
|
Jo T, Yoshihara S, Okuyama Y, Fujii K, Henzan T, Kahata K, Yamazaki R, Takeda W, Umezawa Y, Fukushima K, Ashida T, Yamada-Fujiwara M, Hanajiri R, Yonetani N, Tada Y, Shimura Y, Nishikii H, Shiba N, Mimura N, Ando J, Sato T, Nakashima Y, Ikemoto J, Iwaki K, Fujiwara SI, Ri M, Nagamura-Inoue T, Tanosaki R, Arai Y. Risk factors for CAR-T cell manufacturing failure among DLBCL patients: A nationwide survey in Japan. Br J Haematol 2023. [PMID: 37096915 DOI: 10.1111/bjh.18831] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
For successful chimeric antigen receptor T (CAR-T) cell therapy, CAR-T cells must be manufactured without failure caused by suboptimal expansion. In order to determine risk factors for CAR-T cell manufacturing failure, we performed a nationwide cohort study in Japan and analysed patients with diffuse large B-cell lymphoma (DLBCL) who underwent tisagenlecleucel production. We compared clinical factors between 30 cases that failed (7.4%) with those that succeeded (n = 378). Among the failures, the proportion of patients previously treated with bendamustine (43.3% vs. 14.8%; p < 0.001) was significantly higher, and their platelet counts (12.0 vs. 17.0 × 104 /μL; p = 0.01) and CD4/CD8 T-cell ratio (0.30 vs. 0.56; p < 0.01) in peripheral blood at apheresis were significantly lower than in the successful group. Multivariate analysis revealed that repeated bendamustine use with short washout periods prior to apheresis (odds ratio [OR], 5.52; p = 0.013 for ≥6 cycles with washout period of 3-24 months; OR, 57.09; p = 0.005 for ≥3 cycles with washout period of <3 months), low platelet counts (OR, 0.495 per 105 /μL; p = 0.022) or low CD4/CD8 ratios (<one third) (OR, 3.249; p = 0.011) in peripheral blood at apheresis increased the risk of manufacturing failure. Manufacturing failure remains an obstacle to CAR-T cell therapy for DLBCL patients. Avoiding risk factors, such as repeated bendamustine administration without sufficient washout, and risk-adapted strategies may help to optimize CAR-T cell therapy for DLBCL patients.
Collapse
Affiliation(s)
- Tomoyasu Jo
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Yoshihara
- Department of Transfusion Medicine and Cell Therapy, Hyogo Medical University Hospital, Nishinomiya, Japan
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Keiko Fujii
- Division of Transfusion, Okayama University Hospital, Okayama, Japan
| | - Tomoko Henzan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Kaoru Kahata
- Department of Hematology, Hokkaido University, Faculty of Medicine, Sapporo, Japan
| | - Rie Yamazaki
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Takeda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Ashida
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osakasayama, Japan
| | - Minami Yamada-Fujiwara
- Division of Blood Transfusion and Cell Therapy, Tohoku University Hospital, Sendai, Japan
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noboru Yonetani
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yuma Tada
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuji Shimura
- Department of Blood Transfusion, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Norio Shiba
- Department of Division of Blood Transfusion and Cell Therapy, Yokohama City University, Yokohama, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Jun Ando
- Department of Cell Therapy and Transfusion Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Takayuki Sato
- Department of Haematology and Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Junko Ikemoto
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Keita Iwaki
- Division of Blood Transfusion and Cell Therapy, Tohoku University Hospital, Sendai, Japan
| | - Shin-Ichiro Fujiwara
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, Tochigi, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryuji Tanosaki
- Department of Hematology, Hokkaido University, Faculty of Medicine, Sapporo, Japan
| | - Yasuyuki Arai
- Department of Clinical Laboratory Medicine and Center for Research and Application of Cellular Therapy, Kyoto University Hospital, Kyoto, Japan
- Department of Hematology and Oncology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
271
|
Liu S, Zhang X, Dai H, Cui W, Yin J, Li Z, Yang X, Yang C, Xue S, Qiu H, Miao M, Chen S, Jin Z, Fu C, Li C, Sun A, Han Y, Wang Y, Yu L, Wu D, Cui Q, Tang X. Which one is better for refractory/relapsed acute B-cell lymphoblastic leukemia: Single-target (CD19) or dual-target (tandem or sequential CD19/CD22) CAR T-cell therapy? Blood Cancer J 2023; 13:60. [PMID: 37095120 PMCID: PMC10125987 DOI: 10.1038/s41408-023-00819-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/26/2023] Open
Abstract
CD19 chimeric antigen receptor (CAR) T-cell therapy has shown great success against B-cell acute lymphoblastic leukemia (B-ALL). Tandem and sequential CD19/CD22 dual-target CAR T-cell therapies have been developed to reduce the possibility of CD19-negative relapse; however, the superior strategy is still uncertain. This study screened 219 patients with relapsed/refractory B-ALL who were enrolled in clinical trials of either CD19 (NCT03919240) or CD19/CD22 CAR T-cell therapy (NCT03614858). The complete remission (CR) rates in the single CD19, tandem CD19/CD22, and sequential CD19/CD22 groups were 83.0% (122/147), 98.0% (50/51), and 95.2% (20/21), respectively (single CD19 vs. tandem CD19/CD22, P = 0.006). Patients with high-risk factors achieved a higher rate of CR in the tandem CD19/CD22 group than in the single CD19 group (100.0% vs. 82.4%, P = 0.017). Tandem CD19/CD22 CAR T-cell therapy was one of the significant favorable factors in the multivariate analysis of the CR rate. The incidence of adverse events was similar among the three groups. Multivariable analysis in CR patients showed that a low frequency of relapse, a low tumor burden, minimal residual disease-negative CR and bridging to transplantation were independently associated with better leukemia-free survival. Our findings suggested that tandem CD19/CD22 CAR T-cell therapy obtains a better response than CD19 CAR T-cell therapy and a similar response to sequential CD19/CD22 CAR T-cell therapy.
Collapse
Affiliation(s)
- Sining Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Xinyue Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Haiping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Wei Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Xiao Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Chunxiu Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Miao Miao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Zhengming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Chengcheng Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Caixia Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, 201203, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
| | - Qingya Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
272
|
Maiorova V, Mollaev MD, Vikhreva P, Chudakov DM, Kibardin A, Maschan MA, Larin S. Mutated Flt3Lg Provides Reduced Flt3 Recycling Compared to Wild-Type Flt3Lg and Retains the Specificity of Flt3Lg-Based CAR T-Cell Targeting in AML Models. Int J Mol Sci 2023; 24:ijms24087626. [PMID: 37108788 PMCID: PMC10146938 DOI: 10.3390/ijms24087626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The cells of acute myeloid leukemia are defined by clonal growth and heterogenous immunophenotypes. Chimeric antigen receptors (CARs) commonly recognize molecular targets by single-chain antibody fragments (scFvs) specific to a tumor-associated antigen. However, ScFvs may form aggregates, thus stimulating tonic CAR T-cell activation and reducing CAR T-cell functioning in vivo. Harnessing natural ligands as recognition parts of CARs, specific targeting of membrane receptors can be achieved. Previously, we presented ligand-based Flt3-CAR T-cells targeting the Flt3 receptor. The extracellular part of Flt3-CAR consisted of full-size Flt3Lg. Meanwhile, upon recognition, Flt3-CAR may potentially activate Flt3, triggering proliferative signaling in blast cells. Moreover, the long-lasting presence of Flt3Lg may lead to Flt3 downregulation. In this paper, we present mutated Flt3Lg-based Flt3m-CAR ('m'-for 'mutant') T-cells targeting Flt3. The extracellular part of Flt3m-CAR consists of full-length Flt3Lg-L27P. We have determined that ED50 for recombinant Flt3Lg-L27P produced in CHO cells is at least 10-fold higher than for the wild-type Flt3Lg. We show that the mutation in the recognizing domain of Flt3m-CAR did not affect the specificity of Flt3m-CAR T-cells when compared to Flt3-CAR T-cells. Flt3m-CAR T-cells combine the specificity of ligand-receptor recognition with reduced Flt3Lg-L27P bioactivity, leading to potentially safer immunotherapy.
Collapse
Affiliation(s)
- Varvara Maiorova
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Murad D Mollaev
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Polina Vikhreva
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexey Kibardin
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Michael A Maschan
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Sergey Larin
- Dmitriy Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
273
|
Althaus J, Nilius-Eliliwi V, Maghnouj A, Döring S, Schroers R, Hudecek M, Hahn SA, Mika T. Cytotoxicity of CD19-CAR-NK92 cells is primarily mediated via perforin/granzyme pathway. Cancer Immunol Immunother 2023:10.1007/s00262-023-03443-1. [PMID: 37052701 PMCID: PMC10361870 DOI: 10.1007/s00262-023-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
Chimeric antigen receptors (CARs) have improved cancer immunotherapy in recent years. Immune cells, such as Natural killer cells (NK-cells) or T cells, are used as effector cells in CAR-therapy. NK92-cells, a cell line with known cytotoxic activity, are of particular interest in CAR-therapy since culturing conditions are simple and anti-tumor efficacy combined with a manageable safety profile was proven in clinical trials. The major pathways of immune effector cells, including NK92-cells, to mediate cytotoxicity, are the perforin/granzyme and the death-receptor pathway. Detailed knowledge of CAR-effector cells' cytotoxic mechanisms is essential to unravel resistance mechanisms, which potentially arise by resistance against apoptosis-inducing signaling. Since mutations in apoptosis pathways are frequent in lymphoma, the impact on CAR-mediated cytotoxicity is of clinical interest. In this study, knockout models of CD19-CAR-NK92 cells were designed, to investigate cytotoxic pathways in vitro. Knockout of perforin 1 (Prf1) and subsequent abrogation of the perforin/granzyme pathway dramatically reduced the cytotoxicity of CD19-CAR-NK92 cells. In contrast, knockout of FasL and inhibition of TRAIL (tumor necrosis factor-related apoptosis-inducing ligands) did not impair cytotoxicity in most conditions. In conclusion, these results indicate the perforin/granzyme pathway as the major pathway to mediate cytotoxicity in CD19-CAR-NK92 cells.
Collapse
Affiliation(s)
- Jonas Althaus
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Verena Nilius-Eliliwi
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Döring
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Roland Schroers
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Michael Hudecek
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Stephan A Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Mika
- Department of Molecular Gastrointestinal Oncology, Ruhr University Bochum, Bochum, Germany.
- Department of Medicine, Hematology and Oncology, Knappschaftskrankenhaus Bochum, Ruhr University Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.
| |
Collapse
|
274
|
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol 2023; 20:359-371. [PMID: 37055515 PMCID: PMC10100620 DOI: 10.1038/s41571-023-00754-1] [Citation(s) in RCA: 300] [Impact Index Per Article: 300.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Chimeric antigen receptors (CAR) are engineered fusion proteins designed to target T cells to antigens expressed on cancer cells. CAR T cells are now an established treatment for patients with relapsed and/or refractory B cell lymphomas, B cell acute lymphoblastic leukaemia and multiple myeloma. At the time of this writing, over a decade of follow-up data are available from the initial patients who received CD19-targeted CAR T cells for B cell malignancies. Data on the outcomes of patients who received B cell maturation antigen (BCMA)-targeted CAR T cells for multiple myeloma are more limited owing to the more recent development of these constructs. In this Review, we summarize long-term follow-up data on efficacy and toxicities from patients treated with CAR T cells targeting CD19 or BCMA. Overall, the data demonstrate that CD19-targeted CAR T cells can induce prolonged remissions in patients with B cell malignancies, often with minimal long-term toxicities, and are probably curative for a subset of patients. By contrast, remissions induced by BCMA-targeted CAR T cells are typically more short-lived but also generally have only limited long-term toxicities. We discuss factors associated with long-term remissions, including the depth of initial response, malignancy characteristics predictive of response, peak circulating CAR levels and the role of lymphodepleting chemotherapy. We also discuss ongoing investigational strategies designed to improve the length of remission following CAR T cell therapy.
Collapse
Affiliation(s)
- Kathryn M Cappell
- Surgery Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| |
Collapse
|
275
|
Meyran D, Zhu JJ, Butler J, Tantalo D, MacDonald S, Nguyen TN, Wang M, Thio N, D'Souza C, Qin VM, Slaney C, Harrison A, Sek K, Petrone P, Thia K, Giuffrida L, Scott AM, Terry RL, Tran B, Desai J, Prince HM, Harrison SJ, Beavis PA, Kershaw MH, Solomon B, Ekert PG, Trapani JA, Darcy PK, Neeson PJ. T STEM-like CAR-T cells exhibit improved persistence and tumor control compared with conventional CAR-T cells in preclinical models. Sci Transl Med 2023; 15:eabk1900. [PMID: 37018415 DOI: 10.1126/scitranslmed.abk1900] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.
Collapse
Affiliation(s)
- Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Université de Paris, Inserm, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris F-75010, France
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Jeanne Butler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Daniela Tantalo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Sean MacDonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Thu Ngoc Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Minyu Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Niko Thio
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Clare Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Aaron Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rachael L Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Ben Tran
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Ben Solomon
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Paul G Ekert
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 1466, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 1466, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
276
|
Nicod C, da Rocha MN, Warda W, Roussel X, Haderbache R, Seffar E, Trad R, Bouquet L, Goncalves M, Bosdure L, Laude MC, Guiot M, Ferrand C, Deschamps M. CAR-T cells targeting IL-1RAP produced in a closed semiautomatic system are ready for the first phase I clinical investigation in humans. Curr Res Transl Med 2023; 71:103385. [PMID: 36773434 DOI: 10.1016/j.retram.2023.103385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE OF THE STUDY The use of chimeric antigen receptor (CAR)-T cells has demonstrated excellent results in B-lymphoid malignancies. The Advanced Therapy Medicinal Products (ATMP) status and good manufacturing practice (GMP) of CAR-T cells require particular conditions of production performed in a pharmaceutical establishment. Our team developed a new medical drug candidate for acute myeloid leukemia (AML), a CAR targeting interleukin-1 receptor accessory protein (IL-1RAP) expressed by leukemia stem cells, which will need to be evaluated in a phase I-IIa clinical trial. During the preclinical development phase, we produced IL-1RAP CAR-T cells in a semi-automated closed system (CliniMACSࣨ Prodigy) using research grade lentiviral particles. PATIENTS AND THE METHODS The purpose of this work was to validate our production process and to characterize our preclinical GMP-like medicinal product. IL-1RAP CAR-T cells were produced from healthy donors in 9 days, either in an semi-automated closed system (with GMP-like compliant conditions) or according to another research protocols, which was used as a reference. RESULTS Based on phenotypic, functional and metabolic analyses, we were able to show that the final product is ready for clinical use. Finally, in a xenograft AML murine model, we demonstrated that the IL-1RAP CAR-T cells generated in a GMP-like environment could eliminate tumor cells and increase overall survival. CONCLUSION We demonstrated that our IL-1RAP CAR-T cell preclinical GMP-like production process meets standard regulatory requirements in terms of CAR-T cell number, subpopulation phenotype and cytotoxic functionality. Our CAR-T cell production process was validated and can be used to produce medicinal IL-1RAP CAR-T cells for the first phase I clinical trial.
Collapse
Affiliation(s)
- Clémentine Nicod
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mathieu Neto da Rocha
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Walid Warda
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Xavier Roussel
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Department of Hematology, CHU Besançon, F-25000 Besançon, France
| | - Rafik Haderbache
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Evan Seffar
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Rim Trad
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Lucie Bouquet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mathieu Goncalves
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; Lymphobank S.A.S.U, F-25000 Besançon, France
| | - Léa Bosdure
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Marie-Charlotte Laude
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Mélanie Guiot
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Christophe Ferrand
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France
| | - Marina Deschamps
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; CanCell Therapeutics, 25000 Besançon, France.
| |
Collapse
|
277
|
Moreno-Castaño AB, Fernández S, Ventosa H, Palomo M, Martinez-Sanchez J, Ramos A, Ortiz-Maldonado V, Delgado J, Fernández de Larrea C, Urbano-Ispizua A, Penack O, Nicolás JM, Téllez A, Escolar G, Carreras E, Fernández-Avilés F, Castro P, Diaz-Ricart M. Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis. J Immunother Cancer 2023; 11:jitc-2022-006365. [PMID: 37045474 PMCID: PMC10106034 DOI: 10.1136/jitc-2022-006365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell-based immunotherapy constitutes a revolutionary advance for treatment of relapsed/refractory hematological malignancies. Nevertheless, cytokine release and immune effector cell-associated neurotoxicity syndromes are life-threatening toxicities in which the endothelium could be a pathophysiological substrate. Furthermore, differential diagnosis from sepsis, highly incident in these patients, is challenging. Suitable laboratory tools could be determinant for their appropriate management. METHODS Sixty-two patients treated with CAR-T cell immunotherapy for hematological malignancies (n=46 with CD19-positive diseases, n=16 with multiple myeloma) were included. Plasma samples were obtained: before CAR-T cell infusion (baseline); after 24-48 hours; at suspicion of any toxicity onset and 24-48 hours after immunomodulatory treatment. Biomarkers of endothelial dysfunction (soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble TNF receptor 1 (sTNFRI), thrombomodulin (TM), soluble suppression of tumorigenesis-2 factor (ST2), angiopoietin-2 (Ang-2)), innate immunity activation (neutrophil extracellular traps (NETs), soluble C5b-9 (sC5b-9)) and hemostasis/fibrinolysis (von Willebrand Factor antigen (VWF:Ag), ADAMTS-13 (A13), α2-antiplasmin (α2-AP), plasminogen activator inhibitor-1 antigen (PAI-1 Ag)) were measured and compared with those in cohorts of patients with sepsis and healthy donors. RESULTS Patients who developed CAR-T cell toxicities presented increased levels of sVCAM-1, sTNFRI and ST2 at the clinical onset versus postinfusion values. Twenty-four hours after infusion, ST2 levels were good predictors of any CAR-T cell toxicity, and combination of ST2, Ang-2 and NETs differentiated patients requiring intensive care unit admission from those with milder clinical presentations. Association of Ang-2, NETs, sC5b-9, VWF:Ag and PAI-1 Ag showed excellent discrimination between severe CAR-T cell toxicities and sepsis. CONCLUSIONS This study provides relevant contributions to the current knowledge of the CAR-T cell toxicities pathophysiology. Markers of endotheliopathy, innate immunity activation and hemostatic imbalance appear as potential laboratory tools for their prediction, severity and differential diagnosis.
Collapse
Affiliation(s)
- Ana Belen Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sara Fernández
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Helena Ventosa
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marta Palomo
- Hematology External Quality Assessment Laboratory, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Alex Ramos
- Institut de Recerca Contra la Leucèmia Josep Carreras, Campus Clínic, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Olaf Penack
- Hematology Department, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - J M Nicolás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Adrian Téllez
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Gines Escolar
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Fundación Josep Carreras contra la Leucemia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
278
|
Aldoss I, Shah BD, Park JH, Muffly L, Logan AC, Brown P, Stock W, Jabbour EJ. Sequencing antigen-targeting antibodies and cellular therapies in adults with relapsed/refractory B-cell acute lymphoblastic leukemia. Am J Hematol 2023; 98:666-680. [PMID: 36691748 DOI: 10.1002/ajh.26853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
The recent approvals of four CD19-or CD22-targeted therapies for B-cell acute lymphoblastic leukemia (B-ALL) have transformed the treatment of relapsed/refractory (r/r) disease. Adults with r/r B-ALL are usually eligible for all options, but there are no studies directly comparing these agents, and the treating physician must decide which to select. Each therapy has notable activity as a single agent but has limitations in particular settings, and the optimal choice varies. These therapies can be complementary and used either sequentially or concomitantly. Here, we review the current landscape of antigen-targeted therapies for r/r B-ALL and discuss considerations for their use.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Bijal D Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jae H Park
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, California, USA
| | - Aaron C Logan
- Division of Hematology/Oncology, University of California San Francisco Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
| | | | - Wendy Stock
- Comprehensive Cancer Research Center, University of Chicago Medicine, Chicago, Illinois, USA
| | - Elias J Jabbour
- Division of Cancer Medicine, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
279
|
Yang J, Chen Y, Jing Y, Green MR, Han L. Advancing CAR T cell therapy through the use of multidimensional omics data. Nat Rev Clin Oncol 2023; 20:211-228. [PMID: 36721024 DOI: 10.1038/s41571-023-00729-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Despite the notable success of chimeric antigen receptor (CAR) T cell therapies in the treatment of certain haematological malignancies, challenges remain in optimizing CAR designs and cell products, improving response rates, extending the durability of remissions, reducing toxicity and broadening the utility of this therapeutic modality to other cancer types. Data from multidimensional omics analyses, including genomics, epigenomics, transcriptomics, T cell receptor-repertoire profiling, proteomics, metabolomics and/or microbiomics, provide unique opportunities to dissect the complex and dynamic multifactorial phenotypes, processes and responses of CAR T cells as well as to discover novel tumour targets and pathways of resistance. In this Review, we summarize the multidimensional cellular and molecular profiling technologies that have been used to advance our mechanistic understanding of CAR T cell therapies. In addition, we discuss current applications and potential strategies leveraging multi-omics data to identify optimal target antigens and other molecular features that could be exploited to enhance the antitumour activity and minimize the toxicity of CAR T cell therapy. Indeed, fully utilizing multi-omics data will provide new insights into the biology of CAR T cell therapy, further accelerate the development of products with improved efficacy and safety profiles, and enable clinicians to better predict and monitor patient responses.
Collapse
Affiliation(s)
- Jingwen Yang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yamei Chen
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Ying Jing
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
280
|
Abbasi S, Totmaj MA, Abbasi M, Hajazimian S, Goleij P, Behroozi J, Shademan B, Isazadeh A, Baradaran B. Chimeric antigen receptor T (CAR-T) cells: Novel cell therapy for hematological malignancies. Cancer Med 2023; 12:7844-7858. [PMID: 36583504 PMCID: PMC10134288 DOI: 10.1002/cam4.5551] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/23/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Over the last decade, the emergence of several novel therapeutic approaches has changed the therapeutic perspective of human malignancies. Adoptive immunotherapy through chimeric antigen receptor T cell (CAR-T), which includes the engineering of T cells to recognize tumor-specific membrane antigens and, as a result, death of cancer cells, has created various clinical benefits for the treatment of several human malignancies. In particular, CAR-T-cell-based immunotherapy is known as a critical approach for the treatment of patients with hematological malignancies such as acute lymphoblastic leukemia (ALL), multiple myeloma (MM), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), Hodgkin lymphoma (HL), and non-Hodgkin's lymphoma (NHL). However, CAR-T-cell therapy of hematological malignancies is associated with various side effects. There are still extensive challenges in association with further progress of this therapeutic approach, from manufacturing and engineering issues to limitations of applications and serious toxicities. Therefore, further studies are required to enhance efficacy and minimize adverse events. In the current review, we summarize the development of CAR-T-cell-based immunotherapy and current clinical antitumor applications to treat hematological malignancies. Furthermore, we will mention the current advantages, disadvantages, challenges, and therapeutic limitations of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Samane Abbasi
- Department of Biology, Faculty of SciencesUniversity of GuilanRashtIran
| | - Milad Asghari Totmaj
- Department of Clinical Immunology, Faculty of MedicineThe University of ManchesterManchesterUK
| | - Masoumeh Abbasi
- Department of Microbiology, Malekan BranchIslamic Azad UniversityMalekanIran
| | - Saba Hajazimian
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Pouya Goleij
- Department of Genetics, Faculty of BiologySana Institute of Higher EducationSariIran
| | - Javad Behroozi
- Department of Genetics and Biotechnology, School of MedicineAJA University of Medical SciencesTehranIran
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Alireza Isazadeh
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
281
|
Xu H, Li N, Wang G, Cao Y. Predictive short/long-term efficacy biomarkers and resistance mechanisms of CD19-directed CAR-T immunotherapy in relapsed/refractory B-cell lymphomas. Front Immunol 2023; 14:1110028. [PMID: 37051246 PMCID: PMC10083339 DOI: 10.3389/fimmu.2023.1110028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Genetically modified T-cell immunotherapies are revolutionizing the therapeutic options for hematological malignancies, especially those of B-cell origin. Impressive efficacies of CD19-directed chimeric antigen receptor (CAR)-T therapy have been reported in refractory/relapsed (R/R) B-cell non-Hodgkin lymphoma (NHL) patients who were resistant to current standard therapies, with a complete remission (CR) rate of approximately 50%. At the same time, problems of resistance and relapse following CAR-T therapy have drawn growing attention. Recently, great efforts have been made to determine various factors that are connected to the responses and outcomes following CAR-T therapy, which may not only allow us to recognize those with a higher likelihood of responding and who could benefit most from the therapy but also identify those with a high risk of resistance and relapse and to whom further appropriate treatment should be administered following CAR-T therapy. Thus, we concentrate on the biomarkers that can predict responses and outcomes after CD19-directed CAR-T immunotherapy. Furthermore, the mechanisms that may lead to treatment failure are also discussed in this review.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Ningwen Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
- *Correspondence: Gaoxiang Wang, ; Yang Cao,
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
- *Correspondence: Gaoxiang Wang, ; Yang Cao,
| |
Collapse
|
282
|
Li W, Ding L, Shi W, Wan X, Yang X, Yang J, Wang T, Song L, Wang X, Ma Y, Luo C, Tang J, Gu L, Chen J, Lu J, Tang Y, Li B. Safety and efficacy of co-administration of CD19 and CD22 CAR-T cells in children with B-ALL relapse after CD19 CAR-T therapy. J Transl Med 2023; 21:213. [PMID: 36949487 PMCID: PMC10031882 DOI: 10.1186/s12967-023-04019-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND CD19-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown remarkable efficacy in treating relapsed or refractory pediatric B-lineage acute lymphoblastic leukemia (B-ALL). However, poor results are obtained when the same product is reused in patients who relapse after CAR-T. Therefore, there is a need to explore the safety and efficacy of co-administration of CD19- and CD22-targeted CAR-T as a salvage second CAR-T therapy (CART2) in B-ALL patients who relapse after their first CD19 CAR-T treatment (CART1). METHODS In this study, we recruited five patients who relapsed after CD19-targeted CAR-T. CD19- and CD22-CAR lentivirus-transfected T cells were cultured separately and mixed before infusion in an approximate ratio of 1:1. The total dose range of CD19 and CD22 CAR-T was 4.3 × 106-1.5 × 107/kg. Throughout the trial, we evaluated the patients' clinical responses, side effects, and the expansion and persistence of CAR-T cells. RESULTS After CART2, all five patients had minimal residual disease (MRD)-negative complete remission (CR). The 6- and 12-month overall survival (OS) rates were 100%. The median follow-up time was 26.3 months. Three of the five patients bridged to consolidated allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CART2 and remained in MRD-negative CR at the cut-off time. In patient No. 3 (pt03), CAR-T cells were still detected in the peripheral blood (PB) at 347 days post-CART2. Cytokine release syndrome (CRS) only occurred with a grade of ≤ 2, and no patients experienced symptoms of neurologic toxicity during CART2. CONCLUSIONS Mixed infusion of CD19- and CD22-targeted CAR-T cells is a safe and effective regimen for children with B-ALL who relapse after prior CD19-targeted CAR-T therapy. Salvage CART2 provides an opportunity for bridging to transplantation and long-term survival. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2000032211. Retrospectively registered: April 23, 2020.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lixia Ding
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Shi
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Wan
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomin Yang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Song
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Wang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Ma
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyan Tang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longjun Gu
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Chen
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Yanjing Tang
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Benshang Li
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
283
|
Bertschi A, Stefanov BA, Xue S, Charpin-El Hamri G, Teixeira AP, Fussenegger M. Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Res 2023; 51:e28. [PMID: 36625292 PMCID: PMC10018347 DOI: 10.1093/nar/gkac1256] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Precise control of the delivery of therapeutic proteins is critical for gene- and cell-based therapies, and expression should only be switched on in the presence of a specific trigger signal of appropriate magnitude. Focusing on the advantages of delivering the trigger by inhalation, we have developed a mammalian synthetic gene switch that enables regulation of transgene expression by exposure to the semi-volatile small molecule acetoin, a widely used, FDA-approved food flavor additive. The gene switch capitalizes on the bacterial regulatory protein AcoR fused to a mammalian transactivation domain, which binds to promoter regions with specific DNA sequences in the presence of acetoin and dose-dependently activates expression of downstream transgenes. Wild-type mice implanted with alginate-encapsulated cells transgenic for the acetoin gene switch showed a dose-dependent increase in blood levels of reporter protein in response to either administration of acetoin solution via oral gavage or longer exposure to acetoin aerosol generated by a commercial portable inhaler. Intake of typical acetoin-containing foods, such as butter, lychees and cheese, did not activate transgene expression. As a proof of concept, we show that blood glucose levels were normalized by acetoin aerosol inhalation in type-I diabetic mice implanted with acetoin-responsive insulin-producing cells. Delivery of trigger molecules using portable inhalers may facilitate regular administration of therapeutic proteins via next-generation cell-based therapies to treat chronic diseases for which frequent dosing is required.
Collapse
Affiliation(s)
- Adrian Bertschi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Bozhidar-Adrian Stefanov
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard, Lyon 1 Villeurbanne Cedex F-69622, France
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
284
|
Myers RM, Shah NN, Pulsipher MA. How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL. Blood 2023; 141:1251-1264. [PMID: 36416729 PMCID: PMC10082355 DOI: 10.1182/blood.2022016937] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
By overcoming chemotherapeutic resistance, chimeric antigen receptor (CAR) T cells facilitate deep, complete remissions and offer the potential for long-term cure in a substantial fraction of patients with chemotherapy refractory disease. However, that success is tempered with 10% to 30% of patients not achieving remission and over half of patients treated eventually experiencing relapse. With over a decade of experience using CAR T cells in children, adolescents, and young adults (AYA) to treat relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and 5 years since the first US Food and Drug Administration approval, data defining the nuances of patient-specific risk factors are emerging. With the commercial availability of 2 unique CD19 CAR T-cell constructs for B-ALL, in this article, we review the current literature, outline our approach to patients, and discuss how individual factors inform strategies to optimize outcomes in children and AYA receiving CD19 CAR T cells. We include data from both prospective and recent large retrospective studies that offer insight into understanding when the risks of CAR T-cell therapy failure are high and offer perspectives suggesting when consolidative hematopoietic cell transplantation or experimental CAR T-cell and/or alternative immunotherapy should be considered. We also propose areas where prospective trials addressing the optimal use of CAR T-cell therapy are needed.
Collapse
Affiliation(s)
- Regina M. Myers
- Division of Oncology, Cell Therapy and Transplant Section, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| |
Collapse
|
285
|
Wang HQ, Fu R, Man QW, Yang G, Liu B, Bu LL. Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. J Clin Med 2023; 12:jcm12062173. [PMID: 36983174 PMCID: PMC10052000 DOI: 10.3390/jcm12062173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Surgery with the assistance of conventional radiotherapy, chemotherapy and immunotherapy is the basis for head and neck squamous cell carcinoma (HNSCC) treatment. However, with these treatment modalities, the recurrence and metastasis of tumors remain at a high level. Increasingly, the evidence indicates an excellent anti-tumor effect of chimeric antigen receptor T (CAR-T) cells in hematological malignancy treatment, and this novel immunotherapy has attracted researchers’ attention in HNSCC treatment. Although several clinical trials have been conducted, the weak anti-tumor effect and the side effects of CAR-T cell therapy against HNSCC are barriers to clinical translation. The limited choices of targeting proteins, the barriers of CAR-T cell infiltration into targeted tumors and short survival time in vivo should be solved. In this review, we introduce barriers of CAR-T cell therapy in HNSCC. The limitations and current promising strategies to overcome barriers in solid tumors, as well as the applications for HNSCC treatment, are covered. The perspectives of CAR-T cell therapy in future HNSCC treatment are also discussed.
Collapse
Affiliation(s)
- Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Ruxing Fu
- Department of Materials Science and Engineering, University of California, Los Angeles, CA 92093, USA
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (L.-L.B.)
| |
Collapse
|
286
|
Michels KR, Sheih A, Hernandez SA, Brandes AH, Parrilla D, Irwin B, Perez AM, Ting HA, Nicolai CJ, Gervascio T, Shin S, Pankau MD, Muhonen M, Freeman J, Gould S, Getto R, Larson RP, Ryu BY, Scharenberg AM, Sullivan AM, Green S. Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering. J Immunother Cancer 2023; 11:jitc-2022-006292. [PMID: 36918221 PMCID: PMC10016276 DOI: 10.1136/jitc-2022-006292] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapies have demonstrated transformational outcomes in the treatment of B-cell malignancies, but their widespread use is hindered by technical and logistical challenges associated with ex vivo cell manufacturing. To overcome these challenges, we developed VivoVec, a lentiviral vector-based platform for in vivo engineering of T cells. UB-VV100, a VivoVec clinical candidate for the treatment of B-cell malignancies, displays an anti-CD3 single-chain variable fragment (scFv) on the surface and delivers a genetic payload that encodes a second-generation CD19-targeted CAR along with a rapamycin-activated cytokine receptor (RACR) system designed to overcome the need for lymphodepleting chemotherapy in supporting successful CAR T-cell expansion and persistence. In the presence of exogenous rapamycin, non-transduced immune cells are suppressed, while the RACR system in transduced cells converts rapamycin binding to an interleukin (IL)-2/IL-15 signal to promote proliferation. METHODS UB-VV100 was administered to peripheral blood mononuclear cells (PBMCs) from healthy donors and from patients with B-cell malignancy without additional stimulation. Cultures were assessed for CAR T-cell transduction and function. Biodistribution was evaluated in CD34-humanized mice and in canines. In vivo efficacy was evaluated against normal B cells in CD34-humanized mice and against systemic tumor xenografts in PBMC-humanized mice. RESULTS In vitro, administration of UB-VV100 resulted in dose-dependent and anti-CD3 scFv-dependent T-cell activation and CAR T-cell transduction. The resulting CAR T cells exhibited selective expansion in rapamycin and antigen-dependent activity against malignant B-cell targets. In humanized mouse and canine studies, UB-VV100 demonstrated a favorable biodistribution profile, with transduction events limited to the immune compartment after intranodal or intraperitoneal administration. Administration of UB-VV100 to humanized mice engrafted with B-cell tumors resulted in CAR T-cell transduction, expansion, and elimination of systemic malignancy. CONCLUSIONS These findings demonstrate that UB-VV100 generates functional CAR T cells in vivo, which could expand patient access to CAR T technology in both hematological and solid tumors without the need for ex vivo cell manufacturing.
Collapse
Affiliation(s)
| | - Alyssa Sheih
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | | | | | - Don Parrilla
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | - Blythe Irwin
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | - Anai M Perez
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | - Hung-An Ting
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | | | - Timothy Gervascio
- Office of Animal Care, Seattle Children's Hospital, Seattle, Washington, USA
| | - Seungjin Shin
- Vector Biology, Umoja Biopharma, Seattle, Washington, USA
| | - Mark D Pankau
- Process Development, Umoja Biopharma, Seattle, Washington, USA
| | | | | | - Sarah Gould
- MSAT, Umoja Biopharma, Boulder, Colorado, USA
| | - Rich Getto
- Umoja Biopharma, Seattle, Washington, USA
| | - Ryan P Larson
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| | - Byoung Y Ryu
- Discovery, Umoja Biopharma, Seattle, Washington, USA
| | | | | | - Shon Green
- Immunology, Umoja Biopharma Inc, Seattle, Washington, USA
| |
Collapse
|
287
|
Li R, Sahoo P, Wang D, Wang Q, Brown CE, Rockne RC, Cho H. Modeling interaction of Glioma cells and CAR T-cells considering multiple CAR T-cells bindings. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2023; 9:100022. [PMID: 36875891 PMCID: PMC9983577 DOI: 10.1016/j.immuno.2023.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell based immunotherapy has shown its potential in treating blood cancers, and its application to solid tumors is currently being extensively investigated. For glioma brain tumors, various CAR T-cell targets include IL13Rα2, EGFRvIII, HER2, EphA2, GD2, B7-H3, and chlorotoxin. In this work, we are interested in developing a mathematical model of IL13Rα2 targeting CAR T-cells for treating glioma. We focus on extending the work of Kuznetsov et al. (1994) by considering binding of multiple CAR T-cells to a single glioma cell, and the dynamics of these multi-cellular conjugates. Our model more accurately describes experimentally observed CAR T-cell killing assay data than the models which do not consider multi-cellular conjugates. Moreover, we derive conditions in the CAR T-cell expansion rate that determines treatment success or failure. Finally, we show that our model captures distinct CAR T-cell killing dynamics from low to high antigen receptor densities in patient-derived brain tumor cells.
Collapse
Affiliation(s)
- Runpeng Li
- Department of Mathematics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| | - Prativa Sahoo
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, 91010, CA, USA
| | - Dongrui Wang
- Zhejiang University Medical Center, 866 Yuhangtang Rd, Hangzhou, 310058, PR China
| | - Qixuan Wang
- Department of Mathematics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, 91010, CA, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, 1500 E Duarte Rd., Duarte, 91010, CA, USA
| | - Heyrim Cho
- Department of Mathematics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA.,Interdisciplinary Center for Quantitative Modeling in Biology, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| |
Collapse
|
288
|
Larson SM, Walthers CM, Ji B, Ghafouri SN, Naparstek J, Trent J, Chen JM, Roshandell M, Harris C, Khericha M, Schweppe T, Berent-Maoz B, Gosliner SB, Almaktari A, Ceja MA, Allen-Auerbach MS, Said J, Nawaly K, Mead M, de Vos S, Young PA, Oliai C, Schiller GJ, Timmerman JM, Ribas A, Chen YY. CD19/CD20 Bispecific Chimeric Antigen Receptor (CAR) in Naive/Memory T Cells for the Treatment of Relapsed or Refractory Non-Hodgkin Lymphoma. Cancer Discov 2023; 13:580-597. [PMID: 36416874 PMCID: PMC9992104 DOI: 10.1158/2159-8290.cd-22-0964] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
To address antigen escape and loss of T-cell functionality, we report a phase I clinical trial (NCT04007029) evaluating autologous naive and memory T (TN/MEM) cells engineered to express a bispecific anti-CD19/CD20 chimeric antigen receptor (CAR; CART19/20) for patients with relapsed/refractory non-Hodgkin lymphoma (NHL), with safety as the primary endpoint. Ten patients were treated with 36 × 106 to 165 × 106 CART19/20 cells. No patient experienced neurotoxicity of any grade or over grade 1 cytokine release syndrome. One case of dose-limiting toxicity (persistent cytopenia) was observed. Nine of 10 patients achieved objective response [90% overall response rate (ORR)], with seven achieving complete remission [70% complete responses (CR) rate]. One patient relapsed after 18 months in CR but returned to CR after receiving a second dose of CART19/20 cells. Median progression-free survival was 18 months and median overall survival was not reached with a 17-month median follow-up. In conclusion, CART19/20 TN/MEM cells are safe and effective in patients with relapsed/refractory NHL, with durable responses achieved at low dosage levels. SIGNIFICANCE Autologous CD19/CD20 bispecific CAR-T cell therapy generated from TN/MEM cells for patients with NHL is safe (no neurotoxicity, maximum grade 1 cytokine release syndrome) and demonstrates strong efficacy (90% ORR, 70% CR rate) in a first-in-human, phase I dose-escalation trial. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Sarah M. Larson
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Brenda Ji
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Sanaz N. Ghafouri
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Naparstek
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Jacqueline Trent
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Jia Ming Chen
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Mobina Roshandell
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Caitlin Harris
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Mobina Khericha
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Thomas Schweppe
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Stanley B. Gosliner
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA, USA
| | - Amr Almaktari
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Melanie Ayala Ceja
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Martin S. Allen-Auerbach
- Ahmanson Translational Theranostics Division, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
| | - Karla Nawaly
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
| | - Monica Mead
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Sven de Vos
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patricia A. Young
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Caspian Oliai
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Gary J. Schiller
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John M. Timmerman
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Department of Surgery, Division of Surgical Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yvonne Y. Chen
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA, USA
- Department of Chemical and Biomolecular Engineering, UCLA, Los Angeles, CA, USA
| |
Collapse
|
289
|
Vasu S. Cellular therapies: Hematology and beyond. Semin Hematol 2023; 60:1-2. [PMID: 37080704 DOI: 10.1053/j.seminhematol.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
290
|
Korkmaz S. Clinical use of CAR T-cells in treating acute lymphoblastic leukemia. Transfus Apher Sci 2023; 62:103666. [PMID: 36868895 DOI: 10.1016/j.transci.2023.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment landscape for adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL). However CAR T-cell therapy of R/R T-ALL has unique challenges, such as the lack of specific tumor antigens, cell fratricide and T cell aplasia, in comparison with that of R/R B-ALL. Despite promising therapeutic outcomes in R/R B-ALL, application of this therapy is limited by high relapse rates and immunological toxicities. Recent studies suggest patients who underwent allogeneic hematopoietic stem cell transplantation post-CAR T-cell therapy would achieve durable remission and better survival, but this remains controversial. Herein, I briefly review published data on the clinical use of CAR T-cells in treating ALL.
Collapse
Affiliation(s)
- Serdal Korkmaz
- University of Health Sciences, Kayseri Faculty of Medicine, Department of Hematology, Apheresis & BMT Unit, Kayseri, Turkey.
| |
Collapse
|
291
|
Qasim W. Genome-edited allogeneic donor "universal" chimeric antigen receptor T cells. Blood 2023; 141:835-845. [PMID: 36223560 PMCID: PMC10651779 DOI: 10.1182/blood.2022016204] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022] Open
Abstract
αβ T cell receptor (TCRαβ) T cells modified to express chimeric antigen receptors (CAR), are now available as authorized therapies for certain B-cell malignancies. However the process of autologous harvest and generation of patient-specific products is costly, with complex logistics and infrastructure requirements. Premanufactured banks of allogeneic donor-derived CAR T cells could help widen applicability if the challenges of HLA-mismatched T-cell therapy can be addressed. Genome editing is being applied to overcome allogeneic barriers, most notably, by disrupting TCRαβ to prevent graft-versus-host disease, and multiple competing editing technologies, including CRISPR/Cas9 and base editing, have reached clinical phase testing. Improvements in accuracy and efficiency have unlocked applications for a wider range of blood malignancies, with multiplexed editing incorporated to target HLA molecules, shared antigens and checkpoint pathways. Clinical trials will help establish safety profiles and determine the durability of responses as well as the role of consolidation with allogeneic transplantation.
Collapse
Affiliation(s)
- Waseem Qasim
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London, United Kingdom
| |
Collapse
|
292
|
Ellis CE, Mojibian M, Ida S, Fung VCW, Skovsø S, McIver E, O'Dwyer S, Webber TD, Braam MJS, Saber N, Kieffer TJ, Levings MK. Human A2-CAR T cells reject HLA-A2+ human islets transplanted into mice without inducing graft versus host disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529741. [PMID: 36865123 PMCID: PMC9980131 DOI: 10.1101/2023.02.23.529741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.
Collapse
Affiliation(s)
- Cara E Ellis
- Life Sciences Institute, Department of Cellular and Physiological Sciences
- Alberta Diabetes Institute, and Department of Pharmacology, University of Alberta, Edmonton AB, Canada
| | - Majid Mojibian
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
- BC Children's Hospital Research Institute, Vancouver BC, Canada
| | - Shogo Ida
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Vivian C W Fung
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
- BC Children's Hospital Research Institute, Vancouver BC, Canada
| | - Søs Skovsø
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Emma McIver
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
- BC Children's Hospital Research Institute, Vancouver BC, Canada
| | - Shannon O'Dwyer
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Travis D Webber
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Mitchell J S Braam
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Nelly Saber
- Life Sciences Institute, Department of Cellular and Physiological Sciences
| | - Timothy J Kieffer
- Life Sciences Institute, Department of Cellular and Physiological Sciences
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver BC, Canada
- BC Children's Hospital Research Institute, Vancouver BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
293
|
Cichocki F, van der Stegen SJC, Miller JS. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 2023; 141:846-855. [PMID: 36327161 PMCID: PMC10023718 DOI: 10.1182/blood.2022016205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The development of methods to derive induced pluripotent stem cells (iPSCs) has propelled stem cell research, and has the potential to revolutionize many areas of medicine, including cancer immunotherapy. These cells can be propagated limitlessly and can differentiate into nearly any specialized cell type. The ability to perform precise multigene engineering at the iPSC stage, generate master cell lines after clonal selection, and faithfully promote differentiation along natural killer (NK) cells and T-cell lineages is now leading to new opportunities for the administration of off-the-shelf cytotoxic lymphocytes with direct antigen targeting to treat patients with relapsed/refractory cancer. In this review, we highlight the recent progress in iPSC editing and guided differentiation in the development of NK- and T-cell products for immunotherapy. We also discuss some of the potential barriers that remain in unleashing the full potential of iPSC-derived cytotoxic effector cells in the adoptive transfer setting, and how some of these limitations may be overcome through gene editing.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Sjoukje J. C. van der Stegen
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY
- Immunology Program, Sloan Kettering Institute, New York, NY
| | | |
Collapse
|
294
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
295
|
Zhai X, Mao L, Wu M, Liu J, Yu S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers (Basel) 2023; 15:cancers15051357. [PMID: 36900151 PMCID: PMC10000068 DOI: 10.3390/cancers15051357] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is a kind of adoptive T-cell therapy (ACT) that has developed rapidly in recent years. Mesothelin (MSLN) is a tumor-associated antigen (TAA) that is highly expressed in various solid tumors and is an important target antigen for the development of new immunotherapies for solid tumors. This article reviews the clinical research status, obstacles, advancements and challenges of anti-MSLN CAR-T-cell therapy. Clinical trials on anti-MSLN CAR-T cells show that they have a high safety profile but limited efficacy. At present, local administration and introduction of new modifications are being used to enhance proliferation and persistence and to improve the efficacy and safety of anti-MSLN CAR-T cells. A number of clinical and basic studies have shown that the curative effect of combining this therapy with standard therapy is significantly better than that of monotherapy.
Collapse
Affiliation(s)
- Xuejia Zhai
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Ling Mao
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Min Wu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Jie Liu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
| | - Shicang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing 400038, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
296
|
Song F, Hu Y, Zhang Y, Zhang M, Yang T, Wu W, Huang S, Xu H, Chang AH, Huang H, Wei G. Safety and efficacy of autologous and allogeneic humanized CD19-targeted CAR-T cell therapy for patients with relapsed/refractory B-ALL. J Immunother Cancer 2023; 11:jitc-2022-005701. [PMID: 36808074 PMCID: PMC9944646 DOI: 10.1136/jitc-2022-005701] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Murine chimeric antigen receptor T (CAR-T) cell therapy has demonstrated clinical benefit in patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). However, the potential immunogenicity of the murine single-chain variable fragment domain may limit the persistence of CAR-T cell, leading to relapse. METHODS We performed a clinical trial to determine the safety and efficacy of autologous and allogeneic humanized CD19-targeted CAR-T cell (hCART19) for R/R B-ALL. Fifty-eight patients (aged 13-74 years) were enrolled and treated between February 2020 and March 2022. The endpoints were complete remission (CR) rate, overall survival (OS), event-free survival (EFS), and safety. RESULTS Overall, 93.1% (54/58) of patients achieved CR or CR with incomplete count recovery (CRi) by day 28, with 53 patients having minimal residual disease negativity. With a median follow-up of 13.5 months, the estimated 1-year OS and EFS were 73.6% (95% CI 62.1% to 87.4%) and 46.0% (95% CI 33.7% to 62.8%), with a median OS and EFS of 21.5 months and 9.5 months, respectively. No significant increase in human antimouse antibodies was observed following infusion (p=0.78). Duration of B-cell aplasia in the blood was observed for as long as 616 days, which was longer than that in our prior mCART19 trial. All toxicities were reversible, including severe cytokine release syndrome, which developed in 36% (21/58) of patients and severe neurotoxicity, which developed in 5% (3/58) of patients. Compared with our prior mCART19 trial, patients treated with hCART19 had longer EFS without increased toxicity. Additionally, our data also suggest that patients treated with consolidation therapy, including allogeneic hematopoietic stem cell transplantation or CD22-targeted CAR-T cell, following hCART19 therapy had a longer EFS than those without consolidation therapy. CONCLUSION hCART19 has good short-term efficacy and manageable toxicity in R/R B-ALL patients. TRIAL REGISTRATION NUMBER NCT04532268.
Collapse
Affiliation(s)
- Fengmei Song
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | | | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Tingting Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Simao Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd, ShanghaiChina,Clinical Transformation Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, ShanghaiChina
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China,Institute of HematologyZhejiang University, Hangzhou, China,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.,Institute of HematologyZhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
297
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
298
|
Aldoss I, Khaled SK, Wang X, Palmer J, Wang Y, Wagner JR, Clark MC, Simpson J, Paul J, Vyas V, Chien SH, Stein A, Pullarkat V, Salhotra A, Al Malki MM, Aribi A, Sandhu K, Thomas SH, Budde LE, Marcucci G, Brown CE, Forman SJ. Favorable Activity and Safety Profile of Memory-Enriched CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy in Adults with High-Risk Relapsed/Refractory ALL. Clin Cancer Res 2023; 29:742-753. [PMID: 36255386 PMCID: PMC10544259 DOI: 10.1158/1078-0432.ccr-22-2038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase I/II study evaluating the safety and activity of memory-enriched CD19-directed chimeric antigen receptor (CD19-CAR) T cells in adults with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS In phase I, we tested sequentially two cell populations for CAR transduction: (i) central memory (Tcm) or (ii) naïve, stem, and central memory (Tn/mem) T cells. The study employed an activity constrained for toxicity design to determine the recommended phase II dose (RP2D), which was tested in phase II. RESULTS The Tcm cohort was closed early due to lack of activity. The 200 ×106 Tn/mem-derived CD19-CAR T-cell dose was found to be safe and active, and was declared the RP2D. At RP2D, 58 participants underwent leukapheresis and 46 received CD19-CAR T cells. Median age for treated participants was 38 years (range, 22-72). Twenty-nine (63%) participants had relapsed post-allogeneic hematopoietic cell transplantation (alloHCT), 18 (39%) had Philadelphia-like (Ph-like) genotype, and 16 (35%) had extramedullary disease (EMD) at lymphodepletion (LD). Three (7%) participants had grade 3 cytokine release syndrome (CRS), and none had grade ≥ 4 CRS. Eight (17%) participants had grade ≥ 3 neurotoxicity, including one fatal cerebral edema. Forty (87%) patients achieved complete remission (CR)/CR with incomplete hematologic recovery, 2 (4%) progressed, and 4 (9%) were unevaluable for response. Among 42 response-evaluable participants, 16/17 with Ph-like ALL and 13/15 with EMD at LD responded. Twenty-one (53%) responders underwent alloHCT consolidation, which was associated with improved relapse-free survival (adjusted HR = 0.16; 95% confidence interval, 0.05-0.48; P = 0.001). CONCLUSIONS Tn/mem-derived CD19-CAR T cells were safe and active, including in Ph-like ALL and EMD. See related commentary by El Marabti and Abdel-Wahab, p. 694.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Samer K. Khaled
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Xiuli Wang
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Joycelynne Palmer
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Computational and Quantitative Sciences, Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, California
| | - Yan Wang
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Computational and Quantitative Sciences, Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, California
| | - Jamie R. Wagner
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Mary C. Clark
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Clinical and Translational Project Development, City of Hope, Duarte, California
| | - Jennifer Simpson
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Jinny Paul
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Vibhuti Vyas
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Sheng-Hsuan Chien
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Anthony Stein
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Vinod Pullarkat
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Amandeep Salhotra
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Monzr M. Al Malki
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ahmed Aribi
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Karamjeet Sandhu
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H. Thomas
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Clinical and Translational Project Development, City of Hope, Duarte, California
| | - Lihua E. Budde
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Guido Marcucci
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E. Brown
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Stephen J. Forman
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| |
Collapse
|
299
|
Hagel KR, Arafeh R, Gang S, Arnoff TE, Larson RC, Doench JG, Mathewson ND, Wucherpfennig KW, Maus MV, Hahn WC. Systematic Interrogation of Tumor Cell Resistance to Chimeric Antigen Receptor T-cell Therapy in Pancreatic Cancer. Cancer Res 2023; 83:613-625. [PMID: 36548402 PMCID: PMC9929516 DOI: 10.1158/0008-5472.can-22-2245] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy can lead to dramatic clinical responses in B-cell malignancies. However, early clinical trials with CAR T-cell therapy in non-B-cell malignancies have been disappointing to date, suggesting that tumor-intrinsic features contribute to resistance. To investigate tumor-intrinsic modes of resistance, we performed genome scale CRISPR-Cas9 screens in mesothelin (MSLN)-expressing pancreatic cancer cells. Co-culture with MSLN-targeting CAR T cells identified both antigen-dependent and antigen-independent modes of resistance. In particular, loss of the majority of the genes involved in the pathway responsible for GPI-anchor biosynthesis and attachment abrogated the ability of CAR T cells to target pancreatic cancer cells, suggesting that disruption of this pathway may permit MSLN CAR T-cell evasion in the clinic. Antigen-independent mediators of CAR T-cell response included members of the death receptor pathway as well as genes that regulate tumor transcriptional responses, including TFAP4 and INTS12. TFAP4-mediated CAR T resistance depended on the NFκB transcription factor p65, indicating that tumor resistance to CAR T-cell therapy likely involves alterations in tumor-intrinsic states. Overall, this study uncovers multiple antigen-dependent and -independent mechanisms of CAR T-cell evasion by pancreatic cancer, paving the way for overcoming resistance in this disease that is notoriously refractory to immunotherapy. SIGNIFICANCE The identification and validation of key determinants of CAR T-cell response in pancreatic cancer provide insights into the landscape of tumor cell intrinsic resistance mechanisms and into approaches to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Kimberly R Hagel
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Rand Arafeh
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sydney Gang
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Taylor E Arnoff
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nathan D Mathewson
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kai W Wucherpfennig
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - William C Hahn
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
300
|
Sawaisorn P, Atjanasuppat K, Uaesoontrachoon K, Rattananon P, Treesuppharat W, Hongeng S, Anurathapan U. Comparison of the efficacy of second and third generation lentiviral vector transduced CAR CD19 T cells for use in the treatment of acute lymphoblastic leukemia both in vitro and in vivo models. PLoS One 2023; 18:e0281735. [PMID: 36780428 PMCID: PMC9925013 DOI: 10.1371/journal.pone.0281735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
T cells genetically engineered to express a chimeric antigen receptor (CAR) specifically binding to a CD19 antigen has become the frontline of hematological malignancies immunotherapy. Their remarkable antitumor effect has exerted complete remission in treating B-cell malignancies. Although successful patient treatment has been shown, improvement to the structure of CAR to enhance its safety and efficacy profile is warranted. Transduction with a lentiviral vector (LVV) leading to the expression of CARs is also a critical step in redirecting T cells to target specific tumor antigens. To improve the efficacy of CD19 CARs in this study, the transduction ability of second and third generations LVV were compared. Ex vivo expansion of CD19 CARs T cells from healthy donors' peripheral blood mononuclear cells was performed after transduction of T cells with second and third generations LVV. Transduction efficacy of transduced T cells was determined to show a higher percentage in the third generations LVV transduced cells, with no changes in viability and identity of cells characterized by immunophenotyping. Testing the cytotoxic capacity of third generations LVV-transduced T cells against target cells showed higher reactivity against control cells. Cytokine expression was detected on the CD19 CARs T cells, suggesting that these cells limit in vitro growth of B-cell leukemia via secretion of the pro-inflammatory cytokine IFN γ. To investigate whether the third generation LVV transduced T cells can limit CD19 lymphoma growth in vivo, an analysis of tumor burden in a mouse model assessed by bioluminescence imaging was performed. We found that, in the presence of CD19 CARs T cells, the level of tumor burden was markedly reduced. In addition, an increase in the length of survival in mice receiving CAR-CD19 T cells was also observed. This suggests that transduction with third generations LVV generate a functional CAR-CD19 T cells, which may provide a safer and effective therapy for B-cell malignancies.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Worapapar Treesuppharat
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|